
Task scheduling using fuzzy logic with best-fit-decreasing for cloud
computing environment

Nitin Thapliyal1 • Priti Dimri2

Received: 5 December 2023 / Revised: 21 February 2024 / Accepted: 22 February 2024 / Published online: 28 March 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
An efficient task scheduling is mandatory in cloud computing for providing virtual resources used to carry out the tasks. An

effective allocation of VM with the presence of diverse resource requirements, inaccurate information and uncertainties

existing in the system is difficult. In this research, an effective task scheduling is done by using the fuzzy logic (FL) with

best-fit-decreasing (BFD) in a cloud computing environment. The developed FL–BFD is optimized using resource usage,

power, cost and time. Accordingly, the FL–BFD reallocates virtual machine (VM) in the cloud, based on the user demands.

Therefore, the adaptability of FL is leveraged to handle uncertainties and imprecise information, which is helpful for an

appropriate allocation of VM using BFD according to user requirements. The developed FL–BFD is analyzed using

makespan, execution time, degree of imbalance, energy consumption and service level agreements (SLA) violations. The

existing approaches named minimum completion time (MCT), particle swarm optimization (PSO), improved wild horse

optimization with levy flight algorithm for task scheduling in cloud computing (IWHOLF-TSC), inverted ant colony

optimisation (IACO), fuzzy system and modified particle swarm optimization (FMPSO), and task-scheduling using whale

optimization (TSWO) are used for comparison. The makespan of FL–BFD with 1000 tasks is 9.2 ms, which is higher when

compared to the IWHOLF-TSC and MCT-PSO.

Keywords Best-fit-decreasing � Cloud computing � Fuzzy logic � Makespan � Resource usage � Service level agreements �
Virtual machine � Task scheduling

1 Introduction

In the recent times, there has been an extensive growth in

technological advancements which demand high-perform-

ing computing systems for accomplishing the tasks.

Therefore, cloud computing is developed as a necessary

solution to simplify and provide efficient resources for

performing difficult tasks [1]. Cloud computing is a

revolution in information technology (IT) and other fields

due to its efficient and powerful structure. Cloud is con-

sidered a major key for big scale data and complex com-

puting operations [2, 3]. Different cloud features such as

quality of service, on demand, virtualization, elasticity,

usage-based billing and self-service have led to an increase

in the concentration of studies about cloud in research

communities and industries. Moreover, cloud computing

provides better outcomes in managing data and infras-

tructure [4]. It has three types of delivery models namely,

software as a service (SaaS), infrastructure as a service

(IaaS) and platform as a service (PaaS), as well as four

deployment models namely, private, public, hybrid, and

community cloud [5]. The SaaS denotes the service for

users via system interfaces, PaaS denotes the cloud’s

operating system, and IaaS has hardware amenities such as

network and storage. The PaaS operates the data collection

between IaaS and SaaS through network facilities [6]. The

cloud architecture is a network of parallel and distributed

& Nitin Thapliyal

thapliyal.nitin@gmail.com

Priti Dimri

FACT0090054@uktech.net.in

1 Department of Computer Science and Engineering, Veer

Madho Singh Bhandari Uttarakhand Technical University,

Dehradun, Uttarakhand, India

2 Department of Computer Science and Applications, G.B.

Pant Engineering College, Ghurdauri, Pauri,

Uttarakhand 246194, India

123

Cluster Computing (2024) 27:7621–7636
https://doi.org/10.1007/s10586-024-04378-7(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04378-7&domain=pdf
https://doi.org/10.1007/s10586-024-04378-7

systems, created using a group of virtual machines (VMs)

that provide computing resources with respect to the ser-

vice-level agreement, which is an agreement between cli-

ents and the service providers [7].

The cloud computing is an IT deployment system uti-

lized to share resources comprising of analytics, memory,

intelligence, information, software, hardware, servers,

networking, video, audio, desktop accessibility, storage

space, printers, web services, emails, applications, etc., [8].

Cloud service providers (CSPs) provide and accomplish the

services according to the requirements of the customers.

The customers need VMs for installing the applications at

the datacenter by using CSPs [9, 10]. High flexibility levels

are obtained by the end users through the dynamic nature

of cloud with on-demand resources, but they also make

resource management highly complex. Task scheduling is

an essential requirement for accomplishing resource man-

agement and performance optimization in cloud computing

structures [11–13]. In cloud computing, task scheduling is

the process of task assignment to the users according to the

existing resources for enhancing resource efficiency,

improving load balancing and optimizing operation time.

Task scheduling is mainly based on the dependencies

between tasks [14]. The tasks are allocated to the resources

with stronger a calculating power to decrease the task

completion time which creates the issue of deficiency in

load balancing. Hence, the balance between load balancing

and task completion time is required to be considered for

cloud architecture [15].

An appropriate task scheduling performs an important

role in optimizing the resource utilization, improving sys-

tem efficiency and reducing the task completion time in

cloud computing environments. But, the challenge here is

an effective allocation of VM according to its diverse

resource requirements, existence of uncertainties and

inaccurate information in the system. This issue is con-

sidered as a motivation for this research work. The main

objective of this research is to enhance the efficiency of

task scheduling in cloud computing by combining FL with

the BFD algorithm. The goal is to leverage the adaptability

of FL for handling uncertainties and imprecise information

that concurrently support appropriate allocation of VM

using BFD as per the user requirements.

This research makes the below contributions:

• The integration of FL–BFD enables an effective VM

reallocation based on the needs of the users. Here, the

FL–BFD is optimized by various factors such as

resource usage, power, cost and time. Therefore, the

integrated approach of FL–BFD optimizes resource

usage according to the FL’s adaptability and efficiency

of BFD. FL takes precise decision by considering the

dynamic behavior of cloud environments, whereas the

FL–BFD confirms that the tasks are assigned in a way

that reduces the resource usage.

• The selection of VM according to the task’s resource

requirements helps to reduce the execution time which

contributes to the overall system efficiency and its

responsiveness. Thus, the system efficiency is enhanced

by adapting uncertainties, optimizing the resource

usage and reducing the execution time using FL–BFD.

Rest of the research is structured as follows: Sect. 2

provides the related works of task scheduling in the cloud

computing environment. The detailed explanation about

FL–BFD-based task scheduling via VM reallocation is

given in Sect. 3, whereas the outcomes are presented in

Sect. 4. Finally, a conclusion is drawn in Sect. 5.

2 Related work

The related works of task scheduling in cloud computing

environment along with their advantages and limitations

are provided in this section.

Ghafari and Mansouri [16] presented the multi-objective

task scheduling namely DCOHHO task scheduling

(DCOHHOTS) according to the modified Harris hawks

optimizer (HHO). The optimal configuration was chosen

from opposition-based learning, chaotic map and popula-

tion ratio. This optimal configuration was used for initial-

izing the location of hawk for HHO. Further, the developed

DCOHHOTS was used to optimize the resource usage for

minimizing energy, cost and makespan. Before submitting

to the scheduler, task prioritization was achieved by using

the hierarchical procedure in the DCOHHOTS. However,

load balancing over the cloud was further needed to be

enhanced for an effective cloud computing architecture.

