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Abstract
The proliferation of malware variants has shown a steep increase, attributed to their enhanced sophistication and the

utilization of the latest technologies. This constitutes a severe menace to smart gadgets and IT infrastructure. Malware

visualization has emerged as an exceptionally attractive technique, primarily because it obviates the need for disassembly

or code execution. In this approach, malicious executables are transformed into visual representations resembling images.

This visual representation allows for the extraction of textural features using the Local Binary Pattern (LBP) technique.

Subsequently, classification models are constructed using ResNet50, VGG16, and customized models tailored to the

specific task. These model undergoes extensive evaluation through two benchmark datasets: the MalImg dataset (consisting

of 9,342 instances of malware across 25 families) and the Malware Classification Challenge dataset (BIG2015) (with

10,868 labeled malware instances across nine families). Additionally, the model is validated on a self-made dataset, which

we named Malhub, consisting of 26,452 executables comprising 20 families. Furthermore, we implemented a white-box

adversarial attack using additive noise (Gaussian, Local Variable, Poisson, Salt and Pepper, Speckle). We observed an F1

score in the range of 0.992�0.993 for MalImg, 0.874�0.878 for BIG2015, and 0.014�0.992 for Malhub dataset. This

proves that efforts are required to tune machine learning models to detect adversarial examples.

Keywords Malware classification � Malware visualization � Deep learning � Adversarial attack � Local binary patterns �
Classifier fusion

1 Introduction

Cyber attacks are on the rise and have emerged as a dis-

ruptive force against cybersecurity, driven by the prolif-

eration of malware and the increasing sophistication in

their development. According to the PurpleSec Trend

Report, cybercriminals have recorded a 600% surge in

launching cybercrimes through malware during lockdown

and the digital convergence in the pandemic.1 Cyber threats

were identified as the top human-caused risks, with an

estimated financial loss of around $11.4 million per minute,

as documented in Crowdstrike global threat report

(2021) .2 Furthermore, there has been an increase in mal-

ware attacks targeting various industries, including edu-

cation, healthcare, technology, and government, as

reported in Global industry sectors most targeted by mal-

ware incidents in 2020.3

Malware, a collection of malicious programs, consists of

executable code that can infiltrate an organization’s secu-

rity. Commonly, all potentially unwanted software, such as

viruses, trojans, worms, adware, ransomware, spyware,

keyloggers, rootkits, etc., is referred to as malware.
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Generally, malware is classified depending on its func-

tionality, mode of propagation, and impact on the system.

Security of interconnected devices is paramount for mod-

ern organizations, as cyber threats continue to evolve and

pose significant risks. Understanding the various types of

malware and their infection mechanisms is crucial for

organizations to protect their systems and data effectively.

Malware analysis involves the techniques or tools for

understanding its behavior to build defense strategies and

prepare systems to withstand future attacks. Anti-malware

vendors generally employ signature and heuristic-based

approaches to detect and remove malicious files before

affecting the system. The former method matches strings

extracted from suspicious samples against a known signa-

ture repository. This method is not suitable for detecting

new malware strains. Besides, managing a massive data-

base of signatures is practically infeasible. Generally,

experts categorize heuristic-based approaches into static,

dynamic, and hybrid analysis. Static analysis examines the

source code by decompiling the allegedly malicious soft-

ware. This method fails to identify encrypted and obfus-

cated code as it defeats reverse engineering. Conversely,

dynamic approaches perform analysis by unpacking and

executing suspected binary code in a virtual machine or

sandbox. However, such methods have limited code cov-

erage and are computationally expensive.

The use of machine learning (ML)and deep learn-

ing (DL)algorithms have gained popularity for malicious

software detection using attributes extracted from both

static and dynamic approaches [1–3]. Malware detection

using ML techniques gained popularity due to (1) the

availability of labeled malware feeds and (2) a reduction in

the cost of hardware. However, the solutions based on ML

have shown remarkable acceptance by researchers from

industries and academia. These methods involve substan-

tial time and resources to extract relevant features through

feature engineering. Researchers have explored image

visualization techniques for recognizing the visual simi-

larities within malware families, malware detection, and

classification [4]. This approach departs from traditional

methods that rely on intricate feature engineering and

instead leverages the inherent visual patterns present in

malware samples. This shift in approach offers several

advantages [4], including (a) reduced reliance on domain-

specific knowledge, (b) enhanced robustness against

obfuscation, and (c) improved generalizability.

In this approach, malware binaries are visualized as

grayscale or color images [5], enabling the application of

deep learning techniques like Convolutional Neural Net-

works (CNNs), Auto Encoders (AEs), and Long Short

Term Memory (LSTMs) for malware detection and clas-

sification. While these deep learning methods have

demonstrated promising results, they exhibit a critical

vulnerability to adversarial examples (AEs) [6, 7].

This paper aims to classify malicious executable vari-

ants into their respective families employing visualization

and deep learning algorithms. The proposed approach uti-

lizes Local Binary Pattern (LBP) to extract distinctive

features from malware samples, transforming them into

visual representations. These LBP-generated images are

fed into pre-trained Convolutional Neural Networks

(CNNs) like ResNet50 and VGG16, along with customized

classifiers, to classify malware samples effectively. Fur-

thermore, to assess the efficacy of the proposed approach,

we conducted repeated experiments using images without

employing LBP conversion. Using LBP, the proposed

model can classify samples into corresponding families

with an F1 score in the range of 0.90�0.995, 0.989�0.998,

and 0.993�0.999 on BIG2015, MalImg, and Malhub

datasets, respectively. Moreover, we supplied the model

with adversarial samples generated using additive noise

and observed a marginal reduction of 4.1% for MalImg,

11.9% for BIG2015, and 98.5% for Malhub in their

respective maximum F1 scores. In general, the major

contributions of this research work are as follows:

1. Developing a novel deep learning technique that

integrates malware visualization and family catego-

rization incorporating textural features of images using

Local Binary Pattern (LBP) on grayscale images.

2. Providing a comprehensive analysis of different image

dimensions on two well-known benchmark datasets:

MalImg, and the Microsoft Malware Classification

Challenge and Malhub dataset.

3. Conducting a rigorous analysis by executing a variety

of conventional machine learning and cutting-edge

deep learning designs using three different datasets.

4. Analyzing the performance through a comparative

analysis of visualization-based methods for malware

classification. The results show that our proposed

approach can classify samples with the highest F1

score of 0.995(64x64), 0.998(128x128), and

0.999(128x128) for BIG2015, MalImg, and Malhub

datasets, respectively, which is superior to other

methods in the literature.

5. We also demonstrate white-box attacks by generating

tainted examples. The experiments demonstrate a

marginal drop in the performance with classifiers

trained on MalImg(1.6�4.1%) using

ResNet?CNN?Dense Layer. In the case of Fusion

model, images in MalImg were resilient to adversarial

samples except for Pepper noise(1%). On the contrary,

ResNet50?CNN?DL trained on BIG 2015 samples

were resilient to evasion attacks, and for the fused

ResNet50||CNN||DL, we experienced a drop of a
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maximum 11.9%. For the Malhub dataset, the drop is

in the range of 0.7�98.5%.

The remaining part of the paper is arranged as follows:

Sect. 2 presents the research status in malware classifica-

tion. Section 3 presents a detailed explanation of the pro-

posed method. Section 4 expounds on the evaluation

measures and details of the results. Finally, section 5

summarizes our findings and provides directions for the

future work.

2 Related works

Malware detection approaches can be categorized into

three main types: static analysis-based, behavior analysis-

based, and visualization-based. This section offers insights

into existing malware detection techniques by reviewing

related works within the above-mentioned categories.

2.1 Static analysis

Static malware analysis is a technique used to examine the

code and properties of a suspected malware sample without

executing it, eliminating the risk of infecting the analysis

environment. Binary analysis tools such as IDAPro,

PEStudio, etc., are used in static analysis techniques to

extract static features like strings, file hashes, API calls,

opcode sequences, etc., from executable binaries.

In [8], the authors utilized a list of DLLs, functions,

function calls within DLLs, encoded strings, and byte

sequences. Using the multinomial Naı̈ve Bayes algorithm,

they successfully attained 97.11% accuracy on a dataset

consisting of 3265 malware samples and 1001 benign

executables. However, this approach necessitates feature

engineering tools and domain expertise. Moreover, the

scarcity of benign examples compared to malware files

introduces a divergence from the realistic scenarios.

In [9], Kolter et al. generated n-grams from executa-

bles and tested the accuracy of different machine-learning

algorithms and their combined versions. They classified

malware into multiple families and obtained the best

accuracy for the Boosted j48. However, their approach

failed to take into account the overhead time.

In [10], Santos et al. have proposed a semi-supervised

learning method for malware detection, as it is strenuous to

obtain labeled datasets. Byte n-gram distribution approa-

ches with Local, Global Consistency (LGGC) have been

used in their work and achieved 86% accuracy for detec-

tion. Even though the accuracy is less than other models,

they could estimate the number of labeled samples required

for learning while maintaining reasonable classification

results. However, they considered a very small number of

samples and disregarded the overhead time.

In [11], the authors used variable-length instruction

sequences to categorize benign and malignant classes using

machine learning. They obtained 96% accuracy using

Random Forest and Decision Trees. A machine learning

method was presented on n-opcode sequences in [12]. They

employed a Support Vector Machine (SVM) classifier,

achieving 98% accuracy. However, the proposed approach

necessitates feature engineering techniques.

