
Duck swarm algorithm: theory, numerical optimization,
and applications

Mengjian Zhang1 • Guihua Wen1

Received: 1 November 2023 / Revised: 5 January 2024 / Accepted: 7 January 2024 / Published online: 1 March 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
A swarm intelligence-based optimization algorithm, named Duck Swarm Algorithm (DSA), is proposed in this study,

which is inspired by the searching for food sources and foraging behaviors of the duck swarm. Two rules are modeled from

the finding food and foraging of the duck, which corresponds to the exploration and exploitation phases of the proposed

DSA, respectively. The performance of the DSA is verified by using multiple CEC benchmark functions, where its

statistical (best, mean, standard deviation, and average running-time) results are compared with seven well-known algo-

rithms like Particle swarm optimization (PSO), Firefly algorithm (FA), Chicken swarm optimization (CSO), Grey wolf

optimizer (GWO), Sine cosine algorithm (SCA), and Marine-predators algorithm (MPA), and Archimedes optimization

algorithm (AOA). Moreover, the Wilcoxon rank-sum test, Friedman test, and convergence curves of the comparison results

are utilized to prove the superiority of the DSA against other algorithms. The results demonstrate that DSA is a high-

performance optimization method in terms of convergence speed and exploration–exploitation balance for solving the

numerical optimization problems. Also, DSA is applied for the optimal design of six engineering constrained optimization

problems and the node optimization deployment task of the Wireless Sensor Network (WSN). Overall, the comparison

results revealed that the DSA is a promising and very competitive algorithm for solving different optimization problems.

Keywords Swarm intelligence � Duck swarm algorithm � Diversity analysis � Constrained optimization problems �
Wireless sensor network

1 Introduction

Optimization algorithms play a significant role in solving

the real-world optimization problems. Especially, these

algorithms can be compartmentalized different categories

using different descriptions. Common names are evolu-

tionary algorithm (EA) [1], nature-inspired algorithm

(NIA) [2], meta-heuristic algorithm (MA) [3], and swarm

intelligence (SI) algorithm [4], however, some of the

algorithms included are the same. Thus, a challenge of the

algorithm is that searching for the optima in the search

space with higher convergence speed. Three typical and

noted heuristic algorithms (evolutionary algorithms),

Genetic Algorithm (GA) [5], Simulated Annealing (SA) [6]

algorithm, and Particle Swarm Optimization (PSO) algo-

rithm [7], have made great contributions and provided a lot

of reference for the algorithms that were proposed later.

Genetic Algorithm combines evolution and natural

selection, which are applied to its population over gener-

ations, and it was proposed in the 1970s [5, 8]. The best

chromosomes in the previous generation or generated by

crossover and mutation constitutes the next population in

the optimization process. The crossover is to inherit a part

of the value of two chromosomes from each parent and

produces one offspring, which can direct to the exploita-

tion. The mutation is randomly changing some values in a

chromosome and responsible for the exploration. Overall,

highly random operations make GA avoid falling into local

optimum, and slow convergence is its disadvantage at the

same time.

Simulated Annealing [6] was proposed in 1983, one of

the most well-known physics-based methods, which is

inspired by the annealing in metallurgy. It starts to find the
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global optimal solution at a high ‘‘temperature’’ and

becomes more sensitive as the temperature decreases, that

is, the ratio of the difference solution decreases. Thus, the

initial temperature and annealing speed are the key indi-

cators that affect whether it can reach the optimum.

Particle Swarm Optimization (PSO) algorithm was

proposed in 1995 [7], one of the most popular SI methods,

which inspired by the bird flocking behavior. The move-

ments of the particles are affected by the position and speed

of the previous generation and the surrounding particles.

PSO algorithm has a clearer direction than GA and SA,

because it is easy to implement, and the parameters are

rarely the outstanding advantages of the PSO. However, it

tends to converge to the local optimum prematurely when

optimizing multi-modal functions, because it uses the static

finite predecessor and group of linear motion. Above the

three methods, their variations have been proposed, such as

Quantum PSO [9], Adaptive PSO [10], and Hybrid GA

with SA [11], etc.

During the last two decades, many meta-heuristic

algorithms were proposed and have been used for solving

optimization problems after GA, SA, and PSO. Some of the

most well-known optimization techniques are Differential

evolution (DE) [12], Harmony search (HS) [13], Ant col-

ony optimization (ACO) [14], Firefly algorithm (FA) [15],

Cuckoo search (CS) [16], Gravitational search algorithm

(GSA) [17], Grey wolf optimizer (GWO) [18]. To some

extent, the algorithms mentioned above are inspired by

some, such as the social behavior of animal groups (for-

aging, migration, courtship), the evolution of nature,

human social behavior, etc. Thus, we can name all of them

inspiration algorithm in this paper. These optimization

algorithms have succeeded to solve optimization problems

of the literature. However, according to the No Free Lunch

(NFL) theorem [19] that no inspiration algorithm best for

solving all optimization problems. Namely, this indicates

that an inspiration algorithm may produce satisfying solu-

tions on a set of problems but unsatisfying solutions on

another set of problems. Thence, this motivates our essays

to develop a novel swarm intelligence algorithm with

inspiration from duck swarm.

This study proposes a novel swarm intelligence algo-

rithm, named Duck Swarm Algorithm (DSA), for solving

the numerical optimization functions from the CEC

benchmark functions, the real-world engineering con-

strained optimization problems and the WSN’s node opti-

mization deployment task. The inspirations behind the

proposed algorithm are the search and foraging behaviors

of the duck swarm. The main contributions are as follows:

• Inspired by the social behaviors of the duck swarm

which summarized observations in daily life, a novel

group-based swarm intelligence algorithm is proposed,

named Duck Swarm Algorithm (DSA).

• Two rules are modeled from the finding food and

foraging of the duck, which corresponds to the explo-

ration and exploitation phases of the proposed DSA,

respectively. Where duck cooperation and competition

are considered in details.

• The proposed DSA performs well on multiple CEC

benchmark functions, and outperforms for solving the

engineering constrained optimization problems and the

WSN node optimization deployment task.

The rest is set up as follows: Sect. 2 reviews the liter-

ature of the nature-inspired metaheuristic algorithms.

Section 3 introduces the proposed DSA in detail. Section 4

presents the comparison experiments of the algorithms.

Experiments and simulations of the DSA’s performance are

described, and the results are illustrated in separate

graphical diagrams in Sect. 5. Moreover, the conclusion

and future work are discussed in Sect. 6.

2 Literature review

According to the inspiration principle of the meta-heuristic

optimization algorithms, which can be simply categorized

into four categories (See Fig. 1). Based on the inspiration

source, the mainly four classes are: (i) evolution-based

algorithms, (ii) swarm intelligence algorithms, (iii) physics-

based algorithms, and (iv) human behavior-based algo-

rithms. Of course, all meta-heuristic optimization methods

benefit from these advantages despite the differences.

The first main division of meta-heuristics is evolution-

based methods. Such evolutionary algorithms normally

mimic evolutionary rules in nature, some of the most well-

known techniques are Genetic algorithm (GA) [8], Genetic

programming (GP) [20], Differential evolution (DE) [12],

Evolutionary programming (EP) [21], Biogeography-based

optimizer (BBO) [22], Gradient evolution algorithm (GEA)

[23], and Tree-seed algorithm (TSA) [24].

The second main division of meta-heuristics is swarm-

based approaches. These SI algorithms currently mimic

swarm behaviors in animals. Some of the most popular

algorithms are Particle swarm optimization (PSO) [7], Ant

colony optimization (ACO) [14], Firefly algorithm (FA)

[15], Cuckoo search (CS) [25], Grey wolf optimizer

(GWO) [18], Salp swarm algorithm (SSA) [26], and Mar-

ine-predators algorithm (MPA) [27]. Besides, some well-

known SI algorithms are not listed in Fig. 1 that are Whale

optimization algorithm (WOA) [28, 75] inspired by the

foraging and hunting of the whales in the ocean, Moth-

flame optimization (MFO) [29] inspired by the navigation

approach of moths, and Butterfly optimization algorithm
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(BOA) [30] inspired by the foraging and mating behaviors

of butterflies, etc.

The thirdmain division ofmeta-heuristics is physics-based

methods. These optimization algorithms usually mimic

physical principle. Some of the well-known methods are

Simulated annealing (SA) [6], Gravitational search algorithm

(GSA) [17], Water cycle algorithm (WCA) [31], Sine cosine

algorithm (SCA) [32], Henry gas solubility optimization

(HGSO) algorithm [33], and Archimedes optimization algo-

rithm (AOA) [34]. It is worth mentioning that AOA was

proposed in 2021 by Fatma et al., which inspired from the

phenomenon explained by Archimedes’ principle. Also,

Equilibrium optimizer (EO) [35] and Gradient-based opti-

mizer (GBO) [36] are proposed for solving the numerical

optimization problems inspired by the physical rules.

The fourth main division of meta-heuristics is human

social behavior-based tools. Such optimization algorithms

typically mimic social behavior rules in humans. Some of

the popular algorithms like Harmony search (HS) [13],

Imperialist competitive algorithm (ICA) [37], Teaching

learning-based optimization (TLBO) [38], Socio evolution

and learning optimization (SELO) [39], and Political

optimizer (PO) [40]. We divide HS algorithm into social

behavior is based on the harmony that only humans can

sing, and its principle include the description of the prop-

agation of musical sound. For a more detailed review,

different categories can refer to the literature [18, 41–43].

Overall, various SI methods have been proposed

recently. Most of these approaches is inspired by foraging,

mating, hunting and searching behaviors of animals in

nature. In the scope of our knowledge, there is no SI

method in the literature inspired by the social behaviors of

duck swarm. This is the main motivation for proposing a

new SI method by modeling the social behavior of the duck

swarm. Additionally, its abilities for solving the numerical,

real-world engineering optimization problems and the

WSN node optimization deployment task are investigated

in the following.

