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Abstract
Network functions virtualization (NFV) is a technology that virtualizes network functions into virtual network functions

(VNF) to deliver communication services. Efficient and flexible VNF scheduling is an important way to improve network

resource utilization, reduce costs, and provide better service quality. With the development of artificial intelligence,

network equipment is no longer just a forwarding node, but also a computing node. Therefore, energy consumption will

become an important indicator that needs to be considered in the VNF scheduling problem. In this paper, we aim to realize

VNF scheduling with minimizes idle energy loss (IEL) of NFV nodes and the makespan (i.e., overall completion time) for

all services. The problem can be formulated as a Mixed Integer Linear Program (MILP), and the complexity of the problem

grows exponentially as the size of the network scale increases. To solve this problem efficiently and flexibly, we treat

MILP as a Markov Decision Process (MDP) and design an reinforcement learning (RL) algorithm to solve the MDP

problem. Specifically, the algorithm utilizes a hierarchical reward enhancement (HRE) mechanism, called RL-HRE. In

addition, a weighted reward function is carefully designed in the proposed algorithm to achieve flexible energy-delay-

aware VNF scheduling. The simulation results show that RL-HRE is superior to other comparative algorithms in terms of

solution accuracy and time complexity.
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1 Introduction

As key enabling technologies of future networks, software

defined networking (SDN) and network function virtual-

ization (NFV), two complementary technologies, have

inherent advantages in flexibility and cost reduction com-

pared with traditional network service technologies [1, 2].

SDN decouples the network into a control plane and a data

plane, allowing network control to achieve programma-

bility and underlying infrastructure to be abstracted from

network services. NFV abstracts network functions (such

as network address translation, firewall, etc.) that originally

needed to be implemented using dedicated hardware

devices, these network functions can be implemented

through virtualization technology, such as virtual machi-

nes, containers, and Commercial Off-The-Shelf (COTS)

servers, etc. These software-based network functions called

virtual network functions (VNF) are orchestrated and

linked together to form service function chains (SFC) to

support network services requirements. Different SFCs

composed of different numbers and different sequences of

VNFs are used to support different network service

requirements. This software-based implementation of net-

work functions brings many benefits, which we foresee

include: fast network equipment migration management,

greatly reducing equipment costs, and achieving high uti-

lization and low energy consumption of physical resources

through aggregation. With the explosive growth of network

service demand and network service flexibility require-

ments, integrating these two technologies into future net-

works can significantly reduce network resource costs and

improve network flexibility.
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How to rationally allocate physical resources in the

underlying network to realize the embedding of multiple

SFC to achieve efficient and agile network services is

called NFV resource allocation (NFV-RA), it includes

VNF composition, VNF embedding (i.e., the process of

embedding multiple VNFs and links on NFV infrastruc-

ture) and VNF scheduling embedded on NFV nodes [3].

NFV-RA necessitates efficient algorithms to determine

VNF chain composition, mapping VNFs and links into

appropriate location, and optimize VNF schedule tasks.

Otherwise, it will cause many problems such as low uti-

lization of physical resources and inability to efficiently

meet customer service needs. These three parts are

sequential processes. First, it is necessary to determine

VNFs chain composition, then embed VNFs chain into the

underlying network infrastructure, including NFV nodes

and links, and finally determine the scheduling sequence of

packet processing by the underlying VNFs located on NFV

nodes. The scheduling framework depicted in Fig. 1 of

Sect. 3 provides a concise overview of this process. For the

first two parts, researchers have explored many mathe-

matical models aiming at different optimization objectives

or considering various related factors. Under the premise of

VNF embedding, how to efficiently and flexibly schedule

all embedded VNFs to ensure network service support is an

important challenge of NFV-RA. The existing studies have

shown that the classic VNF scheduling problem can be

regarded as a job shop scheduling problem (JSP) [4, 5],

which is an NP-hard combinatorial optimization problem

[6]. The job shop problem is a well-known issue in the

fields of computer science and operation research and has

to find time slots for a series of activities according to

different objectives under given constraints, such as

precedence constraints between activities, resource con-

straints, etc [7]. Makespan is the most classic objective of

this problem, which refers to the duration from project

initiation to completion. Hence, the VNF scheduling

problem has a resemblance to it about delay issue, its

objective is to schedule all VNFs embedded on NFV nodes

to minimize makespan (i.e., the time period from the

execution of the first VNFs flow packet to the completion

of the last VNFs flow packet among all the scheduled

VNFs for all the network services). The advancement of

artificial intelligence technology has brought about signif-

icant transformations in the virtualization technology of

network equipment, which serves as a provider of network

services for artificial intelligence computing power. Net-

work equipment is no longer solely responsible for infor-

mation transmission; it now actively participates in

artificial intelligence computing tasks [8]. Consequently,

energy consumption has emerged as a crucial metric to

gauge network performance during the establishment of

bearer networks following network function virtualization.