2.2 Dynamic analysis

In dynamic analysis-based techniques, researchers extract

behavioral features by executing the samples within a

controlled sandbox environment. In [13], authors proposed

a novel method using Artificial Intelligence techniques to

analyze behavior-based malware and classify malware into

Worms and Trojans. CWSandbox and Anubis generated

behavior profiles for collected samples. Their manual

analysis-driven approach needed more scalability and fea-

sibility for practical implementation.

The authors in [14] proposed an incremental method

using clustering and classification to create behavioral

profiles for malware execution changes. They reported an

accuracy of 88% when using SVM. The single execution

path limits their approach, and evasion affects it either by

detecting the sandbox environment or mimicking different

behaviors. In [15], the authors introduce an alternative

approach that uses DNA sequence alignment algorithms to

identify common API call sequence patterns. However,

they must regularly update a list of trusted benign and

malicious programs for their approach, which uses white-

list and blacklist filtering. Additionally, the hooking pro-

cess of the study only traces user-level APIs, so API call

sequences can’t be logged if malware uses kernel-level

APIs. Anderson et al. [16] suggested a novel approach to

detect malware by applying Markov Chain Graphs on

instruction traces during its execution. They employed

machine learning algorithms to categorize the data based

on global and local similarity, achieving an accuracy of

96.41%. However, this approach necessitates additional

computation overhead.

Malware detection and classification traditionally

involve static analysis, requiring the disassembly of mal-

ware samples into.asm files to extract opcodes and oper-

ands. Subsequently, the generation of n-grams or function

call graphs for analysis proves computationally expensive

and time-consuming. In contrast, dynamic analysis exe-

cutes samples in a virtualized environment, extracting

system calls, memory artifacts, and malware traces. While

dynamic analysis is also resource-intensive, time-sensitive,

and demands human interaction. Therefore, image-based

Cluster Computing (2024) 27:9191–9220 9193

123



malware detection offers an efficient alternative. Reading

raw data to generate byte plots and utilizing CNN models

for feature extraction, significantly reduces the time and

resources required for analysis and providing a more

streamlined and practical approach to malware detection

and classification.

2.3 Visualization based techniques

Visualization-based malware analysis proves resilient

against obfuscation techniques, focusing on the visual

representation of malware files. This approach efficiently

utilizes resources, requiring fewer computational assets

than traditional static and dynamic methods. Its non-exe-

cution approach distinguishes it from dynamic analysis,

minimizing the risk of triggering malicious behavior and

ensuring a safer analytical environment. Leveraging Con-

volutional Neural Networks (CNNs) allows effective fea-

ture extraction from image representations, empowering

the model to discern intricate patterns within the data. The

visual and interpretable nature of image-based representa-

tion facilitates intuitive pattern identification by analysts.

However, despite its strengths, image-based analysis

encounters challenges. It may lack a comprehensive

understanding of malware functionality, prioritizing pat-

terns, and anomaly detection over detailed behavioral

insights. The quality of generated images significantly

impacts analysis effectiveness, posing a challenge for

researchers. Vulnerability to adversarial attacks raises

concerns about the reliability of the analysis. Addressing

these challenges is crucial to align the analysis method with

specific malware analysis goals and sample characteristics.

The authors in [17] proposed the initial work in malware

visualization, utilizing self-organizing maps to visualize

virus binaries. Natraj et al. [18] visualized grayscale ima-

ges of malware binaries categorized into 25 families and

extracted GIST features. They reported an accuracy of

97.18% for their solution on the K-Nearest Neighbour

classifier. Evaluation on adversarial examples was not

performed. Such modified samples can exploit the global

image-based features to evade detection. Additionally, the

researchers have applied deep learning techniques [19] on

grayscale images of benign and malware binaries and

demonstrated equal performance with machine learning

models trained with GIST descriptors [20]. However, the

experiment involved only a few malware samples and

overlooked the overhead time. The authors in [21] inte-

grated dynamic analysis with image processing techniques

to identify unpacked and packed malware samples and

concluded that it is not scalable as textural analsis.

In [19], the authors utilized grayscale image represen-

tations to visualize malware and benign binaries. They used

deep learning techniques to train the model and achieved a

test accuracy 95.66% on a dataset comprising 10,000

benign and 200 malware files. However, their system

lacked detailed insight into the design and attributes of the

malware, and notably, it failed to consider the execution

overhead.

Detection of IoT malware using one-channel grayscale

images was proposed in [22] and achieved a classification

accuracy 94% for DDoS malware using CNN. The

researchers applied a deep Convolutional Neural Network

to the MalImg dataset in [23] and [24]. They obtain 94.5%

and 98.48% accuracy, respectively. However, they

designed a notably shallow network structure, and their

samples were restricted to only two malware families.

Another CNN-based approach proposed by the author

in [25] obtained 97.02% accuracy. Researchers also

investigated hybrid models such as CNN and bi-directional

Gated Recurrent Units, as discussed in [26], and CNN-

LSTM, as explored in [27], for classifying malware.

However, the authors of the paper neglected to consider

overhead time.

Recently, transfer learning [28, 29] was adopted to

classify malware samples to its corresponding family. The

deep CNNs are trained on natural images and utilize the

extracted features to identify characteristic attributes of

malware represented as images. In[30], transfer learning

with InceptionV1 architecture was applied to malware

detection using grayscale images from the Malimg and

Microsoft Malware Classification datasets: the multi-class

classification achieved 99.25% accuracy and 0.03% false

positives on Malimg dataset. A dataset with 16,518 benign

and 10,639 malware files used and obtained 99.67%

accuracy for binary classification. However, concerns were

raised about excluding small malware files and testing

against known classes, suggesting improvements in

experimental design to handle more realistic data. The

authors in[31] investigated the effectiveness of DenseNet

in image classification using the visual similarity of mal-

ware families. They employed DEAM (Depthwise Effi-

cient Attention Module) and DenseNet for malware

detection and family classification. Their results showed

98.5% accuracy for the MalImg dataset, 97.3% for the BIG

2015 dataset, and 99.3% accuracy for a custom dataset

composed of both datasets.

Another approach presents the FDL-CADIS model, a

fusion of deep learning-based models[32]. This approach

uses two-dimensional malware images and applies them to

MobileNetv2. The authors used the Black Widow
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Optimization for tuning hyperparameters. Furthermore, an

ensemble of voting-based classifiers, incorporating Gated

Recurrent Unit and Long Short-Term Memory techniques,

achieves accuracies of 98.73% for the MalImg dataset and

98.83% for the BIG2015 dataset, respectively. However,

the exclusive emphasis on malware detection and the

absence of information about the utilized features hinder

the assessment of their significance. The authors in [33]

introduce a malware classification method based on deep

learning, which relies on a one-dimensional representation

of raw binary. However, these models mentioned in state-

of-art were unable to evaluate the impact of adversarial

attacks.

Machine learning’s dominance in malware detection has

made it a vulnerable target for hackers. By manipulating

data distributions during training or testing, attackers can

trick machine learning classifiers into misclassifying

malicious software. This manipulation is called an adver-

sarial attack. Recent works such as Ambra et al. [34] pre-

sented a case study of attack vectors against Android

malware classifiers. Kathrin et al. [35] demonstrate tech-

niques to evade deep neural networks. They utilized the

DREBIN dataset of Android malware and claimed the

misclassification of 69%. Similarly, Chen et al. crafted

adversarial examples by poisoning syntactic features in

[36]. They reported that the attack successfully defeated

three popular Android malware classifiers: DREBIN,

DroidAPIMiner, and MaMaDroid.

Unlike the above-presented methods, we researched by

integrating pre-trained deep neural networks designed for

object detection with Convolutional Neural Networks,

known for extracting features automatically. We further

supplemented this approach with dense layers to detect

new visual images of malware. Additionally, to ensure the

scalability of the proposed malware detector, we created a

custom dataset containing real-time malware samples from

20 distinct malware families, in addition to utilizing

benchmark datasets. Furthermore, we thoroughly examined

how adversarial attacks, implemented through the intro-

duction of various types of additive noises, impacted the

performance of the proposed model. Our investigation

centered on assessing whether even these fundamental

noise types could result in misclassification of the samples.

3 Proposed method

In this section, we briefly discuss the architecture of the

proposed solution (refer Fig. 1).