Malathi and Priyadarsini [17] developed the hybrid lion-

based genetic method for choosing the VM. The task and

VM selection probability were utilized for analyzing the

Physical Machines (PMs) that were underloaded and

overloaded in cloud. The multi-objective task scheduling

was used to accomplish the selection probability. Further,

the lion optimizer redefined the local search values of load

and VM capacity. Next, the genetic operators were

deployed for deriving the global optimal solution. Thus, the

tasks were scheduled and executed by considering the load,

task execution cost and capacity of the hybrid lion-based

genetic method. An appropriate selection of VMs was

required for further optimizing the resource utilization.

Lipsa et al. [18] presented the M/M/n queuing approach

to perform task scheduling in cloud computing architec-

ture. The priority of individual tasks was allocated by

designing the waiting time matrix using the priority

assignment method. Next, the task with higher priority was

7622 Cluster Computing (2024) 27:7621–7636

123

extracted by implementing a unique idea according to the

Fibonacci heap using the waiting queue. This work

developed a parallel algorithm to perform task scheduling,

where task priority allocation and heap creation were

ensured in a parallel manner with the consideration of

preemptive and non-preemptive scheduling methods.

However, even when the tasks were allocated with the

priority of resources, the execution time was affected due

to heap constructions.

Saroit and Tarek [19] developed the Hungarian method

to solve the issue of load balancing over the cloud. The

Hungarian method was utilized for solving the weighted

matching issues, discovering the perfect matching among

the resources and challenging alternatives, therefore less

cost and higher profit were achieved during the load bal-

ancing process. The developed Hungarian method did not

consider the priority and dependencies of the tasks in cloud

environment.

Emami [20] presented enhanced sunflower optimization

(ESFO) to enhance the task scheduling performances. The

developed ESFO attained the optimum scheduling in a

polynomial time. In this model, the balancing amidst the

exploration and exploitation capacities was enhanced by

using a new pollination operator that was utilized to exe-

cute optimum scheduling with a lesser search complexity.

Nonetheless, this work suffered with more VM migrations

during the task scheduling process.

Kruekaew and Kimpan [21] developed a multi-objective

artificial bee colony (ABC) with Q-learning (MOABCQ) to

optimize the task scheduling in cloud. The incorporated

Q-learning was a type of reinforcement learning which was

used to enhance the operation speed of ABC. The

MOABCQ was used for optimizing the schedule and

resource usage for increasing the VM throughput and for

ensuring the load balancing among the VMs by considering

the cost, makespan, and resource usage. But, the developed

MOABCQ was suitable for only the trained dataset, it did

not consider the dynamic behavior of cloud environment.

Alsaidy et al. [22] presented the heuristic algorithms for

assisting the Particle Swarm Optimization (PSO) in task

scheduling process. A minimum completion time (MCT)

and longest job to the fastest processor, aided for initial-

izing the PSO’s particles. The heuristic initialized MCT-

PSO provided better load balancing in the cloud. This

MCT-PSO was not efficient in the searching start points of

VM and energy efficiency.

Saravanan et al. [23] developed the IWHOLF-TSC to

perform the task scheduling over the cloud architecture.

The IWHOLF integrated the principle of wild horse opti-

mization (WHO) with the theory of levy flight. The

IWHOLF-TSC developed the multi-objective fitness by

minimizing the makespan and increasing the resource

usage in cloud architecture. The developed IWHOLF-TSC

did not consider the resource allocation and load balancing

constraints of the cloud.

Azad et al. [24] presented the inverted ant colony opti-

misation (IACO) for solving the issue of task scheduling in

cloud. In IACO, pheromone repellent was used instead of

pheromone gravity, hence the impact of pheromone avoi-

ded the wrong selection. The FL with weight definition was

utilized for monitoring the load balance and impact of

pheromone repulsion in cloud. The developed IACO was

used to enhance the load balancing and minimize the

runtime. The increment in VMs was required to be ana-

lyzed for a better analysis of resource utilization over the

cloud.

Mansouri et al. [25] developed the fuzzy system and

modified particle swarm optimization (FMPSO) to perform

task scheduling for improving the cloud throughput and

load balancing. A modified velocity updating approach and

roulette wheel selection were deployed for enhancing the

global search. Here, the fuzzy system was used for com-

puting the fitness where it used different inputs such as

total execution time, RAM size, CPU speed and task

length. This model lessened the resource usage and exe-

cution time, but the dynamic behavior of cloud was not

considered by FMPSO while scheduling the tasks.

Mangalampalli et al. [26] presented the task-scheduling

using whale optimization (TSWO) for cloud environment.

The developed whale optimization computed the priorities

and VMs for all tasks in the cloud to precisely allocate the

tasks. The developed TSWO was analyzed only on the

standard dataset, but it was not analyzed with the dynamic

behavior of cloud.

Fu et al. [27] developed the PSO genetic hybrid algo-

rithm according to phagocytosis namely PSO_PGA for

scheduling the tasks in cloud. The PSO_PGA was modified

the updating approach of location and speed in the con-

ventional PSO. The fitness function (i.e., total completion

time of task) and load balancing’s standard deviation were

considered for separating the population of every genera-

tion in the 1st and 2nd time respectively. The population of

particle was always directed towards the optimum solution

by using the feedback mechanism. However, an energy

efficiency of the cloud was required to be considered for an

effective task scheduling in cloud.

Zade and Mansouri [28] presented the game theory and

fuzzy improved red fox optimizer (FIRFO) to schedule the

tasks in the cloud. The search process of FIRFO was

enhanced by using quasi-opposition based learning

(QOBL), levy flight, cornu-spiral movement and fuzzy

control systems. The QOBL was generated the initial

population, Levy flight was improved the exploration

capacity, fuzzy control systems was provided the balance

among the exploration and exploitation, and the spiral

movement was improved the local search ability. The

Cluster Computing (2024) 27:7621–7636 7623

123

developed FIRFO was required to be analyzed with the

constraints of varying VMs.

Manikandan et al. [29] developed the hybrid whale

optimization algorithm (WOA) based mutation-based Bees

(MBA) to solve the multi-objective task scheduling issues

in cloud. The hybrid WOA based MBA was concentrated

in reducing the execution time and computational cost. The

resource usage was maximized for reducing the makespan

using the multiobjective behavior of hybrid WOA based

MBA. The load balancing was required to be considered

for further improving the performances.

The problems from the related work are given as fol-

lows: the related works mainly depended on the proba-

bilistic approaches, however, they do not clearly address

the essential uncertainty in the cloud environment using

fuzzy logic and swarm intelligence approaches. Moreover,

the existing models were not well responsive for dynamic

variations in resource accessibility that caused the subop-

timal task allocation and possibly ineffective resource

usage. The solution given by the proposed research is as

follows: the integration of FL with BFD supports the

dynamic resource allocation according to the resource

usage, power, cost and time. This adaptability is important

in handling the varying conditions such as resource and

workload variations which helps to perform an effective

resource usage and VM allocation.

