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Abstract
Efficient energy conservation to maximize the network lifetime is always the most critical challenge in wireless sensor

networks due to their energy-constrained nodes and harsh working environments. Clustering routing is considered the most

popular method to lessen energy utilization at present. In this paper, a fuzzy logic and particle swarm optimization-based

clustering routing protocol called PFCRE is proposed to improve energy efficiency, mitigate the energy holes and enhance

the network lifetime as well. The proposed PFCRE considers energy minimum and balance to form clusters by using an

improved particle swarm optimization algorithm. Moreover, a fuzzy inference system is employed to find the optimal route

for each CH, which considers effective parameters including residual energy, distance to base station and number of being

selected as relay so as to not only minimize energy consumption but also balance traffic load. Especially, the rules of the

fuzzy inference system are tuned by another particle swarm optimization algorithm. Furthermore, an adaptive maintenance

mechanism is used to organize the clusters instead of periodic clustering to further diminish computation and message

overheads. The performance of PFCRE is evaluated by extensive experiments, and the results indicate that it outperforms

IBRE-LEACH, EAUCA, DAPFL, IPSOGWO along with FMSFLA in terms of network lifetime, throughput, energy

consumption, and standard deviation of CH’s traffic load.
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1 Introduction

Wireless sensor networks (WSNs) are composed of mas-

sive tiny, inexpensive sensor nodes equipped with limited

process, storage, and energy resources, which are arranged

in hostile or inaccessible environments in most cases.

Hence, replacing or recharging the power supplies of the

sensor nodes is usually impossible. Then, energy preser-

vation of sensor nodes becomes the most important chal-

lenge for WSNs. Clustering routing has been verified as

one of the most effective ways for this purpose [1, 2]. In

clustering and routing approaches, the randomly deployed

nodes are formed into groups called clusters. And a cluster

head (CH) is selected to perform tasks such as data col-

lection, aggregation, forwarding and cluster management

in each cluster. Non-CH nodes join appropriate clusters as

cluster members (CMs), who transmit sensed data to the

assigned CHs. Accordingly, the clusters are formed, fol-

lowed by a route finding from a source CH to the base

station (BS) to transfer data efficiently in single or multiple

hop communication mode. Compared with forwarding data

directly to the BS in single-hop mode, routing in multi-hop

mode offers advantages such as low energy consumption,

low collision and attenuation loses, high scalability, while

clustering has advantages including bandwidths and over-

head reduction, redundant message prevention, collision

avoidance, and implement ability of administrative strate-

gies [3, 4]. Hence, with the support of clustering routing,

WSNs have been widely used in industry, agriculture,

military, aerospace and other fields [4, 5]. In turn, the

plentiful applications have promoted the in-depth study of

clustering and routing techniques.
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Low energy adaptive clustering hierarchy (LEACH) is

the pioneer clustering and routing protocol, in which CHs’

choice is achieved by probability-based scheme, and non-

CH nodes as CMs find their nearest CHs to form clusters

[6]. Every CM sends the sensed data to its CH based on the

TDMA schedule, and the CH forwards aggregated data to

the BS directly. Due to several drawbacks of LEACH such

as predetermined number of CHs, probability-based

selection of CHs, CM joining the nearest cluster, single-

hop data forwarding between CH and BS, and period

cluster maintenance in round, therefore, a large number of

methods have been proposed to improve the whole network

performance from one or more above mentioned aspects

[3]. Generally, the optimal number of CHs can be deter-

mined by geometric computing [7], and intelligent com-

puting such as harmony search [8], instead of preset in

LEACH. Also, the optimal CHs selection can be achieved

by improved threshold function definition with more

parameters than LEACH [9], deterministic weight value

[10], and intelligent computing such as fuzzy logic [11],

particle swarm optimization (PSO) [12], genetic algorithm

(GA) [13], chicken swarm optimization [14], and honey

badger algorithm [15]. Similarly, CMs joining clusters to

form proper clusters can be reached by considering other

factors than only distance to CH in LEACH [10], intelli-

gent computing such as fuzzy logic [11], chaotic genetic

algorithm [16]. Moreover, multi-hop rather than single hop

is utilized to route data to the BS by deterministic weight

value [7], intelligent computing such as Grey wolf opti-

mization [12], chaotic genetic algorithm [16], African

vulture optimization [15], and grasshopper optimization

algorithm [17]. Finally, variable round [18] and on-demand

re-clustering [19] are usually used for better cluster main-

tenance. Without doubt, all these methods can enhance the

network performance to a certain extend to prolong the

network lifetime. However, little attention is paid on hot

spot issue.

Data transmission with multi-hop communication in

clustering and routing protocols makes the nodes near to

the BS have more data traffic load as compared to those

distant nodes, in other words, these nodes consume energy

faster than the further ones because of their additional data

forwarding, which causes energy holes or hot spot regions

near the BS [4]. Unequal clustering is the widely used

scheme to resolve the hot spot problem by forming dif-

ferent size of clusters according to the competitive radius,

the closer to the BS, the smaller the formed cluster. Usu-

ally, the competitive radius in unequal clustering can be

determined by deterministic weight value considering dif-

ferent parameters such as residual energy and distance [20]

or intelligent computing such as fuzzy logic [21]. In

addition, energy balance among CHs based approaches

also can be used to mitigate the hot spot problem by

intelligent computing such as fuzzy logic [22] and genetic

algorithm [1]. Finally, BS mobility-based methods also can

diminish the hot spot hot problem [23]. However, the hard

decision on cluster size and energy balance without con-

sidering the whole network situation make it hard to cope

with the hot spot problem thoroughly. Moreover, the con-

straint of optimal path planning and additional delay by

using mobile BS also make it difficult to be used in prac-

tical real time applications. From the above mentioned

content, few clustering and routing literature has been

proposed to boost the overall performance of the network

from six aspects including determination of cluster number,

CH selection, CM joining cluster, route finding, and cluster

maintenance, as well as hot spot mitigation.

Faced with intricate optimization challenges, the selec-

tion of an appropriate metaheuristic algorithm becomes

imperative. In this investigation, the Particle Swarm Opti-

mization algorithm is chosen for its notable efficacy in

addressing optimization challenges within high-dimen-

sional search spaces. Firstly, PSO is renowned for its

simplicity and efficiency, facilitating ease of implementa-

tion and adjustment, which extends to solving intricate

problems. Secondly, PSO excels in addressing both con-

tinuous and discrete problems, offering a versatile solution

to the diversity challenges inherent in our study. Addi-

tionally, in opting for the fuzzy logic system, the decision

was made to embrace the Mamdani model, grounded in a

comprehensive evaluation of our research problem’s nature

and the attributes of the Mamdani model. The Mamdani

model boasts a robust theoretical foundation rooted in

fuzzy set theory, contributing to its exceptional perfor-

mance in managing fuzzy information and uncertainty. Its

versatility renders it applicable to various problem types,

thereby presenting an extensive array of application pos-

sibilities for our research. Simultaneously, the Mamdani

model furnishes a rule-based representation aligning with

the expert knowledge present in our system. This repre-

sentation enables us to articulate intricate relationships and

decision-making processes in a structured manner, thereby

augmenting the transparency and interpretability of the

model.