However, considering that little research has been con-

ducted on VNF scheduling and existing research on VNF

scheduling has primarily focused on delay issues while

neglecting the energy consumption due to the operational

characteristics of NFV nodes in real-world scenarios.

Therefore, it is imperative to incorporate energy loss fac-

tors that reflect the actual operating conditions of NFV

nodes into the VNF scheduling process. To obtain its

approximate solution, a large number of heuristics

Fig. 1 An SDN/NFV-enabled

VNFs scheduling framework
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algorithm (e.g., greedy algorithm) and meta-heuristic

algorithm (e.g., genetic algorithm (GA)) have been devel-

oped [9–12], but these methods usually have many disad-

vantages, such as the highly dependent characteristic of the

solution performance and the low convergence speed.

Reinforcement learning is a promising approach to

solving combinatorial optimization problems in terms of

guaranteed accuracy with lower computational complexity

[13]. At the same time, the VNF scheduling process aims to

determine the precise timing for initiating data packet

processing by a series of VNFs deployed on each NFV

node, while ensuring compliance with relevant constraints.

It can be perceived as a sequential decision-making pro-

cedure, where decisions are made at each moment (i.e.,

determine the required VNF responsible for packet pro-

cessing at the beginning of each time slot) until all VNF

decision-making tasks are completed. By progressively

determining decisions at each step, an overall scheduling

plan is ultimately established. This sequential decision-

making process aligns with dynamic programming princi-

ples (breaking down decisions into a sequence of steps over

time to simplify them), and MDP modeling is frequently

employed in solving dynamic programming problems,

hence, the VNF scheduling process can be regarded as a

MDP. Therefore, we use the RL algorithm to learn the best

scheduling strategy through continuous exploration, which

leads to significant time benefits in schedule decisions

while ensuring good precision.

The contribution of this paper is three-fold. First, in

view of the fact that previous research generally did not

consider the energy consumption issue in the VNF

scheduling process and the network nodes bear the com-

puting background, we introduce the MILP model based on

existing research, which aims to minimize the weighted

sum of idle energy consumption and scheduling delay.

Second, we improved previous research with a new state

representation method and reward update mechanism (i.e.

hierarchical reward enhancement) for Q-learning and the

proposed algorithm is called RL-HRE. Third, a weighted

reward function is designed in the proposed algorithm to

implement delay-energy flexible scheduling. In addition,

we compared the convergence performance of the RL-HRE

and the original algorithm [14] (called RL-Primitive), and

conducted multiple experiments to verify that the proposed

reward function effectively implemented flexible energy-

delay-aware scheduling. Finally, the performance of rele-

vant indicators is compared between RL-HRE and some

comparative algorithms under scheduling instances of dif-

ferent sizes. The simulation results show the superiority of

the proposed algorithm in general.

The rest of the article is organized as follows. Section 2

discusses related studies. Section 3 introduces in detail the

VNF scheduling process under the SDN/NFV network

architecture, the VNF scheduling energy loss model we

introduce, and the proposed MILP model. Section 4

describes the details of the proposed RL-HRE scheme.

Section 5 reports the simulations and results. Lastly, Sect.

6 concludes the article.

2 Related work

Compared to the extensive research on the VNF embed-

ding problem, the VNF scheduling problem is still in its

infancy. For the first time, Riera et al. [4] proposed a for-

mal model of the VNF complex scheduling problem,

dividing the problem into two phases: the server allocates

the corresponding VNFs and then resolves the resulting

JSP. Mijumbi et al. [15] proposed four simple algorithms

for the VNF scheduling problem as the basis for future

research in this field, these algorithms are evaluated on six

indicators but energy consumption considerations are

ignored. Qu et al. [10] formulated the VNF scheduling

traffic steering problem as MILP, the goal is to minimize

the running time of all VNFs scheduling under the premise

of meeting strict service delay requirements and developed

a genetic algorithm to solve this problem. Pham et al. [12]

formulate joint operational (consumption cost and active

power cost) and network traffic (joint traffic rate require-

ments and hop distance) problem based on VNFs place-

ment constraints and cost models, using sampling-based

markov approximation and the matching method to solve

it. The gap between the solution obtained by this frame-

work and the optimal solution is close. Promwongsa et al.

[16] formulated the joint VNF placement and scheduling

problem for delay-sensitive network services as ILP and

proposed two efficient heuristic algorithms and an algo-

rithm based on tabu search to solve it. Li et al. [14] con-

sider the delay requirements of each service in the VNF

scheduling process, proposed its MILP model and devel-

oped a reinforcement learning algorithm with a variable

action set, which outperformed other benchmark algo-

rithms in terms of performance and computational effi-

ciency. An algorithm [17] is proposed to maximize the

number of accepted chains by balancing edge and cloud

resource utilization. It focuses VNF placement strategy

aimed at minimizing energy loss on the physical substrate.