Fig. 1 Proposed architecture for malware family classification consists of a Grayscale image generation, b feature extraction using LBP and

without LBP, c Malware classification, d adversarial attack on the model
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3.1 Dataset preparation

The dataset includes malware executables collected from

MalImg [18], the Big 2015 (Microsoft Malware Classifi-

cation Challenge) [37]. Moreover, we created a dataset,

which we will refer to as the Malhub dataset throughout

this article. The MalImg dataset contains 9,339 malware

executables from 25 different families. The transformation

of individual byte values into pixels produced the grayscale

images depicting each executable within this dataset. We

utilized 10,868 tagged malware executables belonging to 9

distinct families from the Big 2015 dataset. Each file

contains raw data, encompassing the hexadecimal

representation of a binary file and associated metadata

comprising strings, function calls, and opcodes. Finally, the

Malhub dataset consists of 26,452 samples of 20 families

collected from VirusShare4 repository. Table 1, Table 2,

and Table 3 respectively show the datasets along with the

details such as family name and number of samples. To

ensure the effectiveness and generalizability of our model,

we divided each dataset into three subsets: a training set

comprising 70% of the malware samples, a validation set

containing 20% of the samples, and a test set comprising

the remaining 10%. This approach enabled us to train the

model on a substantial amount of data, evaluate its

Table 1 The MalImg dataset

comprises images exclusively in

PNG format belonging to 25

malware families

No. Malware Type # of Samples Average

Family name Resolution

1 Lolyda.AA 1 Password Stealer(PWS) 213 64 x 428

2 Allaple.A Worm 2949 256 x 283

3 C2lop.P Trojan 146 559 x 689

4 Lolyda.AA 2 Password Stealer(PWS) 184 126 x 280

5 C2lop.gen!G Trojan 200 659 x 817

6 Lolyda.AT Password Stealer(PWS) 159 64 x 385

7 Dialplatform.B Dialer 177 64 x 218

8 Yuner.A Worm 800 768 x 683

9 Alueron.gen!J Trojan 198 299 x 343

10 Swizzor.gen!E TDownloader 128 522 x 644

11 Adialer.C Dialer 125 512 x 409

12 Lolyda.AA 3 Password Stealer(PWS) 123 512 x 478

13 Instantaccess Dialer 400 384 x 450

14 Fakerean Rogue 381 384 x 288

15 Malex.gen!J Trojan 136 262 x 315

16 Rbot!gen Backdoor 158 505 x 475

17 Wintrim.BX TDownloader 97 512 x 798

18 Obfuscator.AD TDownloader 142 384 x 424

19 Skintrim.N Trojan 80 384 x 502

20 Autorun.K Worm 106 768 x 683

21 Dontovo.A TDownloader 162 115 x 313

22 Allaple.L Worm 1591 128 x 451

23 Agent.FYI Backdoor 116 64 x 251

24 Vb.AT Worm 408 702 x 924

25 Swizzor.gen!I TDownloader 132 513 x 623

4 VirusShare: https://virusshare.com/
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performance on a separate collection of samples, and assess

its generalizability to unseen malware images.

3.2 Grayscale image generation

Malicious programs exist in the form of Portable Executa-

bles (PE), which have extensions such as.bin,.dll,.exe, and

consist of code, data, and resource sections. In recent

years, researchers have framed the malware classification

task as a challenge in image categorization [18]. Obfus-

cation methods can undermine binary feature extraction,

and gray-scale images consisting of textural patterns, can

reveal these features through inspection. We represent the

raw malware binary as an image to filter patterns from

images.

The proposed method splits the raw files into 8-bit

strings and maps them to a decimal value between 0 and

255. Thus, we organize each executable into a one-di-

mensional vector (1D) comprising decimal numbers.

Using the decimal values extracted from the 1D array, we

construct a 2-dimensional image (2D) with predetermined

width and height dimensions. The process of gray-scale

image generation is discussed in the Algorithm 1. Fig 2

shows the gray-scale image representation of samples

from different families. We observed that variants of the

same family exhibit homogeneous textural features. As

the malware versions inherit code from the original

sample (i.e., code reuse) [19, 22], texture analysis can

reveal the hidden patterns to improve the performance of

the model during the inference phase. Primarily, the

attackers modify a small chunk of the original code to

generate obfuscated variants; however, they inherit the

code of base malware. Hence, we can conclude that code

reuse is evident by looking at Fig. 2. For example, the

variants of the Swizzor_gen family are visually similar.

Conversely, samples of Agent_FYI family show differ-

ences in byte pattern comparing Swizzor_gen (refer

Fig. 2).

Table 2 The Microsoft Classification Challenge (BIG 2015) consists

of images in PNG format, all with a resolution of 128x128 pixels

categorized into 9 families

No. Malware family name Type # of Samples

1 Kelihos_ver3 Backdoor 2942

2 Kelihos_ver1 Backdoor 398

3 Simda Backdoor 42

4 Obfuscator.ACY Obfuscated Malware 1228

5 Lollipop Adware 2478

6 Vundo Trojan 475

7 Tracur Trojan Downloader 751

8 Gatak Backdoor 1013

9 Ramnit Worm 1541

Table 3 The Malhub dataset consists of images in PNG format, all

with a resolution of 256x256 pixels, comprising real-time malware

from 20 families

No. Malware family name Type # of Samples

1 Onlinegames Trojan 1293

2 Renos Rogue 1312

3 Startpage Trojan 1136

4 Vundo Trojan 1793

5 Vobfus Worm 936

6 Zbot Trojan 1796

7 Obfuscator Obfuscated Malware 1445

8 Winwebsec Rogue 3651

9 Rbot Backdoor 1017

10 Zeroaccess Trojan 1129

11 Delfinject Trojan 1146

12 Lolyda Password Stealer 915

13 Cycbot Backdoor 1029

14 Bho Adware 1176

15 Ceeinject Trojan 894

16 Hotbar Adware 1501

17 Adload Trojan 1050

18 Fakerean Trojan Downloader 1063

19 Alureon Trojan 1328

20 Agent Backdoor 842
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Algorithm 1 Algorithm for Grayscale image generation

Input: Malware Executable Set, E = {e1, e2, . . . , en}
w ← width, h ← height
Output: Set of grayscale Images I∗ = {I1, I2, . . . , In}
Decimal vector D = {}

/*noitazilaitinI*/
I∗ ← φ
Bytestream ← φ

for each e ∈ E do
Bytestream ← Bytestream + e.toByteStream() /* Converting each

/*maertsetybotelbatucexeyranib
DV ← φ

for each bi ∈ Bytestream do
DV ← DV + bi × 2i /* Calculate Decimal value */

end
D ← D ∪ {DV } /* Creating 1D vector of decimal numbers */
while D.length() = 0 do

Ii ← img.show(w, h, D) /* Create Grayscale image */
end
I∗ ← I∗ ∪ {Ii}

end

3.3 Feature extraction

Traditional malware detection methods rely on extracting

distinctive features from malicious executables to identify

their family affiliations. Our approach utilizes Local Binary

Patterns (LBP) to capture fine-grained details from grays-

cale images representing specific malware families. To

evaluate the effectiveness of LBP-transformed images in

malware classification, we conduct a comparative analysis

against normal images (i.e., without LBP transformation).

Fig. 2 The grayscale images of binary executables: the bounding box represents the similar patterns exhibited on family variants, and samples

from different families exhibit a dissimilarity in patterns
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Algorithm 2 Algorithm for LBP image generation

Input: Grayscale Image Set, I∗ = {I1, I2, . . . , In}
w ← width, h ← height, r ← radius
Output: Set of LBP Images L∗ = {L1, L2, . . . , Ln}

/*noitazilaitinI*/
L∗ ← φ

for each Im ∈ I∗ do
for s := 1 to w do

for t := 1 to h do
LBP ← φ

block ← readBlock(Im, gc, s, t, r) /* Read each 3 × 3 blocks
*/

G ← G∪ block.getNeighborhood Pixel(block, gc) /* G is the
/*slexipdoohruobhgienfotes

while G.length() = 0 do
k ← (gp − gc) /* gp and gc are gray levels for

neighbourhood and center pixel */
if k ≥ 0 then

BV ← 1 /* BV is the binary value */
end
else

BV ← 0

end
/*eulaVPBLetaluclac*/

LBP ← LBP + BV × 2p

end
LV ← LV ∪ LBP /* LV is a 2D array containing the

corresponding LBP value for each pixel */

end
end
while LV.length() = 0 do

/*egamiPBLetaerC*/
Li ← img.show(w, h, LV )

end
L∗ ← L∗ ∪ {Li}

end

3.3.1 LBP image generation

In 1994, T. Ojala introduced the concept of local texture

features [38]. LBP is a robust technique for extracting

texture features from grayscale images and exhibits resi-

lience to object rotation. LBP generates a sequence of

binary bits for a given image by applying a thresholding

operation. In a 2D pixel matrix, the center pixel is the

threshold against its surrounding pixels in a circular

neighborhood. A value less than the center pixel is encoded

as zero (0), while any other value is encoded as one (1).

The resulting binary sequence is read in a clockwise

direction (as illustrated in Fig. 3). Finally, we convert the

sequence of bits into a decimal value, representing the LBP

code for the center pixel. The grayscale textural charac-

teristic, T, can be considered as the joint spread of gray

shades for p neighborhood pixels represented as:
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T ¼ s ðgc; g0; g1:::; gp�1Þ ð1Þ

Where p represents the count of a circularly symmetric set

of neighboring pixels (i.e., p=0,1,2...7 for a 3 9 3 block)

for a ring of radius r ðr[ 0Þ, gp is the pth neighborhood

pixel, with gc as the center pixel. To determine T, we

subtract the central pixel’s grey level from the surrounding

pixels’ grey level.

T ¼sðg0 � gc; g1 � gc:::; gp�1 � gcÞ ð2Þ

Fig. 3 Generation of LBP

Image

Convolution

3 x Convolution Block

ReLU

Pooling

Dense Layer

Dense Layer

Softmax

Pretrained
(VGG16/ResNet50)

Convolution

3 x Convolution Block

ReLU

Dense Layer

Dense Layer

Softmax

Pooling

Concatenate

(a) (b)

Pretrained
(VGG16/ResNet50)

Fig. 4 Deep learning model architecture for malware family classification (proposed model) (a) It comprises ResNet50 followed by three

convolutional layers with ReLU and a pooling layer, two dense layers, and a final output layer with a Softmax activation function. b The setup

consists of three convolutional blocks incorporating ReLU activation and pooling layers, connected with ResNet50. Additionally, it includes two

dense layers, culminating in a final output layer featuring a Softmax activation function
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LBPp;r ¼
X#neighborhood

p¼1

Sðgp � gcÞ2p�1 ð3Þ

SðxÞ ¼
1 if x� 0

0 otherwise

�
ð4Þ

S(x) is the binary threshold function. Figure 3 depicts the

LBP operation with eight neighboring pixels. Here, we

consider the center pixel value, which is 125, as the

threshold. The neighbor pixels are assigned 1 if greater

than or equal to 125 and otherwise 0. The LBP value is

calculated as 1 � 20 þ 0 � 21 þ 0 � 22 þ 1 � 23 þ 1 � 24 þ
0 � 25þ 1 � 26 þ 0 � 27 ¼ 89.