1.1 Contributions

In this paper, a PSO and fuzzy logic-based clustering and

routing protocol called PFCRE is proposed to enhance the

energy efficiency, mitigate the hot spot problem and

enhance the network lifetime. Different from other wireless

sensor network clustering routing protocols. In PFCRE,

energy-efficient clusters are established through the

implementation of a lightweight Particle Swarm Opti-

mization algorithm, concurrently addressing cluster num-

ber determination, Cluster Head selection, and Cluster
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Member integration. Additionally, a fuzzy inference sys-

tem is incorporated to identify energy-efficient routes for

CHs while excluding hotspots, guided by rules fine-tuned

through another PSO algorithm. This secondary PSO

algorithm integrates a fitness function that takes into

account both energy efficiency and load balance consid-

erations. Furthermore, an adaptive maintenance mecha-

nism is employed to dynamically reorganize clusters,

thereby contributing to a more substantial reduction in

energy consumption. The major contributions of the pro-

posed protocol include:

• A clustering and routing protocol is introduced to

establish optimal clusters and determine optimal routes

using Particle Swarm Optimization and a fuzzy infer-

ence system, respectively;

• The parameters of the fuzzy inference system are

adjusted using PSO, incorporating a fitness function that

simultaneously accounts for energy efficiency and load

balance;

• An adaptive mechanism is employed to manage clusters

and routes, replacing periodicity to reduce computa-

tional and message overheads at both local and global

levels.

The rest of this paper is organized as follows. The latest

clustering and routing protocols considering hot spot mit-

igation are reviewed in Sect. 2. The system model are

given in Sect. 3. The detail introduction of the proposed

protocol is addressed in Sect. 4. The performance com-

parison is provided in Sect. 5 in detail. Finally, Conclu-

sions are drawed and future directions are showed clearly

in Sect. 6.

2 Related works

Inspired by the advantages of LEACH, lots of clustering

and routing protocols have been proposed to boost the

network lifetime, scalability and stability. In IBRE-

LEACH [24], residual energy is considered as an additional

factor for CH selection compared to LEACH so as to

exclude the node with low energy becoming CH. When

forming clusters, a threshold is defined to restrict the

number of cluster member. Once this happens, the node

cannot join its nearest cluster. In the worst case, a node

becomes abandoned node (AN) if it cannot join any cluster.

Moreover, a node with highest residual energy and lowest

distance to the BS is selected as the root to minimize the

overload on the BS and reduce energy dissipation. After-

wards, each CH and AN generate a routing table in which

contains distances to other CHs, ANs, the root, and the BS

in small to large. The one with smaller distance to the BS

than itself is selected as its next hop. Simulation results

validates its good performance in terms of stability, net-

work lifetime, throughput, and energy consumption.

However, only distance considered during the process of

route finding maybe result in premature death of the relays

with low remaining energy. In addition, the number of

clusters determined by a preset proportion of nodes is easy

to cause unbalanced energy consumption. Hence, in

EOCGS [25], the optimal number of clusters is calculated

firstly by considering the minimum energy consumption of

the network. Then, nodes with more residual energy and

closer centroid distance are selected as CHs. CMs join their

nearest CH respectively like in LEACH. And if the total

number of clusters is less than the calculated optimal

number, the CHs send their aggregated data to the BS

directly. Otherwise, a certain percentage of CHs are

selected as grid head (GH) based on a fitness function

considering CH’s residual energy, BS’s location, cluster’s

centroid, and relative Euclidean distance of CHs for high

energy efficiency. The higher the fitness function value, the

greater the chance of CH becoming GH. The CHs send

their fused data to their respective nearest GH, and each

GH sends its data to the BS in single-hop or multi-hop

mode based on its distance to the BS. EOCGS can provide

better coverage, enhance network energy efficiency, as

well as improve network stability. However, fixed round

time maybe deplete the CH energy and lose more data.

Therefore, in EM-LEACH [26], a variable round time is

calculated to save energy dissipation of the whole network.

Moreover, level-based topology is used to simplify the

clusters formation and route finding, in which a node is

located by analyzing the level setup package it receives.

For CH selection, the residual energy is considered as a

parameter in the threshold function, then the more residual

energy, the greater the probability that a node becomes CH.

Once the CHs are selected, each normal node joins the

cluster with its closest CH in the same or adjacent level,

otherwise, it aggregates data and forwards it directly to the

BS if no CH around. At the same time, each CH aggregates

the received data from its CMs and sends it to the closest

CH located in the next level, till to the BS eventually. EM-

LEACH can reduce and balance energy dissipation as well

as increase packet delivery. But the hot spot problem is not

taken into account in EM-LEACH, EOCGS and IBRE-

LEACH. So, in CUCMA [27], the cluster radius is iden-

tified by distance to the BS and node distribution density.

The closer to the BS, the greater the node density, then the

smaller the cluster radius. Thus, the CHs’ traffic loads are

balanced, and the hot spot problem is settled. In addition, a

node decides whether it is selected as CH based on residual

energy, distance to BS, distance to selected CHs, and

number of neighbors. After selecting CHs, each normal

node finds its nearest CH to form cluster. Then, CMs send

gathered data to their CHs, and each CH forwards the fused
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data to the BS in multi-hop mode. CUCMA can equalize

the CHs’ traffic loads and reduce the network energy dis-

sipation, resulting in prolonged network lifetime. However,

missing details of multi-hop scheme and round based re-

clustering mechanism bring uncertainty of performance

improvement, more computing and message overhead.

Thereupon, in EAUCA [20], firstly, the competition radius

of each node is calculated according to its remaining

energy and distance to BS, which is adopted to create the

unequal sized clusters, i.e. clusters near the BS has smaller

radius than the further ones. Moreover, the node with more

residual energy and higher node degree is nominated as

CH. After CHs selection, normal nodes along with their

nearest CHs form clusters by message interaction like in

CUCMA. Different from traditional route-finding scheme,

EAUCA nominates separate relay nodes to transfer inter-

cluster data to the BS instead of CHs, and the nodes with

more residual energy, lower node degree, and nearer dis-

tance to BS are more likely to be selected as relay nodes.

Once the relay nodes are determined, CHs send their fused

data from CMs to the nearest relay node in order to

decrease the traffic burden of the CHs. Thereafter, the data

is accumulated to the BS finally through multiple relay

nodes closest to each other. More importantly, restructur-

ing the network into unequal clusters after certain rounds

instead of every round in EAUCA diminishes the clustering

overheads, resulting in a decline in energy depletion.

Simulation results demonstrates that EAUCA effectively

mitigates the hot spot problem and significantly extends the

network lifetime. However, above mentioned probability

and deterministic weight-based protocols are difficult to

find the optimal solution for clustering and routing which is

considered as NP-hard [1, 15, 22]. Therefore, intelligent

computing-based protocols have been proposed to solve

this problem.

In [15], HBAC-AVOR is proposed to effectually cluster

the nodes and efficiently organize the routes by using

honey badger and African vulture optimization, respec-

tively. Firstly, the honey badger algorithm is utilized to

rapidly search the optimal CHs based on a novel fitness

function considering residual energy, average and Eucli-

dean distance of node to BS, and number of neighbors.

However, arbitrary places initialization of honey badgers

and the diversity of population determined by reducing

factor only based on the number of iterations will reduce

the convergence speed and easily fall into local optimum.

Secondly, African vulture optimization is applied to select

the optimal routes. Based on the fitness values of vultures

considering residual energy and distance to BS, the opti-

mum group of routes are obtained by updating the positions

of vultures in the end. Simulation results indicate that

HBAC-AVOR can lengthen the network lifetime and

improve the network energy efficiency. However, energy

balance is not considered and more parameters need to be

determined in HBAC-AVOR. In [12], IPSO-GWO is pre-

sented to select optimal CHs and paths in the network.