3 FL–BFD method

This research develops an FL-based BFD for effective task

scheduling in cloud infrastructure. The data center gathers

the tasks uploaded through the network to the cloud and

FL–BFD allocates the tasks to adequate available resources

based on the task’s requirements and VM information.

Here, the FL–BFD is operated by using resource usage,

power, cost and time. The overall cloud architecture of task

scheduling using FL–BFD is shown in Fig. 1.

3.1 System model

The cloud task scheduling is defined as the scheduling and

assigning of different tasks to many Virtual Machines

(VMs), and completing all the executed tasks in less exe-

cution period. The development of the load balancing

approach involves task allocation in VMs and Physical

Machines (PMs). The cloud has PMs which are represented

as Physical ¼ Physical1;f
Physical2; . . .;Physicalng; 1� k� n, where number of

cloud PMs is denoted as n. PM contains sequential VMs

represented as

Virtual ¼ Virtual1;Virtual2; . . .;Virtualp
� �

; 1� k� p,

where number of VMs is denoted as p.

The tasks are divided and organized into different chores

considered as, T ¼ fT1; T2; . . .; Tf g in a cloud computing

model which are acquired from VMs. The loads existing in

the VMs are balanced and stabilized, hence the cloud data

center (CDC) works ordinarily in the cloud system. On the

contrary, the underloaded and overloaded VMs are exam-

ined by using the load balancing algorithm. The chosen

VMs ðViÞ are balanced by implementing service-oriented

restrictions such as memory, bandwidth, task migration

cost and million instructions per second which are denoted

in Eq. (1).

Vi ¼ fNpi;Ni;BWi;Ci;Mig ð1Þ

where number of processors are Npi, number of MIPS are

Ni, bandwidth utilization is BWi, memory in terms of GB is

Mi and task migration cost is Ci.

The parameters Npi;Ni and Mi are ranged from 1 to a

predefined constant c, whereas Ci and BWi are ranged

between ½0; 1�. But the values of parameters cross their

range when the VM is overloaded in the system. Further,

the task allocated to VM is assigned to another VM which

is underloaded when these parameters are smaller than the

actual values. The remaining parameters considered for the

calculation of tasks are execution time, task priority, and

task communication costs that are shown in Eq. (2).

Ti ¼ fPriorityi;Executioni; taskcommunicationcostig ð2Þ

According to the task limitations, a high priority task

and smaller operation time are key restrictions that are

reassigned by overloaded tasks.

3.1.1 Incorporation of dependencies among tasks

At first, the system model has to be defined for denoting the

different dependencies existing among the tasks such as

data dependencies or task precedence for including the task

dependencies in conventional workload model. This

includes developing or extending the modern task class

which comprises features or approaches for obtaining the

data about the dependencies. Consequently, the task

scheduling approaches in the CloudSim are required to be

extended for considering these dependencies, by altering to

prioritize the tasks with fulfilled dependencies or including

the dependency restrictions into the scheduling decisions.

Concurrently, the VM assignment policy using BFD is

developed for accounting task dependencies in allocation.

The simulation environment is developed for including the

tasks with dependencies supporting the appropriate ini-

tialization of these dependencies. Further, the experimen-

tations are developed for evaluating the impact of task

dependencies via resource usage and completion time.

7624 Cluster Computing (2024) 27:7621–7636

123

Next, the simulation is modified for evaluating the results

and recognizing how task dependencies impact the overall

efficiency of cloud.

3.1.2 Incorporation of dependencies among VMs

An integration of BFD allocation with VM dependencies in

CloudSim includes a systematic development and modifi-

cation process. The model is defined to denote the VM

dependencies, identifying the relationships which exist

among the VMs such as the affinity or anti-affinity

restrictions. Next, the VM in CloudSim is generated or

extended including features and approaches for capturing

the data related to VM dependencies. The BFD assignment

policy is altered for considering the VM dependencies in

the allocation that require the alterations in the sorting

criteria for inspecting both the dependencies and resource

requirements. The logic of host selection is altered as

dependency-aware supporting that the selected host aligns

with the dependencies of remaining VMs in the cloud. The

principle to handle the VM dependencies is incorporated

into the main assignment procedure of BFD. The CloudSim

environment is updated for incorporating VM using the

BFD. The simulation is altered for developing the VMs

with dependencies, while assessments are done for evalu-

ating the BFD.

3.2 FL with BFD for task scheduling

In this work, the utilization of fuzzy logic is proposed for

combining the different objectives. The different objectives

considered in this fuzzy logic are resource, power, time and

cost. The fuzzy evaluation approach is employed for

combining these four objectives into a single objective.

The fuzzy searches for a better trade-off among these

objectives on the basis of all other objectives noted during

the optimization process. The FL incorporation enables the

system for effectively handling the imprecise information

and uncertainties. The existing task scheduling lacks the

ability for adopting to dynamic and undefined cloud envi-

ronments. FL plays a certain role in improving the load

balancing approaches in the cloud. Here, the FL operates

by considering the appropriate inputs such as resource

usage, power, cost and time. These parameters define the

fuzzy sets, divided into levels of low, medium and high via

membership functions. The rules are employed in fuzzy

input values for deriving the fuzzy output. Next, the

defuzzification converts the fuzzy outputs into accurate

choices, identifying the significant load balancing in the

cloud. The outcome returns the migration of VM, altering

resource assignments or remaining computations for opti-

mizing the load of the system. The reliability of FL in

acquiring and processing undefined data makes it specifi-

cally effective for load balancing choices in dynamic

cloud. Moreover, the inclusion of feedback in FL makes it

adaptive over time according to the varying cloud.

Fig. 1 Task scheduling using FL–BFD

Cluster Computing (2024) 27:7621–7636 7625

123

3.2.1 Fuzzy logic formulation for objective function

Fuzzy logic is considered for the VM Placement (VMP)

issue, wherein it is mandatory for placing a group of VMs

to minimize the power consumption and resource wastage.

Here, it is required to discover an optimal solution based on

resource utilization ðRÞ, power ðPÞ, cost ðCÞ and time ðTÞ.
The function vector ð�F xð ÞÞ is expressed in Eq. (3).

�
FðxÞ

¼ f P xð Þ; f R xð Þ; f C xð Þ; f T xð Þð Þ ð3Þ

where power and resource used by the datacenter are

denoted as f P xð Þ and f R xð Þ, respectively, f C xð Þ denotes the
cost, while f T xð Þ denotes the time.

The power consumption for active PMs ðPactivePMsÞ is

expressed in Eq. (4).

PactivePMs ¼
Xn

j¼1

PjðR tð ÞÞ ð4Þ

where n denotes the number of PMs. Equations (5) and (6)

denote the resource utilization for active PMs ðRactivePMsÞ in
the cloud.

RactivePMs ¼
Xn

j¼1

Rpmj
ð5Þ

Rpmj
¼ Rpmcpu

j
þ Rpmmem

j
þ Rpmsto

j
ð6Þ

where cpu;mem and sto denote CPU, memory and storage,

respectively. The cost, as expressed in Eq. (7) denotes the

total operation cost of the scheduling approach which is the

sum of costs used by all task operations.