We create LBP images in both 64x64 and 128x128

sizes. For each pixel in the target image, we calculate the

LBP value using equations 3 and 4. Algorithm 2 outlines

the entire process of LBP image generation.

3.4 Classification model

In our strategy for visualizing malware, we leverage a

sophisticated deep neural network architecture. This

architecture incorporates a pre-trained base model, as

demonstrated in Fig. 4. LBP and non-LBP images devel-

oped in the feature extraction phase are input to a pre-

trained model [39].

3.4.1 ResNet50

In visualization-based classification, researchers have

widely utilized Convolutional Neural Networks

(CNN) [40] because CNNs can automatically extract dis-

tinctive local features from visual representations. The

convolutional layers serve as filters in detection, identify-

ing particular patterns within images. Within a CNN, the

initial layers extract basic features, while deeper layers

progressively capture more complex features. Towards the

end of the CNN architecture, fully connected layers com-

bine all the specific attributes from the preceding layers to

produce the final output.

Deeper neural networks are incapable of increasing

performance as the depth of the network increases. The

accuracy begins to saturate, and performance degrades,

known as the vanishing gradient problem. To address this

challenge, we adopted ResNet50, a deep convolutional

neural network that incorporates shortcut/skip connections

between convolutional layer blocks, utilizing the ReLU

activation function in the subsequent layer. The ResNet50

architecture incorporates a bottleneck residual block that

includes three convolutional layers (1 9 1, 3 9 3, and

1 9 1 convolutions) with 3 9 3 filters, allowing the model

to acquire the capability to learn an identity function. The

1 9 1 layer is in charge of shrinking and then expanding

Fig. 5 The ResNet50 architecture incorporates residual blocks, each

composed of two convolutional layers, followed by a batch normal-

ization layer and ReLU activation. ResNet skips the residual block

and forwards the input directly before the final ReLU activation

function through the residual connections
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dimensions, leaving the 3 9 3 layer as a bottleneck with

reduced parameters of input or output. Convolutional lay-

ers with stride length 2 perform downsampling and batch

normalization before applying ReLU. The design directives

for the residual blocks are as follows: (1) allocate equal

filters to produce output feature maps of comparable sizes.

(2) Double the filters as the feature map’s size is reduced

by half. The network has 50 weighted layers with a global

average pooling layer and a final Softmax layer (Fig. 5).

ResNet50 is a transfer learning [41] approach to

improve neural network performance by transferring the

learned knowledge from a similar task. The initial layer

discovers minute details of images, while the deeper layer

extracts generic byte patterns representative of the family.

ResNet50 effectively empowers training on substantially

smaller target datasets without encountering overfitting

issues.

We evaluated the performance of ResNet50 by pre-

senting its output to (a) a convolutional neural network

with a pooling layer with two dense layers and (b) a fused

model as represented in Fig. 4, three convolutional blocks

with pooling concatenated with ResNet50 pre-trained

model and followed by two dense layers and a final output

layer, and (c) various ML algorithms like SVM, RF, and

XGBoost each of the cases above assessed using images of

dimensions (64x64) and (128x128) respectively. We

present the set of optimal hyperparameters selected during

the learning process in Table 4.

3.4.2 VGG16

Leveraging the pre-trained VGG16 deep CNN and its

16-layer architecture, we conducted an investigation using

the network’s weights and the architecture proposed in

Fig. 4 in conjunction with various machine learning algo-

rithms. Figure 6 demonstrates how the VGG16 network is

employed for malware classification.

Understanding grayscale images generated from mal-

ware PE files poses a challenge, but CNNs, known for their

effectiveness in image-based classification, offer a robust

solution. Notably, established CNN architectures like

ResNet50 and VGG16 efficiently extract crucial features,

saving time and resources. The selection of these archi-

tectures is motivated by their ability to leverage pre-trained

weights and biases from the ImageNet database, simpli-

fying deployment without retraining on specific datasets.

Despite differences between natural and malware byte-plot

images, transferring VGG16 parameters enhances malware

image recognition effectiveness through transfer learning.

The preference for VGG16 in this study stems from its

ability to handle large-scale datasets through deeper

Table 4 Dropout and activation

for the layers
Layer Dropout Activation Output

Global Average Pooling 0.2 NA NA

Dense layer 1 0.2 ReLU 256

Dense layer 2 0.2 ReLU 128

Output layer NA Softmax The number

of classes

(9 for BIG2015 dataset

22 for MalImg dataset

and 20 for Malhub dataset)

Fig. 6 VGG16 feature extraction illustration: (1) Depicts the input of the VGG16. (2) The convolutional blocks along with pooling (3) Pre-

diction layer include flattening the output of final convolution block followed by Softmax layer
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network layers and smaller filters, contributing to enhanced

performance.

Similarly, ResNet-50, recognized for its excellence in

the ImageNet classification challenge, achieves high

accuracy in transferring knowledge to malware images.

ResNet-50 facilitates training networks with thousands of

layers previously deemed impractical. ResNet-50 achieves

this by using residual blocks and skip connections, ensur-

ing the preservation of information from earlier layers. This

architectural choice is motivated by the desire to address

challenges like the vanishing gradient problem and enable

the training of extremely deep neural networks. Thus, the

network learns more accurate representations of input data,

leading to improved predictions. The researchers in [39]

addressed the vanishing gradient problem by using extra

connections between non-contiguous convolutional layers.

3.5 Attacks on machine learning algorithms

Researchers have reported that malware with fingerprinting

abilities can evade detection [42]. Deep Neural Network

algorithms are vulnerable to different types of attacks, and

based on the adversary’s goal, it can be generally catego-

rized as a poisoning attack or an evasion attack [43]. The

former is an attack that permits an attacker to inject or

recast spurious samples into a training set. These fictitious

examples may cause the trained classifier to predict

incorrect labels, increasing misclassification. Such attacks

are common and evolve if an adversary accesses the

training data. In the latter case, the opponents are not

permitted to alter the classifier or its parameters but provide

some false examples to avoid detection. Attacks are created

by adding minimal perturbation to an input indistinguish-

able from a human, forcing the model to make incorrect

decisions. The commonly used attack model for creating

adversarial examples is known as the additive model [44].

Here, an attacker utilizes a linear operator that adds per-

turbation to the input to deceive the classifier.

The knowledge gained about the target system (i.e.,

training data, feature set, learning algorithms, parameters,

etc.) categorizes the attacks into three types: (1) white box

attacks, (2) black box attacks, and (3) gray box attacks. In

the white-box method, the adversary operates under the

assumption of having full access to the model’s algorithm

and parameters. Conversely, in the black-box method, the

adversary lacks knowledge of the target model’s parame-

ters and architecture and resorts to querying the model to

initiate an attack. Unlike other approaches, gray-box

attacks only obtain access to the model during the training

phase by generating adversarial samples using a generative

model[45]. Evaluating the resilience of classification

models to adversarial attacks motivated our use of a white-

box attack approach in this study. To demonstrate the

model’s robustness against adversarial attacks, we crafted

tainted binaries by introducing various types of noise:

Gaussian, Speckle, Salt and Pepper, Local Variable, and

Poisson noise.

Let us decide classification model with decision function

f : M ! Y , that assigns each sample in the set M ¼
fm1;m2; :::mng to a label in a set Y ¼ fy1; y2:::yng, where yi
denotes the true class of a malware. We train the model on

a dataset D ¼ fmi; yigni¼1 where mi, yi represents the image

of the malicious sample and corresponding true label

respectively. During training, the parameter h is deter-

mined which minimizes the loss (L) where,

Lminðgðmi; hÞ; yiÞ ð5Þ

gðmi; hÞ is the prediction of the input mi.

A set ~D ¼ f ~mi; yignsi¼1 is consisting of adversarial

examples generated using Eq. 6 for ns malware images

which are drawn from the test set. Thus, we create the

adversarial samples using Eq. 6.

~mi ¼ mi þ d ð6Þ

where ~mi is the tainted version of mi. d is the noise (per-

turbation) added to mi. The intrinsic restriction lies in the

minimum allowable perturbation, denoted as dðmi; ~miÞ,
between mi and m�

i that causes misclassification while

preserving semantic integrity (i.e., if m exhibits mali-

ciousness, then ~m should also exhibit maliciousness). In an

untargeted attack (refer Eq. 7), our goal is to induce the

model to misclassify the sample into an incorrect class. We

then feed the adversarial samples back into the model to

estimate the target class.

gðmi þ d; hÞ ¼ ~yi; ~yi 6¼ yi ð7Þ

where ~yi is the prediction for tainted sample ~mi. We used

the random_noise() function from the ‘‘skimage‘‘ Python

library 5 to generate adversarial malware images. The

arguments of the function are: (i) image: n-dimensional

input image (ii) mode: type of noise (iii) seed: random

seed (iv) clip: to maintain proper range for image data.