Above all, CHs selection is treated as an optimization issue

in IPSO-GWO resolved by improved particle swarm opti-

mization (IPSO) with objectives minimizing the ratio of

CHs average residual energy to non-CH nodes’ residual

energy, and the ratio of maximum distance among the non-

CH nodes and the BS to the average distance among BS

and CHs. Moreover, the inertial weight is adaptively

changed to avoid trapping into local optimum. Similar to

HBAC-AVOR, random particle initialization may reduce

the convergence speed too. Once the CHs are selected by

IPSO, normal nodes with their respective nearest CHs form

clusters by message interactions. Afterwards, Grey Wolf

Optimization (GWO) is used to select the optimal paths

whose objectives are minimizing the distance traversal and

count of hops. And the best solution is obtained by

updating speed and location of wolves. However, residual

energy is not considered for paths selection. Simulation

outcome exhibits that IPSO-GWO can offer maximum

energy efficacy with improvised network lifetime. In [28],

PSO-EEC is proposed to select CHs and find relay nodes

both based on PSO so as to extend the network lifetime and

decrease the network energy expenditure. For CH selec-

tion, each particle consists of components representing the

positions of the sensor nodes to be selected as CHs. And a

fitness function is defined to evaluate the quality of parti-

cles considering the ratio of nodes’ initial energy and

residual energy, distance between cluster member nodes

and CH, and node degree so as to nominate the best nodes

as CHs. Iteratively, the position and velocity are updated

according to the local and global best fitness values until

reach the final global optimum solution. After selecting

CHs, the normal nodes associate with their expective

nearest CHs to form clusters. Then, PSO is utilized to find

the optimal relay nodes of CHs so as to save energy con-

sumption. Similar to PSO used for CH selection, another

fitness function is presented to determine the local and

global best, which considers parameters residual energy of

CH and distance to BS. The CHs with higher residual

energy and smaller distance to BS have greater chance of

selecting as relay nodes. The simulation results show that

PSO-EEC can enhance the network lifetime and perfor-

mance. However, uncertainties are not considered occur-

ring in CH selection and route finding. Hence, in [29],

F-GWO is proposed to deal with the uncertainties in CH

selection by using fuzzy logic, and grey wolf optimization

(GWO) is used to find the optimal routes during commu-

nication so as to lessen amount of energy and extend the

network lifetime. At first, fuzzy logic with descriptors

residual energy, node centrality, and neighborhood overlap

is used to select the most acceptable CHs. Once the CHs
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are identified, then advertisement messages are communi-

cated among the CHs and non-CH nodes to form appro-

priate clusters. Second, GWO is adopted to search the

optimal path for each CH like in IPSO-GWO. And a fitness

function is defined to ensure that the CHs having higher

energy, nearer sink distance, smaller intra-cluster distance

and balancing factor have higher probability of being

selected as relay nodes. Simulation results show that

F-GWO excels in network lifetime, packet delivery ratio,

end-to-end delay, and so on. However, ignoring hot spot

problem undoubtedly reduce the whole network

performance.

In [1], GA-UCR is presented to form unequal clusters

for mitigation of hot spot problem by using genetic algo-

rithm. At first, the CHs are selected by applying a genetic

algorithm with a fitness function considering cluster head

remaining energy, distance between CH and BS, separation

between CHs. Moreover, a competition radius is assigned

to each CH based on its residual energy and distance to BS.

The closer to the BS, the smaller the radius of the CH. The

normal nodes join the corresponding clusters with the

nearest CH, which locate in the competition radius of their

CHs. Especially, the CH selection is repeatedly performed

only when a CH’s energy is lower than a preset threshold

instead of in each round so as to further reduce energy

consumption. Next, another genetic algorithm is employed

to find the optimal relays of the CHs, whose fitness func-

tion considers remaining energy of cluster heads, distance

between CH and BS, number of hops. Simulation results

show that GA-UCR can enhance the network performance

with respect to energy consumption, lifetime and scala-

bility. However, distance-based cluster member joining

cluster requires more message overhead, and re-clustering

only based on a predefined energy threshold may lead to

more frequent clustering process. In [22], a distributed

clustering routing protocol called DAPFL is proposed to

improve the network energy efficiency and alleviate the hot

spot problem. Different from GA-UCR, affinity propaga-

tion instead of GA is utilized to ascertain the number of

clusters and naminate optimal CHs, which considers

residual energy and distance between nodes. By updating

the responsibility and availability iteratively, the nodes

with more residual energy, larger average similarity of

neighbors are selected as CHs, at the same time clusters are

formed without extra message overhead. Different from

traditional competition radius-based scheme to deal with

the hot spot problem, fuzzy logic system (FLS) is utilized

to seek out the optimal next-hop CH for each CH with

residual energy, data length and distance to BS as

descriptors, whose objective is to equalize the energy

consumption among the CHs. Simulation results validate

the performance of DAPFL with respect to network energy

consumption, standard deviation of residual energy,

network throughput and lifetime. However, uncertainties

are not considered during the process of CH selection,

which is difficult to find the optimal solution for clustering.

Hence, in EEFUC [30], fuzzy logic is adopted to deal with

the uncertainties happening in the process of competition

radius calculation, CH selection, CM joining, and next-hop

CH selection. First, a fuzzy logic system with three

descriptors residual energy, distance to BS, and node

degree is used to determine the competition radius for each

node. Second, combined with the determined competition

radius, CH chance output from the second fuzzy logic

system with the similar parameters as competition radius

determination is applied to select the optimal CHs. Thus,

the nodes with higher residual energy, shorter distance to

BS, and higher node degree have higher chance to become

CHs. Third, after CH selection, each normal node decides

which cluster to join by utilizing the third fuzzy logic

system with residual energy of CH located in the cluster

and distance to the CH as descriptors. Finally, the forth

fuzzy logic system is designed to discover the best next-

hop CH for data forwarding, whose inputs contains residual

energy of the next CH, distance to the next CH, and dis-

tance to the crossover point between the communication

circle and the straight line from CH to BS. Accordingly,

each CH selects one of its neighbor CHs with higher

residual energy and lower distances as its final next-hop

CH. Simulations demonstrate that EEFUC can achieve

promising performance with respective to network lifetime

and energy usage. However, the fuzzy rules are defined

manually which restricts its adaptive applications. So, in

[31], LEACH-SF is presented to achieve energy efficiency

in different practical heterogeneous wireless sensor net-

works. Balanced clusters in LEACH-SF are formed by

using fuzzy c-means with the objective function minimiz-

ing the distance between nodes and cluster centroid. Once

the clusters are formed, a Sugeno fuzzy logic system is

used to calculate an impact factor (IF) within in [0,1] for

each node based on residual energy, distance from the sink,

and distance from the cluster centroid. Moreover, artificial

bee colony algorithm is used to adjust the fuzzy rules,

whose fitness function considers lifetime in different

applications. Consequently, the optimal IF is obtained for

each node, and the larger IF, the more priority to be

selected as CH. Finally, the node with the maximum IF

becomes the CH of each cluster. The operation and cal-

culations mentioned before are completed by the sink.

