
A balanced leader election algorithm based on replica distribution
in Kubernetes cluster

Junnan Liu1 • Yongkang Ding1 • Yifan Liu1

Received: 1 December 2023 / Revised: 9 January 2024 / Accepted: 1 February 2024 / Published online: 17 March 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Kubernetes is a well-known open source project that provides a powerful orchestration platform for containerized

applications. To ensure high scalability and availability of services, redundant deployment is usually adopted in Kubernetes

clusters, creating multiple replicas for each application. Each replica of a stateful application needs to persistently store

data and use a leader-based consistency maintenance mechanism to ensure strong consistency among replicas. In this

mechanism, the elected leader is responsible for updating data and synchronizing it to the followers, which results in a

higher workload for the leader. When there are multiple stateful applications, the Kubernetes leader election algorithm does

not consider the distribution of multiple leaders among nodes, which may lead to the phenomenon of too many leaders on

some nodes. This can reduce system performance due to the high workload of the leaders themselves. To address this

problem, we propose a balanced leader election algorithm based on replica distribution, which enables multiple stateful

application leaders to be evenly distributed among the cluster’s worker nodes. The algorithm effectively solves the problem

of system performance degradation caused by leader concentration and achieves load balancing among nodes. We verify

the effectiveness of the algorithm through experiments.

Keywords Kubernetes � Stateful � Consistency � Balanced leader � Load balancing

1 Introduction

Recently, container-based virtualization technology has

emerged as the predominant method for deploying appli-

cations in cloud computing [1]. Containers, a lightweight

virtualization technology [2], run on the host operating

system and encapsulate only the application and its

dependencies. This approach significantly reduces system

resource consumption and enhances application deploy-

ment efficiency. Compared to traditional virtualization,

container technology enables faster application startup,

shutdown, and migration, while enhancing isolation and

facilitating more convenient management methods [3].

Large-scale systems require container orchestration tools to

effectively manage numerous containers. Kubernetes

stands out as one of the extensively employed container

cluster management tools [4]. It enables swift deployment,

automatic scaling, and fault recovery, delivering substan-

tial convenience for developing and deploying cloud-native

applications [5]. For ensuring high service availability and

scalability, Kubernetes commonly employs a redundant

deployment strategy, configuring multiple replicas for each

application. In the event of a replica failure or increased

load, the cluster can automatically execute failover and

load balancing [6], thereby guaranteeing uninterrupted

service provision. StatefulSet is a specialized API object in

Kubernetes designed for managing stateful applications.

Key features involve assigning stable network identifiers,

providing persistent storage (PV), and orchestrating the

deployment and scaling of Pods in a predetermined

sequence. However, StatefulSet exhibits significant differ-

ences from other Kubernetes objects like Deployment and

ReplicaSet. While these objects manage Pods, Deployment

& Junnan Liu

ljn@henu.edu.cn

Yongkang Ding

18637874722@163.com

Yifan Liu

3303824807@qq.com

1 School of Software, Henan University, Kaifeng 475001,

China

123

Cluster Computing (2024) 27:7241–7250
https://doi.org/10.1007/s10586-024-04333-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04333-6&domain=pdf
https://doi.org/10.1007/s10586-024-04333-6

and ReplicaSet are better suited for stateless applications as

they emphasize Pod quantity over individual Pod identity.

In contrast, StatefulSet ensures the uniqueness of each Pod

and provides persistent storage.

In Kubernetes clusters, stateful applications require data

state preservation and persistent data storage to ensure data

recovery during failures or scaling operations [7]. To

achieve data consistency among replicas, these applications

commonly utilize a leader-based consistency maintenance

mechanism [8]. As depicted in Fig. 1, each Pod in this

mechanism comprises two containers: a leader election

container and a main container. The leader election con-

tainer is responsible for electing leaders among replicas.

Kubernetes offers a straightforward leader election algo-

rithm [9], which this paper calls KUBE-LE, to facilitate a

leader-based consistency maintenance mechanism. It

employs the Lease resource object of the Kubernetes API

for distributed resource locking, where multiple replicas

contend for control of the Lease object to assume the role

of the leader. The leader periodically renews the timestamp

and identity information in the Lease object to inform other

replicas of its presence. This ensures that at any given time,

only one Pod can become the leader. The leader election

container also provides a simple web server that returns the

current leader name. The main container is responsible for

handling client requests. In the case of a write request, the

main container will access the leader election container to

determine whether it is the leader. If yes, it processes the

request, otherwise, it redirects the request to the leader Pod.

This ensures that all writes are handled by the leader,

maintaining data consistency. For a read request, the

receiving Pod directly handles it. In a strong consistency

system, all replicas maintain the latest data state, enabling

any replica to handle a read request.

This mechanism ensures data consistency and fault

tolerance but places an additional load on the leader

replica. Due to the design characteristics, the leader replica

bears a heavier load than other replicas. In a cluster with

multiple stateful applications, the KUBE-LE algorithm

does not fully consider the distribution of leaders among

nodes. This situation may lead to a concentration of mul-

tiple leaders on specific nodes, leaving others with fewer

leaders. In such a scenario, the node hosting the leader

faces a higher load, handling more write requests and data

synchronization tasks, while other nodes may remain idle

or experience low load [8]. Therefore, when implementing

a leader-based consistency maintenance mechanism using

the KUBE-LE algorithm, two issues may arise: an uneven

distribution of leaders among nodes for multiple stateful

applications, resulting in an excessive or insufficient

number of leaders on certain nodes; and an uneven distri-

bution of leaders causing imbalanced resource utilization

among nodes, with some nodes experiencing excessive or

insufficient usage of CPU, memory, network, etc. Both of

these issues can impact the performance and stability of the

Kubernetes cluster, consequently diminishing the service

quality of stateful applications.