In the following paragraphs, we present the different types

of noise used in this experiment.

(a) Gaussian noise: This statistical noise exhibits a

probability density function equivalent to the normal

distribution. The probability distribution function of

a Gaussian distribution is a bell-shaped, represented

as:

nðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi

1

2pr2

r
e�

ðg�lÞ2

2r2 ð8Þ

5 scikit-image: https://scikit-image.org/
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where g is the gray scale value, r is standard

deviation and l represents the mean respectively.

(b) Speckle noise: It is a type of granular noise that

occurs naturally in images and lowers their quality.

Multiplying arbitrary pixel values with distinct pixels

in a picture introduces the Speckle noise in the

image. The probability density function of speckle

noise is as follows:

f ðgÞ ¼ ga�1e
�g
a

ða� 1Þ!aa
ð9Þ

where g is the pixel’s gray level and aa is the

variance.

(c) Salt and Pepper noise: It is applied only to

grayscale images where ‘‘salt’’ represents white

pixels, and ‘‘pepper‘‘ denotes black pixels. This

involves distributing random bright pixels (repre-

senting a value of 255) and random dark pixels

(representing a value of 0) throughout the entire

representation. This model earns the nickname ‘‘data

drop noise’’ because it statistically reduces the

original values.

Iðx; yÞ ¼
0 Pepper noise

255 Salt noise

�
ð10Þ

where (x, y) are a pixel’s co-ordinates.

(d) Local Variable: It is a type of Gaussian-distributed

additive noise or zero-mean Gaussian white noise.

Here, we define local variance in terms of pixel

intensity values at each point of an image.

(e) Poisson noise: The Poisson or Shot noise appears in

images due to the statistical nature of x-rays, visible

lights, etc., and follows the Poisson distribution as in

Eq. 11.

pðkÞ ¼ kke�k

k!
ð11Þ

where k and k represent the mean and the expected

value, respectively.

4 Experiments and results

This section discusses our dataset, assessment criteria, and

outcomes. To substantiate the efficacy of the proposed deep

learning model, we performed a comprehensive evaluation

as listed below:

1. The performance of various machine learning and deep

learning models on the benchmark and self-made

datasets (i.e., Malhub)

2. Evaluation of proposed model on obfuscated samples

3. Evaluation of proposed model on evasion attack

4. A comparative analysis of the proposed system with the

state-of-the-art approaches

4.1 Dataset description

In this paper, we assess the performance of the proposed

model using two publicly available benchmark datasets:

the MalImg dataset [18], which includes 9,342 malware

samples spanning 25 different families, and BIG2015 [37],

containing 10,868 malicious samples categorized into nine

families. Furthermore, we evaluate the performance of the

proposed model on the Malhub dataset, which consists of

26,452 samples across 20 families. In each experiment, we

allocated 70% of the samples for the training set, 20% for

the validation set, and reserved the remaining 10% for the

testing phase. The work’s implementation source code was

crafted using Python, employing Keras�2.4.3 alongside

TensorFlow�2.4.1 as the backend. As the pre-trained

model requires a fixed-size input image, we resized each

file to different dimensions, specifically 64 x 64 and 128 x

128 pixels. Malware binaries have variable lengths, and

transforming large binaries into small images may discard

essential information. Conversely, expanding small bina-

ries into large images may introduce unnecessary padding,

potentially affecting detection accuracy. We used Ran-

domizedSearchCV6 and KerasTuner7 as hyperparameter

tuners for ML-classifiers and deep learning, respec-

tively (refer to Table 5). The XGBoost parameters include

n estimator, representing the number of boosting rounds or

trees, and random state, which initializes the random

number generator with a specific seed value. In SVM

parameters, c regulates the balance between minimizing

training and testing errors. At the same time, cache size

sets the kernel cache size to enhance training speed. The

decision function shape determines the strategy for multi-

class classification, with ovr indicating the use of separate

Table 5 Hyper parameters for the model tuned using KerasTuner

Model Learning rate Epochs

MalImg—64 9 64 0.05 40

MalImg—128 9 128 0.05 40

Big 2015—64 9 64 0.05 40

Big 2015—128 9 128 0.05 40

Malhub—64 9 64 0.001 10

Malhub—128 9 128 0.001 10

6 https://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.RandomizedSearchCV.html
7 https://keras.io/keras_tuner/
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binary classifiers for each class against the rest. Other SVM

parameters, such as degree, gamma, kernel, shrinking, and

tol, control various aspects of the model’s behavior and

convergence. RF parameters include criterion,

min samples leaf , min samples split, n estimators, and

random state, influencing decision tree construction and

randomness.

We evaluated the model’s performance by employing

metrics like F1 Score (F1), Accuracy (A), Precision (P),

and Recall (R). The aforementioned metrics are derived

using the following:

• True Positive(TP): indicates that the model has cor-

rectly identified an instance as belonging to the class it

genuinely belongs to.

• False Positive(FP): True class is negative, and predicted

class is positive

• False Negative (FN): True class is positive, and

predicted class is negative

• True Negative (TN): is an instance that is correctly

classified as not belonging to a particular class. It

indicates that the model has correctly identified an

instance as belonging to the class it does not genuinely

belong to.

Accuracy: It is the fraction of samples predicted correctly.

AccuracyðAÞ ¼ TPþ TN

TPþ TN þ FPþ FN
ð12Þ

Precision: It is the fraction of predicted positive events that

are actually positive.

PrecisionðPÞ ¼ TP

TPþ FP
ð13Þ

Recall: It is the fraction of positive events that are pre-

dicted correctly.

RecallðRÞ ¼ TP

TPþ FN
ð14Þ

F1 score: It is the harmonic mean of precision and recall.

F1scoreðF1Þ ¼ 2 � P � R
Pþ R

ð15Þ

4.2 The performance of classification models
on benchmark datasets

To verify the effectiveness of the proposed deep learn-

ing model in classifying malicious samples into different

families, we experimented with different combinations of

classifiers. Table 6 presents the list of experiments con-

ducted for evaluation, we present F1 score for all the

Table 6 List of the experiments
Pre-trained model SVM RF XGBoost Dense CNN?Dense Fused

(2-layers) Layers model

VGG16 U U U U U U

ResNet50 U U U U U U

Fig. 8 Machine learning classifiers and Dense(2 layers) performance

utilizing LBP images with ResNet50 pre-trained Network (128x128)

Fig. 7 Performance of ML classifiers and Dense(2 layers) using LBP

images VGG16 as pre-trained network (size = 128 x 128)
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models (due to unbalanced nature of the dataset). First, we

conducted experiments to evaluate the capability of dif-

ferent conventional ML algorithms in classifying malware

into associated classes. Figure 7 and Fig. 8 present the

performance of machine learning classifiers using LBP

images (detailed results are presented in the Appendix

Section A, more specifically in Table 15 and Table 16).

We ran the experiments a total of five times and then

derived the average results. As seen in Fig. 7, with the

VGG16 and MalImag dataset, we obtain an F1 score in the

range of 0.942�0.97. An identical trend in results is

obtained for the BIG2015 dataset. All classifiers achieved

an F1 score above 0.99 for files in the Malhub dataset. On

the contrary, combining ResNet50 with the machine

learning classifier for MalImg resulted in F1 score in the

range of 0.822�0.95 as can be seen in Fig. 8. For

BIG2015, F1 score is between 0.892�0.925, and for

Malhub F1 score is in the range of 0.861�0.997.

In addition to LBP images, we also experimented with

Non-LBP images (original images). From Fig. 9,

VGG16?SVM provides an F1 score of 0.985 (MalImg),

0.93 (BIG 2015) and 0.999 (Malhub) respectively. Further,

using the ResNet50 model the F1 score is between 0.75 to

0.998(Refer Fig. 10). These experiments suggest that the

appropriate choice of classification algorithms during the

inference phase can remarkably influence the results.

Table 17 and Table 18, respectively, report the perfor-

mance measures in terms of accuracy. Table 7 presents the

configurations for ML classifiers in the experiment.

4.3 Performance evaluation of the proposed
models

We developed various classification models to evaluate

whether particular variations of the model demonstrate

better performance compared to those discussed previously

in Sect. 4.2. Each model was trained and tested indepen-

dently on size 64x64 and 128x128 malware images. In

particular, we created combinations like

(a) ResNet50?CNN?Dense layers,

(b) VGG16?CNN?Dense layers, and (c) fusion of models

(ResNet50||CNN||Dense layers and VGG16||CNN||Dense

layers). The results obtained with ResNet50?CNN?Dense

Layers for LBP and Non-LBP images are reported in

Table 8 and Table 9 respectively. Table 10 presents the

Table 7 Hyper-parameters for

ML classifiers
Dataset Hyper-parameters

XGBoost SVM RF

MalImg n_estimators=50 c: 1.0 random_state: 42

BIG2015 degree: 3 cache_size: 200 min_samples_leaf: 1

Malhub decision_function_shape: ovr n_estimators: 50

random_state: 42 min_samples_split: 2

gamma: scale criterion: gini

shrinking’: True

kernel: linear

tol: 0.001

Fig. 9 Evaluation of Non-LBP images (Size: 128 x 128) using ML

classifiers and dense (2 Layers) with pre-trained VGG16

Fig. 10 The performance of machine learning classifiers and dense(2

layers)utilizing pre-trained ResNet50 with non-LBP images (size =

128 x 128)
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results obtained for VGG16?CNN?Dense Layers using

LBP and Non-LBP images. We obtained less F1 score with

VGG16 model trained using Malhub dataset. Similar trends

in the results are also reported by authors in [29].