After CHs selection, the sink broadcasts an advertisement

message to the CHs telling their CH identity and included

members, and CHs inform their CMs about its ID, and their

allotted timeslot. Simulation results validate that LEACH-

SF can not only efficiently form balanced clusters but also

maximize the network lifetime. In [19], an on-demand

fuzzy clustering algorithm is presented to improve the
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network energy efficiency and throughput. At first, a new

threshold function is defined to probably select candidate

CHs considering more parameters than LEACH including

nodes’ residual energy and optimal number of clusters,

which ensures that the responsibility of being a CH gets

rotated among all the nodes and the nodes with higher

residual energy than other nodes are elected to be CHs. In

order to improve the network performance, a Mamdani

fuzzy logic system is used to calculate chance for each

node, which uses node degree, node centrality and packet

drop probability as descriptors. Moreover, PSO with fitness

function maximizing the chance value is adopted to obtain

the best ranges of membership functions for inputs and

output of the fuzzy logic system. In the end, a candidate

CH with higher chance value is selected as the final CH.

Once the final CHs are selected, the other nodes become

cluster member and join the nearest CH based on received

signal strength. For data transmission, the CMs transmit

sensed data to their respective CH based on TDMA

scheme, and the CHs receive and aggregate the data and

forward it to the BS. Finally, only when CHs’ residual

energy is lower than a threshold defined by

cEinitial 0\c\1ð ÞðEinitial is the inital energy of nodes), the

CH sends a message to the BS who is responsible for

informing all the nodes to perform re-clustering. Simula-

tion results show that the proposed algorithm can reduce

the network energy consumption and improve packet

delivery ratio. In [32], FMSFLA is proposed to maximize

the network lifetime and throughput by using fuzzy logic

system with automatic rule tuning based on the features of

corresponding applications. In FMSFLA, CHs are selected

from the nodes with higher residual energy rates, shorter

distance to BS, and shorter distances to neighbors by using

a fuzzy logic system. Similarly, the relay nodes are also

selected from the CHs with higher residual energy, shorter

actual distances, and lower path loads by employing

another fuzzy logic system. Moreover, the rules in both

fuzzy logic systems are tuned by using shuffled frog

leaping algorithm with a novel fitness function considering

network lifetime. Therefore, the fuzzy rules can be adjusted

to meet the application features. Once the CHs and relay

nodes are determined, the normal nodes join respective

cluster where locates their nearest CH to form clusters. And

then non-CH nodes send their data to the corresponding

CH which aggregates the data and forwards it to the BS

directly or through their relay nodes. Simulation results

show that FMSFLA can achieve steady network workload,

reduce the network energy consumption, and prolong the

network lifetime. However, centralized decision and

interaction-based cluster formation undoubtedly increases

the message overhead, and round by round based cluster

maintenance leads to more computation and message costs.

More importantly, the tuned fuzzy rules by shuffled frog

leaping algorithm may not be optimal because the network

lifetime of an actual application cannot be predicted in

advance which is used to define its fitness function.

The comparison of related clustering and routing pro-

tocols with the proposed PFCRE is illustrated in Table 1.

3 System model

3.1 Network model

There are n sensor nodes N = {s1, s2…,sn} randomly

deployed in the network, and the nodes have the same

process, storage, energy and other resources. Additionally,

all the nodes keep stationary and are grouped into clusters.

Some optimal nodes are nominated as CHs. The only BS is

static and can be located inside or outside of the target

region. Especially, the nodes send data to the BS in multi-

hop mode and the BS can directly communicate with all

the nodes. Also, round is used as data transmission cycle, in

which CMs send data to CH and CH forwards fused data to

the BS hop by hop. Hence, the energy holes occur near the

BS. Both cluster size adjustment and energy balance for-

warding can be used to diminish this issue, as shown in

Fig. 1.

In addition, some additional presumptions are made for

the network:

• ID number is used to identify the nodes.

• No energy constraint is attached to the BS.

• Symmetric links are used for communications among

nodes and the BS.

• The positions of the nodes can be determined by

received signal strength indicator (RSSI).

• The transmission power of nodes can be adjusted as

required.

3.2 Energy model

In this paper, the same simplified energy model as dis-

cussed in [6] is used to calculate the energy consumption

between the transmitter si and the receiver sj. When the

Euclidean distance d between si and sj is less than the

distance threshold d0 estimated by d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

efs=emp
p

, then the

free space model is applied. Otherwise, the multi-path

model is utilized. Accordingly, the energy consumption of

data transmission with k-bit message between nodes si and

sj over distance d can be obtained by [16]:

ETij ¼
k � Eelec þ k � efs � d2; d\d0
k � Eelec þ k � efs � d4; d� d0

�

ð1Þ

where Eelec depicts the electronics energy consumption
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Table 1 Comparison of related protocols

Protocol Data

forwarding

Subject Objectives

Clustering Routing

Method Parameters Method Parameters

[24] Multi-hop Calculation Residual energy, distance

to the BS

Routing table Distance to the BS Energy efficiency

[25] Hybrid Calculation Residual energy, Centre-

of-mass distance

Fitness

function

Residual energy of CH,

Location of BS, Centre of

mass of clusters and Relative

Euclidean distance of CHs

Energy efficiency

[26] Hybrid Threshold

function

Residual energy Threshold

function

Distance Reducing and

balancing energy

consumption

[27] Multi-hop Calculation Residual energy, distance

to BS, distance to

selected CHs and

number of neighbors

Energy efficiency

[20] Multi-hop Calculation Residual energy and node

degree

Calculation Residual energy and Node

degree

Energy efficiency

[15] Multi-hop Honey badger

algorithm

Residual energy, average

and Euclidean

distance of node to BS,

and number of

neighbors

African vulture

optimization

Residual energy and Distance

to BS

Improvised network

lifetime

[12] Multi-hop Improved

particle swarm

optimization

Residual energy, average

and Distance of node to

BS

Grey wolf

optimization

Distance traversal and Count

of hops

Improvised network

lifetime

[28] Multi-hop Particle Swarm

Optimization

Nodes’ initial energy and

residual energy,

distance between CMs

and CH, and node

degree

Particle Swarm

Optimization

Residual energy and Distance

to BS

Enhance the

network lifetime

and Minimize the

energy

expenditure

[29] Multi-hop FLS Residual energy, node

centrality, and

neighborhood overlap

Grey wolf

optimization

Residual energy and Distance

to BS, Intra-cluster distance

and Balancing factor

Enhance the

network lifetime

and Minimize the

energy

expenditure

[1] Multi-hop Genetic

algorithms

Cluster head remaining

energy, distance

between CH and BS,

separation between CHs

Another

genetic

algorithm

Remaining energy of cluster

heads, Distance between CH

and BS, Number of hops

Enhance the

network lifetime

[22] Multi-hop Affinity

propagation

Residual energy, distance

between nodes and

average similarity of

neighbors

FLS Residual energy, Data length

and Distance to BS

Improve the

network energy

efficiency and

alleviate the hot

spot problem

[30] Multi-hop FLS Residual energy, distance

to BS, and node degree

FLS Residual energy, Data length

and Distance to BS

Enhance the

network lifetime

[31] Multi-hop Turned fuzzy

rules by

artificial bee

colony

algorithm

Residual energy, Distance

between the

node and cluster centre

Prolong network

lifetime

[19] Multi-hop Turned fuzzy

membership

by particle

swarm

optimization

Node degree, Node

centrality and Packet

drop probability

Improve the

network energy

efficiency and

throughput
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required to transmit or receive 1-bit. efs and emp are the

amplifier coefficients used for free space and multi-path

model, respectively. Similarly, the energy consumption of

node i for receiving k-bit data from node j is given as [16]:

ERij ¼ k � Eelec ð2Þ

Moreover, the energy consumed for aggregating k-bit

data can be estimated by [16]:

EDA ¼ k � EpDb ð3Þ

where EpDb is the energy consumed for fusing 1-bit data

[16].