Most VNF scheduling research focuses on scheduling

delay [10, 14–17], and energy-saving scheduling research

still needs to be explored. In addition, these studies

[12, 17, 18] all consider the issue of energy loss, but they

focus on the energy consumption issue about the VNF

embedding process. These studies usually establish models

from the spatial perspective of energy consumption, such

as evaluating energy usage based on the resource utiliza-

tion of physical equipment and using the characteristics of
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physical equipment (embedded device computing units or

high-performance servers) as criteria for assessing energy

consumption. However, modeling from a temporal per-

spective in the energy consumption model can better

evaluate the economic efficiency of the solution over a

specific period of time. The VNF scheduling process fol-

lows the time slot operation characteristics of the device

(i.e., its power consumption changes according to different

time slots), and in the context of network nodes partici-

pating in artificial intelligence computing, so it is necessary

to conduct energy consumption modeling from scheduling

perspective.

In view of the existing research on energy-aware

scheduling of JSP [19, 20] and the operating characteristics

of NFV nodes [21], we introduce idle energy loss (IEL) to

simulate the NFV node scheduling energy consumption in

the scheduling process, this study focuses on energy-saving

factors and tries to enrich the research in this field.

3 System architecture and problem
modeling

To illustrate the VNF scheduling process, a VNF

scheduling network architecture under the background of

SDN/NFV is proposed by Li et al. [14]. As shown in Fig. 1,

the control plane is separated from the data plane, where

the NFV infrastructure on the data plane arranges the VNFs

belonging to different SFC embedded on the NFV nodes

through the scheduling decision information from the

control plane, and configures the relevant routing infor-

mation to realize the traffic processing of different network

service packages need. The VNF scheduler located on the

control plane simultaneously schedules multiple Service

Requests (SR) in the same batch at the beginning of each

scheduling cycle, and each batch SR needs to be supported

by multiple SFC composed of different orders and different

numbers of VNFs to meet various network service

requirements. Notice that the consideration of bandwidth

and resource requirements is unnecessary for scheduling

problem, with the sole focus being on the processing

sequence of VNFs. After the VNF control plane receives

the SFC request and forms the VNF chains, the corre-

sponding VNF is embedded into the NFV nodes(i.e. the

orange device in Fig. 1) located in the data plane. Then the

VNF scheduler module located in control plane solves the

VNF scheduling scheme, that is, determines the time for

VNFs located on the NFV nodes to perform packet pro-

cessing. As shown in Fig. 1, three SFC requests form three

VNF chain, all the required VNF is embedded in the four

NFV nodes (note that the embedding process is not the

focus of this paper), and then the scheduling scheme at the

bottom right is determined where t1 in the figure is the

makespan of this scheduling scheme. At the beginning of a

time slot of each scheduling cycle, the status information of

the NFV nodes is collected by the VNF scheduler module

through the open southbound interface, and the collected

status information is used by the VNF scheduler to make

the desired VNF schedule decisions to the data plane. This

operation is repeated until the end of the entire scheduling

cycle to complete the construction of all SFC to meet

network service traffic processing requirements. If the

batch of SR in the next scheduling cycle remain unchan-

ged, then the scheduling decision made by the VNF

scheduler in the previous scheduling cycle can be reused. If

the SR (e.g., the length of the required SFC, the precedence

relations of the VNFs, etc.) changes, then the VNF

scheduler needs to recalculate to obtain the optimal

scheduling scheme.

3.1 Energy-efficient scheduling

In the process of network technology trends in the future,

people will pay more and more attention to energy-saving

networks. Energy-saving JSP research is divided into three

categories based on saving methods [22]: 1. Reduce energy

consumption during machine operation; 2. Reduce idle

time during machine operation; 3. Reduce unnecessary

settings or startups during machine operation. In this paper,

we use the second energy-saving approach to formulate the

energy consumption problem of VNF scheduling. For the

convenience of modeling, we assume that all NFV nodes

meet certain energy-saving specifications (i.e., the NFV

nodes automatically shut down after processing the data

packets that need to be processed within a scheduling

cycle), then the idle time of NFV nodes in a scheduling

cycle is the time when the VNFs on it are not executing

(i.e. no packet processing is performed or perform com-

puting tasks). Figure 2 shows two scheduling schemes

(a)(b) with the same makespan (if t1 = t2), according to the

above energy-saving specification, if the energy con-

sumption each time slot of VNFs on two NFV nodes is the

Fig. 2 Energy-efficient scheduling model explanation
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same, the arrows indicate IEL on the NFV nodes, and it is

obvious that the IEL of (a) scheme is larger. When a large

number of packets with the same SFC requirements need to

be processed, this scheduling execution scheme will peri-

odically affect the device power consumption in accor-

dance with the clock frequency within the device. As

shown in Fig. 2c, this is a schematic diagram of using

scheduling plan (a) and requiring two scheduling cycles for

packet processing, Where total IEL for processing these

packets is two times IEL of (a), IEL increases multiple

times with the scheduling period required for packet pro-

cessing, and the energy economy of the lower IEL

scheduling scheme will be more prominent. Therefore, for

a lower IEL, we need to make the energy consumption of a

scheduling cycle scheme as low as possible.