C ¼
Xp

j¼1

vmCj ð7Þ

Further, Eq. (8) expresses the job operation time on the

VM.

T ¼ tasksize

vmspeed
ð8Þ

The membership functions for fuzzy subsets i.e., inputs

of Power, Resource, Cost and Time are shown in Fig. 2.

The linguistic variables of resource, power, cost and time

are used for formulating the fuzzy logic. Each variable has

three linguistic values which are, Low (L), Medium

(M) and High (H). They are specified as follows:

• Resource: HNR;MNR and LNR.

• Power: HNP;MNP and LNP.

• Cost: HNC;MNC and LNC.

• Time: HNT ;MNT and LNT .

Where, HNR;MNR and LNR denote higher, medium and

smaller normalized resource usage, correspondingly,

HNP;MNP and LNP denote higher, medium and smaller

normalized power utilization, correspondingly, while

HNC;MNC and LNC denote higher, medium and smaller

normalized cost value, correspondingly, and HNT ;MNT

(a)

(b)

(c)

(d)

Fig. 2 Membership functions for fuzzy subsets: a power b resource

c cost d time

7626 Cluster Computing (2024) 27:7621–7636

123

and LNT denote higher, medium and smaller normalized

time, correspondingly, in the cloud. Each linguistic value

represents a fuzzy subset from the problem solution

universe.

Further, the R;P;C and T are normalized between the

range ½0; 1� for making the member function suitable for

various issue instances. The normalized values P;R;C and

T are computed using Eqs. (9) to (12).

NP ¼ Ps

Pmax
ð9Þ

where the power usage for sth solution is denoted as Ps and

the maximum probable power usage of active PM is

denoted as Pmax.

NR ¼ Usedresource

Resourcecapacity
ð10Þ

where the utilized resources in the solution are denoted as

Usedresource, while the resource capacity of the active PM

is denoted as Resourcecapacity.

NC ¼ C � Cmin

Cmax � Cmin
ð11Þ

NT ¼ T � Tmin

Tmax � Tmin
ð12Þ

where NP;NR;NC and NT are correspondingly the nor-

malized power, normalized resource, normalized cost and

normalized time values which are given as input to the

fuzzy logic.

3.2.2 Fuzzy logic rules

A highly wanted VMP solution is the one with a high

membership at the fuzzy subcategories of HNR, LNP, LNC

and LNT. In the fuzzy subset, one has to trade-off these

distinct criteria against each other. The linguistic term is

used to represent the trade-off of fuzzy subsets using one or

more fuzzy logic rules.

The rules are generally ‘‘If…Then’’ declarations. Here,

an ‘‘If’’ is the fuzzy base which is determined using fuzzy

operators and linguistic values. The fuzzy AND is recog-

nized using the function min according to the min–max

logic, whereas the fuzzy OR is recognized using function

max for combining 2 or more linguistic values. On the

contrary, the ‘‘Then’’ is the subsequent. The fuzzy subset

with a better outcome is discovered by using the linguistic

value in the subsequent part. Therefore, an evaluating

outcome of ‘‘If’’ part discovers the membership degree in

the fuzzy subset with good placement outcomes based on

the fuzzy rule.

The below fuzzy rule expresses the fuzzy subset with a

good placement outcome.

R:1 If ððpowerislowÞ
ANDðusageishighÞÞORððpowerismediumÞ
ANDðutilizationismediumÞÞThengoodsolution

The rule 1 is examined using Eq. (13) using the min–

max fuzzy logic.

lgoodS xð Þ ¼ maxðmin lLNP xð Þ; lHNR xð Þ; lLNT xð Þ; lLNC xð Þð Þ;

minðlMNP xð Þ; lMNR xð Þ; lMNC xð Þ; lMNT xð ÞÞ ð13Þ

where the fuzzy’s membership function of optimum

outcomes is denoted as lgoodS and l defines the member-

ship functions. The max and min operators are non-com-

pensatory i.e., the weak components do not compensate for

a stronger element. This criteria is unwanted for multi-

objective optimization. Therefore, it is essential to utilize

all data sources. In this scenario, it is suggested to use a

fuzzy AND and OR operator that assists all objective

values to create an impact on the operator’s outcome.

Further, a weighted averaging operator is incorporated for

relaxing the rule aggregation. Hence, the rule 1 of fuzzy

logic i.e., R:1 is estimated as shown in Eqs. (14) to (18).

lgoodS xð Þ ¼ b�max l1; l2; l3; l4ð Þ þ ð1� bÞ

� 1

2

X4

i¼1

liðxÞ ð14Þ

l1 xð Þ ¼ b�min lLNP xð Þ; lHNR xð Þð Þ þ ð1� bÞ

� 1

2
lLNP xð Þ þ lHNR xð Þð Þ ð15Þ

l2 xð Þ ¼ b�min lMNP xð Þ; lMNR xð Þð Þ þ ð1� bÞ

� 1

2
lMNP xð Þ þ lMNR xð Þð Þ ð16Þ

l3 xð Þ ¼ b�min lLNC xð Þ; lMNC xð Þ; lHNC xð Þð Þ þ ð1� bÞ

� 1

2
lLNC xð Þ þ lMNC xð Þ þ lHNC xð Þð Þ

ð17Þ

l3 xð Þ ¼ b�min lLNT xð Þ; lMNT xð Þ; lHNT xð Þð Þ þ ð1� bÞ

� 1

2
lLNT xð Þ þ lMNT xð Þ þ lHNT xð Þð Þ

ð18Þ

where b is a value in the range of ½0; 1�.

3.3 BFD-based scheduling

The Best-Fit-Decreasing (BFD) algorithm is used for

solving the issue of VM reallocation. The fuzzy logic is

used in the cloud architecture for reallocating the VMs, and

Fig. 3 shows the flowchart for VM reallocation using FL–

BFD. The BFD designates the VMs’ operation from

demand submission to the execution. According to the

time-driven simulation, the received VMs are maintained

Cluster Computing (2024) 27:7621–7636 7627

123

in the cloud. The VMs are sorted in descending order of

CPU usage, where each VM is assigned to the PM as the

cloud receives new VMs. Each PM state is controlled for

avoiding the over/underloaded conditions, in order to fre-

quently optimize the current assignment of VMs. Some

VMs are required to move from PM as per the selection

criteria, and the chosen VMs are included in the relocation

list when the overloaded PM is found in the cloud. All VMs

are moved from the PM and included in the relocation list

when an underloaded PM is found in the cloud. Next, the

fuzzy-based BFD is used to reallocate the chosen VMs to

another PM other than the under/overloaded PMs in the

VMs’ list. The VMs are arranged in descending order using

BFD and are allocated to the PM. The VM is positioned in

the PM with least existing resource capacity which assists

the resources needed by the VM. A new PM is ON when

the active PM does not assist the VM. Similarly, a set of

VMs is placed on the PM based on the fuzzy logic. In this

work, the objectives: power, resource, cost and time, are

maximized in a fuzzy way for performing an effective VM

reallocation. For the selection of an appropriate VM in a

decreasing order of resource necessities, the BFD reduces

the wasted resources and improves the overall system

efficiency. This leads to making the BFE suitable for

dynamic workloads, as it adaptively varies according to the

demands by allocating the VMs.