4 The proposed protocol

The purpose of the proposed PFCRE is to form best clus-

ters and find optimal routes to enhance the network energy

efficiency, prolong the network lifetime, and eliminate the

hot spot problem as well. PSO and FLS are used in PFCRE

to achieve the set goals. PFCRE consists of three parts i.e.

cluster formation, route finding, and cluster and route

maintenance. The details of each part of PFCRE are

introduced as follows.

4.1 Cluster formation

PSO is one of the most famous methods to solve the

optimization problems with many advantages such as easy

implementation, availability to escape from local optima,

and quick convergence [33]. So, PFCRE also adopts PSO

to form optimal clusters which is different from conven-

tional PSO based methods [12, 34] only focusing on get the

best CHs. There is no need to determine the number of

clusters in advance and to form clusters with message

interaction among non-CH and CH, hence, PFCRE is more

lightweight and energy saving. The detail description of

cluster formation based on PSO is given in Fig. 2.

Particle initialization is used to assign appropriate value

to each component of a particle denoted by

pi ¼ fxi1; xi2; :::; xin}, and there are np particles in total.

Each particle provides the formed clusters whose dimen-

sion is the same as the number of nodes n. Each component

of a particle represents the index of a candidate CH. In

order to accelerate the convergence speed, only the

neighbors j with residual energy higher than the neighbors’

average residual energy Resj [ 1
Nij j
P

Nij j

1

Resk

 !

can be

selected as its candidate CH for every node i. Moreover,

random selection from the candidate set of CHs instead of

traditional randomly generated number also further pro-

motes the convergence of the algorithm. An illustration on

a particle initialization is given in Fig. 3, where a WSN

contains 10 sensor nodes, and each node knows its candi-

date CHs.

As shown in Fig. 3, particle i has 10 components gen-

erated by assigned random number ranged in (0,1], i.e. pi¼
0:34;0:15;0:78;0:53;0:62;0:97;0:05;0:76;0:81;0:37f g. And

the number of candidates for node 1 to 10 is 2, 3, 2, 2, 3, 2,

1, 2, 2, 2, respectively. Multiplying the number of candi-

dates by the component value of the particle one by

one, we can obtain result = 0:34�2¼0:68;0:15�3¼f
0:45;0:78�2¼1:56;0:53 �2¼1:06;0:62�3¼1:86;0:97�

Fig. 1 Clustered WSN with hot spot mitigation

Table 1 (continued)

Protocol Data

forwarding

Subject Objectives

Clustering Routing

Method Parameters Method Parameters

[32] Multi-hop Turned fuzzy

rules by

shuffled frog

leaping

algorithm

Residual energy rates,

distance to BS, and

distances to neighbors

Turned fuzzy

rules by

shuffled frog

leaping

algorithm

Residual energy rates, Real

distances, and Path loads

maximize the

network lifetime

and the number of

received packets

9722 Cluster Computing (2024) 27:9715–9734

123



2¼ 1:94;0:05�1¼0:05;0:76�2¼ 1:52;0:81�2¼1:62;0:37

�2¼0:74g. Then the index of the selected CH can be

determined by rounding the result, i.e. the index of the

selected = Ceiling(result) = {1, 1, 2, 2, 2, 2, 1, 2, 2, 1},

each of whose element implies that the corresponding

candidate is selected as CH. Moreover, the nodes will no

longer participate in the CH selection once they are

selected as CHs. Obviously, nodes 2, 5 and 9 are selected

as CHs, and three clusters { s1;s2;s7}, { s3;s4;s5;s10}, and

{ s6;s8;s9} are formed. Similarly, the initial population can

be achieved by generating the np particles.

One of the objectives of cluster formation is energy

efficiency improvement, in other words, minimizing all the

intra-cluster energy dissipation. Let f1 denote the total

intra-cluster energy dissipation, and minimize represent the

optimization objective. From each particle, the number of

clusters m, and number of CMs li in cluster i can be

obtained. The mathematical formulation can be succinctly

stated as:

minimize f1 ¼
X

m

i¼1

X

lj

j¼1

ðETji þ ERji

 !

þ EDAÞ ð4Þ

where ETji;ERji and EDA is defined in the energy model.

The other objective of cluster formation is load balance in

clusters, which can be expressed as:

minimize f2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
i¼1 Li � Lavg
� �2

m

s

ð5Þ

where Li ¼
Plj

j¼1 Lji þ LDA indicates the load overhead of

cluster i, and Lavg ¼
Pm

i¼1

Plj

j¼1
LjiþLDA

� �

m denotes the average

load overhead of clusters. Therefore, the fitness function is

defined to obtain the global optimal solution, which can be

given as follows

f ¼ a� f1 þ 1� að Þ � f2 ð6Þ

where a 2 0; 1½ � is the coefficient used to regulate the

influence between energy efficiency and load balance fac-

tors. The lower the fitness value, the better is the particle

position, in other words, the better is the formed clusters.

Afterwards, the fitness values of the particles are calculated

to initialize the pibest, gbest. Of course, the maximum

pibest is assigned to gbest. Moreover, the values of com-

ponents in each particle are updated iteratively accordingly

to the following equations [35, 36].

xtþ1
id ¼ xtid þ vtþ1

id ð7Þ

vtþ1
id ¼ x� vtid þ c1 � r1 pibest � xtid

� �

þ c2 � r2
� gbest � xtid
� �

ð8Þ

where 1� i� np;1� d� n, t is the current number of iter-

ations, r1; r2 are two uniformly distributed random numbers

in the range [0,1]. c1 and c2 are constants named as

acceleration coefficients, and x denotes the inertial weight

which can be adaptively adjusted as follows [35, 36].

x ¼ xmax �
xmax � xmin

tmax

ð9Þ

where tmax denotes the predetermined maximum number of

iterations, xmax,xmin are two constants which are usually

set to 0.9 and 0.4, respectively [35, 36]. Next, the fitness

values of the updated particles are also calculated to update

pibest, gbest. It is clear that no updating is carried out when

the new fitness value is not greater than the original value.

The update process is repeated until the number of itera-

tions reaches the preset tmax. The particle with the

Fig. 3 Illustration of particle

initialization

Fig. 2 Flowchart of cluster formation based on PSO
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maximum fitness value gbest is the global optimal solution,

which implies the optimal formed clusters accordingly.

4.2 Route finding

Once the clusters are formed, the route for each CH should

be determined to transmit data to the BS. In PFCRE, the

popular Mamdani fuzzy inference system is employed to

make decision on optimal routes which consists of fuzzi-

fier, fuzzy inference engine, fuzzy rules, and defuzzifier.

The objectives of routing finding are improving energy

efficiency and mitigate hot spot problem. The residual

energy of a node constitutes a pivotal factor, as energy

depletion may lead to node failure, thereby impacting

network stability and lifespan. Deliberating on the

remaining energy of relay nodes offers the potential to

enhance the overall energy efficiency and life cycle of the

network. Additionally, the proximity of a relay node to the

Cluster Head emerges as a crucial parameter. Opting for a

relay node in closer proximity to the CH facilitates the

reduction of transmission delay, enhancement of data

transmission efficiency, and minimization of energy con-

sumption. Moreover, the distance to the base station sig-

nificantly influences the energy consumption across the

entire network and the reliability of data transmission. The

consideration of the number of being selected relay nodes

is imperative for maintaining load balancing within the

network. Utilizing these parameters as fuzzy inputs and

employing a fuzzy logic system for decision-making

enables a more comprehensive evaluation of relay node

adaptability. Consequently, the protocol becomes capable

of adapting more flexibly to diverse network conditions.