Figure 11 depicts that six of nine families achieved

perfect classification with an F1 score of 1.0 for the

BIG2015 dataset. The model misclassified two samples of

Lollipop as Gatak and two samples of Tracur as Obfus-

cator.ACY and Vundo. The model also incorrectly classi-

fied one sample of Kelihos_Ver1 as Obfuscator.ACY.

Furthermore, 21 of the 25 malware families in the MalImg

dataset achieved accurate classification with an F1 score of

1.0. Among the 25 families, four (C2LOP.gen!g,

C2LOP.P, Swizzor.gen!, Swizzor.gen!E) exhibit identical

in behavior as reported in [18]. Therefore, these families

are combined into a single class and retrained the model

using 128x128 sized images. When examining the confu-

sion matrix in Fig. 13, it is evident that the model suc-

cessfully classified 21 out of 22 families, with only one

misclassification, i.e., Wintrim.BX wrongly identified as

Allaple.A. From Table 9, the F1 score of the Non-LBP

image is 0.90 for the MalImg dataset (128x128) and

0.957 (128x128) for the BIG2015 (128x128) dataset,

respectively. At the same time, for the LBP image, it is

0.998 for MalImg (22 classes) and 0.995 for the BIG2015

Table 8 Performance of

ResNet50?CNN?DL on

benchmark datasets with LBP

images

Dataset Image size A P R F1 Execution time (s)

Big 2015 64x64 0.995 0.996 0.995 0.995 0.0009

Big 2015 128x128 0.989 0.989 0.989 0.989 0.001

MalImg 64x64 0.974 0.965 0.964 0.96 0.001

MalImg

(25 class) 128x128 0.980 0.980 0.980 0.979 0.0015

MalImg

(22-class) 128x128 0.998 0.998 0.998 0.998 0.015

Malhub 64x64 0.997 0.997 0.997 0.997 0.0005

Malhub 128x128 0.992 0.993 0.992 0.993 0.0016

Table 11 F1 score of proposed

model(ResNet50||CNN||DL) on

LBP images (fusion model)

Dataset A P R F1 Execution time (s)

BIG2015(64x64) 0.943 0.918 0.88 0.900 0.0009

BIG2015(128x128) 0.949 0.0010 0.873 0.949 0.001

MalImg(64x64) 0.987 0.983 0.979 0.981 0.001

MalImg(128x128) 0.995 0.993 0.992 0.993 0.0015

Malhub(64x64) 0.997 0.997 0.997 0.997 0.0005

Malhub(128x128) 0.999 0.999 0.999 0.999 0.0010

Table 9 F1 score of proposed model (ResNet50?CNN?DL) with

Non-LBP images

Dataset Image dimension

64 9 64 128 9 128

A F1 A F1

BIG2015 0.959 0.959 0.961 0.957

MalImg 0.965 0.964 0.90 0.902

Malhub 0.995 0.995 0.996 0.996

Table 10 The F1 score of VGG16?CNN?DL model on different

datasets

Dataset LBP Non-LBP

BIG2015 (64 9 64) 0.938 0.911

MalImg (128 9 128)

(25 class)

0.972 0.908

MalImg (128 9 128)

(22 class)

0.982 0.994
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Table 14 Comparative analysis

with state-of-the-art approaches

(BIG2015 and MaIlmg datasets)

No. Author Year citation Algorithm Dataset Performance

Acc F1

1 Nataraj et al.[18] 2011 1290 KNN MalImg 0.98 -

2 Cui et al.[23] 2018 616 CNN MalImg 0.945 -

3 Le et al.[33] 2018 200 CNN-BiLSTM BIG2015 0.982 0.960

4 Agarap et al.[48] 2019 91 GRU-SVM MalImg 0.84 0.85

5 Gibert et al.[24] 2019 192 CNN MalImg 0.984 0.974

BIG2015 0.984 0.94

6 Yifei et al.[49] 2021 43 SEResNet50?Bi-LSTM BIG2015 0.983 0.983

7 Wang et al. [31] 2021 30 DenseNet BIG2015 0.973 0.954

8 Deng et al.[50] 2023 5 CNN BIG2015 0.994 0.992

9 Alzubi et al.[32] 2023 27 LSTM?GRU BIG2015 0.982 0.988

10 Proposed method ResNet50?CNN?DL MalImg 0.998 0.995

ResNet50?CNN?DL BIG2015 0.999 0.998

ResNet50||CNN||DL Malhub 0.995 0.999

Table 15 ML classifiers and

Dense(2-layers) performance

using LBP images VGG16 as

pre-trained network (size ¼ 128

x 128)

Dataset VGG16

SVM RF XGBoost Dense (2 layers)

A F1 A F1 A F1 A F1

MalIMg 0.969 0.97 0.945 0.942 0.942 0.942 0.97 0.97

BIG2015 0.968 0.965 0.946 0.95 0.932 0.937 0.966 0.96

Malhub 0.997 0.997 0.999 0.999 0.999 0.999 0.996 0.996

Table 12 Evaluation results of the adversarial attack on proposed ResNet50?CNN?DL model

Noise type BIG2015 MalImg Malhub

A F1 A F1 A F1

Gaussian 0.995 0.995 0.974 0.97 0.992 0.992

Local variable 0.995 0.995 0.961 0.957 0.47 0.58

Poisson 0.995 0.995 0.986 0.982 0.254 0.241

Salt 0.995 0.995 0.972 0.966 0.254 0.243

Pepper 0.995 0.995 0.972 0.966 0.25 0.243

S & P 0.995 0.995 0.972 0.966 0.12 0.12

Speckle 0.995 0.995 0.972 0.966 0.12 0.12

Table 13 Performance of ResNet50||CNN||DL model with adversarial examples

Noise type BIG2015 MalImg Malhub

A F1 A F1 A F1

Gaussian 0.947 0.876 0.996 0.993 0.992 0.992

Local Variable 0.946 0.874 0.995 0.993 0.556 0.624

Poisson 0.949 0.878 0.995 0.993 0.556 0.625

Salt 0.944 0.874 0.996 0.993 0.32 0.32

Pepper 0.945 0.875 0.995 0.992 0.32 0.32

S & P 0.946 0.874 0.995 0.993 0.014 0.05

Speckle 0.948 0.877 0.995 0.993 0.053 0.014
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dataset. The Malhub dataset demonstrated improved per-

formance with LBP and Non-LBP images, achieving an F1

score of 0.996 and above. LBP images exhibited superior

performance at a dimension of 64x64, while non-LBP

images performed better at 128x128. Thus, it is evident that

LBP images capture textural patterns specific to a malware

family, resulting in an improved classifier outcome.

To further enhance the classification performance, we

devised an alternative model that integrated the outputs of

ResNet50 and CNN, utilizing dense layers to distinguish

malware images across three datasets. The findings are

summarized in Table 11. Consistent with prior experi-

ments, the analysis was conducted employing variable

image dimensions. Confusion matrices are depicted in

Fig. 14, Fig. 15 and Fig. 16. Both models, model1 (ResNet

50?CNN?DL) and model2 (ResNet50||CNN||DL),

demonstrated comparable F1 scores for MalImg and Mal-

hub datasets across image dimensions 64x64 and 128x128.

This suggests that both models can effectively distinguish

malware images, regardless of size. On the contrary for

BIG2015, model1 (ResNet50?CNN?DL) exhibited the

highest F1 score of 0.995, and model2

(ResNet50||CNN||DL) obtained an F1 score of 0.949. Seven

out of nine malware families in the BIG2015 dataset

exhibited a detection rate exceeding 90%, with the

exception of Simda (shown in Fig. 14). This disparity is

likely attributed to the dataset’s imbalanced nature, as

Simda only contains 42 samples, accounting for a mere

0.386% of the entire dataset. Nonetheless, we believe that

further improvement can be achieved by leveraging gen-

erative models like Generative Adversarial Networks

(GANs) to augment and balance the classes with fewer

Table 18 Assesment of ML

classifiers and Dense(2-layers)

using Non-LBP images (size ¼
128 x 128) using pretrained

ResNet50

Dataset ResNet50

SVM RF XGBoost Dense

(2 layers)

A F1 A F1 A F1 A F1

MalIMg 0.977 0.975 0.96 0.962 0.972 0.977 0.959 0.958

BIG2015 0.83 0.837 0.84 0.84 0.87 0.87 0.759 0.75

Malhub 0.995 0.994 0.999 0.999 0.998 0.998 0.972 0.97

Table 16 Performance of ML

classifiers and Dense(2-

layers)using LBP images

ResNet50 as pretrained network

(size ¼ 128 x 128)

Dataset ResNet50

SVM RF XGBoost Dense (2 layers)

A F1 A F1 A F1 A F1

MalIMg 0.945 0.95 0.825 0.822 0.885 0.887 0.909 0.900

BIG2015 0.92 0.925 0.885 0.892 0.902 0.892 0.918 0.91

Malhub 0.997 0.997 0.982 0.982 0.991 0.991 0.854 0.861

Table 17 Evaluation results of

ML classifiers and Dense(2-

layers) using Non-LBP images

(size ¼ 128 x 128) using

pretrained VGG16

Dataset VGG16

SVM RF XGBoost Dense (2 layers)

A F1 A F1 A F1 A F1

MalIMg 0.98 0.985 0.974 0.977 0.972 0.977 0.984 0.98

BIG2015 0.92 0.93 0.90 0.91 0.912 0.918 0.92 0.92

Malhub 0.997 0.997 0.999 0.999 0.999 0.999 0.996 0.996
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samples in the training set. Figure 15 illustrates that an

impressive 17 out of 22 malware families achieved a

remarkable 100% detection rate. For the remaining five

classes, the detection rates were still substantial, ranging

from 93.7% to 99.8%. Moreover, we can observe from

Fig. 16 that 13 out of 20 families depicted 100% detection

rate, and for the remaining seven families, detection rates

are between 99.5% and 99.7%. This demonstrates the

remarkable efficacy of our proposed model in distin-

guishing malware families based on their visual features.