In the domain of load balancing with FL in cloud, the

roles of the VM manager and migration approaches are

crucial for the effectiveness of the overall system effi-

ciency. The VM manager understands the information

about load offered by the BFD and transforms into an

effective decision in the cloud. The BFD performs the

allocation, de-allocation and migration of VM over hosts

for maintaining an appropriate resource usage. Simultane-

ously, migration acts as an operation of load balancing

approach dynamically relocating VMs according to the

BFD outputs. BFD leads the decision of VM migration for

addressing the resource utilization imbalance in the

resource i.e., uneven workload dissemination and higher

CPU usage. The combination of VM manager and migra-

tion generate a combined solution which fine tunes the

awareness of BFD for adaptively maintaining the VM

assignments and migrations. This helps in effective load

balancing, alongside maximizes the system efficiency in

the cloud.

The algorithm for FL–BFD based task scheduling in

cloud is given below:

Input: TaskList, ResourceList, FL

Fig. 3 Flowchart for VM

reallocation using FL–BFD

7628 Cluster Computing (2024) 27:7621–7636

123

Output: Task assignment in cloud

1. Organize the tasks in decreasing order according to the

sizes (BFD).

2. for every task in TaskList:

3. Use FL for identifying the degree of suitability for

every resource.

4. Choose the resource with the higher degree of

membership.

5. End for

6. Assign the chosen task for the respective selected

resource.

7. The resource’s availability is updated according to the

size of assigned task.

8. Repeat steps 2–7 until all tasks are assigned.

4 Results and discussion

In this work, the Java with JFuzzyLogic and CloudSim

simulators are used to design and simulate the FL–BFD-

based task scheduling in cloud infrastructure. JFuzzyLogic

is generally a Java library used to design and simulate the

fuzzy logic systems. Subsequently, the JFuzzyLogic is

integrated with CloudSim by designing the FL controllers

and decision-making modules in Java, thereby integrating

the FL with CloudSim. The system configuration used for

this work is an i5 processor, 8 GB RAM and Windows 10

operating system. The developed research considers

40–200 VMs and 200–1000 tasks. The specifications of the

cloud are given in Table 1. Makespan, execution time,

degree of imbalance, energy consumption and SLA viola-

tions are the important metrics used for analyzing the FL–

BFD method. The degree of imbalance is used to offer a

value for assessing how unequally the resources are dis-

seminated over processing elements in the cloud. The SLA

violation is mainly based on the host’s active time and

performance degradation.

4.1 Performance evaluation

In this section, the FL–BFD method is analyzed for two

different scenarios which are specified in the below

Table 2. Here, the FL–BFD is analyzed for varying tasks

and VMs, in the scenarios 1 and 2, respectively. From the

Table 2, it is represented that the scalability of the FL–

BFD is analyzed by two different configurations: (1) fixed

number of VMs and different number of tasks, and (2)

different number of VMs and fixed number of tasks.

In scenario 1, the amount of VMs is fixed, and tasks are

varied from 200 to 1000 for analyzing the scheduling

performances. Table 3 shows the analysis of FL–BFD with

conventional fuzzy for scenario 1. Figures 4, 5, 6, 7 and 8

show the comparison of FL–BFD and fuzzy for makespan,

execution time, degree of imbalance, energy consumption,

and SLA violations, correspondingly. These figures repre-

sents that the increasing the number of tasks causes the

increment in amount of resources. From the results, it is

evident that the FL–BFD achieves better performance

when compared to the Fuzzy, even with the increment in

number of tasks. The FL–BFD has the better scalability

than the fuzzy for both the less and high amount of tasks.

For example, the makespan of FL–BFD is 9.2 ms, whereas

the Fuzzy obtains 12.6 ms. It is to be noted that the existing

fuzzy approach fails to handle the dynamic and uncer-

tain situations of cloud, therefore it obtains a lesser per-

formance. SLA represents the terms and conditions

between the service providers and consumers, evaluating

the desired levels of availability, service quality and per-

formance. On the contrary, energy efficiency denotes the

optimization of energy consumption and resource usage.

SLA denotes the resources assigned to service and these

resources influence the energy utilization. The energy

consumed for 1000 tasks is 567 mJ, while the SLA viola-

tions obtained are 12. The FL–BFD enables an effective

VM reallocation according to the user requirements along

with the resource usage, power, cost and time. Hence, the

FL–BFD optimizes the resource usage based on the

adaptability of FL and efficiency of BFD, thereby mini-

mizing the resource usage and execution time. Moreover,

the allocation of VM based on the task’s resource

requirements facilitates in minimizing the execution time

that enhances the system efficiency and its responsiveness.

Table 1 Specifications of cloud

Parameters Values

Number of VMs 40–200

Number of tasks 200–1000

Size of tasks (MI) 1000–4000

Power consumption of VMs (Watt) 200–1000

Power consumption percentage for idle to active state 0.6–0.7

VM execution rate (MIPS) 1000–5000

Table 2 Scenario information

Parameters Scenario 1 Scenario 2

Number of VMs 100 40–200

Number of tasks 200–1000 500

Cluster Computing (2024) 27:7621–7636 7629

123

The number of tasks are kept as constant, taken as 500,

and the number of VMs are varied from 40 to 200 for

analyzing the load balancing. Table 4 shows the analysis of

FL–BFD with conventional fuzzy for scenario 2. The

comparison of FL–BFD and fuzzy for makespan, execution

time, degree of imbalance, energy consumption, and SLA

violations for the 2nd scenario is shown in Figs. 9, 10, 11,

12 and 13, respectively. The increment in the number of

VMs increases the amount of resources. This analysis

shows that the FL–BFD achieves better performance when

compared to the Fuzzy, even when the cloud is analyzed

with varying number of VMs. Therefore, the FL–BFD has

better scalability than the fuzzy for both the less and high

amount of VMs. For example, the makespan of FL–BFD

with 200 VMs is 1.2 ms, whereas the Fuzzy obtains

1.8 ms.

Fig. 4 Graph of makespan for scenario 1

Fig. 5 Graph of execution time for scenario 1

Fig. 6 Graph of degree of imbalance for scenario 1

Fig. 7 Graph of energy consumption for scenario 1

Table 3 Analysis of FL–BFD for scenario 1

Performances Tasks Fuzzy FL–BFD

Makespan (ms) 200 2.8 1.8

400 3.8 2.4

600 6.6 4.8

800 10.8 8.5

1000 12.6 9.2

Execution time (ms) 200 145.8 132.5

400 262.6 216.8

600 445.4 386.6

800 578.6 450.5

1000 689.5 465.7

Degree of imbalance 200 0.6 0.4

400 0.6 0.4

600 0.9 0.8

800 1.0 0.8

1000 1.2 1.0

Energy consumption (mJ) 200 118 102

400 221 212

600 232 220

800 436 365

1000 678 567

SLA violations 200 7 3

400 8 7

600 10 8

800 13 11

1000 16 12

7630 Cluster Computing (2024) 27:7621–7636

123

Further, the scenario 2 analyzed in the CloudSim is also

analyzed using Amazon Web Services (AWS) for a real

time analysis which is provided in Table 5. This analysis is

used to provide the FL–BFD performance when it is pro-

cessed with real time data center, PM and cloud environ-

ment. Due to real time internet and host devices, the FL–

BFD results in marginal decrease in performances when

compared to the CloudSim simulation.