This holistic approach contributes to the amelioration of

efficiency, reliability, and adaptability within cluster rout-

ing protocols. To this end, the effective parameters residual

energy of relay, summation of distance to source CH and

BS, and number of being selected relay are considered as

the fuzzy inputs. The more the residual energy, the smaller

the distance summation, the less the number of being relay,

and the more likely the neighbor CH will be selected as the

final relay, as shown in Fig. 4. CH4 is more suitable as the

relay of CH1 in terms of summation of distance. However,

the final relay is CH2 because of its being selected as relay

for CH4 before. Fuzzy rules are vital for decision making,

so the rules are tuned by a PSO algorithm. Fuzzy inference

engine is used to evaluate the fuzzy inputs and obtain the

fuzzy output probability. The neighbor CH with highest

probability is selected as the relay.

Fuzzifier turns the crisp values into linguistic fuzzy

variables by using different membership functions. How-

ever, the input variables usually have various range, which

limits the scope of application, so all the input variables are

normalized in the range of [0,1]. To avoid introducing

excessive computational complexity, the membership

function is chosen as in most protocols. Five membership

functions (very small, small, medium, large, very large) are

utilized for the three inputs variables residual energy of

relay, summation of distance to source CH and BS, and

number of being selected relay. And seven membership

functions are used for the fuzzy output including very low,

low, rather low, medium, high, rather high, very high. In

addition, trapezoidal membership function is applied for

very small, very large, very low and very high, and trian-

gular member function for others. The member ship

function for inputs and output are depicted in Fig. 5,

respectively.

After fuzzification of the crisp input variables, the fuzzy

inference engine applies the IF-THEN rules to calculate the

fuzzy output. According to the inputs and output, the fuzzy

rules can be derived as shown in Table 2.

Another PSO similar to the one in cluster formation is

utilized to tune the rules in Table 2. Each particle denoted

by pi ¼ xi1; xi2; :::; xinf g with dimension n = 125 is utilized

to represent a desired fuzzy output indicated by its seven

membership functions very low, low, rather low, medium,

high, rather high, very high, an illustration is given in

Fig. 6.

Like this, the initial population of particles is randomly

generated, and iteratively update their position and velocity

according to their local best and global best so as to reach

the global optima. Moreover, a fitness function is designed

to reach the objective of rule tuning i.e. maximizing the

probability value by defuzzifier, which can be expressed as:

Maximize:

fitness ¼
Pk

i¼1 ci � li
Pk

i¼1 li
ð10Þ

where ci denotes the output of rule i, kmeans the number of

rules, and li indicates the centroid of the fuzzy output

membership function. Once the iteration stops, the optimal

Fig. 4 Relay selection focusing on hot spot problem
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rules are generated by decoding the global best gbest,

which can be described as:

Rule 1: if Eres = very small, StoD = very small,

Nbd = very small, then probability = high

Rule 2: if Eres = very small, StoD = very small,

Nbd = small, then probability = medium

Rule 3: if Eres = very small, StoD = very small,

Nbd = medium, then probability = rather low

Rule 4: if Eres = very small, StoD = very small,

Nbd = large, then probability = low

Rule 5: if Eres = very small, StoD = very small,

Nbd = very large, then probability = low

Rule 125: if Eres = very large, StoD = very large,

Nbd = very large, then probability = rather low

As shown in Fig. 2, the size of the population np and the

number of iterations Iteration are pre-defined, and the

particles are initialized by using the uniform random

numbers with their respective range values like in Table 2.

At the same time, the individual best pibest and global best

gbest are set to zero. Afterwards, the population is updated

by using Eqs. (7) and (8), and the quality of the particles is

evaluated by using the fitness function Eq. (10). Accord-

ingly, the values of pibest and gbest are also updated based

on the fitness values of particles. Iteratively, the particles

get converged to the global optima. Thus, the global best

gbest is obtained, which can be decoded to achieve the

optimal fuzzy rules.

Finally, defuzzifier is used to get the crisp output, and

the neighbor CH with the greatest probability value is

selected as the relay. Once all the CHs find their relays,

data transmission in multi-hop mode begins, each CM send

data including its residual energy to the corresponding

CHs, and each CH forwards data to its relay until to the BS,

the IDs are also contained in the data packet by routing

order.

4.3 Cluster and route maintenance

A novel maintenance mechanism is employed to further

decrease energy consumption and boost the network life-

time in PFCRE. At first, each CH acts as its role for a

certain upcoming round until its residual energy is lower

than the average residual energy of the cluster. Once this

happens, the CH announces the nearest CM with more

residual energy as the cluster head, which still acts as the

relay for other CHs and sends the received data to the CH.

In addition, the BS monitors the frequency of CH role

change according to the IDs in the received data packet.

When one-time role change in any cluster occurs in a

round, the BS broadcasts a message to the CHs, and the

CHs forward the residual energy of their CMs and them-

selves to the BS. Cluster formation based PSO starts to

form optimal clusters again, and the cluster information is

broadcast to the network by the BS like before. And the

CHs use fuzzy logic optimized by PSO to find the optimal

routes, followed by the data transmission process. It goes

(a) (b)

Fig. 5 The member ship function

Table 2 IF–THEN rules

No. Eres Sof D Nbd Probability

1 Very small Very small Very small o1

2 Very small Very small Small o2

3 Very small Very small Medium o3

4 Very small Very small Large o4

5 Very small Very small Very large o5

6 Very small Small Very small o6

7 Very small Small Small o7

… … … … …
125 Very large Very large Very large o125
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repeatedly until the network dies. The overall flow of the

PFCRE protocol is shown in Fig. 7.

4.4 Time complexity analysis

In PFCRE, the time complexity includes the time com-

plexity of cluster formation, route finding and cluster and

route maintenance. PFCRE adopts PSO to form optimal

clusters, and the PSO has time complexity O n� np
� �

,

where n is the number of sensor nodes, and Np means the

population size. Moreover, only one message is needed to

broadcast the cluster information, the time complexity is

O 1ð Þ. For route finding, fuzzy logic is used to find the best

relay for each CH, so its time complexity is O nch � nruleð Þ,
where nch is the number of CHs, and nrule indicates the

number of fuzzy rules which equals 125 in PFCRE. Fur-

thermore, the fuzzy rules are tuned by another PSO whose

time complexity is O ðnd þ nruleð Þ � npÞ, where nd is the

dimension of the particle which equals nrule. So the time

complexity of route finding is O nch þ 2np
� �

� nruleÞ. Dur-
ing the cluster and route maintenance, local cluster main-

tenance needs only one announcing message. In addition, a

message broadcasting from BS and nch-1 data forwarding

message at most are needed to be processed. Then the time

complexity of cluster and route maintenance is O nchð Þ:
Hence, the time complexity of PFCRE is

O n� np þ 1þ nch þ 2np
� �

� nrule þ nch
� �

. Generally, np,

nch and nrule are much less than n, therefore, the time

complexity of PFCRE is O n2ð Þ.