3.2 MILP model

In this section, we add the above energy-saving scheduling

model to energy-delay-aware MILP modeling, the IEL of

the scheduling scheme is designed as an equality constraint

and the other constraints refer to existing literature [23]. In

addition, the scheduling solution goal is changed from

minimizing the makespan only to minimizing the weighted

sum of IEL and makespan. Each NFV node supports

embedding multiple VNFs, but the computing resources of

each NFV node can only be utilized by one VNF for packet

batch processing at a time [1, 3, 10], where the makespan

of the VNF scheduling problem is defined as the duration

of scheduling all embedded VNFs to process all single

packets of the same batch of SR once. Similarly, according

to the above energy-saving model, the IEL of a VNF

scheduling cycle is the sum of the idle time energy con-

sumption of all NFV nodes processing all the same batch of

SR single data packets once. We aim to determine the

optimal scheduling order, i.e., the time at which all

embedded VNFs on each NFV node start supporting exe-

cution packet processing, each VNF scheduling cycle is

repeated to reduce the total packet processing delay and the

idle energy consumption of NFV nodes by following the

optimal scheduling order.

We explain the scheduling process in discrete time, each

scheduling period is divided into T time slots of equal

length [11], VNF scheduling decisions are made at each

time slot, when the binary decision variable xtij ¼ 1, it

means that the data packets that need to be processed by a

certain VNFs in the network service start to be processed at

time slot t, Otherwise xtij ¼ 0. Different from only con-

sidering the makespan scheduling decision, we additionally

introduce an continuous variable ti to be used for the cal-

culation of IEL, which indicates the end time of the last

packet processing on the NFV node ni within a scheduling

period.

The important mathematical symbols and decision

variables are shown in Table 1 and the discrete time MILP

formulation of the energy-delay-aware VNF scheduling

problem is presented as follows:

Objective

min
xtij

C M;Eð Þ ð1Þ

where

E ¼
XNj j

i¼1

ti � di½ � � ei ð2Þ

C M;Eð Þ ¼ rM þ 1� rð ÞE ð3Þ

Constraints

XT

t¼0

xtij ¼ 1; 8j 2 S; 8i 2 Nj ð4Þ

xtij � ðt þ pjiÞ� ti; 8i 2 N; 8j 2 S; 8t 2 T ð5Þ

XT

t¼0

t þ pji
� �

� xtij �M; 8j 2 S; 8i 2 N ð6Þ

X

j2S

X

t
0 2Tt

ij

xt
0

ij � 1; 8t 2 T ; 8i 2 N;where

Tt
ij ¼ ft � pji þ 1; . . .; tg

ð7Þ

XT

t¼0

t þ pj;r j
h�1

� �
� xt

r j
h�1

;j
�

XT

t¼0

t � xt
r j
h
;j
; 8j 2 S; 8h

2 f1; 2; . . .; LSj � 1g ð8Þ

We combine the two objective of IEL and delay in the

objective function, as shown in (3). The parameter r can be

adjusted to achieve any desired energy/delay tradeoff, a

smaller r will allow the model stresses energy loss mini-

mization, while a larger r emphasizes more delay opti-

mization. Where (2) guarantees that the total IEL in a

scheduling period is the sum of the IEL of all NFV nodes;

Constraint (4) ensures that the traffic data packets of each

SR are only processed once by the VNFs regard to specific

NFV nodes in a scheduling period; Constraint (5) indicates

the end time of the NFV node processing the data packet

within a scheduling cycle; Constraint (6) indicates make-

span to be the maximum value of the time for the last

packet to finish processing on all NFV nodes; Constraint

(7) indicates that each NFV node can only perform packet

processing by one VNFs at a time; Constraint (8) indicates

that the traffic processing of each SR must be performed in

a specific order of the SFC, that is the VNFs priority

constraint; scheduling objective (1) is to minimize the
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weighted sum of delay and IEL under the premise of sat-

isfying the above-mentioned related VNFs execution

constraints.