4.2 Comparative analysis

This section provides a comparison between FL–BFD and

the existing researches which are, IWHOLF-TSC [22],

MCT-PSO [23], IACO [24], FMPSO [25] and TSWO [26].

Here as well, the comparison is made for five different

scenarios. The information about scenarios 3, 4 and 5 are

provided in the Table 6. The TSWO [26] is designed for

Fig. 8 Graph of SLA violations for scenario 1 Fig. 9 Graph of makespan for scenario 2

Fig. 10 Graph of execution time for scenario 2

Fig. 11 Graph of degree of imbalance for scenario 2

Table 4 Analysis of FL–BFD for scenario 2

Performances Number of VMs Fuzzy FL–BFD

Makespan (ms) 40 18.9 16.4

80 4.8 3.8

120 4.5 4.2

160 1.9 1.6

200 1.8 1.2

Execution time (ms) 40 337.2 237.9

80 456.0 318.5

120 328.0 312.4

160 398.8 304.8

200 400.0 389.5

Degree of imbalance 40 0.8 0.6

80 0.5 0.2

120 0.5 0.2

160 0.6 0.4

200 0.7 0.5

Energy consumption (mJ) 40 350.0 325.5

80 256.8 235.0

120 189.0 156.5

160 218.9 203.2

200 202.1 182.2

SLA violations 40 2 1

80 2 1

120 4 1

160 4 2

200 4 2

Cluster Computing (2024) 27:7621–7636 7631

123

the same specifications of power consumption and VM

execution rate, as mentioned in the Table 1. Tables 7, 8, 9,

10, 11 offer the comparison correspondingly for the sce-

narios 1, 2, 3, 4 and 5, where NA denotes values not

available in the respective research. From this analysis, it is

determined that the FL–BFD outperforms the IWHOLF-

TSC [22], MCT-PSO [23], IACO [24], FMPSO [25] and

TSWO [26]. For example, the makespan of FL–BFD with

1000 tasks is 9.2 ms, whereas that of the IWHOLF-TSC

[22] is 776 ms, and that of MCT-PSO [23] is 17.6 ms.

Moreover, the SLA violation comparisons are provided in

Table 11, where the assessment is done under random

generated workload and BigDataBench workload. This

evaluation concludes that FL–BFD has lesser SLA viola-

tions than the TSWO [26]. The FL’s adaptability and

efficiency of BFD is availed to optimize resource usage.

The consideration of the dynamic behavior of cloud envi-

ronments with FL–BFD is profited to minimize the

resource usage and execution time. This adaptability is

important in handling the varying conditions of resource

and workload variations that help to perform effective

resource usage and VM allocation. The developed FL–

BFD is useful in mobile applications, cloud analytics and

AWS services.

Fig. 12 Graph of energy consumption for scenario 2

Fig. 13 Graph of SLA violations for scenario 2

Table 5 FL–BFD evaluation with AWS for scenario 2

Performances Number of VMs Fuzzy FL–BFD

Makespan (ms) 40 19.722 17.013

80 5.780 4.717

120 5.363 5.037

160 2.463 2.318

200 2.264 1.848

Execution time (ms) 40 338.145 238.582

80 456.191 318.709

120 328.632 313.308

160 399.559 305.402

200 400.267 390.043

Degree of imbalance 40 0.804 1.340

80 0.507 0.209

120 0.507 0.210

160 0.600 0.400

200 0.702 0.507

Energy consumption (mJ) 40 350.354 326.483

80 257.092 235.420

120 189.412 157.453

160 219.633 203.997

200 203.029 182.656

SLA violations 40 2.000 1.000

80 2.000 1.000

120 5.000 1.000

160 5.000 2.000

200 5.000 2.000

Table 6 Information about scenario 3, 4 and 5

Parameters Scenario 3 Scenario 4 Scenario 5

Number of VMs 50 40 20

Number of tasks 50 40 100–1000

7632 Cluster Computing (2024) 27:7621–7636

123

Table 7 Comparison of FL–

BFD for scenario 1
Performances Tasks IWHOLF-TSC [22] MCT-PSO [23] FL–BFD

Makespan (ms) 200 96 2.2 1.8

400 265 4.2 2.4

600 480 8.5 4.8

800 659 12.1 8.5

1000 776 17.6 9.2

Execution time (ms) 200 42.12 155.8 132.5

400 210.72 326.7 216.8

600 370.45 535.8 386.6

800 464.52 716.5 450.5

1000 489.35 972.3 465.7

Degree of imbalance 200 0.866 0.9 0.4

400 0.852 0.6 0.4

600 0.871 1.0 0.8

800 0.857 1.1 0.8

1000 0.885 1.2 1.0

Energy consumption (mJ) 200 NA 122 102

400 NA 242 212

600 NA 440 220

800 NA 599 365

1000 NA 822 567

Table 8 Comparison of FL–

BFD for scenario 2
Performances Number of VMs MCT-PSO [23] FL–BFD

Makespan (ms) 40 25.9 16.4

80 9.7 3.8

120 4.9 4.2

160 3.7 1.6

200 2.7 1.2

Execution time (ms) 40 486.8 237.9

80 518.7 318.5

120 427.0 312.4

160 417.6 304.8

200 410.1 389.5

Degree of imbalance 40 1.0 0.6

80 0.8 0.2

120 0.7 0.2

160 0.7 0.4

200 0.7 0.5

Energy consumption (mJ) 40 362 325.5

80 365 235.0

120 311 156.5

160 318 203.2

200 304 182.2

Cluster Computing (2024) 27:7621–7636 7633

123

5 Conclusion

Cloud computing is a modern concept deployed in the IT

systems, providing various advantages including enhanced

response time, computing power and cost minimization.

The users possess full advantages of cloud services to

satisfy their requirements. This research specifically con-

centrates on task scheduling according to the user’s

demand. In this research, the FL–BFD is developed for an

effective reallocation of VM in cloud, as per the user’s

demand. The task scheduling via VM reallocation is carried

out by using different factors that are, resource usage,

power, cost and time. The BFD decides the operation of

VM, right from demand submission to the execution.

Moreover, each PM state is handled to eliminate the over/

under-loaded conditions and frequently optimize the cur-

rent assignment of VMs. From the analysis, it is evident

that the developed FL–BFD provides better performance

than the IWHOLF-TSC, MCT-PSO, IACO, FMPSO, and

TSWO. The makespan of FL–BFD with 1000 tasks is

9.2 ms which is superior in contrast to IWHOLF-TSC and

MCT-PSO. In the future, the conditions of FL can be

improved for further enhancing the energy efficiency of

cloud environment.