This paper presents a balanced leader election algo-

rithm, named BRD-BLE, which is based on replica distri-

bution, aiming to resolve the problem of centralized

leadership in Kubernetes clusters hosting multiple stateful

applications. This algorithm selects a leader replica from

the node that possesses the fewest leaders, taking into

account the distribution of replicas across stateful appli-

cations. By adopting this approach, a balanced distribution

of leaders across active nodes in the cluster for multiple

applications is ensured, thus preventing scenarios in which

certain nodes become overwhelmed while others remain

idle due to leader concentration. Experimental evaluations

were carried out in a Kubernetes cluster, and the outcomes

substantiate that the proposed algorithm yields a significant

enhancement in node resource utilization and system

throughput when compared to the KUBE-LE algorithm.

The subsequent sections of this paper are structured as

follows: Sect. 2 provides an overview of related work;

Sect. 3 offers a comprehensive depiction of the balanced

leader election algorithm based on replica distribution;

Sect. 4 showcases the experimental results and analysis;

and finally, Sect. 5 presents the concluding remarks of this

paper.

2 Related work

There have been numerous research papers investigating

effective load balancing in Kubernetes cluster systems.

Takahashi et al. [10] introduces a portable load balancer

that can be used in any environment, facilitating the

migration of web services. It implements a containerized

software load balancer that operates within a KubernetesFig. 1 Leader-based consistency maintenance mechanism

7242 Cluster Computing (2024) 27:7241–7250

123

container cluster, utilizing the Internet Protocol Virtual

Server (IPVS) provided by the Linux kernel. Liu et al. [11]

proposes a multi-metric load balancer designed for

Kubernetes. In addition to static load balancing strategies,

this load balancer dynamically allocates requests based on

the runtime status of servers and applications, enabling the

configuration of more sophisticated dynamic load balanc-

ing strategies that can be tailored to specific business

requirements. Dua et al. [12] presents an alternative algo-

rithm for task scheduling. It configures the cluster for a

specific type of task (real-time, data-intensive, etc.) and

incorporates load balancing techniques through task

migration. Lee et al. [13] implements a high-performance

load balancer in a containerized environment, utilizing

eBPF/XDP in the Linux kernel for traffic distribution, and

providing easy management through Kubernetes. Experi-

mental results show that the proposed load balancer

achieves significantly better throughput performance

compared to iptables DNAT, and the performance differ-

ence increases as the packet size decreases. Wang et al.

[14] introduces a load balancing algorithm known as

Dynamic Weighted Random Routing (DWRR). It effec-

tively addresses load balancing among containers in a

Kubernetes cluster that has heterogeneous CPUs. Botez

et al. [15] proposes an innovative solution for implement-

ing LBaaS (Load Balancer as a Service) in CLOUDUT, an

academic private cloud infrastructure. It is based on

Kubernetes and provides high availability and enhanced

security by utilizing secrets during the Docker image build

phase, allowing for real-time route updates with a maxi-

mum downtime of one second. Baresi et al. [16] introduces

a novel autoscaling solution called KOSMOS for Kuber-

netes. It utilizes control theory to vertically scale containers

and employs heuristic methods to address resource con-

tention and horizontally scale containers while appropri-

ately allocating resources. Pramesti et al. [17] introduces an

autoscaler based on response time prediction for managing

microservice applications in a Kubernetes environment. It

utilizes a machine learning model to predict response time

and calculates the number of pods required to meet the

target response time for the application based on the pre-

diction. Kim et al. [18] proposes a fragment leader distri-

bution algorithm that maximizes the throughput of

distributed data storage by evenly distributing fragment

leaders among cluster members. This algorithm improves

data storage throughput significantly by limiting the max-

imum number of leaders a cluster member can have based

on monitoring the state of fragments within the cluster

member.

The consensus problem is a fundamental challenge in

distributed systems, where the goal is for replicas to

achieve data agreement despite faults and network delays.

Researchers have designed and applied several algorithms

to tackle this problem in various Kubernetes scenarios.

Paxos [19] is a widely recognized distributed consensus

algorithm that achieves consensus when a majority of

replicas agree on a proposed value. While the algorithm

offers benefits like strong fault tolerance and availability, it

presents challenges including complexity, implementation

difficulties, low efficiency, and limited support for dynamic

configuration. Raft [20] is a consensus algorithm employed

to implement replicated state machines. It improves the

understandability and implementability of Paxos by sepa-

rating the logic and simplifying the design. The Raft

algorithm decomposes the consensus problem into sub-

problems like leader election, log replication, and safety. It

ensures leader liveness and detects failures using heartbeat

mechanisms. ZooKeeper [21] is an open-source distributed

coordination service that ensures coordination, correctness,

consistency, reliability, and atomic operations in dis-

tributed applications. It can be utilized to implement

functionalities like distributed locks, queues, elections, and

publish/subscribe, thereby serving as a foundational service

for distributed applications. Oliveira et al. [22] evaluates

the performance of the Raft algorithm on physical machi-

nes and Docker containers managed by Kubernetes. The

results demonstrate similar performance in both environ-

ments. Netto et al. [23] explores the integration of the Raft

consensus protocol into containers managed by Kubernetes

for achieving state machine replication. The paper com-

pares the performance and resource consumption of KRaft

and Raft on physical machines. It finds that KRaft exhibits

similar performance to Raft but necessitates more network

transmission, whereas Raft on physical machines demands

more processing power and memory. Netto et al. [24]

