
Using a nested virtualization tool for teaching VPN fundamentals

Juan M. Orduña1 • Carlos Pérez1

Received: 14 September 2023 / Revised: 27 December 2023 / Accepted: 4 January 2024 / Published online: 21 February 2024
� The Author(s) 2024

Abstract
A common problem of undergraduate courses about security and computer networks is the difficulty of providing practical

exercises to students. Although different approaches have been followed to solve this problem, it is still an open issue. In

this work, we first discuss several possible open-source simulation/emulation/virtualization tools that could be used in the

design of a lab session for teaching Virtual Private Networks (VPN) fundamentals based on OpenVPN. Next, we describe

how a hands-on lab about VPNs can be carried out with the selected virtualization tool, called NETinVM. The proposed lab

starts installing the OpenVPN packages in client and server machines, as in a real-case scenario. Although in this case both

client and servers are Kernel-based Virtual Machines (KVM) connected to networks inside NETinVM. The nested

virtualization included in NETinVM allows to deploy all the required types of VPNs within the virtual machine, allowing

the students to reproduce the lab without the need of a network infrastructure, and following exactly the same process

required in a real scenario. The evaluation results show that the level of learning achieved by the students through this lab

session seems to be high, and they consider this lab useful for their professional development, showing that virtualization

technology can help in computer network education.

Keywords Nested virtualization tools � Computer networks lab � Network security � Problem-based learning �
Virtual private networks

1 Introduction

A common problem of computer network and computer

science courses is the difficulty of providing practical

exercises to students. Although it has been proven that

students learn more effectively from courses that provide

for involvement in practical activities Sarkar [1]; Trabelsi

and Alketbi [2]; O’Grady [3]; Carter [4], the main obstacle

for developing such practical activities is the complexity

and efforts needed to devote the required infrastructure to a

single lab. In particular, practical exercises of some net-

work advanced concepts, like firewalls, virtual lans (vlans)

or virtual private networks (vpns) require either a physical

infrastructure separated from the actual campus network

(to avoid security issues), or simulation/emulation tools

that faithfully reproduce a similar infrastructure. For these

kind of courses and concepts, students may require multi-

ple computer systems with complex configuration, but it is

not feasible for higher education institutions to provide

independent multiple computer systems to every student

enrolled in the course Bhat et al. [5]. Even in the case of

having such infrastructure, our experience of teaching

computer networks and computer architecture labs during

30 years shows, many times the building and configuration

of the real hardware of a network model (switches, routers,

cabling, etc.) or the configuration of a simulation tool

(OMNET?? Cogitative Software FZE [6], GEM5 Binkert

et al. [7], etc.) is too complex and takes too much time of

the lab session, leaving a short time for practising the

advanced network concepts that were meant to be practised

on that real hardware or simulator. This issue significantly

reduces the effective learning of the lab sessions.

Although the advent of Software Defined Networks

(SDNs) has allowed the development of tools like Cisco

Packet Tracer Cisco Networking Academy [8],

OMNET?? Cogitative Software FZE [6], or Mininet

Juan M. Orduña and Carlos Pérez have contributed equally to

this work.

& Juan M. Orduña

juan.orduna@uv.es

Carlos Pérez

carlos.perez@uv.es

1 Departamento de Informática, Universidad de Valencia,

Avda. Universidad, s/n, 46100 Burjassot, Valencia, Spain

123

Cluster Computing (2024) 27:6081–6095
https://doi.org/10.1007/s10586-024-04291-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04291-z&domain=pdf
https://doi.org/10.1007/s10586-024-04291-z

Contributors [9] to simulate network equipment, those

concepts exceeding the scope of the network, like SNMP,

VPNs, certificates, RSA, etc. are quite complex to be

practised with this kind of tools, since a virtual network

infrastructure must be built and configured as a previous

step to develop the lab session. The previous building and

configuration of the virtual network infrastructure requires

a huge effort from the professor. Also, some cloud-based

virtualization tools for online teaching were proposed

Salah [10]; Willems et al. [11]; Abraham [12]; Xu et al.

[13]. Nevertheless, the use of cloud services adds some

drawbacks to virtualization tools for teaching. drawbacks.

First, the use of a given cloud infrastructure forces the user

to learn and use a concrete technology and services,

making the course dependent on a given service provider.

