
DFARM: a deadline-aware fault-tolerant scheduler for cloud computing

Ahmad Awan1 • Muhammad Aleem1
• Altaf Hussain2 • Radu Prodan3

Received: 22 November 2023 / Revised: 11 February 2024 / Accepted: 5 March 2024 / Published online: 20 April 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Cloud computing has become popular for small businesses due to its cost-effectiveness and the ability to acquire necessary

on-demand services, including software, hardware, network, etc., anytime around the globe. Efficient job scheduling in the

Cloud is essential to optimize operational costs in data centers. Therefore, scheduling should consider assigning tasks to

Virtual Machines (VMs) in a Cloud environment in such a manner that could speed up execution, maximize resource

utilization, and meet users’ SLA and other constraints such as deadlines. For this purpose, the tasks can be prioritized based

on their deadlines and task lengths, and the resources could be provisioned and released as needed. Moreover, to cope with

unexpected execution situations or hardware failures, a fault-tolerance mechanism could be employed based on hybrid

replication and the re-submission method. Most of the existing techniques tend to improve performance. However, their

pitfall lies in certain aspects such as either those techniques prioritize tasks based on a singular value (e.g., usually

deadline), only utilize a singular fault tolerance mechanism, or try to release resources that cause more overhead imme-

diately. This research work proposes a new scheduler called the Deadline and fault-aware task Adjusting and Resource

Managing (DFARM) scheduler, the scheduler dynamically acquires resources and schedules deadline-constrained tasks by

considering both their length and deadlines while providing fault tolerance through the hybrid replication–resubmission

method. Besides acquiring resources, it also releases resources based on their boot time to lessen costs due to reboots. The

performance of the DFARM scheduler is compared to other scheduling algorithms, such as Random Selection, Round

Robin, Minimum Completion Time, RALBA, and OG-RADL. With a comparable execution performance, the proposed

DFARM scheduler reduces task-rejection rates by 2.34–9.53 times compared to the state-of-the-art schedulers using two

benchmark datasets.

Keywords Cloud computing � Scheduling � Computation-aware scheduling � Fault tolerance � Cloud simulation

1 Introduction

Cloud computing allows organizations to easily utilize a

scalable and elastic IT infrastructure through the Internet.

Third-party companies often supply these services

through Service Level Agreements (SLAs) that ensure the

availability of distributed resources with required quality

service for high-performance computing [1, 2]. To meet the

SLAs and job-specific constraints such as execution

deadlines, the Cloud Service Provider (CSP) must ensure

that the data-center resources are ready and available

around the clock, support an efficient job scheduling

mechanism to prioritize tasks [3], and provide fault-tolerant

execution.

Cloud job scheduling allocates tasks/cloudlets to the

computing resources, a well-known NP-complete problem

[1]. Many algorithms can effectively schedule tasks among

multiple Virtual Machines (VMs) in a data-center [1, 4, 5],

unscheduled downtime due to hardware/software or power

failures compromising the efficiency of these schedulers.

Some users may have specific execution deadlines, too,

that require a scheduler capable of mapping the tasks to

computing resources so that the specified deadlines are

met. Designing a scheduler capable of efficiently mapping

& Muhammad Aleem

m.aleem@nu.edu.pk

1 Department of Computer Science, National University of

Computer and Emerging Sciences, Islamabad, Pakistan

2 Department of Computer Science, KICSIT Kahuta Campus,

Institute of Space Technology, Islamabad, Pakistan

3 Institute of Information Technology, Alpen-Adria-Universität

Klagenfurt, Klagenfurt, Austria

123

Cluster Computing (2024) 27:9323–9344
https://doi.org/10.1007/s10586-024-04419-1(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04419-1&domain=pdf
https://doi.org/10.1007/s10586-024-04419-1

the cloudlets and handling the machine failures by reallo-

cating cloudlets to alternate machines is crucial in Cloud

data centers. A scheduler can salvage work from a machine

that must be taken offline for maintenance or has experi-

enced a random fault by transferring it to a functioning

machine in a data center [6]. Such fault-tolerant techniques

help maintain SLAs seamlessly and minimize user impact

during perceived downtime. Although task scheduling has

received significant attention, the effects of machine failure

for Cloud schedulers require increased attention. Machine

failures can disrupt mission-critical or data-intensive

applications, resulting in the loss of reputation, time, and

money for the CSPs and their users. A fault-tolerant

mechanism can proactively or re-actively move the affec-

ted machines to the functioning ones.

In addition to the fault tolerance aspect, users may have

specific deadlines for completing their tasks and may pri-

oritize them based on their urgency level. To meet these

deadlines, the scheduler must efficiently assign tasks and

aim to complete as many tasks as possible before the

deadline. The tasks meeting their deadlines are marked as

scheduled tasks, while the tasks failing their deadlines are

marked as rejected tasks. However, fault tolerance and

meeting deadlines can be conflicting objectives, as fault

tolerance reduces the number of available resources while

meeting deadlines requires sufficient resources. To balance

the opposing goals, a scheduler must carefully consider the

objectives and find a way to meet them effectively.

Existing techniques provide various solutions to the

problem of optimizing deadline-constrained Cloud

scheduling. Several techniques, such as EFDTS [3], DCCP

[7, 8], and OG-RADL [9] incorporate dynamic resource

allocation and deallocation that exploit cloud elasticity.

Dynamic resources are vital components to improve per-

formance while reducing cost. However, multiple solutions

do not account for the boot and resource allocation times.

Both allocation and deallocation are important because a

resource in need if deallocated previously, could incur

notable overheard if reallocated again. Some other solu-

tions, such as RALBA [1, 8], and DEAS [10], either sort

tasks by the task length or the deadline of the task. How-

ever, this simple and effective idea can make substandard

decisions due to the simple heuristic based on the task

length compared to the deadline for completing the task.

The TCC [11] and EFDTS [3] employ a singular fault

tolerance mechanism to counter runtime issues and other

bottlenecks. Employing fault tolerance improves reliabil-

ity, but in a deadline-constrained environment, the fault

tolerance could reduce the usable number of resources (as

some resources are reserved for realizing the fault-toler-

ance mechanism), resulting in more deadline misses.

To cope with these challenges, a scheduling algorithm

called Deadline and Fault-aware task Adjusting and

Resource Management (DFARM) is presented that effi-

ciently distributes deadline-aware tasks and provides fault

tolerance. The DFARM proposes a dynamic heuristic by

establishing a relationship between task deadlines and size

to prioritize them and determine the appropriate fault tol-

erance method. The DFARM schedules tasks on the VMs

that can be completed faster. If a task cannot fulfill its

deadline, DFARM reworks the queue to adjust the dead-

line-constrained task to an appropriate location without

affecting other tasks’ deadlines or incurring additional

resources. Additionally, it dynamically acquires and

releases resources for any task if necessary. The release

mechanism allows the DFARM to free up the additional

resources while minimizing the boot time if the resource

acquisition is again necessary. The core objective of the

DFARM scheduler is to reduce task rejection while pro-

viding fault tolerance with reduced resource provisioning.

The main contributions of this work are:

• A twofold fault tolerance mechanism that selects the

appropriate method based on the tightness of the

deadline and task duration;

• A scheduling algorithm based on adeadline per

length of tasks to prioritize tasks and employ

appropriate fault tolerance mechanisms;

• A task adjustment technique to shuffle task queues and

reduce the rejection rates;

• An efficient resource management method to minimize

the boot time overhead while releasing the VMs;

• Task rejection rate performance results in an average of

2.34 and 9.53 times lower rejection rate (using two

benchmark datasets, i.e., Synthetic and GoCJ) as

compared to the state-of-the-art schedulers,

respectively.

Section 2 discusses the state-of-the-art approach. Section 3

presents the DFARM scheduler, its design, algorithm, and

time complexity analysis. Section 4 presents the experi-

mental setup and performance evaluation, while Sect. 5

discusses the attained performance. Finally, Sect. 6 con-

cludes the paper.