presents a solution for integrating coordination services in

Kubernetes by leveraging etc as a shared memory to

accomplish state machine replication. The solution intro-

duces a lightweight protocol named DORADO that enables

state machine replication within containers, thereby

enhancing container fault tolerance and availability. Netto

et al. [25] introduces Koordinator, a method for providing

coordination services in Kubernetes that ensures consis-

tency and availability of container replication using state

machine replication technology. Koordinator functions as a

lightweight service layer that can integrate with various

consensus algorithms and applications, thereby enhancing

flexibility and modularity in container management.

Abdollahi et al. [26] presents a solution that enhances the

availability of stateful microservices by implementing high

availability management for Kubernetes. The solution is to

integrate a high availability (HA) state controller with the

Deployment and StatefulSet controllers in Kubernetes. It

achieves state replication and automatic service redirection

to healthy microservice instances through the management

of secondary labels.

Cluster Computing (2024) 27:7241–7250 7243

123

Simplifying the leader election process, Kubernetes

offers a straightforward leader election algorithm [9]. It

utilizes the Lease resource object of the Kubernetes API for

achieving distributed resource locking. Multiple replicas

compete to gain control of the Lease object and become the

leader. The leader election algorithm in Kubernetes has

lower overhead and a simpler implementation compared to

the Paxos and Raft algorithms. Nguyen et al. [8] presents a

consistency maintenance mechanism based on leader

election is proposed for stateful services in Kubernetes

clusters. They examines the leader election algorithm in

Kubernetes and highlights the potential issue of multiple

leaders being concentrated on the same node, leading to

load imbalance and performance degradation. Through

experiments, the paper showcases how leader distribution

affects load balancing and throughput, emphasizing the

need to optimize leader distribution. Therefore, this paper

presents a balanced leader election algorithm that relies on

replica distribution. The algorithm optimizes the Kuber-

netes leader election process to achieve load balancing by

evenly distributing leaders across multiple nodes.

3 Balanced leader election algorithm based
on replica distribution

In this section, a detailed introduction will be provided for

the BRD-BLE Algorithm. The algorithm’s main objective

is to choose a suitable replica, among all replicas of an

application, as the new leader in case the current leader is

non-existent or fails. A suitable replica is determined by

having fewer leaders on its node compared to the other

replicas on their respective nodes. If multiple suit-

able replicas exist, one of them is randomly chosen. The

algorithm utilizes the Lease resource object of the Kuber-

netes API to implement a distributed resource lock,

ensuring the correctness and consistency of the leader

election process. Subsequently, a detailed explanation of

the data structures and execution flow involved in this

algorithm will be presented.

3.1 Data structures involved in the BRD-BLE
algorithm

To implement the BRD-BLE algorithm, two crucial factors

must be considered: replica distribution and leader distri-

bution. Replica distribution pertains to the worker nodes

hosting each replica of the stateful application, while leader

distribution indicates the count of replicas functioning as

leaders on each worker node. These two factors determine

the process of selecting a suitable leader from multiple

candidate replicas of the stateful application. In order to

obtain replica distribution and leader distribution, the uti-

lization of Kubernetes’ scheduler and API is necessary.

The Kubernetes scheduler assumes the responsibility of

orchestrating the assignment of Pods to suitable nodes for

execution. This process relies on a series of predicate and

priority strategies. Notably, the SelectorSpreadPriority [27]

priority strategy seeks to distribute multiple copies of Pods,

which are under the management of the same service or

controller, across different nodes as uniformly as possible.

This allocation strategy aims to enhance the system’s

resilience to disasters and improve load balancing perfor-

mance. By facilitating an equitable distribution of replicas

among nodes, the strategy establishes fundamental support

for a balanced leader election process. Consequently, this

approach effectively acquires and manages replica distri-

bution information, offering crucial data support for sub-

sequent decisions related to leader election and load

balancing.

Kubernetes API is the core component of Kubernetes

cluster. It adopts RESTful style and provides a way to

interact with the cluster. It can be used to create, update,

delete and monitor various resource objects in the cluster,

such as Pod, Service, StatefulSet and Lease. Utilize the

Kubernetes API to obtain and update information related to

replica distribution and leader distribution to implement the

BRD-BLE algorithm. Through the List method of the

Kubernetes API, obtain the information of all Pods man-

aged under the StatefulSet controller corresponding to the

application, and extract the name of the Pod and the name

of the node where it is located. In this way, the data of the

replica distribution can be obtained and identified as

ReplicaDistribution (RD). RD is a piece of data, with the

Pod name as the key and the node name as the corre-

sponding value. This data is embedded in the code

implementation of the BRD-BLE algorithm in the form of

variables. Through the Create method of the Kubernetes

API, a piece of data is stored on the Annotation of the

master node to record the number of leaders on each

worker node. We name this piece of data LeaderDistribu-

tion (LD). LD is a data structure with the node name as the

key and the number of leaders as the corresponding value.