Table 9 Comparison of FL–BFD for scenario 3

Number of tasks Execution time (ms)

IACO [24] FL–BFD

250 1,251,635.3 1,023,213.45

300 1,501,962.34 1,437,837.34

350 1,752,289.38 1,574,293.24

400 2,002,616.42 1,875,392.92

Table 10 Comparison of FL–BFD for scenario 4

Number of tasks Execution time (ms)

FMPSO [25] FL–BFD

100 500 431

200 1245 850

300 1534 1290

400 2034 1879

500 2120 1982

600 3408 2805

700 4205 3792

Table 11 Comparison of FL–

BFD for scenario 5
Workload Number of VMs SLA violations

TSWO [26] FL–BFD

Random generated workload 100 8 6

500 9 8

1000 18 10

BigDataBench workload 100 8 6

500 9 8

1000 12 10

7634 Cluster Computing (2024) 27:7621–7636

123

Author contributions Nitin Thapliyal: conceptualization; investiga-

tion; methodology; visualization; formal analysis; writing—original

draft. Priti Dimri: data curation; resources; validation; supervision;

writing—review and editing; project administration. All authors have

read and approved the final manuscript.

Funding This research received no external funding.

Data availability No datasets were generated or analyzed during the

current study.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethics approval I/We declare that the work submitted for publication

is original, previously unpublished in English or any other lan-

guage(s), and not under consideration for publication elsewhere.

Consent for publication I certify that all the authors have approved

the paper for release and are in agreement with its content.

Consent to participate Not applicable.

Informed consent Not applicable.

References

1. Siddesha, K., Jayaramaiah, G.V., Singh, C.: A novel deep rein-

forcement learning scheme for task scheduling in cloud com-

puting. Cluster Comput. 25(6), 4171–4188 (2022). https://doi.org/
10.1007/s10586-022-03630-2

2. Khan, M.S.A., Santhosh, R.: Task scheduling in cloud computing

using hybrid optimization algorithm. Soft. Comput.Comput.

26(23), 13069–13079 (2022). https://doi.org/10.1007/s00500-

021-06488-5

3. Mangalampalli, S., Swain, S.K., Mangalampalli, V.K.: Multi

objective task scheduling in cloud computing using cat swarm

optimization algorithm. Arab. J. Sci. Eng. 47(2), 1821–1830

(2022). https://doi.org/10.1007/s13369-021-06076-7

4. Imene, L., Sihem, S., Okba, K., Mohamed, B.: A third generation

genetic algorithm NSGAIII for task scheduling in cloud com-

puting. J. King Saud Univ. Comput. Inf. Sci. 34(9), 7515–7529
(2022). https://doi.org/10.1016/j.jksuci.2022.03.017

5. Sharma, M., Kumar, M., Samriya, J.K.: An optimistic approach

for task scheduling in cloud computing. Int. J. Inf. Technol. 14(6),
2951–2961 (2022). https://doi.org/10.1007/s41870-022-01045-1

6. Abualigah, L., Alkhrabsheh, M.: Amended hybrid multi-verse

optimizer with genetic algorithm for solving task scheduling

problem in cloud computing. J. Supercomput.Supercomput.

78(1), 740–765 (2022). https://doi.org/10.1007/s11227-021-

03915-0

7. Praveen, S.P., Ghasempoor, H., Shahabi, N., Izanloo, F.: A

hybrid gravitational emulation local search-based algorithm for

task scheduling in cloud computing. Math. Probl. Eng.Probl. Eng.

2023, 6516482 (2023). https://doi.org/10.1155/2023/6516482

8. Sharma, N., Sonal, Garg, P.: Ant colony based optimization

model for QoS-based task scheduling in cloud computing envi-

ronment. Meas. Sens. 24, 100531 (2022). https://doi.org/10.1016/

j.measen.2022.100531

9. Panda, S.K., Nanda, S.S., Bhoi, S.K.: A pair-based task

scheduling algorithm for cloud computing environment. J. King

Saud Univ. Comput. Inf. Sci. 34(1), 1434–1445 (2022). https://

doi.org/10.1016/j.jksuci.2018.10.001

10. Nayak, S.C., Parida, S., Tripathy, C., Pattnaik, P.K.: An enhanced

deadline constraint based task scheduling mechanism for cloud

environment. J. King Saud Univ. Comput. Inf. Sci. 34(2),
282–294 (2022). https://doi.org/10.1016/j.jksuci.2018.10.009

11. Kang, K., Ding, D., Xie, H., Yin, Q., Zeng, J.: Adaptive DRL-

based task scheduling for energy-efficient cloud computing. IEEE

Trans. Netw. Serv. Manag.Netw. Serv. Manag. 19(4), 4948–4961
(2022). https://doi.org/10.1109/TNSM.2021.3137926

12. Gupta, P., Rawat, P.S., Saini, D.K., Vidyarthi, A., Alharbi, M.:

Neural network inspired differential evolution based task

scheduling for cloud infrastructure. Alex. Eng. J. 73, 217–230
(2023). https://doi.org/10.1016/j.aej.2023.04.032

13. Gupta, S., Iyer, S., Agarwal, G., Manoharan, P., Algarni, A.D.,

Aldehim, G., Raahemifar, K.: Efficient prioritization and pro-

cessor selection schemes for HEFT algorithm: a makespan opti-

mizer for task scheduling in cloud environment. Electronics

11(16), 2557 (2022). https://doi.org/10.3390/electronics11162557
14. Mahmoud, H., Thabet, M., Khafagy, M.H., Omara, F.A.: Mul-

tiobjective task scheduling in cloud environment using decision

tree algorithm. IEEE Access 10, 36140–36151 (2022). https://doi.

org/10.1109/ACCESS.2022.3163273

15 Pirozmand, P., Javadpour, A., Nazarian, H., Pinto, P., Mirkamali,

S., Ja’fari, F.: GSAGA: a hybrid algorithm for task scheduling in

cloud infrastructure. J. Supercomput.Supercomput. 78(15),
17423–17449 (2022). https://doi.org/10.1007/s11227-022-04539-

8

16. Ghafari, R., Mansouri, N.: Improved Harris hawks optimizer with

chaotic maps and opposition-based learning for task scheduling in

cloud environment. Cluster Comput. (2023). https://doi.org/10.

1007/s10586-023-04021-x

17. Malathi, K., Priyadarsini, K.: Hybrid lion–GA optimization

algorithm-based task scheduling approach in cloud computing.

Appl. Nanosci.Nanosci. 13(3), 2601–2610 (2023). https://doi.org/

10.1007/s13204-021-02336-y

18. Lipsa, S., Dash, R.K., Ivković, N., Cengiz, K.: Task scheduling in

cloud computing: a priority-based heuristic approach. IEEE

Access 11, 27111–27126 (2023). https://doi.org/10.1109/

ACCESS.2023.3255781

19. Saroit, I.A., Tarek, D.: LBCC-Hung: a load balancing protocol

for cloud computing based on Hungarian method. Egypt. Inf. J.