4 VNF scheduling scheme based on Q-
learning

A Markov decision process is a five-tuple, ðS;A;Pa;Ra; cÞ,
where S is the state set, A is the action set, Pa is the tran-

sition probability to the next state after taking an action in

specific state, Ra is the immediate reward after taking the

action, c is the discount factor ( 0� c� 1, and usually close

to 1). Reformulate the discrete time model of VNF

scheduling in the previous section as an MDP problem, we

aim to use RL to solve this problem. For the VNF

scheduling problem, the first focus is on the state and the

specific action in the state, and there must be a unique

correspondence between the state and the action, followed

by the state transition mechanism, and finally the reward

feedback mechanism of the learning system. According to

literature [14], we design a new state representation and

state transition rules. In addition, we also introduce a

hierarchical reward enhancement mechanism and a new

weighted reward function. The following is a detailed

introduction of the algorithm.

4.1 System state and transition rules

The system state is perceived at the beginning of each time

slot t 2 ½0; T�, which is defined as sðtÞ ¼ ½MðtÞ;FðtÞ�.
MðtÞ ¼ ½m1ðtÞ;m2ðtÞ; . . .;mjNjðtÞ� indicates the state of the

NFV node, FðtÞ ¼ ½f1j; f2j; . . .; fjSjj� indicates the next VNFs
of each SFC waiting to process packets, j indicates the jth

VNFs of the SFC to which it belongs. We number each

VNF according to the total length of all SFCs and the

length of the SFC to which the VNFs belongs. Further-

more, if we use L to indicate the total number of VNFs

owned by all SFCs. Then there is a one-to-one mapping

between fij; i 2 S and the set of integers 0; 1; . . .; L, then

you can use fl; l 2 0; 1; . . .; L to represent each fij; i 2 S. The

system state is updated at the beginning of each time slot

t 2 ½0; T � until it reaches the last state of a scheduling cycle.
At each time slot t, mkðtÞ; k 2 N is defined as follows:

mkðtÞ ¼
0; if nk is not processing packets

1; if nk is processing packets

�
ð9Þ

System transitions include state of NFV nodes M(t) and

waiting VNFs F(t). The state transition rules of M(t) are as

follows:

Table 1 Summary of important

notations and decision variables
Notation Description

S Set of network services: 1; 2; . . .; Sj jf g
Sj jth network service

T A big enough number

LSj The VNFs number of Sj

M Makespan

N Set of NFV nodes: 1; 2; . . .; Nj jf g
Nj Set of NFV nodes selected by VNFs of the j th network service

nk kth NFV node

fij jth VNF of Si

pji Packet batch processing time of Sj at ni

rjh NFV node index selected by the h th VNF of the network service Sj

E Continuous variable indicating IEL of all NFV nodes in a VNF scheduling period

di The total processing delay for ni to process packets within a VNF scheduling period

ei Energy consumption per unit time slot of ni

ti Continuous variable indicating the completion time of last packet on ni

Notation decision

variable

Description

xtij Binary decision variable indicating whether or not Sj starts being processed at the t

th time slot on ni
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mkðt þ 1Þ ¼
0; if akðtÞ ¼ 0;mkðtÞ ¼ 1; hkðtÞ ¼ 1

1; if akðtÞ 6¼ 0;mkðtÞ ¼ 0; hkðtÞ[ 1

mkðtÞ; otherwise

8
<

:

ð10Þ

where akðtÞ refers to the VNFs selected to perform packet

processing at the beginning of time slot t by nk, the pro-

cessing of VNFs is skipped if akðtÞ equals /f g, node

remains idle for a slot of time. Otherwise, the processing of

a certain VNF is required. hkðtÞ indicates the remaining

packet process time on NFV node nk at time t.

The state transition rules of F(t) are as follows:

Fiðt þ 1Þ ¼
FiðtÞ þ 1; if sSi

!tail
ðtÞ ¼ 1

�1; if sSi
tail
ðtÞ ¼ 1

FiðtÞ; otherwise

8
<

: ð11Þ

where Si!tail is a marker representing the non-last VNFs of

Si, while sSi
!tail
ðtÞ denotes the remaining packet batch pro-

cessing time for the VNFs at time slot t, similar to Sitail and

sSi
tail
ðtÞ. Equation (11) indicates that if a certain non-last

VNFs for SFC perform packet processing, then use the next

VNFs waiting to process data packets of the SFC to which

the VNFs belong to update state; if the last VNFs data

packet of a certain SFC is processed, then use �1 to

update.

In the initial state, all NFV nodes are idle, no VNFs

perform operations, and all VNFs embedded on NFV nodes

waiting to perform packet processing. Use sini and ster to

represent the initial state and termination state of a VNF

scheduling cycle respectively, according to the system state

and transition rules, we have sini ¼ ð0; . . .; 0; 0; . . .;L�
LS Sj j Þ and ster ¼ ð0; . . .; 0;�1; . . .;�1Þ.