5 Simulation results

The experiments were conducted on a computer running

the Windows 10 operating system, equipped with an AMD

Ryzen 5 3500X 6-Core processor, 16GB of RAM, and a

500GB SSD. The MATLAB R2022a platform is used to

simulate and test the performance of the proposed PFCRE.

To ensure the robustness of the results, we repeated the

experiments 50 times and calculated the average to draw

the conclusions.

5.1 Simulation settings

We utilized identical simulation parameters as the majority

of protocols, and the details of the network and radio

energy models, which can be found in Table 3. In this

study, the network lifetime, throughput, standard deviation

of cluster head loading, and energy consumption of the

proposed PFCRE protocol are evaluated by varying the

size of the network area, the number of nodes, and the

cluster head occupancy ratio.

In order to rigorously validate the performance of the

proposed PFCRE protocol, a comparative analysis has been

carried out. The analysis is compared with excellent pro-

tocols that use different approaches, including IBRE-

LEACH [24], which improves on the most classical

LEACH protocol; EAUCA [20], which uses an unequal

clustering approach, DAPFL [22], which combines fuzzy

logic with affinity propagation, IPSOGWO [12], which

combines two intelligent optimization algorithms, and

FMSFLA [31], which combines intelligent algorithms with

affinity propagation. intelligent algorithms with fuzzy logic

rules, FMSFLA [32]. The setting of the parameters of the

simulation algorithm can be adjusted according to the

Fig. 6 An illustration of a particle representation relating to the fuzzy output
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actual needs, such as c1 and c2 in the PSO algorithm, which

controls the equilibrium state of the population between the

individual optimum and the global optimum, and the

parameters of the algorithm used are given in Table 4

[37, 38].

5.2 Simulation result and discussion

5.2.1 Network lifetime

First, the network lifetime is tested in both scenarios with

different numbers of nodes and areas. The network lifetime

directly relates to the quantity of surviving nodes, and

usually FND (first node die), HND (half nodes die), LND

(last node die) are used to measure its performance. The

comparison results of PFCRE with IBRE-LEACH,

EAUCA, DAPFL, IPSOGWO and FMSFLA are depicted

in Table 5, and Fig. 8.

It can be seen from Table 5 that PFCRE outperforms

IBRE-LEACH, EAUCA, DAPFL, IPSOGWO and

FMSFLA in terms of network lifetime. In scenario #1 and

scenario #2, the performance of PFCRE in extending the

Fig. 7 The overall flow of the

PFCRE

Table 3 Network parameters

Parameters Scenario #1 Scenario #2

Number of nodes 100 200

Initial energy 1J 1J

Eelec 50 (nJ/bit) 50 (nJ/bit)

E0 5(nJ/bit) 5(nJ/bit)

efs 10 (pJ/bit/m2) 10 (pJ/bit/m2)

emp 0.0013 (pJ/bit/m4) 0.0013 (pJ/bit/m4)

d0 87.7 m 87.7 m

Data packet size 4000bits 4000bits

Control packet size 200bits 200bits

Area 100 m*100 m 800 m*800 m

BS location x = 50, y = 50 x = 400, y = 400

Percentage of cluster heads 10%CH 5%CH 10%CH 5%CH

Table 4 Parameter values for the optimization algorithms

Algorithm Parameter settings

PSO c1 = c2 = 2, Vmax = 6, x = 0.9

GWO The parameter a decreased linearly from 2 to 0

SFLA M = 5,q = 10
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Table 5 Comparison of FND, HND and LND

PFCRE IBRE-LEACH EAUCA DAPFL IPSOGWO FMSFLA

Scenario #1 100 nodes

CH: 10%

FND 1212 672 81 1146 1128 726

HND 1328 1214 1194 1273 1270 1397

LND 1820 1617 1434 1485 1321 1743

100 nodes

CH: 5%

FND 1165 507 131 788 750 818

HND 1312 1191 1299 1050 1014 1367

LND 1696 1735 1365 1295 1089 1462

Scenario #2 200 nodes

CH: 10%

FND 6 1 1 4 1 1

HND 221 44 199 67 141 28

LND 587 469 452 530 291 519

200 nodes

CH: 5%

FND 32 1 1 1 1 1

HND 182 36 103 133 120 22

LND 386 375 306 409 282 391

10%CH 5%CH

10%CH 5%CH

Fig. 8 Comparison of the number of alive nodes
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network lifetime is 19.65%, 17.73%, 36.85% and 31.33%

higher than IBRE-LEACH, 39.93%, 33.02%, 19.90% and

31.66% higher than EAUCA, 10.45%, 24.92%, 26.16%

and 9.50% higher than DAPFL, and 14.70%, 31.63%,

46.80% and 32.83% higher than IPSOGWO,11.28%,

12.60%, 32.67% and 31% higher than FMSFLA.

As can be seen from Fig. 8, Due to its probability-based

CH selection mechanism, IBRE-LEACH may select some

nodes with low residual energy to become CHs, and result

in uneven CHs distribution. Moreover, only distance

between CHs, ANs, and root considered for data forward-

ing undoubtedly leads to energy waste in the improper

paths. Hence, its network lifetime is affected, especially if

the network area is large. Although EAUCA divides the

CHs and relay nodes, the uppermost relay node near the BS

receives almost all the data of the network during data

forwarding process, which can lead to unbalanced load on

the network and premature death of relay nodes thus

affecting the overall network lifetime, which leads to the

overall poor performance of the EAUCA protocol.

IPSOGWO uses two optimization algorithms in clustering

and routing processes, respectively. However, the routing

process considers only distance and hop count and does not

filter the nodes for their residual energy, which may make

low energy but closer to the BS to act as a relay node,

which results in a shorter survival time of the network.

Although DAPFL combines affinity propagation and fuzzy

logic, its fuzzy inference rules need to be improved in

terms of their setup in order to extend the network lifetime.

To overcome the problem of node’s early death due to the

low energy of the selected CH, FMSFLA selects nodes

with residual energy greater than the average energy of the

network to participate in CH selection and uses an opti-

mization algorithm to adjust the fuzzy rules in CH selec-

tion. However, the traffic load on the parent nodes in

FMSFLA is high, which affects the network lifetime.

PFCRE overcomes the shortcomings of other protocols by

being more comprehensive in the selection of CHs and

relay nodes, by adapting the rules of the fuzzy inference

system by using the PSO method, and by taking into

account energy efficiency and load balancing, which

extends the network lifetime. Adaptive mechanisms are

also used to maintain clustering and routing on a non-re-

curring basis to reduce local and global computational and

information overheads, and therefore it usually has a larger

number of surviving nodes than other protocols.

5.2.2 Network throughput

Throughput constitutes a crucial performance metric

employed to characterize the volume of data or information

that a network can effectively transmit within a given time

frame. Typically, Throughput serves as a standard measure

for assessing a network’s data transfer capacity and overall

performance. Enhanced throughput can significantly

enhance network performance, diminish transmission

latency, and broaden the range of supported application

scenarios, including monitoring, control, and data transfer.

The results are shown in Fig. 9.

Low network throughput can be attributed to high

energy consumption and shortened network lifetime due to

overloaded relay nodes. Observed from Fig. 9, PFCRE has

higher network throughput than IBRE-LEACH, EAUCA,

DAPFL IPSOGWO and FMSFLA in both scenarios. In

scenarios #1 and #2, the network throughput of PFCRE is

11.44%, 6.78%, 54.98% and 50.96% higher than that of

IBRE-LEACH, 26.11%, 18.66%, 15.31% and 37.34%

higher than that of EAUCA, 6.6%,18.44%, 44.35% and

29.5% higher than that of DAPFL, and 8.73%, 21.41%,

44.35% and 30.45% higher than that of IPSOGWO, and

8.02%, 0.21%, 11.25% and 15.43% higher than that of

FMSFLA, respectively. Obviously, PFCRE not only pro-

longs the network lifetime, but also increases the amount of

data transferred and further improves the network energy

efficiency.