Details of ROC curves (refer Figures Fig. 18, Fig. 19 and

20) for best-performing models are shown in Appendix A.

4.4 Evaluation of proposed model
on obfuscated samples

Software obfuscation encompasses altering the arrange-

ment of a program’s code while upholding its intended

behavior. This technique employs various tactics, including

unconditional jumps, control flow interlacing, conditional

Fig. 12 Sample images of

obfuscated samples: a non-lbp

images of Obfuscator.ACY

family of BIG2015

dataset (b) corresponding LBP

images of Obfuscator.ACY

class of BIG2015. c sample

Non-LBP images of

Obfuscator.AD of MalImg

dataset. d LBP images of

Obfuscator. AD samples from

MalImg

Fig. 11 BIG2015 dataset:

Confusion matrix for 64x64

images obtained with

ResNet50?CNN?DL model.

The two Lollipop samples were

misclassified as Gatak, one

sample of Tracur is

misclassified as

Obfuscator.ACY and Vundo

each, and one sample of

Kelihos_Ver1 is misclassified as

Obfuscator.ACY respectively
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jumps, transparent branching, merging local integers,

introducing randomized dead code, reassigning variables,

generating fictitious intermediate-level code, encoding

strings, and suppressing constants [46]. These obfuscation

methods hinder the comprehension and reverse engineering

of the program’s functionality. According to statistics,

approximately 80% of malware executables cleverly

employ obfuscation techniques to escape from detec-

tion [47]. Specifically, we concentrated on identifying

obfuscated malware from the benchmark dataset. Notably,

Obfuscator.ACY and Obfuscator.AD families of BIG2015

and MalImg datasets harbor such obfuscated exe-

cutable (refer Fig. 11 and Fig. 13).

Next, we discuss the efficiency of the

ResNet50?CNN?DL model in classifying obfuscated

malware. For this, we use the obfuscator family from both

datasets, which offers a variety of obfuscated malware

employing different sophisticated code obfuscations. Fig-

ure 11 distinctly demonstrates that the Obfuscator.ACY

variants family within the BIG2015 dataset achieves pre-

cise classification, boasting a detection rate of 100%. Also,

98.7% of files in the same class were detected by

ResNet50||CNN||DL model (refer Fig. 14). Similarly,

Fig. 13 and Fig. 15 demonstrates that the Obfuscator.AD

family in the MalImg dataset also achieves a detection rate

of 100%. The classification models proved adept at iden-

tifying obfuscated executables as they could precisely

Fig. 13 MalImg dataset (22 class): Confusion matrix for 128 9 128 sized images after merging similar classes

Cluster Computing (2024) 27:9191–9220 9211

123



identify image patches corresponding to obfuscated

regions, refer Fig. 12. Additonally, within the MalImg

dataset, families like Yuner.A, VB.AT, Malex.gen!j,

Autorun.k, and Rbot.gen employ UPX packing. As depic-

ted in Fig. 13, the model exhibits a 100% detection rate in

classifying these families.

4.5 Performance evaluation of proposed model
on evasion attack

We also performed evasion attacks to measure the

robustness of classification models. We conducted the

experiments by creating adversarial examples from test

samples by applying additive noise. The results obtained

after the attack on model1 (ResNet50?CNN?DL) are

shown in Table 12. Here, 10% malware images in the test

set were perturbed. As seen in Table 12, creating an

adversarial example using Poisson noise results in a max-

imum drop of 1.68% in F1 score. Further, from Fig. 17, it

can be seen that 19 out of 22 families of samples are well

classified with an F1 score of 1.0. One sample of Obfus-

cator.AD is misclassified as LoydaAA1 and one sample of

Allaple.A is misclassified as Malexgen!A, respectively.

Furthermore, all variants of Adlair.C are wrongly labeled

completely as AgentFYI. Overall, the F1 score has reduced

to 0.957, representing a 4.19% decrease when applying the

Local Variance method, which is less compared to the

performance obtained with the ResNet50?CNN?Dense

Layers model. Interesting evasion attacks launched with

adversarial samples, developed with different additive

noise methods, failed to lower the detection rate of the

classification model(ResNet50?CNN?DL) on BIG2015

dataset. Furthermore, we conducted an identical experi-

ment on model2 (ResNet50||CNN||DL) (Table 13). We

observed a decrease in F1 scores for BIG2015, ranging

from 0.874 to 0.878. For MalImg, F1 scores varied between

0.992 and 0.993. Additionally, F1 scores for Malhub

encompassed a range from 0.014 to 0.992. This finding

suggests that attackers can manipulate the malware code by

adding specific bytes without altering its operational

capabilities, ultimately evading detection by the machine

learning classifier. A few solutions to deal with adversarial

attacks are (a) defense in depths: which is to have multiple

layers of protection (signature/non-signature based

approach, machine learning based techniques, or automatic

sandboxing), (b) data diversification and augmentation:

use of GAN to create synthetic malware samples and

augment the training set, (c) Explainable AI: develop

Fig. 14 BIG2015 dataset (9 class): Confusion matrix for 128 9 128 sized images using fusion model (ResNet50||CNN||DL)
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techniques to provide explanations about the decisions

made by algorithms. This will try to uncover patterns in the

model that the adversary might use to deceive detection,

(d) Robustness-based training: is to retrain the classier by

modifying the training set, optimize the training algorithm

to learn diverse data points, and using regularization

techniques, (e) Open science: Open-source sharing of

datasets, tools, and research findings can foster collabora-

tion and accelerate the pace of innovation.

4.6 Comparative analysis of the proposed
system with the state-of-the-art approaches

Most malware specimens adopt obfuscation techniques to

evade detection, as mentioned in the previous sections, and

the texture-based approach can withstand such techniques,

which leads to enhanced accuracy. The homogeneous

malware versions exhibit visual resemblance, whereas

distinct visual traits belong to different families.

Visualization of malware binaries as image preserves

variations in code structure introduced by malware authors.

In this study, we mainly focused on comparing our effec-

tive solution with other popular texture-based malware

categorization schemes reported in [18, 23, 48, 51]. Each

Fig. 15 MalImg dataset: Confusion matrix for 128 9 128 sized images using fusion model (ResNet50||CNN||DL)
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method applied a machine learning algorithm or deep

learning, extracting features from malware images for

classification. We have tabulated the results in Table 14.

Our proposed model successfully classifies samples with an

F1 score of 0.998 with 0.998 accuracy in the MalImg

dataset. Besides, we attained the highest F1 score of 0.995

with an accuracy of 0.995 for the BIG2015 dataset.

Additionally, we obtained an F1 score in the range of

0.993�0.999 on Malhub dataset using LBP images. Fur-

thermore, we performed an adversarial attack on the model

generated to measure the robustness.

4.7 Discussion and limitations

Our outcomes suggest that the proposed malware family

classification scheme is superior to current approaches in

terms of the following factors: (1) For both the benchmark

datasets, the majority of the malware families show 100%

F1 score (2) Deeper networks of ResNet50 classifies class-

specific features (3) Texture-based images of binaries

preserves the generic pattern of a family. In both datasets,

we can observe some misclassifications; this may be

because such samples share some generic features that

overlap with other classes. Hence, such files will be visu-

ally similar. For Example, in Fig. 11, the Kelihos_version3

is misclassified as Obfuscator.ACY because they are both

Trojans and share common patterns. Thus, the classifier is

unable to discriminate samples and wrongly classify them.

Various pre-trained deep neural models were used to

categorize the malware images. It is evident from the

results that the generic attributes obtained by augmenting

pre-trained models with CNN?DL precisely detected

Fig. 16 Malhub dataset(20 families): confusion matrix for 128 9 128 sized images using fusion model (ResNet50||CNN||DL)
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samples. The experiments conducted by authors in [52]

demonstrate the superior performance of ResNet50 in

classifying the Imagenet dataset than VGG16. We also

obtained similar trends while classifying malicious bina-

ries. Deeper networks like ResNet50 can produce seman-

tically enriched features, making them generalizable for

other classification problems than shallower models like

VGG16.

Moreover, we investigated the significance of image

dimensions in family classification by experimenting with

different image dimensions (64x64, 128x128). We noted

that models trained on the image size 64x64 outperformed

the others, achieving an F1 score of 0.995 for the BIG 2015

dataset, while 128x128 performed well for the MalImg

dataset with an F1 score of 0.979 (LBP image of 25 class).

Therefore, we can infer that the images with small

dimensions cannot make fine distinctions as they cannot

retain relevant information about the family. The only

exception is BIG2015 (executables with stripped header).