Its update operation is the responsibility of the leader of

each stateful application to ensure the correctness and

consistency of LD. This design makes it possible to quickly

obtain the number of leaders on any node through the

Kubernetes API’s List method.

Utilizing the RD and LD data, we can select an appro-

priate replica as the leader based on the leader count on the

replica’s respective node. A suitable replica is defined as

the one with a lower leader count on its node compared to

other replicas on their respective nodes. If multiple replicas

meet the criteria, one of them is selected at random. Our

objective is to achieve load balancing by minimizing the

7244 Cluster Computing (2024) 27:7241–7250

123

disparity in leader counts among the worker nodes in the

cluster.

3.2 The execution process of the BRD-BLE
algorithm

The procedural flow of the BRD-BLE algorithm is illus-

trated in Fig. 2. In a stateful application, each replica

assumes one of two states: follower or leader. During the

initialization phase, all replicas are initially set to the fol-

lower state and endeavor to attain the leader status by

competing for control of the Lease object. The entire

execution process comprises the following key Steps:

Step 1: As a follower, the replica periodically checks for

the existence of the Lease object. If the Lease object does

not exist, indicating the absence of a leader, the replica

proceeds to Step 2. Conversely, if the Lease object exists,

signifying the presence of a leader, the replica advances to

Step 3.

Step 2: The replica evaluates whether all replicas are

operational to acquire comprehensive RD data. Given the

sequential initiation of stateful applications, it is imperative

to await the full deployment of all replicas before initiating

the leader election process. This ensures the election of a

suitable leader among replicas. If all replicas are running,

the competing leader replica generates a new Lease object,

and the initial replica to create it progresses to Step 4. In

contrast, as long as one replica is not yet running, the

running replicas persist in the follower state and return to

Step 1.

Step 3: The replica retrieves the leader record from the

Lease object and compares it with the observer record it

maintains. Each replica maintains an observer record, which

saves the most recently copied leader record from the Lease

object and the timestamp when the observer record was

updated. Discrepancies between two records indicate that

the existing leader has renewed the Lease object. In such

cases, the replica updates its observer record and the

timestamp of the update, continues in the follower state, and

returns to Step 1. When the records are identical, the replica

examines whether the Lease object has expired by calcu-

lating the elapsed time from the timestamp of the last

observer record update to the current time. If the Lease has

not expired, signifying the validity of the current leader, the

replica continues in the follower state, returns to Step 1. If

the Lease object has expired, surpassing the LeaseDura-

tionSeconds value, indicating the leader’s failure to renew

the Lease object, the replica proceeds to Step 4.

Step 4: The replica retrieves the current RD and LD

data, calculate the minimum number of leaders on the node

where each replica is running, and verify whether the

number of leaders on the node where it is located matches

the minimum value. A mismatch indicates the unsuitability

of the replica to assume the leader role, prompting it to

persist in the follower state and return to Step 1. A match,

however, indicates the suitability of the replica to become

the leader, leading it to Step 5.

Step 5: The replica assuming the leader role updates the

leader record in the Lease object and the number of leaders

in the corresponding node in the LD data. Additionally, the

replica regularly renews the leader record in the Lease

object to sustain its leader status. Ultimately, the replica

acting as the leader assumes responsibility for managing all

write requests from clients and ensuring synchronization of

data updates among other replicas in the follower state.

4 Experimental results and analysis

To assess the benefits of the BRD-BLE algorithm com-

pared to the KUBE-LE algorithm regarding leader distri-

bution balance, node resource utilization, and system

Fig. 2 Flowchart of the BRD-

BLE algorithm

Cluster Computing (2024) 27:7241–7250 7245

123

throughput, we established an experimental Kubernetes

cluster on an ARM-based Kunpeng server [28]. The cluster

comprised one master node and five worker nodes, with the

master node equipped with 16 CPU cores and 16 GB of

RAM, while each worker node had 8 CPU cores and 8 GB

of RAM. The versions of Kubernetes and Docker

employed were 1.23.4 and 20.10.9, respectively. Multiple

stateful applications [29] were deployed in the cluster,

enabling external access through NodePort services. The

Hey benchmarking tool [30] was utilized to simulate

diverse request volumes from clients to each application,

facilitating the evaluation of the cluster’s performance.

4.1 Distribution of leaders in multiple
applications

To assess the leader distribution balance of the two algo-

rithms in scenarios involving multiple stateful applications,

we deployed varying numbers of stateful applications in

the aforementioned cluster environment, ranging from 5 to

30. Each application was equipped with 3 replicas to

improve reliability and scalability. These applications

implemented a leader-based consistency maintenance

mechanism to ensure data consistency among the replicas.

In every stateful application, two containers are established

within each replica. The main container operates a

straightforward web server, tasked with processing user

requests and generating responses. The secondary con-

tainer, known as the leader election container, incorporates

either the KUBE-LE or BRD-BLE algorithm. This con-

tainer’s role is to conduct leader elections among the

replicas of stateful services. Furthermore, we allocate

Persistent Volume (PV) storage volumes to each replica for

data state preservation. This configuration emulates a

microservices architecture scenario where multiple ser-

vices collaboratively deliver comprehensive functionality.