5.2.3 Standard deviation of CH’s traffic load

Standard deviation of CH’s traffic load is tested to compare

PFCRE performance of load balance with IBRE-LEACH,

EAUCA, DAPFL, IPSOGWO and FMSFLA. Due to the

almost same load of cluster members, only load deviation

of cluster heads is performed. The results are shown in

Fig. 10.

As can be seen from Fig. 10, in Scenario 1, when the

network size and the number of hops used for routing are

small, the standard deviation of the CH’s traffic load of the

PFCRE protocol is smaller than that of the IBRE-LEACH,

EAUCA, DAPFL, IPSOGWO and FMSFLA protocols, and

remains stable. This is because PFCRE considers load

balancing when finding routing paths, thus mitigating the

hot spot problem. Since the selection of CH nodes in IBRE-

LEACH is more random compared to other protocols, it

performs relatively poorly in cluster head load standard

deviation. In Scenario 2, as both EAUCA and FMSFLA

protocols transmit data to relay nodes, the load standard

deviation of CH increases as the network size and the

number of hops transmitted increases. However, at larger

network sizes, PFCRE can still show its more obvious load

balancing advantage. the DAPFL and IPSOGWO protocols

forward data to the BS by selecting reasonable paths during

the routing process, so the change in the load standard

deviation of CH is smaller as the network size increases.

The experimental results show that the mean value of the

load standard deviation of CHs for PFCRE is 77.14%,

50.22%, 45.98% and 39.61% lower than that of the IBRE-
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LEACH protocol, 40.89%, 13.27%, 40.13% and 35.99%

lower than that of the EAUCA protocol, 52.48%, 49.32%

and 6.8% lower than that of the DAPFL,72.77%, 54.18%

and 19.69% lower than that of the IPSOGWO protocol. In

addition, in scenario#2 10% CHs, the mean load standard

deviation of CHs for PFCRE was 17.33% and 4.88%

higher than for DAPFL and IPSOGWO. 31.21%, 20.78%,

17.91% and 32.16% lower than that of the FMSFLA pro-

tocol in scenarios 1 and 2, respectively. Therefore, PFCRE

is more effective in solving hot spot problems.

5.2.4 Energy consumption

Finally, Energy consumption is a critical performance

metric that quantifies the battery energy utilized by wire-

less sensor nodes during their tasks and communication.

Wireless sensor nodes are typically battery-powered,

making energy consumption a pivotal factor. The less the

total energy consumption, the better the network perfor-

mance. The results are displayed in Fig. 11.

It can be seen from Fig. 11 that the network energy

consumption increases with the number of running rounds,

but the network energy consumption curve of PFCRE

remains basically under other protocols. In IBRE-LEACH,

since the CH communicates directly with the BS, the CHs

far away from the BS consume a large amount of energy as

the size of the network area and the number of nodes

increase. both EAUCA and FMSFLA select relay nodes

during data transmission, which reduces the network

energy consumption to a certain extent. However, both

protocols cause nodes close to the BS or with greater

residual energy to be selected as relays, which tends to

result in closer and more energetic nodes being repeatedly

selected as relays, which in turn affects network lifetime.

DAPFL selects next-hop CHs based on fuzzy logic outputs

during routing, which reduces network energy

10%CH 5%CH

10%CH 5%CH

Fig. 9 Comparison of network throughput
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consumption to a certain extent. However, this also

increases the energy consumption of the CHs close to the

BS. IPSOGWO optimizes the best clustering through the

particle swarm algorithm and uses the GWO algorithm to

select the best route during the data transmission phase,

selecting a closer and less hoppy routing path to transmit

the data to the base station without considering the energy,

which also affects the network lifetime. PFCRE aims to

minimize the total energy consumption of the network and

adds the number of times a relay node is selected to the

fuzzy input, by designing adaptation function to achieve

this objective, adaptive mechanisms are also used to

maintain clustering and routing on a non-recurring basis to

reduce local and global computational and information

overheads. As a result, in scenarios #1 and #2, which

consume half of the network energy, PFCRE runs 11.51%,

9.05%, 40.38% and 19.23% more rounds than IBRE-

LEACH, 33.23%, 26.55%, 22.43% and 42.1% more rounds

than EAUCA, 7.05%,20.47%, 33.33% and 28.07% more

rounds than DAPFL, and 8.77%, 23.73%, 42.94% and

22.8% more rounds than IPSOGWO, and 6.61%, 3.26%,

47.43% and 42.98% more rounds than FMSFLA,

respectively.

6 Conclusion

This paper presents a lightweight clustering and routing

protocol to improve the network energy efficiency, enhance

the network lifetime and diminish the hot spot problem by

using fuzzy logic and particle swarm optimization, namely,

PFCRE. There are three main stages including cluster

formation using PSO, route finding based on fuzzy logic

optimized by PSO, and cluster and route maintenance in

local cluster and whole network. Several novel mecha-

nisms with less message and computing overheads are

10%CH 5%CH

10%CH 5%CH

Fig. 10 Comparison of Standard deviation of CH’s traffic load
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applied in the stages to achieve the desire objectives. To

verify the performance of PFCRE, it has been compared

with IBRE-LEACH, EAUCA, DAPFL, IPSOGWO and

FMSFLA in several scenarios with respect to network

lifetime, throughput, standard deviation of CH’s traffic

load and energy consumption. Specifically, the average

network lifetime of PFCRE has increased by 26.39%,

31.12%, 17.75%, 31.49%, 21.88%, compared to IBRE-

LEACH, EAUCA, DAPFL, IPSOGWO and FMSFLA,

respectively. At the same time, PFCRE outperforms IBRE-

LEACH, EAUCA, DAPFL, IPSOGWO and FMSFLA by

31.04%, 24.35%, 24.72%, 26.23%, 8.72% in terms of the

average network throughput. For the average standard

deviation of CH’s traffic load, PFCRE decreases it by

53.23% over IBRE-LEACH, 32.57% over EAUCA,

22.81% over DAPFL, 35.44% over IPSOGWO and 25.51%

over FMSFLA. Finally, PFCRE also reduces the energy

consumption by 20.04%, 31.07%, 22.23%, 24.56%,

25.07% as compared to IBRE-LEACH, EAUCA, DAPFL,

IPSOGWO and FMSFLA, respectively. Although this

work achieves good results with respect to network life-

time, throughput, energy efficiency and balance, there are

still some limitations to be addressed in the future. The

proposed PFCRE protocol is more limited in its usage

scenarios, and this paper only demonstrates the homoge-

neous nodes in a static network environment where both

the nodes and the BS cannot be mobile, and it does not

consider the network attacks that will be suffered during

the data transmission process. In addition, we consider

using deep reinforcement learning to replace intelligent

algorithms to optimize the clustering routing protocol of

wireless sensor networks. Finally, the tests are performed

based on the ideal network model, practical scenarios will

be used to test the proposed protocol for applicability

verification.

10%CH 5%CH

10%CH 5%CH

Fig. 11 Comparison of the network energy consumption
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