4.2 Action set and reward function

At the beginning of each time slot in each scheduling cycle,

the scheduler executes actions consisting of the next VNFs

waiting to perform data processing on each NFV node.

Denote the action taken by the VNF scheduler at t slot time

with A(t), then AðtÞ ¼ ð3; 5; 6; 8Þ indicated f3; f5; f6; f8 on

N1;N2;N3;N4 will perform packet processing, respectively.

We denote the state at time slot t by s(t), the cartesian

product AðstÞ ¼ A1ðstÞ � A2ðstÞ � � � � � AjNjðstÞ in the

algorithm to represent the feasible actions in each state,

where AkðstÞ denotes the index of VNFs that can perform

packet processing of the NFV node Nk in state s(t). The

number of feasible action sets for each state is not the

same, sometimes there is more than one action, and

sometimes there is only one feasible action. In addition, if a

node in a certain state has no VNFs capable of performing

packet processing, then AkðstÞ ¼ /f g, this has the same

meaning as the akðtÞ we mentioned in the previous

subsection.

The set of possible actions in each of the above states

depends only on the state, regardless of other factors, that

is,there is a one-to-one mapping relationship between s(t)

and AðstÞ, and the feasible action set can be known through

s(t). The algorithm for finding feasible action sets in each

state in our experiment is similar to that in literature [14],

only the algorithm is adjusted according to the newly

designed system state and state transition rules.

The objective of this paper is to implement VNF

scheduling that is aware of energy consumption and delay,

both delay and energy consumption are relative to a

scheduling cycle and these two indicators can only be

obtained after a scheduling cycle. Therefore, it is different

from the instant reward in the training process of the classic

RL algorithm(i.e. get a reward feedback immediately after

taking an action). We use the cumulative reward method to

measure the merits of a series of actions taken, according to

the obtained makespan and IEL after a whole scheduling

period, the cumulative reward is calculated using the for-

mula (12).

Rðst;AtÞ ¼ xct=M þ ð1� xÞce=E; 8ðst;AtÞ 2 X ð12Þ

Where M and E are the makespan and IEL obtained from a

round of learning and training respectively. The smaller M

or the smaller E, the greater the reward. X contains state-

action pairs with the number of actions � 2 in all feasible

action sets during the current episode of exploration. ct and

ce are the weight coefficients for adjusting the rewards for

minimizing makespan and minimizing IEL. x is used to

solve the scheduling scheme for different goals, only need

to minimize makespan or minimize IEL, then set it to 1 or

0 respectively, when we use both makespan and IEL as

scheduling goals, it needs to be a number between 0 and 1.
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Algorithm 1 Q-learning algorithm using hierarchical reward enhancement

4.3 RL-HRE algorithm

The RL-HRE algorithm is designed based on the Q-

learning algorithm, which can learn the desired VNF

scheduling strategy through continuous interaction with the

system environment [24, 25]. Since the feasible action of

each system state are obtained from the various action set

using the ��greedy algorithm [26], and different actions

often make the span of time slots between two Q value

update states different in the RL-HRE learning process,

therefore use the following formula 13 to update the Q

value in the Q-table.

Qðst;AtÞ ¼ ð1� aÞQðst;AtÞ þ a½Rðst;AtÞþ

cmaxQðstþDt;AtþDtÞ�
ð13Þ

where Qðst;AtÞ indicates the Q value taken under the state

st in the Q-table, which can be regarded as the probability

of taking in the state, and the larger the Q value, the greater

the probability that the scheduling decision will choose this

action. a is the learning rate, c is the discounter factor, both
are the numbers between 0 and 1, a control the Q value

update step size, a is the closer to 0, the more the Q value

changes during the update process; c quantifies how much

importance we give for future rewards, c is closer to 0, the

learning agent will consider future rewards with greater

weight. Dt reflects the unequal length of time slots between

states when updating the Q value caused by executing

different actions. Assuming that after enough episodes of
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training of the algorithm, the Q table converges to the

optimum, denoted by Q�, we use the � greedy algorithm to

make the best VNF scheduling strategy according to Q�, as
shown in the formula 14.

p� ¼ argmaxQ�ðst;AtÞ ð14Þ

The main pseudocode of RL-HRE is shown in Algo-

rithm 1, where n and nmax represent episode counter and

the maximum number of training episodes, line 7 contains

the algorithm to find the feasible action set in a specific

state and select the action through the Q table according to

the greedy algorithm; lines 8–10 indicate that in the n

episode of training, all corresponding state and action pairs

that conform to the Cartesian product feasible action set

with the number of actions greater than or equal to two

need to be added to Xn, if the number of actions equals to

one is added to the Xn, unnecessary updates will be per-

formed when the Q value is updated after an episode of

action exploration. When a cycle ends, we calculate the

cumulative rewards obtained from a series of scheduling

decisions taken in this episode according to line 25 and add

the cumulative reward to a cumulative reward list. During

the Q-table update process, if the cumulative reward is

found to be greater than or equal to the maximum value in

the cumulative reward list so far, update the cumulative

reward used for this episode of Q value update through line

28, where b is a constant with an initial value of one, bstep is

the step size of each increment, and the constvalue is a

constant used to control the upper bound of the reward.