3 Duck Swarm Algorithm

In this section, a novel SI optimization algorithm, named

Duck Swarm Algorithm (DSA), is proposed that imitates

the searching for food and foraging behaviors of the duck

swarm. To understand this new algorithm some biological

facts and how to model them of the DSA are discussed in

details below.

3.1 Inspiration

In nature, formation characteristics are common for group

animals, especially in the process of animal migration and

foraging (hunting). Among group mammals, there are also

Swarm intelligence algorithms
Evolution based algorithms

Physics based algorithms
Human behavior  based algorithms

Categories

Simulated annealing

Sine cosine algorithm

Gravitational search algorithm

Water cycle algorithm

Henry gas solubility optimization

Archimedes optimization algorithm

Particle swarm optimization

Ant colony optimization

Grey wolf optimizer

Marine predators algorithm

Genetic algorithm

Genetic programming

Differential evolution

Biogeography-based optimization

Evolutionary programming

Teaching learning based optimization

Harmony search

Socio evolution and learning optimization

Political optimizer

Imperialist competitive algorithm

Cuckoo search

1995

2006

Firefly algorithm

1983

2008

2013

2014

2020

2009

2012

2016

2019

2021

1975

1992

1997

2008

2001

2007

2012

2018

2020

1999

Gradient evolution algorithm 2003

Salp swarm algorithm

Tree-seed algorithm 2015

2017

Fig. 1 Classification of meta-heuristic optimization algorithms
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obvious hierarchical characteristics, such as: lions, wolves,

monkeys, etc. The GWO algorithm proposed for the hier-

archical system of the grey wolves, the algorithm divides

the hunting characteristics of grey wolves into four levels.

Moreover, there are many intelligent algorithms proposed

for group animals belonging to birds, including classic PSO

algorithm, CS algorithm, Crow search algorithm (CSA)

[44], Chicken swarm optimization (CSO) algorithm [45],

Sparrow search algorithm (SSA) [46], Honey Badger

Algorithm (HBA) [58], etc.

Ducks are aquatic and terrestrial amphibians, and it can

be simply divided into three common duck species [47]:

water ducks, diving ducks, and roosting ducks. The com-

mon duck (poultry) in our life belongs to the water duck

and the order Anseriformes. It is generally considered to be

a bird. The nature-inspired heuristic algorithms are derived

from the observation of phenomena, such animals, plants,

or other characteristics in nature. Then, their behaviors are

abstracted into mathematical models, and designed as

optimization methods for solving numerical optimization

problems, and engineering constraint optimization prob-

lems, and other real-world optimization problems.

It can be seen from observation that duck swarm

queuing, searching for food sources and foraging behaviors

have certain laws in life. Some pictures of duck swarm

behaviors are provided in Fig. 2.

3.2 Mathematical model of DSA

This section detailed presents the mathematical model of

the proposed approach. Three main processes of the DSA

are discussed as follows: (i) Positions of duck swarm after

queuing (Population initialization), (ii) Searching for food

sources (Exploration phase), (iii) Foraging in groups

(Exploitation phase). Noted that there are two rules that

need to be followed in the process of searching food of

ducks. Rule one: when looking for food, ducks with strong

search ability are located closer to the center of food

source, which attract other individuals to move closer to

them; the updated location is also affected by nearby

individuals. Rule two: when foraging, the individuals all

approach the food; the next position is affected by neigh-

boring individuals and food position or leader duck.

3.2.1 Population initialization

Supposing the expression of randomly generated initial

position in the D-dimensional search space is as follow:

Xi ¼ Lb þ ðUb � LbÞ � o ð1Þ

where Xi denotes the spatial position of the i-th duck (i = 1,

2, 3, …, N) in the duck group, N is the number of popu-

lation size. Lb and Ub represent the upper and lower bounds

of the search space, respectively. o is a random number

matrix between (0, 1).

3.2.2 Exploration phase

After the queuing behavior of duck swarm, that is, the

ducks arrived at a place with more food. Each-individual

gradually disperses and starts searching for food, this

process is defined as follows:

Xtþ1
i ¼

Xt
iþl�Xt

i �signðr�0:5Þ;if P[rand

Xt
iþCF1 �ðXt

leader�Xt
iÞþCF2 �ðXt

j�Xt
iÞ;if P6rand

(

ð2Þ

where sign(r-0.5) influences the process of searching for

food, and it can be set either -1 or 1.l denotes the control

parameter of global search. P is searching conversion

probability of exploration phase. CF1 and CF2 denote

cooperation and competition coefficient between ducks in

the search stage, respectively. Xt
leader represents the best

duck position of the current historical value in the t-th

iteration. Xt
j denotes the agents around Xt

i in searching for

food by duck group in the t-th iteration. Moreover,

parameter l can be calculated as follows:

l¼K � ð1� t=tmaxÞ ð3Þ

where K is calculated by:

Fig. 2 Behaviors of the duck swarm
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K ¼ sinð2 � randÞ þ 1 ð4Þ

In the exploration phase, Fig. 3a depicts the process of

agents update its position pertaining to Xi, Xj, and Xleader in

a 2-D search space. The value curves of parameters K and

l with 200 iterations are shown in Fig. 3b.

As shown in Fig. 3, the search range of duck swarm is

wider when l[ 1 in the exploration phase. This non-linear

strategy is used to enhance the global search ability of the

proposed DSA. Besides, this phase is also can be inte-

grated, and two parameters C1 and C2 will be considered in

the updating formula, which are used to balance the posi-

tions of the individual in the exploration phase. Notably,

the integrated formula is as follows:

Xtþ1
i ¼ Xt

i þ C1 � l � ðXt
i � C2 � Xt

leaderÞ � signðr � 0:5Þ
þCF1 � ðXt

leader � Xt
iÞ þ CF2 � ðXt

j � Xt
iÞ
ð5Þ

where l denotes the control parameter of global search. C1

and C2 are the position balance adjustment parameters, C1

is a random number in (0, 1). Notably, C2 can not only be

set as a random, but also as a constant, like 0, 1 or others.

CF1 and CF2 denote cooperation and competition coeffi-

cient between ducks in the search stage, respectively.

Xt
leader indicates the best duck position of the current his-

torical value in the t-th iteration. Xj
t represents the indi-

viduals around Xt
i in searching for food by duck group in

the t-th iteration.

3.2.3 Exploitation phase

After the duck swarm searching for enough food, which

can satisfy the foraging of the ducks. This process is clo-

sely related to fitness of each duck’s position and defined as

follows:

Xtþ1
i ¼

Xt
iþl�ðXt

leader�Xt
iÞ;if f ðXt

iÞ[f ðXtþ1
i Þ

Xt
iþKF1 �ðXt

leader�Xt
iÞþKF2 �ðXt

k�Xt
jÞ;otherwise

(

ð6Þ

where l denotes the control parameter of global search in

exploitation phase; parameters KF1 and KF2 denote the

cooperation and competition coefficient between ducks in

the exploitation phase, respectively. Xt
leader represents the

best duck position of the current historical value in the t-th

iteration. Xt
k and Xt

j denote the agents around Xt
i in foraging

of duck group in the t-th iteration, where k = j.

Noted that the values of parameters CF1, CF2, KF1 and

KF2 are all in (0, 2), and the calculation formula can be

summarized as follows:

CFi or KFi  
1

FP
� randð0; 1Þði ¼ 1; 2Þ ð7Þ

where FP is a constant, it is set to 0.618; the rand is a

random number in (0, 1).

In the exploitation phase, Fig. 4 depicts the process of

ducks update its position pertaining to Xi, Xj, Xk, and Xleader

(X, Y)
(-X , Y)

(X, Y )

(X, -Y )

(X , Y)

>

<
Optimum

Xj

Xi

Xleader

(a) Sketch map of the exploration phase

(b) The curves of parameters K and µ
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Fig. 3 Sketch map of the exploration phase and parameters K and l
curves of the proposed DSA
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Fig. 4 Sketch map of exploitation phase
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in a 2-D search space. Path 1 denotes the choice of ducks

with cooperation. Path 2 represents the competition

between Xi, Xk and Xj in the t-th iteration. Path 3 indicates

the choice of the duck that have failed to compete the food

search process.

3.3 Pseudo-code and complexity analysis
of the DSA

3.3.1 Pseudo-code of the DSA

A detailed algorithm optimization process needs to be

demonstrated, in which, the designed DSA theory is

introduced in the Sect. 3.2. The pseudo-code of the DSA is

listed in

Algorithm 1 Pseudo-code of the DSA

1. Input: Initial parameter value setting; population number 

N; initial positions of duck swarm; objective function 

2. Calculate the fitness value of initial positions; and select 

the best value fmin and leader agent position Xleader 

3. While t < Tmax 

4. Update the value of parameter µ using Eq. (3); and update 

the parameters P, KF1, KF2, KF1 and KF2 

5.    For i=1: size (N) %Exploration phase 

6.       Update the positions of duck swarm using Eq. (2) 

or Eq. (5) 

7.      Determine whether the individual is out of the 

search range 

8.       Calculate the new position and fitness value fnew 

9.       Update the leader position Xleader and fitness value 

10.   End For 

11.   For i=1: size (N) %Exploitation phase 

12.      Update the positions of duck swarm using Eq. (6) 

13.      Determine whether the individual is out of the 

search range 

14.      Calculate the new fitness value fnew 

15.      if fnew < fitness 

16.         Update the individual's position and fitness 

value 

17.      end if  

18.         Update the leader position Xleader and fitness 

value 

19.   End For 

20. End While 

21. Output: the best position and fitness value 

Besides, the flowchart of the designed DSA is presented

in Fig. 5. The phases of the Exploration (Stage 2) and

Exploitation (Stage 3) are shown in details, which corre-

sponds to the pseudo-code of the proposed DSA.