Second, the number of students in a given course may

require a cloud infrastructure size that exceeds the maxi-

mum size that the provider offers for free, increasing the

cost of the course. Third, the use of cloud resources may

add significant latencies that affect the interactivity of the

exercises. Fourth, the use of cloud technologies like con-

tainers can greatly reduce the realism of the proposed

activity, since the configuration of the network interfaces,

disk and other elements are different from a real (or virtual)

machine. Finally, the reproducibility and usability along

time is seriously affected, since students are not guaranteed

that the cloud infrastructure is accessible some time after

the course finishes Son and Fitzgibbons [14]. These

drawbacks also persist when then online access is provided

by a university-owned infrastructure.

In order to solve these problems, in this work we pro-

pose an existing nested virtualization tool, called

NETinVM, for teaching VPN fundamentals. NETinVM

was developed Pérez et al. [15] some years ago. It is a tool

based on nested virtualization (virtual machines and a

network infrastructure inside a virtual machine) that

includes a fully functional lab in a single virtual machine.

This lab comprises three interconnected networks with

several computers attached to each network, providing a

portable and realistic scenario for teaching courses related

to security, system administration and computer networks.

With this tool, students can carry out complex exercises

without changing the network and computer infrastructure

at all, using the same commands and software that they

would use in a real scenario. They can reproduce the results

of the proposed exercises in a portable and autonomous

way. The advantage of NETinVM over all the alternatives

described above is that the required network infrastructure

is already built, configured and fully operational in the

NETinVM virtual machine, with no additional effort from

the teacher to build and configure the network for the lab

session. No network latencies can affect the interactivity of

the exercises, the activity carried out is absolutely realistic,

since linux (virtual) machines are used to build and con-

figure the VPN, and the reproducibility and usability is

guaranteed because the tool is just a virtual machine that

the student can save an execute in any computer. We first

discuss several possible open-source simulation/emulation/

virtualization tools that could be used for designing a lab

session about Virtual Private Networks (VPN) fundamen-

tals based on OpenVPN. Next, we show and explain the

development of the proposed lab session with the selected

virtualization tool, called NETinVM. Starting from scratch,

the lab begins installing OpenVPN on the required KVM

machines in NETinVM. Then, different VPN configura-

tions are deployed and analyzed, ranging from simple,

point-to-point VPN with no encryption nor authentication

launched from the command line, to a client/server mode

VPN using a Public Key Infrastructure (PKI) with X.509

certificates, and configured by means of a configuration

file. In this way, not only VPN concepts are practised, but

also security implementations like cipher and authentica-

tion algorithms, X.509 certificates, and firewall configura-

tion using IPtables. Evaluation results show that the level

of learning achieved by the students is high, and they

consider this lab useful for their professional development,

showing that virtualization technology can also help in

computer network education.

The rest of the paper is organized as follows: Sect. 2

discusses several possible simulation, emulation or virtu-

alization tools that could be used for the proposed VPN lab.

Next, in order to make this paper self-contained, Sect. 3

describes the NETinVM features and configuration

required to carry out the exercises described in the next

sections. Then, Sect. 4 detail the session lab and how it is

implemented using NETinVM. Next, Sect. 5 shows the

measurement of the learning impact of this activity on

students, starting from a survey provided anonymously in

the academic year 2022–2023. Finally, Sect. 6 shows some

conclusions remarks and future work to be done.

2 Network simulation tools

Last years a lot of software tools, both open-source as well

as commercial ones, have become available for simulating

a network infrastructure. Among the most extended com-

mercial tools for building and simulating network infras-

tructure we can cite Cisco Packet Tracer Cisco Networking

Academy [8], Riverbed modeler Riverbed Technology [16]

(previously called Opnet), or Boson NetSim Boson, LLC

[17]. Among the most extended open-source tools for

network simulation we can find OMNET?? Cogitative

Software FZE [6], GNS3 SolarWinds Worldwide [18], or

Mininet Contributors [9], among others.

6082 Cluster Computing (2024) 27:6081–6095

123

Since the purpose of this work paper is to provide

readers with a way of learning about VPNs with no addi-

tional resources or funding, we discarded commercial tools

like Riverbed or Cisco Packet Tracer for this lab. Although

these tools have academic licenses, the temporal validity of

these licenses could limit the utility of this work. Addi-

tionally, they do not completely fit the proposed lab ses-

sion. For example, Cisco Packet Tracer (at least in its 7.3.1

release) only allows ms-dos commands in the prompt

utility for the computers attached to the network

infrastructure.

Regarding the open-source available tools, all of them

could be used for lab teaching Virtual Private Networks

(VPN) fundamentals based on OpenVPN. Nevertheless, the

advantage of NETinVM Pérez et al. [15] over these tools is

that the required network infrastructure is already built,

configured and fully operational in the NETinVM virtual

machine, with no additional effort from the teacher to build

and configure the network for the lab session. Unlike the

case of OMNET?? or Mininet, the teacher does not need

to program (in C??, ned or python) nor configure the

hosts and routers in order to have a infrastructure on which

the lab session can be carried out.