We conducted 100 deployment experiments for different

application quantities, recording the leader count on each

worker node after each deployment, and derived the

average as the final result.

To visually observe the effect of leader distribution for

the two algorithms with different numbers of applications,

we categorized the number of leaders on each worker node

into five levels, ranging from low to high. Figure 3 illus-

trates the leader distribution for both algorithms in the

range of 5–30 applications. It is evident that when using the

KUBE-LE algorithm, significant disparities exist in the

number of leaders among the worker nodes. Some nodes

have few leaders, while others have a large concentration.

This imbalance worsens as more applications are added. In

contrast, when using the BRD-BLE algorithm, the number

of leaders on each worker node is relatively similar, and

there is no apparent skewness. Furthermore, this balance

remains consistent as more applications are added.

To quantitatively assess the disparity in leader distri-

bution balance between the two algorithms, we employed

the standard deviation as a metric to gauge the spread of

the number of leaders among worker nodes. A smaller

standard deviation implies a more equitable distribution of

leaders, while a larger standard deviation signifies a more

concentrated allocation of leaders. We calculated the

standard deviation of Leader Distribution (LD) for each

deployment and derived the average value as the outcome.

Figure 4 depicts the average standard deviation of LD for

both algorithms across 5–30 applications. The graph

reveals that when employing the BRD-BLE algorithm, the

average standard deviation of LD consistently remains

below 0.25, indicating a relatively uniform distribution. In

contrast, when utilizing the KUBE-LE algorithm, the

average standard deviation of LD is notably larger, sur-

passing 0.76. With the deployment of 30 applications, the

average standard deviation of LD escalates to 1.91. This

suggests that the KUBE-LE algorithm tends to concentrate

leaders on specific nodes, whereas the BRD-BLE algorithm

results in a more balanced distribution of leaders across

nodes.

To further illustrate the distribution of leaders in

extreme scenarios for both algorithms, we selected the least

balanced leader distribution from the 100 deployment

experiments and presented it in Table 1. The table reveals

significant discrepancies in the number of leaders among

the worker nodes when employing the KUBE-LE algo-

rithm. Certain nodes exhibit an excessive or insufficient

number of leaders, with one node concentrating nearly half

of the leaders. This imbalance not only subjects the node to

excessive load pressure but also heightens the risk of

failure, thereby compromising the system’s performance

and reliability. Conversely, the utilization of the BRD-BLE

algorithm results in a more equitable distribution of leaders

across nodes. Regardless of the number of deployed

applications, the number of leaders on each node fluctuates

around the mean, with minimal disparity between the

maximum and minimum values. This observation under-

scores the effectiveness of the BRD-BLE algorithm in

mitigating an excessive concentration of leaders on specific

nodes, facilitating a balanced distribution of leaders among

worker nodes in scenarios involving multiple stateful

applications.

4.2 The influence of leader distribution on node
resources

To assess the influence of leader distribution on node

resource utilization, we deployed 15 stateful applications

using both the KUBE-LE algorithm and the BRD-BLE

7246 Cluster Computing (2024) 27:7241–7250

123

algorithm in the previously mentioned cluster environment.

Among the 100 deployment experiments, we selected the

outcome displaying the least balanced leader distribution,

which is presented in Table 2. Subsequently, we conducted

10 rounds of load testing in which a single client contin-

uously sent write requests to each application for 60 s. The

requests were evenly distributed across the replicas of each

application using the IPVS proxy mode [31]. Following

each experiment, we recorded the CPU utilization of every

worker node and computed the average value as the final

outcome.

To compare the differences in node resource utilization

between the two algorithms, we utilized Fig. 5 to depict the

average CPU utilization of each worker node during the

simultaneous write requests from a single client to all 15

applications. The graph reveals a substantial discrepancy in

CPU utilization among the worker nodes when employing

the KUBE-LE algorithm. Node1, lacking any leaders,

exhibits a meager average CPU utilization of 6.52%,

indicating its idle state. Conversely, Node5, responsible for

seven leader roles, experiences a significantly high average

CPU utilization of 81.71%, signifying the node’s heavy

load pressure, potentially impeding the performance of

other services on that node. These findings suggest that the

KUBE-LE algorithm’s uneven distribution of leaders leads

to excessive or insufficient utilization of certain nodes,

resulting in an imbalance in the cluster’s workload. In

contrast, when utilizing the BRD-BLE algorithm, CPU

utilization among the worker nodes demonstrates better

balance. Node2, Node3, and Node4 each handle three

leader roles, maintaining an average CPU utilization of

approximately 52%. This indicates that these nodes effec-

tively shoulder a considerable portion of the workload

without experiencing overload or idleness. Consequently,

Fig. 3 Distribution of different numbers of leaders among worker nodes: a 5 applications, b 10 applications, c 15 applications, d 20 applications,

e 25 applications, f 30 applications

Fig. 4 Standard deviation of leader distribution

Cluster Computing (2024) 27:7241–7250 7247

123

the BRD-BLE algorithm’s equitable distribution of leaders

ensures a more reasonable resource utilization across the

cluster, enhancing its load balancing capability.