3.3.2 Complexity analysis

In this subsection, time and space complexity of the DSA

are presented.

3.3.2.1 Time complexity Assuming that the population

size and the search space dimension of the problem are n

and d, and the maximum iteration is T. The complexity of

the DSA includes: the population initialization complexity

is O(nd), the fitness value of calculation complexity is

O(nd), the exploration and exploitation phases update

complexity are O(T)(n ? nlogn ? n ? nlogn), and the

parameters update complexity of the method is O(T). To

the above parts, the total time complexity of the proposed

DSA is expressed as:

O DSAð Þ ¼ O ndð Þ þ O Tð ÞO 1þ 2nd þ 2nlognð Þ ð8Þ

3.3.2.2 Space complexity The storage space consumed by

an algorithm can be defined the space complexity. It is

closely related to the population size (n) of the algorithm

and the dimension (d) of the problem. The total space

complexity of the proposed DSA is O(n�d). Thus, the space
efficiency of the proposed method is effective and stable.

Fig. 5 Flowchart of the designed DSA
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4 Comparative experiment and statistical
test design

To verify the proposed algorithm’s efficiency, DSA has

been compared to seven optimization algorithms. The

comparison techniques are Particle swarm optimization

(PSO, 1998) [48], Firefly algorithm (FA, 2008) [15],

Chicken Swarm Optimization (CSO, 2014) [45], Grey wolf

optimizer (GWO, 2014) [18], Sine cosine algorithm (SCA,

2016) [32], Marine-predators algorithm (MPA, 2020) [27],

and Archimedes optimization algorithm (AOA, 2021) [34].

The initial parameter values of the seven competitive

methods are listed in Table 1. Three categories of seven

comparison algorithms are used to assess the DSA

efficiency.

4.1 Comparative experiment

All the experimental series are carried out a Windows 10

system using Intel (R) Core (TM) i5-10210U CPU @2.11G

with 8G RAM, and MATLAB 2018a in this study. For the

statistical results like Mean, and Standard deviation (Std),

the comparison algorithms performed 30 independent runs

for each test function. The agent size in the population N is

set to 30, and the max iteration of the comparison algo-

rithms is set to 200. Additionally, the dimension of uni-

modal and multimodal functions is set to 30, which are

selected from the CEC benchmark functions.

Eighteen functions [1, 17, 42, 49] from the IEEE CEC

benchmark functions are used to assess the performance of

the DSA in this study. Three groups of the test functions

are unimodal, multimodal, and fixed-dimension numerical

optimization problems. These functions are shown in the

Table 2, including Search range, Dim dimension (Dim) of

the function, and fmin is the optimum of the function in

theory. Additionally, the 2-D versions of each benchmark

function are illustrated in Fig. 6, where F1*F7, F8*F14,

and F15*F18 are the 2-D versions of the unimodal,

multimodal, and fixed-dimension problems, respectively.

4.2 Statistical test

The DSA is assessed via eighteen benchmark functions and

compared with seven optimization algorithms. The per-

formance of the DSA is evaluated by different test func-

tions. The exploitation ability of competitive methods can

be assessed by the unimodal functions because of only one

global optimum of them (F1–F7). The exploration ability

of competitive algorithms can be evaluated by the multi-

modal functions (F8–F14) because they have many local

optima. The local optima avoidance ability between

exploration and exploitation of the competitive algorithms

can be assessed by fixed-dimension functions (F15–F18) as

they have lots of local optima. The statistical results

include the Best, Mean, Standard deviation (Std) of the

optimal results with 30 times, and the average running time

(Time/s) is also considered. They can be calculated as

follows:

(1) The best value (Best)

Fbest ¼ minðF1;F2; . . .FmÞ ð9Þ

where m indicates the number of optimization tests,

and Fbest represents the optima in 30 independent

runs.

(2) The mean value (Mean)

Fmean ¼
1

m

Xm
i¼1

Fi ð10Þ

where Fi indicates the optimum in each independent

run, and Fmean denotes the mean value of the 30

independent runs.

(3) The Standard deviation (Std)

Table 1 Parameters of

comparison algorithms
Algorithms Parameters Value

PSO Max and min velocity of particles

Cognitive and social constants

Inertial weight

-1, 1

2, 2

Linearly decreases from 0.9 to 0.2

FA Alpha, beta, and gamma 0.2, 1, 1

CSO Parameter G and FL 10, [0.5, 0.9]

GWO Parameter a Linearly decreases from 2 to 0

SCA Parameter a 2

MPA Fish Aggregating Devices, FADs 0.2

AOA C1, C2, C3, C4 2, 6, 2, 4

DSA CF1, CF2

Parameters P and FP

KF1, KF2

Random values in (0, 2)

0.5 and 0.618

Random values in (0, 2)
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Fstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1
ðFi � FmeanÞ2

s
ð11Þ

(4) The average running time (Time/s)

Tmean ¼
1

m

Xm
i¼1

Ti ð12Þ

where Ti indicates the running time for each single

optimization.

The statistical results (include Best, Mean, Standard

deviation (Std), and average running time (Time/s)) are

given in Table 3, 4, 5. The best results are highlighted in

bold. For the statistical results of comparison algorithms,

statistical tests are required to assess the performance of the

DSA sufficiently according to Ref. [50]. The statistical

tests (Wilcoxon’s rank-sum [51], and Friedman rank test

[52]) are needed to suggest a remarkable improvement of a

new swarm intelligence algorithm in comparison to the

other well-known SI algorithms to solve a particular opti-

mization problem. Wilcoxon’s rank-sum (WRS) is a clas-

sical non-parametric statistical test that has been performed

and reached the 5% significance level. Generally,

p-value\ 0.05 is considered strong evidence against the

null hypothesis. Besides, the Friedman rank test is used to

evaluate the superiority of the proposed DSA for solving

optimization problems.

4.3 Population diversity test

According to Ref. [53, 54], to distinguish the diversity of

agents in the process of exploration and exploitation, it is

necessary to visually analyze the diversity of the popula-

tion for a new SI algorithm. To analyze the population

diversity of the proposed DSA, the diversity [55] is defined

as follows:

DivðtÞ ¼
XD
j¼1

1

N
Divj¼

1

N

XD
j¼1

Divj ð13Þ

where DivðtÞ indicates population diversity in iteration t, t

is the current iteration during the optimization process, N

represents the population size, and D is the dimension of

the problem.Divj is calculated [54] as follows:

Divj ¼
1

N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j¼1
ðXij � XjÞ2

�
vuut Xj

�
¼ 1

N

XN
i¼1

Xij ð14Þ

where Xj

�
represents the mean of current solutions on

dimension j, Divj indicates mean population diversity on

dimension j, and Xij represents current solutions. Thus, the

exploration and exploitation percentage measurement of

the search process can be defined as follows:

Explorationð%Þ ¼ Divt
Divmax

� 100% ð15Þ

Exploitationð%Þ ¼ Divt � Divmaxj j
Divmax

� 100% ð16Þ

Table 2 Unimodal benchmark

functions
Type No Function name Search range Dim fmin

Unimodal F1 Sphere [- 100,100] 30 0

F2 Schwefel 2.22 [- 10,10] 30 0

F3 Schwefel 1.2 [- 100,100] 30 0

F4 Schwefel 2.21 [- 100,100] 30 0

F5 Rosenbrock [- 30,30] 30 0

F6 Cigar [- 100,100] 30 0

F7 Quartic [- 1.28,1.28] 30 0

Multimodal F8 Schwefel 2.26 [- 500,500] 30 - 418 .9829 9 Dim

F9 Rastrigin [- 5,5] 30 0

F10 Ackley [- 32,32] 30 0

F11 Griewank [- 600,600] 30 0

F12 Penalized 1 [- 50,50] 30 0

F13 Penalized 2 [- 50,50] 30 0

F14 Weierstrass [- 1,1] 30 0

Fixed-dimension F15 Shekel’s Foxholes [- 65,65] 2 1

F16 Kowalik’s [- 5,5] 4 0.00030

F17 Six-hump camel back [- 5,5] 2 - 1.0316

F18 Branin [- 5,5] 2 0.398
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where Divt indicates population diversity of t-th iteration,

and Divmax denotes the max diversity of the whole group’s

population diversity.

5 Results analysis and discussions

In this section, the experimental results of comparison

algorithms are presented in Table 5, 6, 7. Figure 6 shows

the convergence curves of the competitive algorithms for

different types of functions. Figures 6 and 7 present the

Fig. 6 The 2-D versions of twenty-four benchmark functions
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exploration and exploitation percentage curves of the

population diversity during the process of optima with 200

iterations and boxplot of the comparison algorithms for the

benchmark functions, respectively. Eventually, DSA suc-

cessfully produces effective results that verify its perfor-

mance as we will illustrate in this section.

5.1 Statistical results analysis

The statistical results are reported in Tables 3, 4 and 5,

respectively. Table 3 shows that DSA displayed an extre-

mely good exploitation ability among the comparison

algorithms except F5. According to Table 4, the DSA

yields a pretty exploration ability for multimodal dimen-

sion problems, excluding F12 and F13. For functions F9

and F10, AOA and DSA can obtain the best fitness value,

but the Mean and Std of AOA are much worse than DSA.

For F14, CSO, MPA, AOA and DSA can obtain the best

optimum. According to the dimension of benchmark

functions, it can be divided into three types: low dimension

(Less than 10 dimension), high dimension (Between 10 and

300 dimension), and large-scale (Greater than 300 dimen-

sion). In general, DSA demonstrates outstanding perfor-

mance on test functions F1, F2, F3, F4, F6, F7, F8, F9, F10,

F11, and F14, especially on F9 and F11 because of the best

fitness obtained by the proposed DSA.