This is the introduced hierarchical reward enhancement

mechanism, during the entire training process, whenever a

better scheduling scheme is encountered, the cumulative

reward for the Q value update will be updated to a larger

and larger one with an upper bound value. The overall

framework of the algorithm is shown in Fig. 3, the

cumulative reward obtained after an episode of training

will through one of two operations(i.e. formula 12

scheduling plan reward calculation and HRE) before being

used to update the Q value, and finally the cumulative

reward is used to update the Q value.

5 Simulation and performance evaluation

In the VNF scheduling simulation experiment, VNFs are

randomly embedded on NFV nodes, the number of VNFs

requested by each network service is set as a random

integer between 2 and 5, and the packet batch processing

time of a VNFs is set as an integer between 1 and 5, energy

consumption per unit time of NFV nodes is set as an

integer between 1 and 10. Instances of VNF scheduling

problems under different network scales (the number of SR

and the number of NFV nodes are different) are pre-defined

and remain unchanged during the algorithm training pro-

cess. The problem instances are obtained by random

sampling according to the above parameter settings. For the

MILP formula, we use the Gurobi optimization solver to

find the optimal solution, and use Python to model and

simulate the scheduling algorithm. All experiments are

performed on an Intel i5-7200U CPU@2.5GHz.

5.1 Convergence comparison of RL-HRE and RL-
Primitive

Under the medium-scale scheduling network instance

(N ¼ 8; S ¼ 10), we compare the convergence of RL-HRE

and RL-Primitive. In order to optimize for different pur-

poses in RL-Primitive, we use the weighted reward func-

tion proposed in this paper. The two algorithms obtained

experimental results under the best performance by

adjusting the experimental parameters. The ct and ce in the

reward function are set to 600 and 1400, a and � are decay

numbers (decaying from 1.0 to 0.01 with a decay rate of

0.998 and from 0.8 to 0.1 with a decay rate 0.995), bstep and

constvalue are set to 2 and 6 respectively. As shown in

Fig. 4, both algorithms showed convergence after about

1000 training epochs. For the goal of minimizing time

delay only is denoted by M, the convergence curves of the

two algorithms are almost the same, and for both energy-

delay minimization or energy minimization only, the per-

formance of our proposed RL-HRE is better than that of

RL-Primitive. Through solve optimal solution by Gurobi

solver, we also found that RL-HRE almost converged to

the optimal solution, while RL-Primitive fell into a local

optimum, this is because different cumulative rewards

resulting from different solutions about energy minimiza-

tion problems are more, the optimality of the solution is

measured by the cumulative reward. Due to the �-greedy

algorithm, the algorithm has the same probability of

obtaining different solutions in the early stage of training,

which can easily lead to more suboptimal solutions than the

optimal solution encountered before convergence during

the algorithm exploration process. Without HRE, the

reward feedback mechanism continuously enhances the Q

value of the suboptimal solution, eventually causing the

algorithm to fall into a local optimal solution. The intro-

duction of HRE differentiates the optimal solution Q value

and suboptimal solution Q value strengthening mechanism

(i.e., the optimal solution that the agent encounters for the

first time during exploration may receive a greater reward

than the sum of the rewards obtained by encountering

multiple sub-best solutions.). The convergence curve

shows that the performance of our proposed algorithm is

better than RL-Primitive.
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Fig. 3 Reinforcement learning

framework using HRE

Fig. 4 Convergence of the RL-

HRE compare to RL-Primitive

7666 Cluster Computing (2024) 27:7657–7671

123



5.2 Energy delay controllable VNF scheduling

In this section, we verify the flexible energy-delay-aware

scheduling of RL-HRE on a medium-scale scheduling

network instance (N ¼ 8; S ¼ 10). We consider three net-

work scenarios in real scenario: 1. Some NFV nodes (i.e.

network devices) are old relatively, the energy consump-

tion per unit time slot is relatively high, and the delay

requirements of customers may not be so strict, then in

order to minimize the energy loss as the goal and ignore the

devices delay, the w value of the weighted reward function

is set to 0; 2. network services have high requirements on

latency regardless of the energy consumption of network

devices; 3. not only does the latency have low require-

ments, but also the energy consumption of the device also

needs to be as low as possible, similar to the first scenario,

we set w to 1 and 0.5 for the latter two scenarios respec-

tively. The rest of the parameters of the algorithm are set as

the optimal parameters, run the RL-HRE algorithm 20

times for each scenario, and average the resulting

scheduling delay and IEL every 4 times.