4.3 The influence of leader distribution
on throughput

To assess the influence of leader distribution on system

throughput, we conducted experiments using the deploy-

ment result that exhibited the least balanced leader distri-

bution among the 15 applications when both algorithms

were employed. Following this, we dispatched 20,000

write requests to each application, employing varying

numbers of clients (ranging from 1 to 32), and recorded the

system’s cumulative throughput.

Figure 6 illustrates the cumulative throughput of the

system as different numbers of clients simultaneously sent

write requests to the 15 applications. The graph reveals that

the employment of the KUBE-LE algorithm results in a

relatively low cumulative throughput. This can be attrib-

uted to one node, which concentrates nearly half of the

leaders, experiencing an elevated burden of write requests

and data synchronization tasks. Consequently, this node

becomes overloaded, leading to increased response time

and diminished processing capacity. Conversely, when

utilizing the BRD-BLE algorithm, the cumulative

throughput of the system exhibits significant improvement.

For instance, with a single client, the cumulative through-

put increases by approximately 7.41%, and with 32 clients,

it increases by approximately 21.94%. These findings

indicate that the more evenly distributed leaders among the

nodes, as facilitated by the BRD-BLE algorithm, enable

each node to effectively exploit its resources for request

processing, thereby bolstering the system’s processing

capacity and response speed.

Fig. 5 Average CPU utilization of each worker node when the client

sends write requests

Fig. 6 Cumulative throughput of the system as different numbers of

clients send write requests

Table 1 The least balanced

leader distribution result for the

different numbers of

applications

Number of

applications

KUBE-LE algorithm BRD-BLE algorithm

5 10 15 20 25 30 5 10 15 20 25 30

Node1 0 0 0 1 2 2 0 1 2 3 4 5

Node2 0 0 1 1 4 4 1 2 3 4 5 6

Node3 1 1 3 4 4 5 1 2 3 4 5 6

Node4 1 4 4 5 4 5 1 2 3 4 5 6

Node5 3 5 7 9 11 14 2 3 4 5 6 7

Table 2 The least balanced leader distribution result for the 15

applications

Worker node Node1 Node2 Node3 Node4 Node5

KUBE-LE algorithm 0 1 3 4 7

BRD-BLE algorithm 2 3 3 3 4

7248 Cluster Computing (2024) 27:7241–7250

123

5 Conclusion

This paper addresses the issue of uneven leader distribution

among multiple stateful applications in Kubernetes clusters

and introduces the BRD-BLE algorithm. The proposed

algorithm utilizes the Kubernetes API to gather replica

distribution information and the count of leaders on each

worker node for every application, facilitating the selection

of an appropriate replica as the leader. By effectively

balancing the number of leader replicas across worker

nodes, this algorithm mitigates single-point failures and

load imbalance that may result from leader concentration

or scarcity. To evaluate the algorithm, we deployed a

Kubernetes cluster on an ARM-based Kunpeng server and

conducted experiments using varying numbers of stateful

applications. The experimental results demonstrate the

algorithm’s accurate execution of leader election and its

significant improvement in resource utilization and system

throughput compared to the KUBE-LE algorithm. Overall,

this algorithm offers essential assurance for maintaining

high service quality in stateful applications within Kuber-

netes clusters.

Acknowledgements This work is funded by The Key Technology

Research and Development Project of Henan Province under Grant

222102210055. Major Science and Technology Special Project of

Henan Province, Research and Demonstration of Kunpeng Platform-

based Domestic Operating System under Grant 201300210400.

Supported by Research on Key technologies of resource scheduling

and service High Availability based on ARM architecture, Project No.

232102210199.

Author contributions J.L. carries out the conception of experimental

ideas and the formulation or evolution of overall research goals and

objectives Method design and create models. Y.D. conducted exper-

iments and wrote the main manuscript texts, images and table pro-

ductions. Y.L. is involved in the analysis of the data and the

production of the images. All the authors reviewed the manuscript.

Funding This work was financially supported by Research on Key

technologies of resource scheduling and service High Availability

based on ARM architecture, Project No. 232102210199.

Data Availability No datasets were generated or analysed during the

current study.

Declarations

Competing interests The authors declare no competing interests.

References

1. Wu, Z.: Development and trends of virtualization technology in

cloud computing. J. Comput. Appl. 37(4), 915–923 (2017).

https://doi.org/10.11772/j.issn.1001-9081.2017.04.0915

2. Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T.,

De Rose, C.A.F.: Performance evaluation of container-based

virtualization for high performance computing environments. In:

2013 21st Euromicro International Conference on Parallel, Dis-

tributed, and Network-Based Processing, pp. 233–240 (2013).

https://doi.org/10.1109/PDP.2013.41

3. Bernstein, D.: Containers and cloud: from LXC to docker to

Kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014). https://doi.

org/10.1109/MCC.2014.51

4. Kubernetes Documentation. [Online]. https://kubernetes.io/docs/

home/. Accessed 19 Jan 2023

5. Jiao, Q., Xu, B., Fan, Y.: Design of cloud native application

architecture based on Kubernetes. In: 2021 IEEE International

Conference on Dependable, Autonomic and Secure Computing,

International Conference on Pervasive Intelligence and Com-

puting, International Conference on Cloud and Big Data Com-

puting, International Conference on Cyber Science and

Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),

pp. 494–499 (2021). https://doi.org/10.1109/DASC-PICom-

CBDCom-CyberSciTech52372.2021.00088

6. Hu, T., Wang, Y.: A Kubernetes autoscaler based on pod replicas

prediction. In: 2021 Asia-Pacific Conference on Communications

Technology and Computer Science (ACCTCS), pp. 238–241

(2021). https://doi.org/10.1109/ACCTCS52002.2021.00053

7. Vayghan, L.A., Saied, M.A., Toeroe, M., Khendek, F.: A

Kubernetes controller for managing the availability of elastic

microservice based stateful applications. J. Syst. Softw. 175,

110924 (2021). https://doi.org/10.1016/j.jss.2021.110924

8. Nguyen, N., Kim, T.: Toward highly scalable load balancing in

Kubernetes clusters. IEEE Commun. Mag. 58(7), 78–83 (2020).