2 Literature review

Cloud scheduling is important for managing workloads in a

data center, especially in a distributed and heterogeneous

environment. Researchers have focused on two key areas:

fault tolerance and deadline-constraint scheduling. Fault

tolerance is the ability of the system to handle unexpected

failures or errors without disrupting the overall operation,

classified into proactive fault tolerance, which tries to

anticipate and prevent problems before they occur, and

reactive fault tolerance, which responds to faults and

9324 Cluster Computing (2024) 27:9323–9344

123

attempts to recover from them. Deadline scheduling,

however, involves tasks that must be completed within a

specified time frame. If a task cannot be completed before

the deadline, the system may reject or accept them

depending on its nature. In hard real-time systems, missed

deadlines are failures requiring task rejection, while in soft

real-time systems, missed deadlines are acceptable if the

task is eventually completed.

RALBA [1] is a cloud scheduling algorithm that prior-

itizes execution time by evenly distributing tasks among

machines. It uses a Fill and Spill strategy to distribute tasks

evenly across available VMs, according to their VMShare.

In the Fill section, the scheduler assigns the largest possible

tasks to VMs until no more VMShare is available. The

Spill section assigns the remaining tasks to the VMs that

can complete them at the earliest. RALBA is a dynamic

scheduler that can reduce overall makespan and improve

average resource utilization but that processes tasks in

batches rather than just in time, unsuitable for time-sensi-

tive applications and environments and other related

workloads.

In [7], authors proposed a Cloud scheduler for deadline-

constrained workflows on dynamically provisioned

resources using Proportional Deadline-Constrained (PDC)

and Deadline-Constrained Critical Path (DCCP) algorithms

considering task dependencies, financial costs, and band-

width costs. The authors pre-process the tasks into a bag of

tasks spread across levels with no dependencies. The PDC

or DCCP algorithms utilize the Cost Time Trade-off Factor

(CTTF) and backfilling to optimize the pre-processed tasks

further. The backfilling mechanism helps to utilize the gaps

between dependent tasks and run on separate VMs, while

CTTF considers the trade-off between cost and time. While

this design considers the ability to acquire resources

dynamically, it does not focus on releasing unnecessary

resources to reduce costs.

The Heuristic-based load-balancing algorithm (HBLBA)

[12] for Infrastructure as a Service (IaaS) clouds aim to

configure servers efficiently based on the number and size

of the incoming tasks using a rule set to determine the

suitable VMs for task assignment. The rule set includes five

rules that determine whether to create a VM instance on a

machine with free resources or to add the tasks to a waiting

queue until a VM becomes available. After the server

configuration, the HBLBA maps the task to the VMs,

creating fixed and dynamic queues for the host machine

and VMs. The length of the queues depends on the CPU

utilization and prioritizes the tasks based on a first-come,

first-serve policy. While this approach can lead to better

utilization of resources, it may result in an overall under-

utilization by working on task batches.

In [8], the authors proposed a deadline-constrained

dynamic load-balancing algorithm for scheduling tasks in a

cloud environment. The algorithm focuses on handling

load balancing with elasticity, allowing tasks that cannot

meet their deadlines to be placed on dynamically created

VMs to reduce the task rejection rate. The algorithm first

sorts the tasks by their deadlines in ascending order. It then

uses the matchmaker and dynamic task scheduler compo-

nents to match tasks to the resources that can execute them

quickly. The proposed elastic load balancing then checks

the utilization of each VM and categorizes them as over-

loaded, under-loaded, or balanced. Based on the average

number of missed deadlines, the algorithm dynamically

provisions and de-provisions a certain percentage of VM

resources based on the average count of missed deadlines.

While this approach may increase user satisfaction and

reduce the missed deadline rate, it may result in missed

deadlines, which can be prevented by provisioning

resources at the time of need rather than waiting for a

certain percentage of missed deadlines.

Efficient job scheduling is important for reducing power

use in clouds. In [3], the authors proposed an energy-effi-

cient algorithm called the Energy-aware Fault-Tolerant

Dynamic Scheduling scheme (EFDTS) that optimizes

resource utilization and energy consumption while

scheduling jobs. The EFDTS algorithm divides tasks into

categories and allocates them to the most suitable machines

for scheduling efficiency while using replication to handle

job failure. The algorithm also includes a migration policy

to prevent over-utilization and turn idle machines off to

save power. While this approach is effective, it may not be

suitable for smaller data centers with few resources and

flexibility to acquire additional resources dynamically.

Therefore, arranging the new resources in these systems

could result in more missed deadlines.

In [11], the authors focus on addressing Byzantine

faults, a type of error that can go unnoticed in the early

stages and of the workload execution cause significant

damage, particularly when handling large data sets or

mission-critical tasks in data centers. To address this issue,

the authors use two algorithms: the Tactically Coordinated

Checkpointing (TCC) algorithm, which is a proactive fault-

tolerant system that eliminates faults before these incur an

impact, and the Workload Sensitive Server Scheduling

(WSSS) algorithm, which efficiently allocates resources.

The TCC algorithm monitors the nodes and measures the

delay in starting a virtual machine with a previous check-

point to detect Byzantine faults, often indicated by delays.

The WSSS algorithm tries to minimize the overhead

caused by checkpointing. While these algorithms perform

well in specific scenarios, checkpointing can be data-in-

tensive. Storing delayed checkpoints on a remote backup

server for fault tolerance may result in false positive flags

for byzantine faults.

Cluster Computing (2024) 27:9323–9344 9325

123

Deadline and Energy-aware Scheduling (DEAS) [10]

algorithm schedules tasks within their deadlines. It begins

by adding the set of newly arrived tasks and their deadlines

to the Unbounded Queue. It then schedules them to the

virtual machine with the minimum energy consumption if

they complete before their deadlines and adds them to a

Bounded Queue. If a task cannot be mapped to any virtual

machine that can finish it before its deadline, the algorithm

tries to schedule it immediately on any virtual machine that

can finish it without violating the deadlines of the sched-

uled tasks. Otherwise, it provisions a new resource with the

minimum MIPS required. After a certain threshold, it de-

provisions it using dynamic voltage and frequency scaling.

While this algorithm tries to schedule tasks efficiently, it

does not consider the possibility of completing a task

within the deadline by scheduling it within the queue rather

than only at the head or tail.

As detailed in the provided text, the Overall Perfor-

mance-based Resource-aware Dynamic Load-balancer

(OG-RADL) [9] algorithm is designed for cloud environ-

ments with a specific focus on deadlines-constrained tasks.

OG-RADL, in conjunction with the S-Scheduler, is

responsible for assigning tasks to virtual machines based on

their ability to complete them quickly within specified

deadlines. The S-Scheduler intervenes when tasks cannot

meet their deadlines on the initially assigned virtual

machine, attempting to rearrange tasks to meet the time-

line. The algorithm evaluates its performance using the

Overall Gain normalization technique, which combines

metrics such as ARUR, makespan, task rejection ratio, and

task response time. However, OG-RADL is noted to have

limitations, including the absence of a virtual machine

provisioning and de-provisioning system for rejected tasks

and potential challenges in rearranging tasks based on their

deadlines, especially in linear deadline sort orders

(Table 1).

3 Deadline and fault-aware task adjusting
and resource managing (DFARM)
scheduler

Figure 1 shows the system architecture of the DFARM

scheduler comprising four layers: task queue, management

layer, virtual layer, and physical layer.

3.1 System architecture

In a cloud computing environment, tasks arrive in a task

queue through the system accessibility layers, such as a

graphical, command line, or application programming

interface. The scheduler module in the management layer

then assigns each task in the queue to a VM in the

management layer. If the task is completed before its

deadline on a VM, it allocates that VM at the end of the

scheduling queue. If the deadline is feasible, the scheduler

checks if it can move the task up in the queue without

affecting the other scheduled tasks. If such an execution

pattern is impossible, the resource manager may provision

an additional VM to execute the task. The scheduler marks

the task rejected if no VM is available or provisioned in

time. After assigning a task to a VM, it moves to the virtual

layer, where all the VMs reside. The physical layer con-

tains the machines on which the VMs run and execute the

tasks. Each physical machine or host can host multiple

VMs.

3.2 DFARM architecture

The core scheduling characteristic of a Cloud scheduler is

to map tasks to the most suitable VM if possible or to find a

sub-optimal placement of the tasks. Considering the gen-

eric guidelines, DFARM typically employs similar

scheduling patterns abbreviations in the execution flow

listed in Table 2.