The above VNF scheduling results are shown in Fig. 5.

The x-axis is the ratio of the average delay of the

scheduling scheme obtained by the RL-HRE algorithm to

the optimal delay of the optimal scheduling scheme ob-

tained by Gurobi, the y-axis is the ratio of average IEL to

optimal IEL and three different signs represent different

scenarios. From the figure we can see that the average

delay of the scheduling scheme obtained for the purpose of

minimizing the delay is close to the optimal value as for

makespan index, but the IEL index is far from the optimal

value; the average IEL of the scheduling scheme with the

goal of minimizing IEL is close to the optimal value as for

IEL index, but the delay index is worse than the result of

previous scenario; Compared with the previous two sce-

narios, the two indicators in the w ¼ 0:5 scenario have

more balanced performance.

The detail of the two specific VNF scheduling schemes

in the two scenarios obtained in the above experiment are

shown in Fig. 6, the same color block indicates VNFs

belonging to the same network service, indicated by fij in

the upper left corner of the color block. The scheduling

scheme (a) is obtained in the experimental scenario of w ¼
1 and the scheduling scheme (b) is obtained in the w ¼ 0:5

scenario. According to the optimal scheduling scheme ob-

tained by using Gurobi, it can be seen that the delay of

(a) reaches the optimal value but the IEL does not, and the

delay and IEL of (b) both reach the optimal value. This

demonstrates that our algorithm achieves a flexible energy-

delay-aware VNF scheduling scheme solution through a

weighted reward function.

5.3 Comparison with related algorithms

To verify the good solution accuracy and low computa-

tional complexity of RL-HRE, we compare the average

reward and running time of RL-HRE for solving the VNF

scheduling problem of minimizing IEL and delay with

some other methods. For the calculation of the average

reward, all methods are calculated using the same weighted

reward function 12 proposed in this paper, which can

Fig. 5 Energy-delay

controllable scheduling using

the RL-HRE
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effectively evaluate the performance of scheduling

scheme delay and IEL index.

The comparison of the results of the average reward and

average running time of each algorithm is shown in Fig. 7,

Genetic algorithm (GA) [9, 27] is a classic meta-heuristic

algorithm for JSP solving, Greedy fast processing (GFP)

always chooses the VNF with the shortest processing time

each time. (a) shows the running results of medium-scale

scheduling network instances. The running time of RL-

Primitive and RL-HRE is almost three times faster than

MILP, but in terms of solution accuracy, the RL-HRE we

mentioned is closer to the optimal value than RL-Primitive.

Although the solution accuracy of the GA algorithm is

comparable to that of RL-Primitive, its running time is

even worse than that of MILP. The running time of random

scheduling and GFP is almost negligible, but the average

reward of the solution they compute is much smaller than

the optimal value. Similar to (a), (b) is the running results

of a large-scale scheduling network

instance(N ¼ 10; S ¼ 15), as the network size increases,

the running time of MILP and GA increases a lot. The

running time of RL-HRE is almost 4 times smaller than

that of MILP, but its solution accuracy is still close to the

optimal value, and it is better than RL-Primitive, this is

because, in the process of updating the Q value of the RL-

HRE algorithm, the case that the Cartesian product has

only one feasible action is omitted, thereby reducing the

computational complexity, which is more obvious in large-

scale scheduling network instances.

6 Conclusions and future work

This paper considers the energy loss of NFV nodes in the

VNF scheduling process under the SDN/NFV network

architecture, and proposes a MILP model with the goal of

minimizing delay and idle energy loss, a new Q-learning

algorithm called RL-HRE using a hierarchical reward

enhancement mechanism is designed to solve this problem,

that can better realize the situation where the agent falls

into the local optimal solution due to randomness in the

early exploration stage while ensuring stability, and flexi-

ble energy-delay-aware VNF scheduling is realized

through a weighted reward function. Finally, the simulation

results show that RL-HRE has a better solution accuracy

than RL-Primitive in solving the energy-minimizing

objective scheduling scheme, and is superior to other

Fig. 6 Energy-delay-aware

verification of RL-HRE
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comparison algorithms in terms of solution accuracy and

computational complexity.

The algorithm presented in this paper demonstrates

improved performance exclusively on a specific problem

instance. To further enhance the applicability of the trained

model to unknown problem instances of a similar nature,

future research should explore the development of a more

comprehensive reinforcement learning algorithm that

learns from a batch of problem instances. Additionally,

given the diverse nature of energy consumption modeling

in job-shop scheduling problems, it is recommended that a

future algorithm be designed to accommodate multiple

energy loss models.
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