In addition, from the Best in Table 5, DSA can obtain

the best fitness on functions F15, F16, F17, and F18. It

illustrates the advantages of the DSA to strike a balance

between exploration and exploitation phases for fixed

dimension problems. However, for the Mean and Std on

fixed functions, MPA has better stability on F15 and F16

than DSA. PSO algorithm has a best stability on F18

among the comparison algorithms. Thus, the stability of the

DSA on fixed dimension functions should be improved in

further study.

Table 3 Comparison statistical results (Unimodal functions)

Functions PSO FA CSO GWO SCA MPA AOA DSA

F1 Best 1.09E ? 02 2.03E-01 7.72E-09 1.18E-09 1.90E?01 1.30E-07 9.71E-45 2.95E2133

Mean 6.63E ? 02 2.87E-01 4.84E-05 8.95E-09 7.19E?02 5.10E-07 1.57E-33 2.33E2100

Std 3.98E?02 4.34E-02 1.07E-04 9.09E-09 7.88E?02 4.03E-07 6.06E-33 1.18E299

Time/s 1.59E202 1.29E-01 4.09E-02 3.62E-02 2.89E-02 7.49E-02 3.33E-02 4.99E-02

F2 Best 1.01E-01 7.19E-01 5.39E-09 1.53E-06 2.34E-01 2.34E-05 1.20E-25 1.39E265

Mean 1.91E-01 1.12E?00 6.51E-07 6.08E-06 1.13E?00 1.18E-04 4.33E-18 9.42E251

Std 4.99E-02 1.39E-01 9.75E-07 3.16E-06 1.24E?00 6.14E-05 2.20E-17 5.09E250

Time/s 1.60E202 1.24E-01 4.27E-02 4.11E-02 2.94E-02 7.00E-02 3.57E-02 4.85E-02

F3 Best 1.31E?03 8.06E?02 2.41E?03 3.19E-01 7.05E?03 5.79E-01 8.66E-38 1.31E2129

Mean 8.98E?03 1.65E?03 7.19E?03 5.96E?00 1.95E?04 6.61E?00 1.28E-25 1.32E289

Std 4.90E?03 6.43E?02 2.68E?03 6.44E?00 7.45E?03 7.10E?00 4.47E-25 7.26E289

Time/s 6.63E202 1.74E-01 9.53E-02 8.62E-02 7.90E-02 1.83E-01 8.39E-02 1.48E-01

F4 Best 3.95E?00 2.04E-01 1.62E?01 9.82E-03 2.04E?01 1.99E-03 1.66E-23 7.06E268

Mean 6.51E?00 2.80E-01 3.07E?01 3.50E-02 5.75E?01 4.24E-03 3.39E-16 2.47E248

Std 1.37E?00 6.49E-02 6.98E?00 1.80E-02 1.22E?01 1.26E-03 1.12E-15 1.32E247

Time/s 1.61E202 1.24E-01 4.24E-02 3.64E-02 2.90E-02 6.88E-02 3.61E-02 4.53E-02

F5 Best 1.98E101 3.58E?01 2.80E?01 2.62E?01 2.93E?04 2.63E?01 2.86E?01 2.89E?01

Mean 7.78E?01 1.19E?02 8.73E?03 2.77E101 1.30E?06 2.71E?01 2.89E?01 2.89E?01

Std 7.98E?01 1.32E?02 4.40E?04 7.84E-01 1.29E?06 5.15E-01 7.14E-02 2.92E202

Time/s 2.30E202 1.35E-01 5.13E-02 4.20E-02 3.52E-02 9.13E-02 4.01E-02 6.03E-02

F6 Best 7.24E-28 4.20E-02 3.07E-72 1.27E-99 9.86E-31 1.04E-41 5.48E-104 2.46E2153

Mean 2.09E-22 3.13E?02 1.99E-58 2.43E-79 5.49E-23 2.93E-23 9.08E-72 4.09E2119

Std 1.08E-21 4.49E?02 1.03E-57 1.28E-78 3.00E-22 1.59E-22 4.97E-71 2.24E2118

Time/s 1.70E202 1.30E-01 4.37E-02 3.64E-02 2.95E-02 7.52E-02 3.47E-02 4.55E-02

F7 Best 7.77E-02 8.94E-03 1.14E-02 1.29E-03 9.42E-02 1.27E-03 2.91E-05 1.61E205

Mean 2.17E-01 5.10E-02 1.96E-01 5.77E-03 1.54E?00 4.23E-03 1.71E-03 4.33E204

Std 7.70E-02 3.82E-02 2.68E-01 2.78E-03 1.92E?00 1.98E-03 1.08E-03 5.28E204

Time/s 4.09E202 1.54E-01 6.67E-02 6.14E-02 5.35E-02 1.29E-01 5.84E-02 9.44E-02

Bold values indicate optimal value of the comparison algorithms in this study
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Moreover, DSA is compared with the other seven

algorithms in the running-time calculation on the eighteen

benchmark functions. The running-time calculation method

is that the comparison methods independently run 30 times

on each test function and noted the results in Table 3, 4, 5,

respectively. DSA outperforms FA and MPA while taking

less time than for unimodal, multimodal, and fixed test

functions. Compared with the running-time of the CSO,

GWO, and AOA, the running-time of the DSA is an order

of magnitude, and the gap is small. Although the running-

time of the PSO algorithm is the shortest, and SCA fol-

lowed, their optimization accuracy is poor among the

comparison algorithms. Generally, the proposed DSA still

possesses effective superiorities over the comparison

methods on the running-time.

Two of the frequently used tests are used to statistically

evaluate the performance of the DSA in this paper.

Tables 6 and 7 illustrate Friedman rank and Wilcoxon’s

rank-sum test results. According to the Friedman test

results listed in Table 6, it can be concluded that the

rankings of the eight comparison algorithms are DSA[
MPA[AOA[GWO[CSO[ PSO[ FA[ SCA. It is

shown that DSA can produce satisfactory results and is also

statistically superior to comparison algorithms. DSA will

play a constructive role in the future as a robust algorithm.

The WSR results of pair-wise comparison of the DSA

and comparison methods are presented in Table 7 at 0.05

significance level. Where H = 1 means acceptable; H = 0

means rejection; and NaN means that the optimization

values of the two algorithms are similar. According to the

p-values in Table 7, for function F8, the FA, GWO, AOA

are better than DSA. For functions F11 and F12, AOA is

better than DSA from the WSR test. For function F14, the

optimum values of CSO, MPA, and AOA are similar to

DSA. Additionally, PSO is better than DSA on functions

F15 and F16 based on WSR test results. Also, the WSR test

Table 4 Comparison statistical results (Multimodal functions)

Functions PSO FA CSO GWO SCA MPA AOA DSA

F8 Best - 3.86E?03 - 7.06E?03 - 7.62E?03 - 8.01E?03 - 4.31E?03 - 9.11E?03 - 1.04E?08 - 9.43E103

Mean - 2.68E?03 - 5.50E?03 - 6.40E?03 - 5.80E?03 - 3.50E?03 - 7.98E?03 - 4.86E?06 - 5.77E103

Std 3.90E?02 7.57E?02 6.32E?02 1.30E?03 2.81E102 5.32E?02 2.02E?07 1.38E?03

Time/s 2.46E202 1.34E-01 5.36E-02 4.48E-02 3.64E-02 9.38E-02 4.12E-02 6.22E-02

F9 Best 2.69E?01 2.04E?01 3.22E-09 1.03E?00 9.42E?00 9.67E-07 0 0

Mean 4.88E?01 3.29E?01 3.69E?00 1.33E?01 7.07E?01 1.54E-03 2.17E?01 0

Std 1.00E?01 9.35E?00 1.34E?01 5.99E?00 4.08E?01 5.65E-03 5.64E?01 0

Time/s 2.14E202 1.32E-01 4.43E-02 3.92E-02 3.34E-02 7.59E-02 3.59E-02 5.07E-02

F10 Best 3.46E-02 3.13E-01 3.75E-05 6.60E-06 2.77E?00 3.76E-05 7.99E-15 8.88E216

Mean 1.57E-01 4.62E-01 8.60E-04 1.89E-05 1.53E?01 1.42E-04 1.66E?01 8.88E216

Std 2.53E-01 6.48E-02 2.16E-03 1.11E-05 7.19E?00 5.48E-05 7.57E?00 0

Time/s 2.14E202 1.31E-01 4.67E-02 3.95E-02 3.54E-02 7.59E-02 3.97E-02 5.16E-02

F11 Best 2.80E?02 4.48E-01 4.63E-08 2.11E-09 1.21E?00 7.69E-08 0 0

Mean 3.14E?02 5.76E-01 4.77E-02 1.36E-02 6.99E?00 3.65E-06 1.38E-02 0

Std 2.42E?01 6.41E-02 1.22E-01 1.58E-02 5.84E?00 5.86E-06 5.32E-02 0

Time/s 2.91E202 1.33E-01 5.34E-02 4.63E-02 4.00E-02 8.76E-02 4.30E-02 6.31E-02

F12 Best 4.08E-03 1.66E203 2.50E-01 3.45E-02 1.14E?01 1.90E-03 5.64E-01 2.93E-01

Mean 1.86E?00 4.95E203 6.86E?04 1.09E-01 3.07E?06 1.06E-02 8.09E-01 7.52E-01

Std 1.09E?00 3.89E203 3.20E?05 5.29E-02 9.02E?06 7.35E-03 1.39E-01 3.39E-01

Time/s 8.97E202 1.94E-01 1.19E-01 1.05E-01 1.01E-01 2.24E-01 1.07E-01 1.86E-01

F13 Best 8.37E204 2.24E-02 1.71E?00 2.38E-01 2.41E?01 3.44E-02 2.51E?00 1.75E?00

Mean 3.24E202 3.14E-02 1.00E?05 1.08E?00 1.00E?07 2.51E-01 2.92E?00 2.84E?00

Std 8.68E202 6.57E-03 2.68E?05 3.32E-01 1.78E?07 1.34E-01 8.78E-02 3.26E-01

Time/s 9.43E202 2.00E-01 1.21E-01 1.08E-01 1.00E-01 2.31E-01 1.04E-01 1.83E-01

F14 Best 0 13.3017211 0 4.27E?00 4.80E?00 0 0 0

Mean 3.65E?00 1.72E?01 0 8.57E?00 1.06E?01 0 0 0

Std 3.08E?00 1.87?00 0 2.60E?00 1.92E?00 0 0 0

Time/s 9.51E-01 1.00E?00 9.97E-01 9.43E-01 9.41E201 1.96E?00 9.45E-01 1.94E?00

Bold values indicate optimal value of the comparison algorithms in this study
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results of FA, CSO, and AOA is better than DSA with 200

iterations on F15 and F16.