The DFARM scheduling algorithm selects tasks in a

queue with the minimum deadline per length as modeled in

Eq. (16), prioritizing compute-intensive tasks with tight

deadlines. The scheduler then calculates the completion

time for the task on each VM and assigns it to the VM with

the shortest completion time that can complete this task

within the specified deadline. If no suitable VM is avail-

able, the scheduler uses an alternate strategy (i.e., reposi-

tioning the task in task queues) to assign the task. If the

deadline still cannot be met using the alternate scheduling

approach, the task is labeled as rejected.

Deadline per length ¼Deadline of the task

Length of the task

¼ Task:deadlineTime� Task:arrivalTime

Task:MI

ð1Þ

Before marking a task as rejected, the DFARM scheduler

attempts two operations in sequence to possibly find the

desired mapping. The adjustment function is related to the

repositioning strategy, i.e., moving the task higher up in the

task queue on any available VM, given that it does not

affect the deadlines of the other scheduled tasks. This

method assumes that the given task has a stricter deadline

than the previous tasks and aims to execute it before some

of the already scheduled tasks, considering the change does

not result in a deadline violation. To determine the feasi-

bility of this strategy, the scheduler calculates the new

completion time for both the given task and the scheduled

task. If both deadlines (with new completion timings) are

satisfied, a reposition or swap is performed.

9326 Cluster Computing (2024) 27:9323–9344

123

The adjustment function has two variants. The first variant,

a simple or greedy version, strictly enforces both deadline

checks for each iteration. The second variant, a more

aggressive or non-greedy version, enforces the deadline

check of the scheduled task for each iteration but may relax

it for the given task. This simple change in enforcing

strictness leads to drastic changes in behavior. The simple

variant, which requires the condition to be satisfied ini-

tially, may end the search prematurely. Meanwhile, the

aggressive variant increases its search space, as the

Table 1 Literature review summary

Algorithm Methodology Performance objectives Limitations

RALBA [1] – Fill and spill scheduler

– Distribute tasks evenly w.r.t makespan

– Resource utilization

– Makespan

– Throughput

– A batch dynamic scheduler

– Non-deadline aware

– No fault tolerance

EFDTS [3] – Deadline-aware dynamic scheduler

– Classifies tasks and machines

– Employs a reactive replication

– Migration with reduced

power

– Elastic resource

provision

– Re-scheduling is not resource-aware

– Assumes indefinite resources

TCC [11] – Ranked mission-critical jobs

– Measures delay between nodes

– Kernel level checkpointing

– Detects byzantine faults – No support for deadline-constraint tasks

– Kernel-level checkpoint requires large storage

DCCP [7] – Preprocesses tasks into a bag of tasks

– Separate tasks into levels and

sublevels

– Optimizes by cost ratio and backfilling

– Transfer duration

– Backfilling utilizes idle

time

– Sub-deadline-aware

scheduler

– Lacks fault tolerance

– Acquired VMs not released

OG-RADL [9] – Assign tasks to VM with minimum

completion time

– If the deadline cannot be met, send to

S-Scheduler

– Presents a new normalization

technique

– VM provisioning is used

to reduce the rejection

rate

– Re-arrange tasks for

better utilization

– Rather than finding a greater deadline in

S-Scheduler, distance to deadline per task is

employed

HBLBA [12] – Provides dynamic scheduling

configuring VMs based on rule set

– Task-VM mapping is done on FCFS

– VM configuration to

maximize resource

utilization

– VM creation between batches may cause delay

[8] – Sorts tasks by the deadline

– Matchmaker and dynamic task

scheduler component allocate tasks

– Dynamically, resources management

missed deadlines on average

– Load balancing is

provided

– Uses elasticity to reduce

deadline misses

– Provisioning VM immediately would result in

a lower miss rate

DEAS [10] – Sort by the deadline and select VM by

energy consumption

– Resources management on energy

consumption

– Based on energy

consumption

– Task allocations for immediate execution may

not work

– Provisioning delay may result in missing the

deadline

HunterPlus [13] – Convolutional Neural Networks

(CNN) based optimization of task

scheduling

– Energy consumption per

task

– Task completion rate

– Non-fault tolerant technique

– Non-deadline oriented tasks

Energy-aware

resource

provisioning [14]

– Multi-criteria scheduling based on

fuzzy AHP-TOPSIS hybrid

methodology

– Energy consumption

– Response time

– Resource utilization

– User satisfaction

– Non-fault tolerant technique

– Non-deadline oriented tasks

ANFIS [15] – Fault-tolerant prediction model to

proactively control resource load

fluctuation

– Energy consumption

– Task fault ratio

– Resource utilization

– Makespan and total cost

– Non-deadline oriented tasks

Cluster Computing (2024) 27:9323–9344 9327

123

condition may be satisfied further down the list. However,

while having a larger search space, the aggressive variant

may still not find a suitable position, wasting time on a

possible swap rather than guaranteeing a swap from the

beginning.

The adjustment function determines the impact of

introducing a new task in the scheduling queue by com-

paring the new completion time of the new and the already

scheduled tasks on a particular VM. The function starts

with the last task in the queue and calculates the revised

completion time for both tasks (the already scheduled and

the newly arrived task). If the revised completion time for

both of the tasks (i.e., the newly arrived task and the

already scheduled tasks) is within their corresponding

deadlines then these tasks are swapped. If the scheduler

does not find a suitable task to swap with, the DFARM

scheduler provisions a new resource to meet the execution

deadline. The DFARM scheduler ensures that the tasks

with stricter deadlines are prioritized and placed higher up

in the queue for execution.

There are both simple and aggressive versions of the

adjustment function. In both versions of the adjustment

function, the revised completion time of the scheduled task

must not be affected, meaning it must still finish its exe-

cution before its deadline. However, the revised comple-

tion time of the new task only affects the function’s

behavior depending on the version. The simple version

requires that, for each task in the scheduling queue, the

function immediately returns the furthest scheduled task

i on a VM where the new task’s revised completion time

can be finished before its deadline, starting from the end of

the queue. This check must be valid from the beginning

and at each step; otherwise, the function will either return

Fig. 1 Abstraction of DFARM

system architecture

9328 Cluster Computing (2024) 27:9323–9344

123

the task or move on to the next scheduled queue VM if the

check fails at the start. The aggressive version performs the

same check but allows the deadline check for the new task

to fail to search further up the queue. If both conditions are

met, the aggressive function will choose the scheduled task

of VM j for the adjustment.

To illustrate the behavior of the adjustment function, we

will consider an example where, given a list of scheduled

tasks, what will be the outcome of adjusting a new task?

For example, we have four tasks already scheduled on a

VM V, namely tasks [T3, T2, T1, T0] where T3 is set for

immediate execution, followed by T2, T1, and T0. Given

the arrival of a new task Tx, the task Tx would have been

scheduled to run after T0, but the deadline for Tx was not

being satisfied by placing it at the end of the list, which

prompted the adjustment function to position it higher

within the list. Following are the outcomes of the adjust-

ment function given certain scenarios.

• If the task Tx deadline could not be satisfied by

scheduling it to run before T0, the adjustment function

would fail and consider another VM.

• If the task Tx deadline is satisfied by scheduling it to run

before T0, but T0 own deadline is violated, the

adjustment function would fail and consider another

VM.

• If the both task T0 and Tx deadline are satisfied by

scheduling Tx to run before T0, the simple version of

the adjust functions will adjust Tx to VM V schedule

queue. Now that VM V has been selected for adjust-

ment, it will repeat the deadline check process for all

subsequent tasks scheduled to run on VM V until it

cannot. Starting the search from T0 till T3, if task T2

deadline would be violated, the adjustment function

would stop and perform the adjustment so Tx would be

scheduled to run before T1 where the final sequence

order would be [T3, T2, Tx, T1, T0].