https://doi.org/10.1109/MCOM.001.1900660

9. Simple Leader Election with Kubernetes and Docker. [Online].

https://kubernetes.io/blog/2016/01/simple-leader-election-with-

kubernetes/. Accessed 23 Jan 2023

10. Takahashi, K., Aida, K., Tanjo, T., Sun, I.: A portable load bal-

ancer for Kubernetes cluster. In: HPC Asia 2018: Proceedings of

the International Conference on High Performance Computing in

Asia-Pacific Region, pp. 222–231 (2018). https://doi.org/10.1145/

3149457.3149473

11. Liu, Q., Haihong, E., Song, M.: The design of multi-metric load

balancer for Kubernetes. In: 2020 International Conference on

Inventive Computation Technologies (ICICT), pp. 1114–1117

(2020). https://doi.org/10.1109/ICICT48043.2020.9112373

12. Dua, A., Randive, S., Agarwal, A., Kumar, N.: Efficient load

balancing to serve heterogeneous requests in clustered systems

using Kubernetes. In: 2020 IEEE 17th Annual Consumer Com-

munications & Networking Conference (CCNC), pp. 1–2 (2020).

https://doi.org/10.1109/CCNC46108.2020.9045136

13. Lee, J.-B., Yoo, T.-H., Lee, E.-H., Hwang, B.-H., Ahn, S.-W.,

Cho, C.-H.: High-performance software load balancer for cloud-

native architecture. IEEE Access 9, 123704–123716 (2021).

https://doi.org/10.1109/ACCESS.2021.3108801

14. Wang, Q., Ren, Y., Yang, S., Guan, J., Li, B., Zhang, J., Tan, Y.:

ProxyDWRR: a dynamic load balancing approach for heteroge-

neous-CPU Kubernetes Clusters. In: 2022 IEEE International

Conference on Joint Cloud Computing (JCC), pp. 65–72 (2022).

https://doi.org/10.1109/JCC56315.2022.00017

15. Botez, R., Petruti, C.-M., Ivanciu, I.-A., Dobrota, V.: Kubernetes-

based load balancer as a service for private cloud infrastructures.

In: 2022 14th International Conference on Communications

(COMM), pp. 1–6 (2022). https://doi.org/10.1109/COMM54429.

2022.9817323

16. Baresi, L., Hu, D.Y.X., Quattrocchi, G., Terracciano, L.: KOS-

MOS: vertical and horizontal resource autoscaling for Kuber-

netes. Serv. Orient. Comput. ICSOC 2021, 821–829 (2021).

https://doi.org/10.1007/978-3-030-91431-8_59

17. Pramesti, A.A., Kistijantoro, A.I.: Autoscaling based on response

time prediction for microservice application in Kubernetes. In:

2022 9th International Conference on Advanced Informatics:

Cluster Computing (2024) 27:7241–7250 7249

123

https://doi.org/10.11772/j.issn.1001-9081.2017.04.0915
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00088
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00088
https://doi.org/10.1109/ACCTCS52002.2021.00053
https://doi.org/10.1016/j.jss.2021.110924
https://doi.org/10.1109/MCOM.001.1900660
https://kubernetes.io/blog/2016/01/simple-leader-election-with-kubernetes/
https://kubernetes.io/blog/2016/01/simple-leader-election-with-kubernetes/
https://doi.org/10.1145/3149457.3149473
https://doi.org/10.1145/3149457.3149473
https://doi.org/10.1109/ICICT48043.2020.9112373
https://doi.org/10.1109/CCNC46108.2020.9045136
https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/JCC56315.2022.00017
https://doi.org/10.1109/COMM54429.2022.9817323
https://doi.org/10.1109/COMM54429.2022.9817323
https://doi.org/10.1007/978-3-030-91431-8_59

Concepts, Theory and Applications (ICAICTA), pp. 1–6 (2022).

https://doi.org/10.1109/ICAICTA56449.2022.9932943

18. Kim, T., Choi, S.-G., Myung, J., Lim, C.-G.: Load balancing on

distributed datastore in opendaylight SDN controller cluster. In:

2017 IEEE Conference on Network Softwarization (NetSoft),

pp. 1–3 (2017). https://doi.org/10.1109/NETSOFT.2017.8004238

19. Lamport, L.: The part-time parliament. ACM Trans. Comput.

Syst. 16(2), 133–169 (1998). https://doi.org/10.1145/3335772.