Overall, the statistical results verify that there is a sig-

nificant difference between the results obtained by the DSA

and the comparison approaches in almost all cases. Espe-

cially, DSA in benchmark functions F1–F4, F6, F7, F9,

F10, F11, F14, F17 and F18 has a significant advantage

over almost all comparison methods. However, in functions

Table 5 Comparison statistical results (fixed functions)

Functions PSO FA CSO GWO SCA MPA AOA DSA

F15 Best 9.98E201 1.00E?00 9.98E201 9.98E201 9.98E201 9.98E201 9.98E201 9.98E201

Mean 1.89E?00 5.35E?00 1.75E?00 5.14E?00 2.82E?00 9.98E201 1.26E?00 1.95E?00

Std 1.78E?00 2.65E?00 2.18E?00 4.24E?00 2.85E?00 5.17E216 6.92E-01 2.89E-04

Time/s 1.35E201 2.20E-01 1.69E-01 1.37E-01 1.39E-01 3.04E-01 1.46E-01 2.94E-01

F16 Best 3.14E-04 3.27E-04 4.32E-04 3.20E-04 4.33E-04 3.07E204 3.36E-04 3.07E204

Mean 6.19E-04 2.29E-03 7.85E-04 4.56E-03 1.15E-03 3.13E204 1.21E-03 9.80E-04

Std 3.59E-04 7.09E-03 2.49E-04 8.04E-03 3.85E-04 1.56E205 1.19E-03 7.40E-04

Time/s 1.07E202 1.01E-01 3.97E-02 1.52E-02 1.48E-02 5.67E-02 1.90E-02 5.00E-02

F17 Best 2 1.0316 2 1.0316 2 1.0316 2 1.0316 2 1.0316 2 1.0316 2 1.0316 2 1.0316

Mean 2 1.0316 2 1.0316 2 1.0316 2 1.0316 - 1.0315 2 1.0316 - 1.0311 2 1.0316

Std 5.53E-16 6.78E-05 8.22E-08 1.82E-07 2.20E-04 5.66E-14 6.69E-04 0.00E100

Time/s 7.43E203 9.55E-02 3.63E-02 1.26E-02 1.25E-02 4.99E-02 1.72E-02 4.37E-02

F18 Best 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398

Mean 0.398 0.398 0.398 0.398 0.407 0.398 0.435 0.398

Std 0.00E100 3.64E-06 8.87E-05 2.14E-04 1.71E-02 2.49E-12 5.37E-02 9.66E-05

Time/s 5.35E203 9.73E-02 3.50E-02 1.05E-02 9.98E-03 4.51E-02 1.44E-02 4.02E-02

Bold values indicate optimal value of the comparison algorithms in this study

Table 6 Comparison results of

Friedman rank test
Functions PSO FA CSO GWO SCA MPA AOA DSA

F1 7.57 6.00 4.63 3.00 7.43 4.37 2.00 1.00

F2 6.03 7.77 3.03 3.97 7.20 5.00 2.00 1.00

F3 6.80 5.03 6.40 3.47 7.77 3.53 2.00 1.00

F4 6.00 5.00 7.03 4.00 7.97 3.00 2.00 1.00

F5 5.50 6.47 4.93 1.97 7.97 1.33 3.50 4.33

F6 6.87 8.00 4.00 2.47 5.67 5.47 2.53 1.00

F7 6.83 5.20 6.13 3.77 7.80 3.17 1.97 1.13

F8 7.90 4.47 3.33 3.90 6.80 1.37 4.27 3.97

F9 7.13 6.10 3.23 4.87 7.23 3.63 2.38 1.42

F10 5.23 6.10 4.00 2.17 7.67 3.33 6.50 1.00

F11 8.00 6.00 4.37 3.80 7.00 3.63 1.73 1.47

F12 5.90 1.17 6.50 3.03 7.97 1.87 4.83 4.73

F13 1.10 1.90 6.30 4.00 7.97 3.00 5.60 6.13

F14 5.10 8.00 2.52 6.10 6.73 2.52 2.52 2.52

F15 2.97 7.23 3.63 6.53 6.00 1.70 4.77 3.17

F16 3.47 5.43 4.93 4.57 6.43 1.07 5.43 4.67

F17 1.47 6.13 1.87 4.97 7.30 2.80 7.57 3.90

F18 1.33 5.10 2.53 5.67 7.30 2.67 7.63 3.77

Total 95.20 101.10 79.36 72.26 130.21 53.46 69.23 47.21

Avg 5.29 5.62 4.41 4.01 7.23 2.97 3.85 2.62

Rank 6 7 5 4 8 2 3 1

Bold values indicate optimal value of the comparison algorithms in this study
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F15 and F16, the performance of the DSA in the compar-

ison algorithms is insufficient, which indicates that the

DSA needs further improvement for solving fixed-dimen-

sional problems. This conclusion of the statistical tests is in

line.

5.2 Convergence curves analysis

Notably, to completely report the performance of the

competitive algorithms, the convergence curves of the

eighteen test functions are shown in Fig. 7. The y-axis and

Table 7 Comparison results of Wilcoxon rank-sum test

Functions PSO vs. DSA FA vs. DSA CSO vs. DSA

p-value H Z-value p-value H Z-value p-value H Z-value

F1 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F2 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F3 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F4 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F5 1.11E-06 1 4.87 3.02E-11 1 6.65 1.33E-02 1 2.48

F6 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F7 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F8 3.02E-11 1 6.65 8.88E-01 0 0.14 5.83E-03 1 -2.76

F9 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10

F10 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10

F11 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10

F12 5.09E-06 1 4.56 3.02E-11 1 - 6.65 5.09E-06 1 4.56

F13 3.02E-11 1 - 6.65 3.02E-11 1 - 6.65 8.24E-02 0 1.74

F14 4.57E-12 1 6.92 1.21E-12 1 7.10 NaN 0 NaN

F15 3.18E-01 0 - 1.00 1.72E-12 1 7.06 7.24E-01 0 0.35

F16 1.58E-01 0 - 1.41 2.40E-01 0 1.18 8.07E-01 0 0.24

F17 4.17E-13 1 - 7.25 1.21E-12 1 7.10 9.43E-09 1 -5.74

F18 4.16E-14 1 - 7.56 1.12E-10 1 6.45 2.17E-03 1 -3.07

NaN/0/1 0/2/16 0/2/16 1/3/14

Functions GWO vs. DSA SCA vs. DSA MPA vs. DSA AOA vs. DSA

p-value H Z-value p-value H- Z-value p-value H Z-value p-value H Z-value

F1 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F2 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F3 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F4 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F5 3.02E-11 1 -6.65 3.02E-11 1 6.65 3.02E-11 1 - 6.65 8.88E-06 1 -4.44

F6 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65 3.02E-11 1 6.65

F7 4.50E11 1 6.59 3.02E-11 1 6.65 6.70E-11 1 6.53 8.20E-07 1 4.93

F8 3.04E-01 0 - 1.03 3.34E-11 1 6.63 4.31E-08 1 - 5.48 4.29E-01 0 0.79

F9 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10 2.16E-02 1 2.30

F10 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10 6.11E-13 1 7.20

F11 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 7.10 1.61E-01 0 1.40

F12 3.02E-11 1 - 6.65 3.02E-11 1 6.65 3.02E-11 1 - 6.65 4.04E-01 0 0.84

F13 3.02E-11 1 - 6.65 3.02E-11 1 6.65 3.02E-11 1 - 6.65 1.11E-03 1 -3.26

F14 1.21E-12 1 7.10 1.21E-12 1 7.10 NaN 0 NaN NaN 0 NaN

F15 6.95E-11 1 6.52 3.77E-12 1 6.95 1.07E-12 1 - 7.12 7.29E-09 1 5.78

F16 6.63E-01 0 0.44 4.84E-02 1 1.97 4.57E-09 1 - 5.86 2.97E-01 0 1.04

F17 1.21E-12 1 7.10 1.21E-12 1 7.10 1.21E-12 1 - 7.10 1.21E-12 1 7.10

F18 6.03E-11 1 6.54 2.96E-12 1 6.98 2.37E-12 1 - 7.01 3.69E-12 1 6.95

NaN/0/1 0/1/17 0/0/18 1/0/17 1/4/13
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x-axis represent the fitness value and iteration, respec-

tively. The convergence curves show that the poor per-

formance of the SCA, PSO and FA is the imbalance

between the exploitation and exploration phases. The

convergence curve clearly illustrates the advantages of the

DSA integrating the two phases into the search process.

Except for DSA, MPA and AOA, almost all comparison

algorithms converge to a local optimum for test functions.

It also indicates that the DSA is faster and superior to other

comparison algorithms in solving almost all the numerical

optimization problems, except F5, F12, F13, and F17.

5.3 Diversity analysis

In this study, the components DSA exploration and

development capabilities of the impact of the diversity

were analyzed. The plots are discussed to evaluate the

ability of the DSA to balance exploration and exploitation.

Figure 8 shows the exploration and exploitation percentage

curves of population diversity in the search space while

solving the test functions.