• If the task Tx deadline could not be satisfied by

scheduling it to run before T0, but T0 own deadline is

satisfied even with adjustment, the aggressive version

of the adjust functions can adjust Tx to VM V schedule

queue. Now that VM V has been selected for possible

adjustment, it will repeat the deadline check process for

all subsequent tasks scheduled to run on VM V until it

cannot. Starting the search from T0 till T3, the

aggressive function would try to find a position where

both deadline checks are satisfied, not just the first

check. If Tx deadline cannot be satisfied anywhere, or if

any scheduled tasks deadline is violated before both

deadline checks can be satisfied, the adjustment func-

tion will fail. If both deadline checks were valid until

Table 2 Notation used and its

description
Notations Description

Task The basic name for a job

Cloudlet Notation for a job in CloudSim Simulator

MI Million Instructors, size of Cloudlet in CloudSim

MIPS Million Instructions Per Second, Computing Power of VM in CloudSim

Clouet ETij Execution time of Cloudleti on VMj

Cloudlet CTij Completion time of Cloudleti on VMj

VM CTj Completion time on VMj

Cloudlet.MI Size of task in MI on CloudSim

VM.MIPS Computing power of VM in MIPS on CloudSim

TRR Ratio of tasks rejected to all tasks

TAR Ratio of tasks scheduled to all tasks

Task.arrivalTime Time at which task is added to the scheduled queue

Task.deadlineTime Deadline time after which a task would be considered rejected

Deadline per length Ratio of deadline time to the length of task

CloudletCTscheduledj Completion time of an already scheduled Cloudlet on VMj

CloudletETgivenj Cloudlet execution time-adjusted to the scheduled queue on VMj

CloudletETscheduledj Execution time for a Cloudlet already scheduled on VMj

newCloudletCTscheduledj Updated completion time for an already scheduled Cloudlet on VMj

newCloudletCTgivenj Cloudlet completion time-adjusted to scheduled queue on VMj

DT The deadline for the task

CT Completion Time is calculated for executing a task on a VM

BT The boot time after acquisition

AD Acquisition delay before the resource is acquired

Cluster Computing (2024) 27:9323–9344 9329

123

T2, the aggressive adjustment function could adjust task

Tx where the final sequence order would be [T3, Tx, T2,

T1, T0].

The execution time for a cloudlet i on a VM j is calculated

as:

Cloudlet ETij ¼ Cloudleti:MI=VMj:MIPS ð2Þ

The completion time for a VM j is calculated as:

VM CTj ¼
Xn

i¼1

Taski:MI

VMj:MIPS

� �
ð3Þ

Cloudlet CTij ¼
Cloudleti:MI

VMj:MIPS
þ VM CTj ð4Þ

The new completion time for the given and scheduled task

is calculated for a VM j as:

newCloudlet CTscheduledj

¼ Cloudlet CTscheduledj þ Cloudlet ETgivenj
ð5Þ

newCloudlet CTgivenj ¼ Cloudlet CTscheduledj

� Cloudlet ETscheduledj þ Cloudlet ETgivenj
ð6Þ

Only if the previous method fails does the scheduler move

on to the next strategy, i.e., trying to provision a new

resource (exploiting the Cloud elasticity). The new

resource must be able to execute the task before the

deadline while considering the time to acquire the resource

(if applicable) and boot time.

If both methods fail, the task is added to the rejected task

list, the user has the option to configure the scheduler to

allow the task to run even after rejection. If the task is

allowed to run after rejection, the scheduler becomes a

‘‘soft-line’’ scheduler, which may impact the execution of

other tasks that have not yet been scheduled. On the other

hand, if the task is not allowed to run after rejection, the

scheduler becomes a ‘‘hard-line’’ scheduler, which is more

suitable for mission-critical tasks that must meet the

specified deadlines.

When the task queue is empty, and no more tasks are

scheduled, the scheduler may attempt to reduce additional

costs by releasing or de-provisioning the idle resources.

This is beneficial because keeping resources available and

idle results in continuous energy use and increased costs.

However, there is a potential drawback to immediately

releasing idle resources. For example, if a new task arrives

shortly after the release of a resource, the scheduler may

need to re-acquire the resource, incurring additional costs

such as boot time and acquisition delay. To mitigate this

issue, the DFARM scheduler lets the resources remain idle

for a certain time before de-provisioning them. This allows

the resources to be ready for additional work without

incurring the costs related to resource re-acquisition while

also avoiding the drawbacks of keeping idle resources

provisioned for an extended time. Using this strategy, the

proposed scheduler maintains a balance between the costs

of releasing idle resources and re-acquiring them.

To attain fault tolerance, i.e., ensuring the task com-

pletion despite errors or failures. The proposed DFARM

scheduler employs replication and resubmission methods

depending on the task’s deadline. To determine the

appropriate fault tolerance strategy for a given task, its

deadline per length (see Eq. (16), e.g., How many times the

task can run again and again before the deadline expires)

can be compared to the provenance data of the other tasks.

This is attained by adding the given task’s deadline per

length to the provenance data (i.e., historical values) in a

sorted manner. If the given task falls within a certain range,

up to a point known as the replication–resubmission ratio

(typically set between 0 and 1), the task’s deadline is

considered too strict, and the task is replicated. Replication

involves immediately scheduling the task to run on a sep-

arate machine or VM from the original task. If the given

task falls outside this range, the re-submission strategy is

applied, which involves only rescheduling the task if the

VM or running machine crashes and requires the task to be

restarted. Using these fault tolerance measures, the cloud

scheduler can ensure that tasks are completed even during

failures or errors while also considering the strictness of the

task’s deadline and the relative cost of replication versus

re-submission.

Using these methods, the proposed DFARM scheduler

can efficiently assign tasks while trying to account for

additional problems the other solutions face.

3.3 Dataset

The evaluation of the proposed DFARM scheduler is

conducted using three datasets: Google Cloud Jobs (GoCJ)

dataset [16], Heterogeneous Computing Scheduling Prob-

lems dataset (HCSP) [17], and synthetic workload [1]. The

Google-like workload or the GoCJ dataset [16] contains

tasks and the number of instructions generated using the

Monte-Carlo simulation method based on realistic Google

cluster traces. Using Google cluster trace analysis and

MapReduce logs from the M45 supercomputing cluster, a

workload of various sizes was generated ranging from

15,000 to 900,000 Million Instructions (MI).

The datasets do not contain any deadline information,

which must be added through a separate process. Using the

technique from [18], the deadline is calculated by adding

the parameter baseDeadline to the arrival time of the task.

di ¼ ai þ baseDeadline ð7Þ

where di is the deadline while ai is the arrival time of the

task.

9330 Cluster Computing (2024) 27:9323–9344

123

The baseDeadline is generated using a uniform distri-

bution
S
ðbaseTime; a � baseTimeÞ where baseTime varies

from 100 to 400 with a step of 50 while a is set to 4.

3.4 Pseudo code of DFARM scheduler

The source code of the DFARM Algorithm is provided on

https://github.com/amzshow/DFARM.

Algorithm 1 DFARM algorithm

Cluster Computing (2024) 27:9323–9344 9331

123

https://github.com/amzshow/DFARM

Algorithm 2 Find task with minimum deadline per length

Algorithm 3 Get All VM completion time

Algorithm 4 Assign and acquire

9332 Cluster Computing (2024) 27:9323–9344

123

Algorithm 5 Acquire VM

Algorithm 6 Release VM

Cluster Computing (2024) 27:9323–9344 9333

123

Algorithm 7 Check if the adjustment is possible

Algorithm 8 Determine the fault-tolerance technique

9334 Cluster Computing (2024) 27:9323–9344

123

3.5 Complexity and overhead analysis

This section describes the time complexity analysis of the

DFARM scheduler as compared to the other approaches.

For analysis, we will consider N as the total number of

tasks that need to be scheduled and M as the total number

of VMs where the N tasks will be mapped to M VMs.