In contrast, a high image dimension can only escalate the

computation time without contributing much to overall

performance. Furthermore, we conducted extensive

experiments to test the robustness of our approach against a

couple of adversarial attacks. We noticed that we obtained

Fig. 17 MalImg dataset with adversary attack on ResNet50?CNN?DL model: confusion matrix of 128 9 128 sized images with Poisson

random noise
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some misclassifications (see Fig. 17), but the model could

accurately identify the families of MalImg and BIG2015,

however, it could not identify malware files of Malhub

dataset. The adversary may also try to relocate the parts of

code to modify the malware image to deceive detection.

However, such modifications might negatively impact the

performance of our model, as convolutional networks are

skillful enough to learn features invariant to relocation.

This would be useful in identifying malicious files obfus-

cated using the control flow obfuscation technique. The

source code and hashes of malware files are shared on the

github page.8

5 Conclusions and future scope

Conventional antivirus solutions heavily rely on machine

learning (ML) techniques to protect digital information

from malware attacks, and these methods have demon-

strated efficacy in identifying new malware strains. How-

ever, creating robust features for ML algorithms is

demanding regarding time and expertise. Deep learning

architectures have also emerged as promising tools for

malware detection, offering remarkable performance in

classifying malware samples. The proposed deep learning

model achieved exceptional results, consistently high F1

scores of 0.99 across 64x64 and 128x128 sized malware

images. This success was consistently observed on two

publicly available datasets (MalImg and Big 2015) and a

self-created dataset, highlighting the model’s versatility

and robustness. Additionally, we have validated the

effectiveness of extracting features from malware exe-

cutable images to classify them into their respective fam-

ilies and employing transfer learning to group new

malware samples. This approach significantly reduces

computational costs and resource requirements when

dealing with new datasets. However, we also observed that

the classification models exhibit vulnerability to tainted

examples crafted by adversaries, except adversarial

examples generated using Gaussian noise.

Despite achieving competitive results compared to state-

of-the-art approaches, we believe there is still significant

room for improvement. We intend to conduct more

extensive experiments using various executable files in the

future. We also plan to delve into the performance of the

proposed visualization approach in the context of concept

drift, a phenomenon where changes in data patterns can

affect the model’s accuracy. Additionally, we aim to

develop techniques to enhance the detection rates of mal-

ware scanners trained on image-based features. Further, we

will explore methods for effectively fusing deep learning

models based on the attributes they extract. Towards this

goal, we plan to augment our proposal by implementing

model interpretation techniques, such as class activation

maps, which provide insights into how the model makes

decisions. Finally, we acknowledge that the representation

of 2D images and how Convolutional Neural Networks

(CNNs) operate might lead to information loss between

bytes appearing in the right corner and the beginning of the

left edge. To address this, we intend to investigate the

behavior of CNNs on 1D images, which could potentially

capture more contextual information.

Appendix A

This section presents the detailed evaluation results of ML

classifiers and Dense (2-Layers). Additionally, we include

the ROC curve for the proposed classification model.

See Figs. 18, 19, and 20.

Fig. 18 ROC curve for BIG2015 dataset using proposed fusion

model(ResNet50||CNN||DL)

8 Github link: https://github.com/OPTIMA-CTI/DL-Adversarial-

Noise
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38. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of

texture measures with classification based on featured distribu-

tions. Pattern Recogn. 29(1), 51–59 (1996)

39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770–778 (2016)

40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural

information processing systems 25 (2012)

41. Olivas, E.S., Guerrero, J.D.M., Martinez-Sober, M., Magdalena-

Benedito, J.R., Serrano, L., et al.: Handbook of Research on

Machine Learning Applications and Trends: Algorithms, Meth-

ods, and Techniques: Algorithms, Methods, and Techniques. IGI

global (2009)

42. Bulazel, A., Yener, B.: A survey on automated dynamic malware

analysis evasion and counter-evasion: Pc, mobile, and web. In:

Proceedings of the 1st Reversing and Offensive-oriented Trends

Symposium, pp. 1–21 (2017)

43. Xu, H., Ma, Y., Liu, H.-C., Deb, D., Liu, H., Tang, J.-L., Jain,

A.K.: Adversarial attacks and defenses in images, graphs and

text: a review. Int. J. Autom. Comput. 17(2), 151–178 (2020)

44. Laidlaw, C., Feizi, S.: Functional adversarial attacks. Advances in

neural information processing systems 32 (2019)

45. Vivek, B., Mopuri, K.R., Babu, R.V.: Gray-box adversarial

training. In: Proceedings of the European Conference on Com-

puter Vision (ECCV), pp. 203–218 (2018)

46. You, I., Yim, K.: Malware obfuscation techniques: A brief sur-

vey. In: 2010 International Conference on Broadband, Wireless

Computing, Communication and Applications, pp. 297–300

(2010). IEEE

47. Schiffman, M.: A brief history of malware obfuscation: Part 2 of

2. Cisco Blog (2010)

48. Agarap, A.F.: Towards building an intelligent anti-malware sys-

tem: a deep learning approach using support vector machine

(svm) for malware classification. arXiv preprint arXiv:1801.

00318 (2017)

49. Jian, Y., Kuang, H., Ren, C., Ma, Z., Wang, H.: A novel

framework for image-based malware detection with a deep neural

network. Comput. Secur. 109, 102400 (2021)

50. Deng, H., Guo, C., Shen, G., Cui, Y., Ping, Y.: Mctvd: A malware

classification method based on three-channel visualization and

deep learning. Comput. Secur. 126, 103084 (2023)

51. Shaid, S.Z.M., Maarof, M.A.: Malware behavior image for mal-

ware variant identification. In: 2014 International Symposium on

Biometrics and Security Technologies (ISBAST), pp. 238–243

(2014). IEEE

52. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark

analysis of representative deep neural network architectures.

IEEE Access 6, 64270–64277 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

K. A. Asmitha is presently a Full

Time Research Scholar at the

Department of Computer

Applications, Cochin University

of Science & Technology,

Cochin, Kerala, India. Prior to

this, she was a Junior Research

Fellow in the Department of

Applied Mathematics & Com-

putational Sciences at PSG

College of Technology, Coim-

batore, India. She received a

Master of Technology in Com-

puter Science and Engineering

with specialization in Informa-

tion Systems from SCMS School of Engineering & Technology,

Mahatma Gandhi University. Her main research interests are Malware

Analysis, Android Mobile security and privacy, Machine Learning,

and Data Mining. She is currently focused on Malware Analysis and

Explainable AI.

Vinod Puthuvath is presently a

Marie Curie fellow at Univer-

sity of Padua in and a Professor

in the Department of Computer

Applications at Cochin Univer-

sity of Science & Technology,

Cochin, Kerala, India. He is a

Postdoctoral Researcher at the

Department of Mathematics,

University of Padua, Italy,

where he is part of the HOR-

IZON Europe Framework Pro-

gramme project named

OPTIMA. He was also a Post-

doctoral Researcher at the

Department of Mathematics, University of Padua, Italy, where he was

part of the EU-H2020 project named TagitSmart. He was also a

Postdoctoral researcher at Malaviya National Institute of Technology,

Jaipur, Rajasthan, India, under the ISEA project on Mobile Security.

He holds his Ph.D. in Computer Engineering from Malaviya National

Institute of Technology, Jaipur, India. In 2020, he was awarded the

Seal of Excellence for a Marie Skłodowska-Curie Individual Fel-

lowship by the European Commission. He has numerous research

articles published in peer-reviewed Journals and International Con-

ferences. He is a reviewer of a number of security journals such as

IEEE Transactions of Information Forensics, IEEE Communication

Surveys and Tutorials, Elsevier Computer Communications, and is

also serving as a programme committee member in International

Conferences related to Computer and Information Security. His area

Cluster Computing (2024) 27:9191–9220 9219

123

http://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1801.00318
http://arxiv.org/abs/1801.00318


of interest is Adversarial Machine Learning, Malware Analysis,

Context-aware privacy-preserving Data Mining, and Natural Lan-

guage Processing.

K. A. Rafidha Rehiman is pre-

sently an Assistant Professor at

the Department of Computer

Application, Cochin University

of Science & Technology,

Cochin, Kerala, India. She holds

Ph.D. in Data security, M.Tech

in Information system security,

and Masters in Computer

Applications. She has several

research articles published in

peer-reviewed Journals and

International Conferences. She

is also supervising Ph.D. schol-

ars in privacy-preserving data

sharing and distributed machine learning. Her research interests

include Cryptography, Information Security, and Cyber forensics

Analysis. Her research work focuses on Ransomware Analysis and

Cyber Threat Intelligence. She has been instrumental in organizing

various workshops on security at International/national and state-level

institutions.

S. L. Ananth received an M.Tech

in Software Systems with a

specialization in Data Science

from BITS Pilani. He has more

than 20 years of progressive

experience in software analysis,

design, and coding. His research

interests are malware analysis

and machine learning.

9220 Cluster Computing (2024) 27:9191–9220

123


	Deep learning vs. adversarial noise: a battle in malware image analysis
	Abstract
	Introduction
	Related works
	Static analysis
	Dynamic analysis
	Visualization based techniques

	Proposed method
	Dataset preparation
	Grayscale image generation
	Feature extraction
	LBP image generation

	Classification model
	ResNet50
	VGG16

	Attacks on machine learning algorithms

	Experiments and results
	Dataset description
	The performance of classification models on benchmark datasets
	Performance evaluation of the proposed models
	Evaluation of proposed model on obfuscated samples
	Performance evaluation of proposed model on evasion attack
	Comparative analysis of the proposed system with the state-of-the-art approaches
	Discussion and limitations

	Conclusions and future scope
	Appendix A
	Acknowledgements
	Author contributions
	Data availability
	References