As shown in Fig. 8, DSA preserves a balance between

the exploration and exploitation rates during the search

process for all agents in solving the benchmark

Fig. 7 Convergence curves of eighteen benchmark functions with 30 times
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optimization functions. Notably, the results balance the

capabilities between exploration and exploitation phases to

push duck i to the global optimal solution by moving to the

optimum produced at a given time.

According to Fig. 8 and Table 5, although DSA can

obtain the best fitness value, the Mean and Std of MPA on

F15 and F16 are better than DSA. In other words, the

exploration and exploitation ability of the DSA should be

improved for the fixed-dimension or low-dimensional

optimization problems.

5.4 Boxplot analysis

The boxplots of the comparison algorithms on the test

functions (F1–F16) are illustrated in Fig. 9. According to

Tables 6 and 7 and the charts shown in Fig. 9, it can be

Fig. 8 Average diversity analysis of eighteen benchmark functions with 30 times
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ascertained that the DSA achieved the best results and had

the best convergence among the others on most of the

functions. However, the FA performs better than DSA in

F12, and the PSO algorithm performs better than DSA in

F13, respectively. Consequently, it can be inferred that the

DSA outperforms other comparison methods on classical

benchmark functions.

5.5 Sensitivity analysis of the Scalability test

In this subsection, parameter sensitivity tests are used to

assess the influence of population size, and iterations on the

proposed method that four test functions (two unimodal

and two multimodal) are selected, including Sphere func-

tion, Schwefel 2.22 function, Rastrigin function, and

Ackley function. The population size is set to 30, 50, 80

and 100, and the number of iterations is set to 200, 500,

1000 and 2000, with the dimension of test functions is fixed

to 30.

The results of the sensitivity analysis (the mean fitness,

Std and convergence curves) for the above four functions

are illustrated as follows: (i) Number of ducks (N), (ii) Max

iterations (T). DSA was simulated for different numbers of

ducks with iteration is fixed to 500. Table 8 shows the

Mean and Std value of the DSA when it was applied to

solve Sphere (F1), Schwefel 2.22 (F2), Rastrigin (F9), and

Ackley (F10) with different number of ducks.

Figure 10 shows the convergence curves of the DSA on

the four functions related to number of ducks, respectively.

DSA is simulated for various numbers of iterations. Table 9

displays the Mean and Std value of the DSA when it is

applied to simulate four test functions with different

numbers of iterations. Figure 10 plots the convergence

curves of the DSA for Sphere (F1), Schwefel 2.22 (F2),

Fig. 9 Boxplot of functions F1-F16
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Rastrigin (F9), and Ackley (F10) using different numbers

of iterations.

Table 8 shows that the best performance is obtained with

different search agents. As can be seen visually from Fig. 9

and Table 9, as the population size increased, the Mean and

Std become slightly worse, except functions F9 and F10.

The reason is that the search ability of the DSA has hardly

changed after the population reaches 30. As can be seen

from Fig. 10, the sensitivity of the proposed DSA increases

slightly with the number of search agents.

The results in Table 9 and Fig. 11 prove that DSA

converges to the optimum when the number of iterations

increases. This supports the importance of the iteration

number on the robustness and convergence behavior of the

DSA. As can be seen visually from Fig. 10 and Table 9, as

the population size increased, the Mean and Std become

better, except functions F9 and F10. The reason is that the

increase in iterations increases the number of searches and

accuracy. However, the mean fitness and Std of the F9 and

F10 do not become better as the number of iterations

increased.

According to the above analysis, when the global

approximate optimal solution is roughly found, as the

population and the number of iterations continue to grow,

the result does not increase proportionally. The results are

not increased proportionally. In a word, researchers can set

the favorable population and number of iterations accord-

ing to specific tasks.

6 Applications of the proposed DSA

To confirm the performance of the DSA for solving real-

world engineering constrained optimization problems are

presented: Three-bar truss problem (TBTP) [56], and

Sawmill operation problem (SOP) [57]. Other four engi-

neering constrained optimization problems are also present

in subSect. 6.3. SubSect. 6.4 gives the comparison results

of the designed DSA for solving the node optimization

deployment of the WSN. All the considered problems have

several inequality constraints that should be handled.

6.1 Three-bar truss problem

The schematic of Three-bar truss (TBS) structure is shown

in Fig. 12. The volume of a statically loaded Three-bar

truss is to be minimized subject to stress (r) constraints on
each of the truss members. The objective is to assess the

optimal cross-sectional areas (A1, A2). This problem can be

expressed as below (volume of a member = cross-sectional

area 9 length):

min : f ðx1; x2Þ ¼ f ðA1;A2Þ ¼ ð2
ffiffiffi
2
p

A1 þ A2Þ � l ð17Þ

Table 8 Comparison results of

DSA using different values for

ducks with 500 iterations

Function Dim = 30 N = 30 N = 50 N = 80 N = 100

F1 Mean 5.08E-262 6.69E2264 2.90E-260 3.94E-255

Std 0.00E?00 0.00E100 0.00E?00 0.00E?00

F2 Mean 1.74E2139 8.44E-123 5.70E-127 1.71E-130

Std 7.27E2139 4.62E-122 2.59E-126 9.36E130

F9 Mean 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Std 0.00E?00 0.00E?00 0.00E?00 0.00E?00

F10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Std 0.00E?00 0.00E?00 0.00E?00 0.00E?00

Bold values indicate optimal value of the comparison algorithms in this study

F1 with Dim=30 F2 with Dim=30 F9 with Dim=30 F10 with Dim=30

Fig. 10 Sensitivity analysis of the proposed DSA for number of search agents

Cluster Computing (2024) 27:6441–6469 6457

123



s.t

g1 ¼
ffiffiffi
2
p

A1 þ A2ffiffiffi
2
p

A2
1 þ 2A1A2

P� r 6 0

g2 ¼
A2ffiffiffi

2
p

A2
1 þ 2A1A2

P� r 6 0

g3 ¼
1

A1 þ
ffiffiffi
2
p

A2

P� r 6 0

8>>>>>>>><
>>>>>>>>:

where

A1;A2 2 ½0; 1�; l ¼ 100cm;P ¼ 2KN=cm2; andr ¼ 2KN=cm2

.

The results of the DSA on TBTP are shown in Table 10

and 11. The statistical results of the comparison algorithms

are given in Table 10, and 11 presents the best solutions

obtained by the DSA and other optimization algorithms. As

shown, the optimal value of the DSA on TBTP is

263.8958434, which means when x1, x2, g1, g2, and g3 are

set to 0.788675136, 0.408248285, - 0.232790818,

- 1.231270871, and - 1.001519946 respectively for the

three-bar design problem. The convergence curves of this

problem are shown in Fig. 13.

6.2 Sawmill operation problem

Assuming a company owns two sawmills and two forests.

Duration of one project, each forest can produce up to 200

logs per day; the cost of transporting logs is estimated at

$10/km/log; and at least 300 logs are required per day.

Table 12 shows the capacity of each of the mills (logs/day)

and the distances between the forests and the mills (km).

The goal is to minimize the total daily cost of trans-

porting logs and meet the constraints on demand and

factory capacity of the mills. The design problem is to

determine how many logs to ship from Forest one or two to

Mill A or B (x1, x2, x3, x4), as shown in Fig. 14.

The cost of transportation can be defined as follow:

F1 with Dim=30 F2 with Dim=30 F9 with Dim=30 F10 with Dim=30

Fig. 11 Sensitivity analysis of the proposed DSA for the number of iterations

Fig. 12 Three-bar truss structure

Table 9 Comparison results of

the DSA with different

iterations

Function Dim = 30 T = 200 T = 500 T = 1000 T = 2000

F1 Mean 1.60E-84 1.23E-272 0 0

Std 8.78E-84 0 0 0

F2 Mean 8.25E-50 1.74E-130 1.18E-279 0

Std 3.21E-49 9.51E-130 0 0

F9 Mean 0 0 0 0

Std 0 0 0 0

F10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E216

Std 0 0 0 0

Bold values indicate optimal value of the comparison algorithms in this study
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min : f ðx1; x2; x3; x4Þ
¼ 10 � ð24x1 þ 20:5x2 þ 17:2x3 þ 10x4Þ ð18Þ

s.t

g1 ¼ x1 þ x2 � 240 6 0

g2 ¼ x3 þ x4 � 300 6 0

g3 ¼ x1 þ x3 � 200 6 0

g4 ¼ x2 þ x4 � 200 6 0

g5 ¼ 300� ðx1 þ x2 þ x3 þ x4Þ 6 0

8>>>>>><
>>>>>>:

where x1; x2; x3; x4 2 ½0; 200�.
The results of the DSA on SOP are shown in Table 13

and 14. The statistical results of the comparison algorithms

are listed in Table 13 and 14 presents the best solutions

obtained by comparison methods. According to Table 14,

the optimal value of the DSA on SOP is 37200.0053, which

means when x1, x2, x3, x4, g1, g2, g3, g4, and g5 are set to

1.20E-11, 1.63E-06, 100.0001, 199.9999, - 214.9374,

- 281.9187, - 171.8508, - 196.9062, and 256.8561

respectively, the total cost of the SOP is the minimum. It

can be concluded from Table 13 that the results obtained

by the DSA are better than PSO, FA, CSO, GWO, SCA,

and AOA, except MPA. The convergence capability of the

proposed DSA and other algorithms is illustrated in

Fig. 15.

6.3 Other engineering constrained problems

To further analyze the generalization performance of the

DSA, four additional engineering constrained optimization

problems, Tension spring design (TSD) [59, 66], Welded

beam design (WBD) [18], Pressure vessel design (PVD)

[59, 66], Speed reducer design (SRD) [60], were added to

compare results. The parameters, dimension and other

information of the engineering problem are shown in the

following Table 15. The best optimization results of the

DSA are compared with the existing advanced intelligent

algorithms. The results of the comparison methods can be

seen in Tables 16, 17, 18, 19 for details.