Concerning real-world cloud computing environments, we

will consider N[[M. The proposed algorithm can be

divided into two outer segments: (i) scheduling the task to a

VM, and (ii) releasing the VM. The final release segment is

a simple for loop that checks each VM to see if they have

completed all their tasks and enough time has passed which

has a time complexity of O(N). Although, the scheduling

segment is a simple for loop over the N tasks, the time

complexity of the inner part of the for loop needs to be

calculated, referred to as the inner segment. The inner

segment can be divided into the following actions: (i) select

the tasks by minimum deadline per length, (ii) find the VM

with minimum completion time, (iii) Check if adjustment

to the already scheduled VMs is possible, and (iv)

acquiring new VM if the task cannot be assigned to any

already acquired VM. For the first action of the inner

segment, the scheduler iterates over the task queue to find a

task with the minimum deadline per length that has a time

complexity of O(N). For the next action of the inner seg-

ment, the scheduler mimics the Minimum Completion Time

or MCT algorithm by finding the VM with minimum

completion time that can finish the task within the deadline,

and the MCT algorithm has a time complexity of O(NM),

the time complexity for the proposed algorithm is O(M) as

we only need to iterate over the VMs. For the adjustment

inner segment, the proposed algorithm iterates over the

VMs M and the already scheduled tasks Ns (where Ns is a

subset of N) to check if an adjustment is possible. If

adjusting is possible, it will insert it in the correct position

in the scheduled queue for the specific VM. In the final

inner segment, the algorithm will try to acquire a new VM

that can finish the task within the deadline which has a time

complexity of OðMavailableÞ. Combining all the time com-

plexity of the inner segments, we get a time complexity of

OðN þM þMNs þMavailableÞ. If we simplify it, so Ns ¼ N

and Mavailable ¼ M then the time complexity would be

OðN þM þMN þMÞ. If we combine the inner and outer

segment equations, the time complexity would be NðN þ

M þMN þMÞ þMÞ or OðN2 þMN þ N2 M þ NM þMÞ,
which could be simplified to OðN2 MÞ or OðM:N2Þ.

For comparison, the proposed schedulers’ time com-

plexity is compared with Random Selection (RS), Round

Robin (RR), Minimum Completion Time (MCT), RALBA

[1] and OG-RADL [9] (please see Table 3).

4 Experimental evaluation and discussions

This section encompasses the experimental evaluation of

the proposed scheduler DFARM and compares it with other

scheduling heuristics.

4.1 Experimental setup

The solution is implemented in Java language and evalu-

ated using the simulator CloudSim [19]. Cloudsim is a

well-known open-source cloud simulation tool that lets us

simulate real cloud environments and services for model-

ing and evaluation. The experiment is performed on an

Intel(R) Core(TM) i5-10300 H CPU @ 2.50GHz with 16

GB of Main Memory and an Nvidia Geforce GTX 1650

with 4 GB of dedicated VRAM. The programming lan-

guage used was Java running OpenJDK Runtime Envi-

ronment Corretto�8.282.08.1 (build 1.8.0_282-b08). The

project was run on Java from Eclipse version 2020-12

(4.18.0) running on Windows 10 Home version 20H2.

Table 4 showcases the configuration detail used for the

simulation. The experiments are performed with 30 host

machines that manage 50 VMs in a data center. The VM’s

computation power is measured in Millions of Instructions

Per Second (MIPS) as listed in Table 5.

4.2 Workload generation

For this experiment, two workloads are employed (i) a

synthetic workload and (ii) a Google-like benchmark

workload GoCJ. The cloudlet configuration used in syn-

thetic workload is randomly generated by using different

ranges for the cloudlets. The generated cloudlets are

measured in Million Instructions (MI) and the ranges for

the synthetic workload are listed in Table 6.

The GoCJ dataset [16] contains tasks and their number

of instructions generated using the Monte-Carlo simulation

method based on realistic Google cluster traces. Using

Table 3 Time complexity of

various algorithms
Algorithm RS [17] RR [17] MCT [1] RALBA [1] OG-RADL [9] DFARM (proposed)

Complexity O(N) O(N) O(M.N) OðM2:NÞ OðN2Þ OðM:N2Þ

Cluster Computing (2024) 27:9323–9344 9335

123

Google cluster traces analysis and MapReduce logs from

the M45 supercomputing cluster, the workload of various

sizes is generated ranging from 15,000 to 900,000 MI

described in Table 7.

As none of the datasets contain any deadline informa-

tion, the deadline information is added using the technique

from the study [18], and the deadline is calculated by

adding the parameter baseDeadline to the arrival time of

the task. The deadline is generated using a uniform dis-

tribution
S
ðbaseTime; a � baseTimeÞ, where baseTime

varies from 100 to 400 with a step of 50 while a is set to 4

for the GoCJ workload while the synthetic workload is set

to 2 to 8, the same values as GoCJ however divided by 50.

4.3 Performance metrics

A cloud scheduler is evaluated on how efficiently and fairly

it can schedule tasks amongst VMs, keeping that in mind,

the DFARM scheduler has been evaluated using the fol-

lowing performance metrics: Makespan [1], Throughput

[1], and Average Resource Utilization Ratio (ARUR) [1].

Besides the above metrics, the scheduler will also be

evaluated using Task Rejection Rate (TRR) [3] and Task

Acceptance Rate (TAR) to measure how many tasks the

algorithm was able to schedule to meet the task deadlines.

Makespan metric measures the time taken by the slowest

machine.

Makespan ¼ max
8j2f1;2;3;:::;mg

ðVM CTjÞ ð8Þ

where m is the number of VMs and VM CTj is the VM

completion time of a VM calculated using

VM CTj ¼
Xn

i¼1

Taski:MI

VMj:MIPS

� �
ð9Þ

where n is the number of tasks. For VM CTj, n will be the

number of tasks that are assigned to the VM j. Throughput

measures the execution of the workload tasks per unit time.

Throughput ¼ n

Makespan
ð10Þ

ARUR measures the overall utilization of the resource and

indicates how well a resource was utilized.

Table 4 Configuration used for

simulation
Item Specification

Simulator/version CloudSim version 4.0

Computing power of host machines 4 Dual-core (4000 MIPS)

26 Quad-core (4000 MIPS)

Total host machines 30 Hosts

Host machine memory 16,384 MBs each

Total VMs 50 VMs

Total cloudlets 80 Cloudlets (synthetic workload)

100 Cloudlets (Google-like workload)

Table 5 Computation power of VMs, measured in Million Instruc-

tions per Second

Number of VMs Computational power (MIPS)

7 100

7 500

6 750

6 1000

6 1250

6 1500

6 1750

6 4000

Table 6 Size of cloud-lets for synthetic workload, measured in Mil-

lion Instructions

Name Number of cloudlets Cloudlet size (MI)

Tiny 20 1–250

Small 60 800–1200

Medium 5 1800–2500

Large 10 7000–10,000

Extra large 5 30,000–45,000

Table 7 Size of cloudlets for Google-like workload, measured in

Million Instructions

Name Number of cloudlets Cloudlet size (MI)

Small 20 15k–55k

Medium 40 59k–99k

Large 30 101k–135k

Extra large 4 150k–337.5k

Huge 6 525k–900k

9336 Cluster Computing (2024) 27:9323–9344

123

ARUR ¼

Pm
j¼1 VM CTi

m

� �

Makespan

ð11Þ

TRR and TAR measure the number of tasks that the

algorithm was able to schedule within the deadline. The

value for both metrics will always be between 0 and 1 and

is an important metric for how well a deadline scheduler is

performing.

TRR ¼Number of Tasks Rejected

Total Number of Tasks
ð12Þ

TAR ¼Number of Tasks Accepted

Total Number of Tasks
ð13Þ

The values indicate how well a deadline scheduler is per-

forming. The TAR value should be as high as possible

while the TRR should be as close to 0 as possible. Both

values are a subset of the number of tasks such that their

addition will return 1.

TARþ TRR ¼ 1 ð14Þ

4.4 Simulation results

The proposed scheduling algorithm is compared with other

cloud scheduling algorithms (i.e., Random Selection,

Round Robin, Minimum Completion Time, RALBA [1],

OG-RADL [9]) based on makespan, throughput, ARUR,

and task rejection rate, on both synthetic and the GoCJ

workload. The experiment is performed 100 times and the

average values are reported here.

Along with the comparison of algorithms, data is also

presented that showcases the effects of fault tolerance and

VM reservation before the scheduler starts. Fault tolerance

is determined by a 0–1 parameter or the replication–re-

submission ratio (i.e., percentage of tasks to replicate,

where 1 shows 100% replication). The replication–resub-

mission ratio has a notable impact on performance too,

while the VM reservation shows the minimum number of

VMs required at the start.