24(3), 100387 (2023). https://doi.org/10.1016/j.eij.2023.100387

20. Emami, H.: Cloud task scheduling using enhanced sunflower

optimization algorithm. ICT Express 8(1), 97–100 (2022). https://

doi.org/10.1016/j.icte.2021.08.001

21. Kruekaew, B., Kimpan, W.: Multi-objective task scheduling

optimization for load balancing in cloud computing environment

using hybrid artificial bee colony algorithm with reinforcement

learning. IEEE Access 10, 17803–17818 (2022). https://doi.org/

10.1109/ACCESS.2022.3149955

22. Alsaidy, S.A., Abbood, A.D., Sahib, M.A.: Heuristic initialization

of PSO task scheduling algorithm in cloud computing. J. King

Saud Univ. Comput. Inf. Sci. 34(6A), 2370–2382 (2022). https://

doi.org/10.1016/j.jksuci.2020.11.002

23. Saravanan, G., Neelakandan, S., Ezhumalai, P., Maurya, S.:

Improved wild horse optimization with levy flight algorithm for

effective task scheduling in cloud computing. J. Cloud Comput.

12, 24 (2023). https://doi.org/10.1186/s13677-023-00401-1

24. Azad, P., Navimipour, N.J., Hosseinzadeh, M.: A fuzzy-based

method for task scheduling in the cloud environments using

inverted ant colony optimisation algorithm. Int. J. Bio-Inspired

Comput. 14(2), 125–137 (2019). https://doi.org/10.1504/IJBIC.

2019.101638

25. Mansouri, N., Zade, B.M.H., Javidi, M.M.: Hybrid task

scheduling strategy for cloud computing by modified particle

Cluster Computing (2024) 27:7621–7636 7635

123

https://doi.org/10.1007/s10586-022-03630-2
https://doi.org/10.1007/s10586-022-03630-2
https://doi.org/10.1007/s00500-021-06488-5
https://doi.org/10.1007/s00500-021-06488-5
https://doi.org/10.1007/s13369-021-06076-7
https://doi.org/10.1016/j.jksuci.2022.03.017
https://doi.org/10.1007/s41870-022-01045-1
https://doi.org/10.1007/s11227-021-03915-0
https://doi.org/10.1007/s11227-021-03915-0
https://doi.org/10.1155/2023/6516482
https://doi.org/10.1016/j.measen.2022.100531
https://doi.org/10.1016/j.measen.2022.100531
https://doi.org/10.1016/j.jksuci.2018.10.001
https://doi.org/10.1016/j.jksuci.2018.10.001
https://doi.org/10.1016/j.jksuci.2018.10.009
https://doi.org/10.1109/TNSM.2021.3137926
https://doi.org/10.1016/j.aej.2023.04.032
https://doi.org/10.3390/electronics11162557
https://doi.org/10.1109/ACCESS.2022.3163273
https://doi.org/10.1109/ACCESS.2022.3163273
https://doi.org/10.1007/s11227-022-04539-8
https://doi.org/10.1007/s11227-022-04539-8
https://doi.org/10.1007/s10586-023-04021-x
https://doi.org/10.1007/s10586-023-04021-x
https://doi.org/10.1007/s13204-021-02336-y
https://doi.org/10.1007/s13204-021-02336-y
https://doi.org/10.1109/ACCESS.2023.3255781
https://doi.org/10.1109/ACCESS.2023.3255781
https://doi.org/10.1016/j.eij.2023.100387
https://doi.org/10.1016/j.icte.2021.08.001
https://doi.org/10.1016/j.icte.2021.08.001
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1016/j.jksuci.2020.11.002
https://doi.org/10.1016/j.jksuci.2020.11.002
https://doi.org/10.1186/s13677-023-00401-1
https://doi.org/10.1504/IJBIC.2019.101638
https://doi.org/10.1504/IJBIC.2019.101638

swarm optimization and fuzzy theory. Comput. Ind. Eng.. Ind.

Eng. 130, 597–633 (2019). https://doi.org/10.1016/j.cie.2019.03.

006

26. Mangalampalli, S., Swain, S.K., Karri, G.R., Mishra, S.: SLA

aware task-scheduling algorithm in cloud computing using whale

optimization algorithm. Sci. Program. 2023, 8830895 (2023).

https://doi.org/10.1155/2023/8830895

27. Fu, X., Sun, Y., Wang, H., Li, H.: Task scheduling of cloud

computing based on hybrid particle swarm algorithm and genetic

algorithm. Clust. Comput.. Comput. 26(5), 2479–2488 (2023)

28. Zade, B.M.H., Mansouri, N.: Improved red fox optimizer with

fuzzy theory and game theory for task scheduling in cloud

environment. J. Comput. Sci.Comput. Sci. 63, 101805 (2022)

29. Manikandan, N., Gobalakrishnan, N., Pradeep, K.: Bee opti-

mization based random double adaptive whale optimization

model for task scheduling in cloud computing environment.

Comput. Commun.. Commun. 187, 35–44 (2022)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Nitin Thapliyal has been a dedi-

cated professional in the field of

Computer Science and Engi-

neering. With a Master’s degree

(M.Tech.) in CSE and a Ph.D. in

pursuit, he had brought a rich

educational background to the

table. Over the span of 14 years,

he had immersed himself in

various aspects of the tech

world, gaining extensive expe-

rience that had honed his skills

and knowledge. His passion had

lain at the intersection of cut-

ting-edge technologies, and his

research areas had reflected this enthusiasm. His specialization and

area of interest includes in Data analytics, cloud Computing, Machine

Learning, Databases, and Linux systems. These domains had not only

captivated his academic pursuits but had also driven his practical

endeavours. He Has published more than 15 research papers/articles

and presented in national conferences. As he had continued to explore

the realms of academia, industry, and innovation, he had been excited

to see how his experiences and expertise would further evolve. His

goal had been to remain at the forefront of technological advance-

ments, leveraging his skills to make meaningful contributions that had

positively impacted the digital world.

Priti Dimri is a Professor

(Department of Computer Sci-

ence and Applications) at

GBPEC ghurdwari uttarakhand.

Her professional qualification

includes Ph.D. M.C.A.,

P.G.D.C.A., M.B.A. (Finance),

ITIL V3.0 Foundation. She has

total of more than 17 Years in

Industry, Research, Teaching &

Training and is working in

green computing, DBMS, cloud

computing area.

7636 Cluster Computing (2024) 27:7621–7636

123

https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1155/2023/8830895

	Task scheduling using fuzzy logic with best-fit-decreasing for cloud computing environment
	Abstract
	Introduction
	Related work
	FL--BFD method
	System model
	Incorporation of dependencies among tasks
	Incorporation of dependencies among VMs

	FL with BFD for task scheduling
	Fuzzy logic formulation for objective function
	Fuzzy logic rules

	BFD-based scheduling

	Results and discussion
	Performance evaluation
	Comparative analysis

	Conclusion
	Author contributions
	Data availability
	References