The results of the proposed DSA on TSD are listed in

Table 16. Table 16 presents the best solutions obtained by

the DSA and other optimization algorithms. The optimal

value of the DSA on TSD is 0.012668, which means when

x1, x2 and x3 are set to 0.052068, 0.365900, and 10.770262

respectively for tension spring design. It can be concluded

from Table 17 that the results obtained by the DSA are

better than the comparison algorithms, except HGSO [33]

and MPA [27].

The results of the proposed DSA on WBD are listed in

Table 17. Table 17 shows the best solutions obtained by

the comparison optimization algorithms. The optimal value

of the DSA on WBD is 1.725555, which means when x1,

x2, x3 and x4 are set to 0.205731, 3.475599, 9.036601, and

0.205731 respectively for welded beam design. It can be

concluded from Table 17 that the results obtained by the

DSA are better than the comparison algorithms, except

AVOA [64].

The results of the proposed DSA on PVD are shown in

Table 18. Table 18 presents the best solutions obtained by

the DSA and other optimization algorithms. The optimal

value of the DSA on PVD is 5885.374386, which means

when x1, x2, x3 and x4 are set to 0.778189, 0.384659,

40.320642, and 199.985755 respectively for pressure ves-

sel design. It can be concluded from Table 18 that the

results obtained by the DSA are better than all the com-

parison algorithms.

The results of the proposed DSA on SRD are listed in

Table 19. Table 19 presents the best solutions obtained by

the DSA and other optimization algorithms. As shown, the

optimal value of the DSA on SRD is 2996.403492, which

means when x1, x2, x3, x4, x5, x6 and x7 are set to 3.500006,

0.700000, 17.000000, 7.300490, 7.800000, 3.350216, and

5.286759 respectively for speed reducer design. The

comparison results show that DSA is better than the opti-

mization algorithm listed in Table 19.

6.4 Nodes optimization deployment of the WSN

Node optimization deployment [67–69] is the key point of

the WSN for the development of the intelligent internet of

things (IoT) and smart city, which can be applied to the

smart agriculture, fisheries, animal husbandry, military, etc.

Besides, node deployment also plays an important role in

the field of environmental monitoring, which can used to

collect the real time and accurate monitoring data. The

node optimization deployment (NOD) problem [70] can be

Table 10 Comparison of statistical results of the DSA and other algorithms for solving the Three-bar truss problem

Item PSO FA CSO GWO SCA MPA AOA DSA

Best 270.6948 263.8968 263.8959 263.897 263.9446 263.8959 263.8961 263.8958

Worst 300.1633 263.9509 264.6476 263.939 282.8427 263.9515 263.9035 263.8959

Mean 282.9146 263.9069 264.0227 263.9074 269.7538 263.9074 263.8987 263.8959

Std 1.05E?01 1.66E-02 2.59E-01 1.52E-02 9.03E?00 2.01E--02 2.44E-03 1.13E-05

Bold value indicates best value of the engineering constrained optimizationproblems from thecomparison algorithms
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regard as a constraint task. Supposing the length and width

of the deployment area projected onto a two-dimensional

plane are L and W, and their unit is the meter (m). which is

defined as:
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Table 12 Data for Sawmills

Mill Distance from

forest one /km

Distance from

forest two /km

Mill capacity per

day/logs

A 24.0 20.5 240

B 17.2 18.0 300

Fig. 13 Convergence values curves of the Three-bar truss problem

Forest one Forest two

Mill A Mill B

x1

x2 x3

x4

Fig. 14 The Sawmill operation problem
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max Cov ¼

PS;u1�u2

i¼1;j¼1
pðVi;UjÞ

u1 � u2
� 100%

s:t:

g1 ¼
XS;u1�u2

i¼1;j¼1
pðVi;UjÞ > 0

g2 ¼
XS;u1�u2

i¼1;j¼1
pðVi;UjÞ � u1 � u2 > 0

g3 ¼ dðVi;UjÞ � Rs > 0

g4 ¼ S�M > 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

where Cov denotes the node coverage percentage.pðVi;UjÞ
is the probability of the j-th monitoring point Uj covering

by the i-th sensor node Vi. u1; u2 indicate the monitoring

point from x-axis and y-axis, respectively. dðVi;UjÞ
denotes the Euclidean distance from the j-th monitoring

point Uj to the i-th sensor node Vi. Rs represents the node

sensing radius, which satisfies 2Rs 6 Rc, Rc denotes the

node communication radius. S is the sensor node number in

the monitoring area. M is the deployment nodes number in

theory. Notably, the binary perception model is used to

calculate the coverage probability pðVi;UjÞbetween the j-th

monitoring point Ujand the i-th sensor node Vi, which is

defined as

pðVi;UjÞ ¼
0; if dðVi;UjÞ[Rs

1; if dðVi;UjÞ�Rs

�
ð20Þ

In addition to obtaining visual results intuitively through

optimizing the coverage of nodes, the communication

between nodes also needs to be considered. The Delaunay

triangulation [71] is applied to analyze node connectivity,

because the communication between nodes is generally

based on the shortest distance strategy except for the sink

nodes. Figure 16 shows the optimized node coverage

results of the proposed DSA with different sensing radius.

Besides, PSO, GWO, SCA, MPA, HBA are also utilized to

verify the performance of the designed DSA for the NOD

problem. The setting of parameters of the comparison

algorithms are shown in Table 1. The b and C of the HBA

are set 6 and 2, respectively. Notably, simulation parame-

ters of the node deployment area are listed in Table 20.

Besides, the comparison results of different algorithms are

presented in the Table 21, which includes the node cov-

erage percentage (%), optimization time (s), and the mean

values.

In the deployment area of 100 m 9 100 m, when the

number of nodes is 20, different node sensing radius have a

significant impact on the optimized coverage. This indi-

cates that the larger the node sensing radius, the larger the

range of sensing radius and the more data collected. The

DSA optimized node coverage percentages are 88.68%,Ta
bl
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92.82%, and 97.17%, respectively, and the time required to

optimize node coordinates is 5.15 s, 5.34 s, and 4.98 s,

respectively. From Fig. 16, when using random initial

deployment (such as Fig. 16a, c, and e), not only will nodes

exhibit centralized deployment, but the triangulation

between nodes is also uneven, indicating poor regional

coverage and connectivity of nodes. The deployment and

Delaunay triangulation between nodes after DSA opti-

mization are shown in Fig. 16 (b), (d), and (f), the opti-

mized nodes have higher coverage and more uniform

triangulation, indicating that communication between the

optimized nodes will be smoother, thereby reducing power

consumption. In summary, within the deployment area,

when the number of nodes remains unchanged, using iso-

morphic sensors with a larger sensing radius can not only

achieve better coverage, but also improve connectivity

between network nodes, reduce communication power

consumption between nodes, and increase network

lifespan.

When the number of nodes is 20 and the node sensing

radius is 15 m, Fig. 17 shows the visualization of node

optimization deployment using different optimization

algorithms. The population is set to 30 and the number of

iterations is set to 100. As shown in Table 21, the coverage

rates of PSO, GWO, SCA, MPA, HBA, and DSA are

93.51%, 91.30%, 89.74%, 93.66%, 94.82%, and 97.17%,

respectively. The corresponding optimization node coor-

dinates take 2.32 s, 5.35 s, 1.69 s, 3.89 s, 2.14 s, and

4.98 s, respectively. From Fig. 17, the node coverage

optimized by PSO and GWO has a small amount of node

overlap, while the node coverage optimized by SCA has a

large overlap of nodes and a large coverage hole area, it

will result in node redundancy. Besides, DSA optimized

node coverage is more uniform than MPA and HBA.

From Table 21, for different node sensing radius, the

coverage optimized by DSA is superior to other compar-

ison algorithms, but node position optimization takes rel-

atively long time. From the perspective of different node

sensing radius, compared with PSO, the DSA node cov-

erage corresponding to sensing radius of 13 m, 14 m, and

15 m has increased by 7.38%, 3.71%, and 3.66%, respec-

tively. Compared with GWO, the coverage of DSA nodes

with sensing radius of 13 m, 14 m, and 15 m increased by

6.82%, 6.46%, and 5.87, respectively. Compared with

SCA, the coverage of DSA nodes with sensing radius of

13 m, 14 m, and 15 m increased by 8.31%, 5.01%, and

7.43%, respectively. Compared with MPA, the coverage of

DSA nodes with sensing radius of 13 m, 14 m, and 15 m

increased by 4.49%, 3.38%, and 3.51%, respectively.

Compared with HBA, the coverage of DSA nodes with

sensing radius of 13 m, 14 m, and 15 m increased by

3.27%, 2.21%, and 2.35%, respectively. From the mean

coverage rate and optimization time of nodes’ coordinates,

the mean coverage rates of PSO, GWO, SCA, MPA, HBA,

and DSA are 87.97%, 86.51%, 85.97%, 89.10%, 90.28%,

Table 14 The value of the decision variables and constraints in the best solution of the comparison algorithms

Item PSO FA CSO GWO SCA MPA AOA DSA

x1 14.0010 0.0726 0.7833 0.9979 1.1885 2.94E-08 - 13.0210 1.20E-11

x2 45.1584 0.0000 3.8995 1.1851 0.0000 9.71E-05 13.0285 1.63E-06

x3 94.1700 100.0168 99.4557 99.2014 100.6120 100.0000 113.0214 100.0001

x4 146.8876 199.9223 195.8712 198.6269 198.3185 199.9999 186.9710 199.9999

g1 - 135.2995 - 239.9596 - 233.1716 - 235.8996 - 240.0000 - 239.9998 - 240.4450 - 214.9374

g2 - 225.3532 - 299.9013 - 296.4594 - 297.6044 - 298.3476 - 299.9996 - 254.8587 - 281.9187

g3 - 125.2978 - 199.9013 - 193.7217 - 199.7868 -200.0000 - 199.9994 - 199.9993 - 171.8508

g4 - 78.2790 - 199.8609 - 194.8321 - 195.6864 - 200.0000 - 199.9997 - 84.1212 - 196.9062

g5 120.6527 299.8609 289.6310 293.5040 298.3476 299.9994 255.3037 256.8561

f 43503.7124 37212.5391 37680.8776 37407.7820 37422.3603 37200.0130 37682.6035 37200.0053

Fig. 15 Convergence values curves of the Sawmill operation problem
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and 92.89%, respectively. Although the optimization time

of SCA is the least, the optimized node coverage is the

lowest. The optimization time of DSA is only 0.12 s less

than GWO, but the optimization performance of DSA is the

best among the comparison algorithms. Therefore, DSA

has better application prospects in WSN node coverage

optimization problems, but there is still space for

improvement in the performance of DSA.