In addition to the comparison of the results, the different

performance implications or versions of the proposed

DFARM scheduler have been included to provide addi-

tional insight. The different versions of the DFARM

scheduler are created by changing the default selection and

whether a deep search is enabled for the adjustment func-

tion or not. The possible selection methods are: (i) No Sort

(select the first item in the queue), (ii) Deadline Sort (select

a task with a minimum deadline), (iii) Deadline/Length

Sort (select a task with a minimum deadline per length),

and (iv) Length/Deadline Sort (select a task with minimum

length per deadline which is a reverse of deadline per

length). Whether the deep search is enabled (indicated

by Deep (enabled) label) for the adjustment function

or not results in a total of eight (08) variants or versions of

the proposed DFARM scheduler. The versions created

using No Sort and Deadline Sort are used to showcase the

importance of sorting/selection mechanisms and their

impact, while the Length/Deadline shows the effects of bad

sorting/selection.

The data for both synthetic and the GoCJ benchmarks

shows a pattern emerging among the various versions of

the scheduler. Repeatedly, the No Sort version exhibits the

worst performance, with only certain outliers. On the other

hand, the Deadline Sort version does improve performance,

highlighting the significance of sorting in the scheduling

process. However, it is noteworthy that while sorting

generally improves performance, there are cases where it

can decrease performance. The Length/Deadline sort ver-

sion serves as an example of non-optimal or bad sorting, as

it produces comparable performance to the No-Sort version

and, in some instances, even underperforms. In contrast,

the Deadline/Length sort version consistently outperforms

all the other DFARM versions, establishing itself as the

superior choice. Additionally, a consistent trend can be

observed wherein the deep version always boosts perfor-

mance. Although the performance increase can vary, the

positive impact is persistent. Consequently, the Deadline/

Length Sort version with the deep search enabled emerges

as the clear choice for performance, making it the preferred

variant of the DFARM versions for further comparisons

and evaluation as compared to the other scheduling

heuristics.

To provide a better context when comparing each per-

formance metric, Eq. 17 is used to showcase the percent-

age of improvement of a scheduler x compared to the

scheduler y.

Deadline per length ¼ Deadline of the task

Length of the task

¼ Task:deadlineTime� Task:arrivalTime

Task:MI

ð15Þ

Length per deadline ¼ 1

Deadline per length
ð16Þ

Improvement ¼ x� y

absðyÞ � 100 ð17Þ

4.4.1 Execution performance

Figure 2 shows the performance results for the synthetic

workload while Fig. 3 shows performance results for the

GoCJ benchmark workload. As shown in Fig. 2, the pro-

posed DFARM scheduler outperforms the other heuristics

such as RS, RR, MCT, and OG-RADL both in task

rejection rate, only the RALBA scheduler slightly performs

Cluster Computing (2024) 27:9323–9344 9337

123

better. As Fig. 3 shows the DFARM scheduler has out-

performed all the other scheduling algorithms in different

performance aspects and produced a standout performance,

only slightly being outperformed by the RALBA in

makespan.

The makespan (i.e., the execution time for the full

workload) for the synthetic dataset is depicted in Fig. 2a.

The results shown in Fig. 2a depict that the RALBA

scheduler attained 34.85%, 8.56%, 15.56%, 13.97%, 1.86%

lower makespan as compared to RS, RR, MCT, OG-

Fig. 2 Results for synthetic workload

Fig. 3 Results for GoCJ workload

9338 Cluster Computing (2024) 27:9323–9344

123

RADL, and the DFARM scheduler, respectively. The

makespan results for the GoCJ benchmark dataset are

depicted in Fig. 3c. These results show that the RALBA

scheduler attained 47.23%, 17.27%, 46.47%, 44.42%,

0.07% lower makespan as compared to RS, RR, MCT, OG-

RADL, and DFARM, respectively. These results show that

the proposed DFARM scheduler has very similar makespan

performance (a maximum of 1.86% more execution time as

compared to the best-performing scheduler i.e., RALBA.

However, the proposed DFARM scheduler outperforms

significantly in the task-rejection aspect as compared to the

other state-of-the-art schedulers (as shown in the experi-

ments in Figs. 2d and 3).

The throughput (i.e., number of jobs executed per sec-

ond) for the synthetic dataset is depicted in Fig. 2b. The

results shown in Fig. 2b depict that the RALBA scheduler

attained 37.12%, 21.96%, 17.05%, 16.17%, 2.29% higher

throughput as compared to RS, RR, MCT, OG-RADL, and

DFARM scheduler, respectively. The makespan results for

the GoCJ benchmark dataset are depicted in Fig. 3b. These

results show that the DFARM scheduler attained 47.60%,

27.03%, 35.19%, 12.06%, 34.75% higher throughput as

compared to RS, RR, MCT, RALBA, and, OG-RADL,

respectively.

The ARUR (i.e., average resource utilization ratio) for the

synthetic dataset is depicted in Fig. 2c. The results shown in

Fig. 2c depict that the RALBA scheduler attained 41.51%,

16.02%, 52.36%, 52.35%, 1.64% higher resource utilization

as compared to RR, RS, MCT, OG-RADL, and DFARM,

respectively. The makespan results for the GoCJ benchmark

dataset are depicted in Fig. 3c. These results show that the

DFARM scheduler attained 53.24%, 26.36%, 63.33%,

6.20%, 63.15% higher resource utilization as compared to

RS, RR, MCT, RALBA, and OG-RADL, respectively.

The task rejection rate (i.e., number of tasks rejected) for

the synthetic dataset is depicted in Fig. 2d. The results

shown in Fig. 2d depict that the DFARM scheduler

attained 3.45, 3.77, 1.6, 1.24, 1.67 � (i.e., times) lower

rejection rates as compared to RS, RR, MCT, RALBA, and

OG-RADL, respectively. The makespan results for the

GoCJ benchmark dataset are depicted in Fig. 3d. These

results show that the DFARM scheduler attained 16.26,

10.73, 5.8, 9.06, and 5.8 � lower task-rejection rates as

compared to RS, RR, MCT, RALBA, and OG-RADL,

respectively.

4.4.2 Dynamic resource acquisition

Dynamic resource acquisition is the minimum number of

VMs required at the start of the workload execution or pre-

allocations. This represents a percentage value from 0 to

100, where 0% indicates that no VMs are reserved at the

start while 100% indicates that all the VMs are pre-

allocated (at the start of the workload execution). Figure 4

shows the performance results for the synthetic workload

execution while the execution of the GoCJ benchmark

dataset has been depicted in Fig. 5. These experiments

were conducted using several pre-allocation schemes such

as 0%, 20%, 40%, 60%, 80%, and 100% prior availability

of the required number of VMs. The purpose of these

experiments was to gauge the impact of pre-allocation of

the resources (i.e., VMs) on performance aspects such as

makespan, throughput, ARUR, and task rejection rate.

The impact of dynamic resource allocation on the

attained makespan by the DFARM scheduler using a syn-

thetic dataset is presented in Fig. 4a. The results shown in

Fig. 4a depict that the pre-allocation of VMs i.e., 0%, 20%,

40%, 60%, and 80% as compared to to 100% pre-allocation

yields 51.85%, 48.44%, 20.98%, 11.99%, 11.07% lower

makespan, respectively. In Fig. 5a, the makespan results of

the execution of the GoCJ dataset depict that the pre-al-

location of VMs i.e., 0%, 20%, 40%, 60%, and 80% as

compared to 100% results in 66.18%, 67.08%, 61.58%,

43.28%, 17.49% lower makespan, respectively.

The impact of dynamic resource allocation on the

attained throughput by the DFARM scheduler using a

synthetic dataset is depicted in Fig. 4b. The results shown

in Fig. 4b shows that the pre-allocation of VMs i.e., 0%,

20%, 40%, 60%, and 80% as compared to to 100% pre-

allocation results in 34.44%, 32.69%, 16.72%, 9.99%,

8.62% higher throughput, respectively. In Fig. 5b, the

throughput results of the execution of the GoCJ dataset

show that the pre-allocation of VMs 0%, 20%, 40%, 60%,

and 80% as compared to 100% results in 40.13%, 40.60%,

38.43%, 30.03%, 14.13% higher throughput, respectively.