3335939

20. Ongaro, D., Ousterhout, J.: In search of an understandable con-

sensus algorithm. In: Proceedings of the 2014 USENIX Confer-

ence on USENIX Annual Technical Conference, pp. 305–320

(2014). https://www.usenix.org/conference/atc14/technical-ses

sions/presentation/ongaro

21. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.C.: ZooKeeper:

wait-free coordination for Internet-scale systems. In: USENIX

Annual Technical Conference (2010). https://www.usenix.org/

legacy/event/atc10/tech/full_papers/Hunt.pdf

22. Oliveira, C., Lung, L.C., Netto, H., Rech, L.: Evaluating Raft in

Docker on Kubernetes. Springer, Cham (2017). https://doi.org/10.

1007/978-3-319-48944-5_12

23. Netto, H., Oliveira, C.P., Oliveira Rech, L., Alchieri, E.: Incor-

porating the raft consensus protocol in containers managed by

Kubernetes: an evaluation. Int. J. Parallel Emerg. Distrib. Syst.

35(4), 433–453 (2020). https://doi.org/10.1080/17445760.2019.

1608989

24. Netto, H., Oliveira, C.P., Oliveira Rech, L., Alchieri, E.: State

machine replication in containers managed by Kubernetes.

J. Syst. Archit. 73, 53–59 (2017). https://doi.org/10.1016/j.sysarc.

2016.12.007

25. Netto, H.V., Luiz, A.F., Correia, M., Oliveira Rech, L., Oliveira,

C.P.: Koordinator: a service approach for replicating docker

containers in Kubernetes. In: 2018 IEEE Symposium on Com-

puters and Communications (ISCC), pp. 58–63 (2018). https://

doi.org/10.1109/ISCC.2018.8538452

26. Abdollahi Vayghan, L., Saied, M.A., Toeroe, M., Khendek, F.:

Microservice based architecture: towards high-availability for

stateful applications with Kubernetes. In: 2019 IEEE 19th Inter-

national Conference on Software Quality, Reliability and Secu-

rity (QRS), pp. 176–185 (2019). https://doi.org/10.1109/QRS.

2019.00034

27. SelectorSpreadPriority. [Online]. https://kubernetes.io/docs/refer

ence/scheduling/policies/#priorities. Accessed 23 Jan 2023

28. Kunpeng server based on arm architecture. [Online]. https://e.

huawei.com/cn/products/computing/kunpeng. Accessed 19 Oct

2022

29. Stateful Applications. [Online]. https://kubernetes.io/docs/tutor

ials/stateful-application. Accessed 19 Feb 2023

30. Hey. A tiny program sends some load to a web application.

[Online]. https://github.com/rakyll/hey. Accessed 10 Apr 2023

31. IPVS-based intra-cluster load balancing. [Online]. https://kuber

netes.io/zh-cn/blog/2018/07/09/ipvs-based-in-cluster-load-balan

cing-deep-dive. Accessed 26 Feb 2023

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Junnan Liu (1980—), male,

Master of Engineering, associ-

ate professor, currently works at

the School of Software, Henan

University. The main research

directions are cloud computing,

wireless sensor networks,

graphics and image processing,

and data analysis.

Yongkang Ding (1995—), male,

is currently studying for a mas-

ter’s degree in software engi-

neering at the School of

Software, Henan University.

The main research directions

include load balancing strate-

gies for Kubernetes clusters and

cloud computing.

Yifan Liu (1997—), male, is

currently studying for a master’s

degree in software engineering

at the School of Software,

Henan University. The main

research directions include task

scheduling strategies for

heterogeneous distributed sys-

tems and high-performance

computing.

7250 Cluster Computing (2024) 27:7241–7250

123

https://doi.org/10.1109/ICAICTA56449.2022.9932943
https://doi.org/10.1109/NETSOFT.2017.8004238
https://doi.org/10.1145/3335772.3335939
https://doi.org/10.1145/3335772.3335939
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://doi.org/10.1007/978-3-319-48944-5_12
https://doi.org/10.1007/978-3-319-48944-5_12
https://doi.org/10.1080/17445760.2019.1608989
https://doi.org/10.1080/17445760.2019.1608989
https://doi.org/10.1016/j.sysarc.2016.12.007
https://doi.org/10.1016/j.sysarc.2016.12.007
https://doi.org/10.1109/ISCC.2018.8538452
https://doi.org/10.1109/ISCC.2018.8538452
https://doi.org/10.1109/QRS.2019.00034
https://doi.org/10.1109/QRS.2019.00034
https://kubernetes.io/docs/reference/scheduling/policies/#priorities
https://kubernetes.io/docs/reference/scheduling/policies/#priorities
https://e.huawei.com/cn/products/computing/kunpeng
https://e.huawei.com/cn/products/computing/kunpeng
https://kubernetes.io/docs/tutorials/stateful-application
https://kubernetes.io/docs/tutorials/stateful-application
https://github.com/rakyll/hey
https://kubernetes.io/zh-cn/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive
https://kubernetes.io/zh-cn/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive
https://kubernetes.io/zh-cn/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive

	A balanced leader election algorithm based on replica distribution in Kubernetes cluster
	Abstract
	Introduction
	Related work
	Balanced leader election algorithm based on replica distribution
	Data structures involved in the BRD-BLE algorithm
	The execution process of the BRD-BLE algorithm

	Experimental results and analysis
	Distribution of leaders in multiple applications
	The influence of leader distribution on node resources
	The influence of leader distribution on throughput

	Conclusion
	Author contributions
	Data Availability
	References