Figure 18 shows the node coverage optimization curves

for algorithms such as PSO, GWO, SCA, MPA, HBA, and

DSA, with 20 deployed nodes, 100 iterations, and a sensing

radius of 13 m, 14 m, and 15 m, respectively. For different

node sensing radius, DSA has achieved the optimal cov-

erage percentage after 60 iterations, and it is significantly

higher than other comparison algorithms around 40 itera-

tions. MPA shows a clear upward trend in approximately

70 iterations. When the sensing radius Rs= 13 m, the

curves of HBA, PSO, and SCA are relatively similar before

85 iterations, while SCA falls into local optima after 85

iterations. When the sensing radius Rs= 14 m, the node

coverage of SCA optimization reached its optimal value

around 40 times, which indicates that the SCA has fallen

into local optima. When the sensing radius Rs= 15 m, the

node coverage of HBA has significantly improved after 85

Table 15 The parameters, dimension, and other information of the four engineering constraint problems

Problem name Dim parameters Upper limit of the parameters Lower limit of the parameters

Tension spring design 3 x1, x2, x3 [2.0 1.3 15.0] [0.05 0.25 2.0]

Welded beam design 4 x1, x2, x3, x4 [2 10 10 2] [0.1 0.1 0.1 0.1]

Pressure vessel design 4 x1, x2, x3, x4 [99 99 200 200] [0 0 10 10]

Speed reducer design 7 x1, x2, x3, x4, x5, x6, x7 [3.6 0.8 28 8.3 8.3 3.9 5.5] [2.6 0.7 17 7.3 7.8 2.9 5]

Table 16 The best value of

Tension spring design of the

comparison algorithms

Algorithm x1 x2 x3 optimal

PSO [33] 0.0514 0.3577 11.6187 0.0127

GA [59] 0.051480 0.351661 11.632201 0.012704

GSA [17] 0.05028 0.32368 13.52541 0.01270

GWO [18] 0.0519 0.3627 10.9512 0.0127

HGSO [33] 0.0518 0.3569 11.2023 0.0126

HHO [61] 0.051796393 0.359305355 11.138859 0.012665443

MPA [27] 0.051724477 0.35757003 11.2391955 0.012665

PO [40] 0.05248 0.37594 10.24509 0.01267

SSA [26] 0.051207 0.345215 12.004032 0.0126763

CPSO [62] 0.051728 0.357644 11.244543 0.012674

HBA [58] 0.0506 0.3552 11.3730 0.01207

eMAgES [60] – – – 1.67E?00

iLSHADEe [60] – – – 1.67E?00

DSA 0.052068 0.365900 10.770262 0.012668

Table 17 The best value of

Welded beam design of the

comparison algorithms

Algorithm x1 x2 x3 x4 Optimal

PSO [33] 0.2157 3.4704 9.0356 0.2658 1.85778

CS [25] 0.182200 3.795100 9.998100 0.211100 1.946000

GWO [18] 0.2054 3.4778 9.0388 0.2067 1.7265

GA [59] 0.248900 6.173000 8.178900 0.253300 2.433116

HGSO [33] 0.2054 3.4476 9.0269 0.2060 1.7260

GSA [17] 0.182129 3.856979 10.0000 0.202376 1.879952

AVOA [64] 0.205730 3.470474 9.036621 0.205730 1.724852

CPSO [62] 0.202369 3.544214 9.048210 0.205723 1.728024

HHO [61] 0.204039 3.531061 9.027463 0.206147 1.73199057

DSA 0.205731 3.475599 9.036601 0.205731 1.725555
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iterations and surpassed MPA. In summary, although DSA

effectively improves network coverage, reduces coverage

blind spots, and reduces coverage costs, the optimization

time is more time-consuming than SCA, it indicates that

the comprehensive performance of DSA in solving the

node optimization coverage problem of WSN still needs to

be improved.

7 Conclusion and future works

A novel SI optimization algorithm, named DSA is pro-

posed inspired by the duck swarm in this study. Two rules

are modeled from the finding food and foraging of the

duck, which corresponds to the exploration and exploita-

tion phases of the designed DSA, respectively. Where duck

cooperation and competition are considered in details.

Eighteen test functions from the CEC benchmark functions

are utilized to evaluate the performance of the proposed

algorithm in terms of exploration, exploitation, local

optima avoidance, convergence, and diversity. The results

show that DSA can provide highly competitive results

compared to well-known optimization methods, such as

PSO, FA, CSO, GWO, and SCA, and other recent algo-

rithms like MPA and AOA. The superior exploitation,

exploration, local optima avoidance ability of the DSA is

confirmed by the results on different types of test functions.

Moreover, the convergence analysis and population

diversity analysis of the DSA confirm the convergence of

this algorithm. Additionally, sensitivity analysis is used to

access the performance of the proposed DSA. Furthermore,

the DSA has high performance on the real-world engi-

neering constrained optimization problems and the node

optimization deployment task of the WSN.

For future work, we will further study on binary and

multi-objective [72–74] versions of the DSA for solving

the node computing and energy consumption optimization

tasks of the IoT. The designed DSA is also can be used to

Table 18 The best value of

Pressure vessel design of the

comparison algorithms

Algorithm x1 x2 x3 x4 optimal

GA [59] 0.812500 0.437500 42.097398 176.654050 6059.9463

DE [63] 0.812500 0.437500 42.098446 176.6360470 6059.701660

GWO [18] 0.8125 0.4345 42.089181 176.758731 6051.5639

WOA [28] 0.812500 0.437500 42.0982699 176.638998 6059.7410

HHO [61] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259

MPA [27] 0.8125 0.4375 42.098445 176.636607 6059.7144

PO [40] 0.7782 0.3847 40.3215 199.9733 5885.3997

AOA [65] 0.8303737 0.4162057 42.75127 169.3454 6048.7844

AVOA [64] 0.778954 0.3850374 40.360312 199.434299 5886.676593

�MAgES [60] – – – – 6.06E?03

iLSHADE� [60] – – – – 6.06E?03

DSA 0.778189 0.384659 40.320642 199.985755 5885.374386

Table 19 The best value of Speed reducer design of the comparison algorithms

Algorithm x1 x2 x3 x4 x5 x6 x7 optimal

PSO [33] 3.500 0.70 17 7.74 7.85 3.36 5.389 2998.12

HS [13] 3.520124 0.7 17 8.3 7.802354 3.366970 5.288719 3029.0020

GSA [17] 3.153 0.70 17 7.30 8.30 3.20 5.000 3040.10

GWO [18] 3.500 0.70 17 7.30 7.80 2.90 2.900 2998.83

HGSO [33] 3.498 0.71 17.02 7.67 7.810 3.36 5.289 2997.10

SCA [32] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563

MFO [29] 3.507524 0.7 17 7.302397 7.802364 3.323541 5.287524 3009.571

eMAgES [60] – – – – – – – 2.99E?03

iLSHADEe [60] – – – – – – – 2.99E?03

DSA 3.500006 0.700000 17.000000 7.300490 7.800000 3.350216 5.286759 2996.403492
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(a) Nodes random deployment with =13 m (b) Optimized node deployment by DSA with =13 m

(c) Nodes random deployment with =14 m (d) Optimized node deployment by DSA with =14 m

(e) Nodes random deployment with =15 m (f) Optimized node deployment by DSA with =15 m

Fig. 16 Visualization of node optimization deployment results using DSA
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optimize the hyper-parameters of the deep learning models

for the image classification [76, 77]. The feature selection

problem and node location of the WSN also can be applied

by the proposed inspired algorithm, which is considered the

quantum theory [78].

Table 20 Simulation parameters of the node deployment area

Parameters Value

Deployment area 100 m 9 100 m

Node sensing radius Rs 13 m, 14 m, 15 m

Node communication radius Rc 2Rs

Number of nodes 20

Max iterations 100

Population number 30

Table 21 The comparison

results with different node

sensing radius

Method Refs. Cov/%

Rs=13 m

Time/s Cov/%

Rs=14 m

Time/s Cov/%

Rs=15 m

Time/s Cov/%

(Mean)

Time/s

(Mean)

PSO [48] 81.30 2.32 89.11 2.29 93.51 2.32 87.97 2.31

GWO [18] 81.86 5.32 86.36 5.16 91.30 5.35 86.51 5.28

SCA [32] 80.37 1.82 87.81 1.70 89.74 1.69 85.97 1.74

MPA [27] 84.19 4.17 89.44 4.10 93.66 3.89 89.10 4.05

HBA [58] 85.41 2.05 90.61 1.93 94.82 2.14 90.28 2.04

DSA – 88.68 5.15 92.82 5.34 97.17 4.98 92.89 5.16

Bold values indicate optimal value of the comparison algorithms in this study

(a) PSO (b) GWO (c) SCA

(d) MPA (e) HBA (e) DSA

Fig. 17 Visualization of node optimization deployment using different algorithms
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