The impact of dynamic resource allocation on ARUR

attained by the DFARM scheduler using a synthetic dataset

is depicted in Fig. 4c. The results shown in Fig. 4c shows

that the pre-allocation of VMs i.e., 0%, 20%, 40%, 60%,

and 80% as compared to to 100% pre-allocation results in

6.69%, 4.49%, 22.21%, 43.07%, 51.85% higher resource

utilization, respectively. In Fig. 5c, the ARUR result of the

execution of the GoCJ dataset show that the pre-allocation

of VMs 0%, 20%, 40%, 60%, and 80% as compared to

100% results in 3.07%, 5.85%, 1.30%, 3.58%, 11.59%

higher resource utilization, respectively.

The rejection rate (i.e., number of tasks rejected) for the

synthetic dataset is depicted in Fig. 4d. The results shown

in Fig. 4d depict that pre-allocation at 80% attained 2.41%,

1.61%, 1.61%, 4.51%, 1.62% lower rejection rate as

compared to 0%, 20%, 40%, 60%, and 100%, respectively.

The makespan results for the GoCJ benchmark dataset are

depicted in Fig. 5d. These results show that pre-allocation

at 0% attained 0.21%, 0.23%, 0.31%, 0.06%, 0.08% lower

rejection rate as compared to 20%, 40%, 60%, 80%, and

100%, respectively.

Cluster Computing (2024) 27:9323–9344 9339

123

Fig. 4 Results for the percentage of VM reserved before the scheduler starts on Synthetic Workload using DFARM scheduler

Fig. 5 Results for the percentage of VM reserved before the scheduler starts on GoCJ Workload using the DFARM version scheduler

9340 Cluster Computing (2024) 27:9323–9344

123

4.4.3 Fault tolerance

Fault tolerance is the number of tasks that would either be

replicated or resubmitted. Here, in this work, we represent

the fault tolerance factor as a replication–resubmission

ratio. Figure 6 shows the performance results for the syn-

thetic workload when experimented with using different

replication–resubmission ratios (i.e., 0–100%). Figure 7

shows performance results for the GoCJ benchmark

workload when fault-tolerance mechanisms are considered

based on multiple replication–resubmission ratios (i.e.,

0–100%).

The makespan (i.e., the execution time for the full

workload) for the synthetic dataset is depicted in Fig. 6a.

Fig. 6 Results for fault tolerance on Synthetic Workload using DFARM scheduler

Fig. 7 Results for fault tolerance on GoCJ Workload using DFARM version scheduler

Cluster Computing (2024) 27:9323–9344 9341

123

The results shown in Fig. 6b depict that replication–re-

submission ratio at 0% attained 17.25%, 15.88%, 16.37%,

15.95%, 17.17% lower makespan as compared to using the

replication–resubmission ratio of 20%, 40%, 60%, 80%,

and 100%, respectively. The makespan results for the GoCJ

benchmark dataset are depicted in Fig. 7a. These results

show that the replication–resubmission ratio when used as

0% attained 35.74%, 43.64%, 51.76%, 53.22%, 57.81%

lower makespan as compared to replication–re-submission

ratio of 20%, 40%, 60%, 80%, and 100%, respectively.

The throughput (i.e., number of jobs executed per sec-

ond) for the synthetic dataset is depicted in Fig. 6b. The

results shown in Fig. 6b depict that replication–resubmis-

sion ratio when set at 0% attained 16.38%, 15.80%,

15.93%, 15.43%, 16.44% higher throughput as compared

to replication–resubmission ratio set at 20%, 40%, 60%,

80%, and 100%, respectively. The throughput results for

the GoCJ benchmark dataset are depicted in Fig. 7b. These

results show that replication–resubmission ratio set at 0%

attained 25.76%, 32.28%, 38.69%, 41.33%, 44.64% higher

throughput as compared to replication–resubmission ratio

set to 20%, 40%, 60%, 80%, and 100%, respectively.

The ARUR (i.e., average resource utilization) for the

synthetic dataset is depicted in Fig. 6c. The results shown

in Fig. 6c depict that replication–resubmission ratio when

set at 0% attained 2.65%, 0.84%, 1.52%, 3.07%, 6.31%

higher ARUR as compared to replication–resubmission

ratio set at 20%, 40%, 60%, 80%, and 100%, respectively.

The throughput results for the GoCJ benchmark dataset are

depicted in Fig. 7b. These results show that replication–

resubmission ratio set at 0% attained 17.50%, 28.24%,

34.35%, 37.87%, 41.26% higher throughput as compared

to replication–resubmission ratio set to 20%, 40%, 60%,

80%, and 100%, respectively.

The rejection rate (i.e., number of tasks rejected) for the

synthetic dataset is depicted in Fig. 6d. The results shown

in Fig. 6d depict that replication–resubmission ratio at 0%

attained 17.84%, 18.49%, 18.33%, 16.20%, 17.02% lower

rejection rate as compared to 20%, 40%, 60%, 80%, and

100%, respectively. The makespan results for the GoCJ

benchmark dataset are depicted in Fig. 7d. These results

show that replication–resubmission ratio at 0% attained

30.05%, 169.40%, 311.48%, 374.86%, 445.36% lower

rejection rate as compared to 20%, 40%, 60%, 80%, and

100%, respectively.

5 Results and discussion

The proposed DFARM scheduler exhibits significant per-

formance in terms of lowering the task rejection rate for the

execution of both the synthetic and Google-like GoCJ

benchmark datasets. As presented in Figs. 2 and 3, the

proposed DFARM scheduler not only reduces the task

rejection rates but also attains a competitive performance

for makespan, throughput, and ARUR. These results are

evidence of efficient scheduling not only in terms of the

makespan, throughput, and ARUR along with the standout

attainment of lower task-rejection rates as compared to

other state-of-the-art scheduling heuristics such as

RALBA.

The disparities of rejection rate and makespan between

Figs. 2 and 3 highlight the impact of datasets on a dead-

line-constrained task. It shows that, given a small number

of tasks, most of the schedulers tend to perform similarly,

however in the case of a more realistic and large workload

the performance differences are more clear and the pro-

posed DFARM scheduler has a notable performance for the

GoCJ benchmark dataset.

The impact of VM reservation on performance was

depicted in Figs. 4 and 5. The experimental results show

that the more VMs a scheduler has readily available at the

start, the better it will perform in terms of performance i.e.,

makespan, throughput, etc. For example, the realistic and

large dataset i.e., the GoCJ dataset depicted in Fig. 5a and

b showcase this aspect. Moreover, Fig. 5d reveals the

impact on the rejection rate which is minimal across con-

figurations of VM allocations. From the data, it is evident

that around 70% reservation rate of VM seems to be an

ideal value based on the local peak appearing in Fig. 5c.

Figure 4c shows that ARUR-related performance for the

synthetic dataset is not as notable as in the GoCJ dataset.

The ARUR performance behavior is as expected as the

synthetic workload is small and it uses only a small number

of VMs as compared to the GoCJ dataset where more VMs

are employed. From these results (i.e., related to ARUR

performance), we can conclude that having the scheduler

dynamically acquire resources as needed is the preferred

solution, especially for small workloads i.e., the more

freedom we allow the better the DFRAM scheduler

performs.

Figure 7 showcases the effects of employing the fault-

tolerance factor for the execution of the GoCJ workload.

The data shows that a higher fault tolerance value leads to

sub-par performance and an increased rejection rate.

However, a failure in any host machine can lead to a fatal

loss, because of this, the fault tolerance should be consid-

ered in a Cloud datacenter. However, the factor to include

fault tolerance must be carefully studied especially when

the workload contains deadline-constrained tasks too. Our

experiments and the employed datasets (especially the

GoCJ benchmark) show an optimal value of a fault-toler-

ance factor is around 30% to take with failures and provide

reasonable performance.

9342 Cluster Computing (2024) 27:9323–9344

123

6 Conclusions

In this paper, we proposed DFARM, a dynamic scheduler

that prioritizes tasks by deadline and supports fault toler-

ance via a hybrid replication–resubmission mechanism,

where both methods are based on the task’s length relative

to its deadline. The scheduler is compared with the other

state-of-the-art schedulers considering the metrics such as

makespan, throughput, ARUR, and rejection rate under

synthetic workload and Google-like workload. The exper-

imental data clearly shows its lead in rejection rate as well

as makespan, throughput, and ARUR compared to RS, RS,

MCT, RALBA, and OG-RADL. Not only is it compared

with other schedulers, but multiple variants of the sched-

uler are also included in the comparison to showcase the

effect of each component of the DFARM. Likewise, the

effects of dynamic resource acquisition and fault tolerance

are also present. In the future, we would extend DFARM

by adding support for Softline scheduling. The approach

can also be extended by considering workflow scheduling

where tasks are dependent and a group of tasks must be

executed in a certain order.

Acknowledgements The European Union (Horizon Europe Graph-

Massivizer, 101093202) and the Austrian Research Promotion

Agency (FFG Kärntner Fog, 888098) funded this work.

Author contributions Ahmad Awan: literature review, implementa-

tion, detailed solution design, experimentations. Muhammad Aleem:

idea formulation, supervision, detailed solution design. Altaf Hussain:

proposed architecture, draft review, experimentation validation. Radu

Prodan: proposed architecture, experimental plan and design, writeup

review.

Funding The European Union (Horizon Europe Graph-Massivizer,

101093202) and the Austrian Research Promotion Agency (FFG

Kärntner Fog, 888098) funded this work.

Data availability No datasets were generated or analysed during the

current study.

Declarations

Competing interests The authors declare no competing interests.

References

1. Hussain, A., Aleem, M., Khan, A., Iqbal, M., Islam, A.: RALBA:

a computation-aware load balancing scheduler for cloud com-

puting. Clust. Comput. 21, 09 (2018)

2. Hussain, A., Aleem, M., Iqbal, M., Islam, A.: SLA-RALBA: cost-

efficient and resource-aware load balancing algorithm for cloud

computing. J. Supercomput. 75, 10 (2019)

3. Marahatta, A., Wang, Y., Zhang, F., Kumar, A., Sah Tyagi, S.,

Liu, Z.: Energy-aware fault-tolerant dynamic task scheduling

scheme for virtualized cloud data centers. Mob. Netw. Appl. 24,
1–15 (2019)

4. Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R.N.,

Lyu, M.R., Buyya, R.: Cloud service reliability enhancement via

virtual machine placement optimization. IEEE Trans. Serv.

Comput. 10(6), 902–913 (2017)

5. Saidi, K., Bardou, D.: Task scheduling and VM placement to

resource allocation in cloud computing: challenges and oppor-

tunities. Clust. Comput. 26(5), 3069–3087 (2023)

6. AbdElfattah, E., Elkawkagy, M., El-Sisi, A.: A reactive fault tol-

erance approach for cloud computing. In: 2017 13th International

Computer Engineering Conference (ICENCO), pp. 190–194 (2017)

7. Arabnejad, V., Bubendorfer, K., Ng, B.: Scheduling deadline

constrained scientific workflows on dynamically provisioned

cloud resources. Future Gener. Comput. Syst. 75, 348–364 (2017)
8. Kumar, M., Sharma, S.: Deadline constrained based dynamic

load balancing algorithm with elasticity in cloud environment.

Comput. Electr. Eng. 69, 395–411 (2018)

9. Nabi, S., Ahmed, M.: OG-RADL: overall performance-based

resource-aware dynamic load-balancer for deadline constrained

cloud tasks. J. Supercomput. 77, 07 (2021)

10. Garg, N., Singh, D., Singh Goraya, M.: Deadline aware energy-

efficient task scheduling model for a virtualized server. SN

Comput. Sci. 2(3), 169 (2021). https://doi.org/10.1007/s42979-

021-00571-2

11. Chinnathambi, S., Santhanam, A., Rajarathinam, J., Mar-

uthamuthu, S.: Scheduling and checkpointing optimization

algorithm for byzantine fault tolerance in cloud clusters. Clust.

Comput. 22, 11 (2019)

12. Adhikari, M., Amgoth, T.: Heuristic-based load-balancing algo-

rithm for IaaS cloud. Future Gener. Comput. Syst. 81, 156–165
(2018)

13. Iftikhar, S., Ahmad, M.M.M., Tuli, S., Chowdhury, D., Xu, M.,

Gill, S.S., Uhlig, S.: HunterPlus: AI based energy-efficient task

scheduling for cloud-fog computing environments. Internet

Things 21, 100667 (2023)

14. Nazeri, M., Khorsand, R.: Energy aware resource provisioning

for multi-criteria scheduling in cloud computing. Cybern. Syst.

(2022). https://doi.org/10.1080/01969722.2022.2071409

15. Alaei, M., Khorsand, R., Ramezanpour, M.: An adaptive fault

detector strategy for scientific workflow scheduling based on

improved differential evolution algorithm in cloud. Appl. Soft

Comput. 99, 106895 (2021)

16. Hussain, A., Aleem, M.: GoCJ: Google cloud jobs dataset for

distributed and cloud computing infrastructures. Data 3(4), 38
(2018)

17. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran,

M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hens-

gen, D., Freund, R.F.: A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous dis-

tributed computing systems. J. Parallel Distrib. Comput. 61(6),
810–837 (2001)

18. Zhu, X., Yang, L.T., Chen, H., Wang, J., Yin, S., Liu, X.: Real-

time tasks oriented energy-aware scheduling in virtualized

clouds. IEEE Trans. Cloud Comput. 2(2), 168–180 (2014)

19. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F.,

Buyya, R.: CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource pro-

visioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011).

https://doi.org/10.1002/spe.995

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

Cluster Computing (2024) 27:9323–9344 9343

123

https://doi.org/10.1007/s42979-021-00571-2
https://doi.org/10.1007/s42979-021-00571-2
https://doi.org/10.1080/01969722.2022.2071409
https://doi.org/10.1002/spe.995

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Ahmad Awan is a Masters’s

student in computer science at

the National University of

Computer and Emerging Sci-

ences, Islamabad Pakistan. His

research interests are cloud

computing and scheduling

issues in distributed systems.

Muhammad Aleem received a

Ph.D. degree in computer sci-

ence from the Leopold-Fran-

zens- University,

Innsbruck,Austria in 2012. His

research interests include paral-

lel and distributed computing

comprising programmingenvi-

ronments, multi-/many-core

computing, performance analy-

sis, cloud computing, and big-

data processing. He iscurrently

working as a Professor at

National University of Com-

puter and Emerging Sciences,

Islamabad, Pakistan.He has co-authored over 70 research publications

and 2 books.

Altaf Hussain is working as an

Associate Professor and Head of

the Computer Science depart-

ment at the Institute of Space

Technology (KICSIT Campus),

Islamabad, Pakistan. He

received his Ph.D. in Computer

Science from the Capital

University of Science & Tech-

nology, Islamabad, Pakistan in

2020. His research interests

include parallel and distributed

computing comprising pro-

gramming environments, per-

formance analysis, cloud

computing, data mining, and big-data processing. He is serving as a

reviewer for many reputed computer science journals. He has more

than 15 years of teaching, research, and development experience.

Radu Prodan is a professor in

distributed systems at the Insti-

tute of Information Technology,

University of Klagenfurt, Aus-

tria. Previously, he was an

associate professor at the

University of Innsbruck, Aus-

tria. He received his Ph.D. in

2004 from the Vienna Univer-

sity of Technology. His research

interests are performance, opti-

mization, and resource man-

agement tools for parallel and

distributed systems. He partici-

pated in numerous projects and

coordinated the European Union projects ARTICONF and Graph-

Massivizer. He co-authored over 300 publications and received three

IEEE best paper awards.

9344 Cluster Computing (2024) 27:9323–9344

123

	DFARM: a deadline-aware fault-tolerant scheduler for cloud computing
	Abstract
	Introduction
	Literature review
	Deadline and fault-aware task adjusting and resource managing (DFARM) scheduler
	System architecture
	DFARM architecture
	Dataset
	Pseudo code of DFARM scheduler
	Complexity and overhead analysis

	Experimental evaluation and discussions
	Experimental setup
	Workload generation
	Performance metrics
	Simulation results
	Execution performance
	Dynamic resource acquisition
	Fault tolerance

	Results and discussion
	Conclusions
	Author contributions
	Data availability
	References