Additionally, NETinVM uses nested virtualization

instead of simulation, which allows the deployment of

other VPN technologies like Wireguard VPN tunnels Jason

A. Donenfeld [19] just by exactly following the docu-

mentation for its installation on Linux systems. In this

sense, we completely carried out the process described in

the guide ‘‘How to Install Wireguard VPN on Debian 11’’

Howtoforge Linux tutorials [20]: we installed wireguard on

two hosts of NETinVM, configured them and connected a

wireguard client to a server just following the exact com-

mands shown in the tutorial. This NETinVM feature sig-

nificantly facilitates the design of open exercises to explore

new solutions and keep up to date with new technologies.

Moreover, since NETinVM uses off-the-shelf components

to build networks and computers, it can also be used in

many other network-related learning scenarios beyond

VPNs, like construction and analysis of firewalls with

iptables or nftables, network monitoring using SNMP, or

traffic analysis using TCPDUMP and/or Wireshark, etc..

Although some of the functionality can be attained by

using containers instead of nested virtual machines, doing

so would limit the usefulness of NETinVM. For example,

partitioning a disk or configuring IPTABLES can’t be done

inside a container. Furthermore, if the objective is to show

how a VPN server can be deployed in a container, this can

be also done in NETinVM, since containers can run inside

the nested virtual machines. Nevertheless, the use of con-

tainers can reduce the realism of the proposed lab session

in this work, since the configuration of the network

interfaces, disks and other elements are different from a

real (or virtual) machine.

Due to all these reasons, we selected NETinVM as the

tool for the proposed lab session.

3 Background

NETinVM is a single VMware virtual machine image that

contains, ready to run, a series of Kernel Virtual Machine

(KVM) virtual machines which, when started, conform a

whole computer network inside the VMware virtual

machine. Hence the name NETinVM, an acronym for

NETwork in Virtual Machine. Each of the KVM machines

can be independently run. There are some pre-configured

scripts to run and stop the desired KVM machines, and a

backup of the whole system can be saved or retrieved at

any moment. For a detailed description, full documentation

and tutorials, the NETinVM web page can be consulted

Pérez and Pérez [21]. When started, the KVM machines

form a computer network named ‘‘example.net’’ whose

logic structure is shown in Fig. 1. It consists of an ’’ex-

ternal’’ network to simulate Internet. Between the external

network and the corporative network there is a firewall,

consisting of a station called ’’fw’’. The firewall is directly

attached to a perimetric network (called DMZ) and the

internal network, each one with several computers. This

structure allows to simulate different situations, including

the building and configuration of VPNs between the

external and internal networks.

The physical structure of NETinVM is shown in Fig. 2.

NETinVM is pre-configured to create three interconnected

virtual networks, playing the role of the corporate,

perimeter and external networks of an organization. These

Fig. 1 Logical structure of NETinVM

Cluster Computing (2024) 27:6081–6095 6083

123

networks are named ‘‘int’’ (for internal network), ‘‘dmz’’

(for DMZ or demilitarized zone, which is often used as a

synonym for perimeter network) and ‘‘ext’’ (for external

network). One of the KVM machines, ‘‘fw‘‘ (for firewall),

interconnects the three networks providing communication

and packet filtering, as shown in Fig. 2. The rest of KVMs

have a single network interface connected to the network

they are named after, as follows (where X can be from ‘‘a’’

to ‘‘f’’): intX KVMs are connected to the internal network.

These machines only offer the SSH service. dmzX KVMs

are connected to the perimeter network (DMZ). They are

conceived as bastion nodes. In this network there are two

machines with alias. ‘‘dmza’’ has the alias ‘‘www.exam-

ple.net’’ and it provides HTTP and HTTPS services;

‘‘dmzb’’ has the alias ‘‘ftp.example.net’’ and it offers FTP.

Finally, extX KVMs are connected to networks that are

external to the organization (e.g., ‘‘Internet’’). These three

networks are connected through base to VMware’s ‘‘vm-

net8’’ (NAT) virtual network, which allows the connection

of KVM to external (real) networks.

The default gateway for the internal and perimeter net-

works (machines ‘‘intX’’ and ‘‘dmzX’’) is ‘‘fw’’, and for

‘‘fw’’ is the IP address of ‘‘base’’ in the ‘‘ext’’ network. The

machines on the external network (‘‘extX’’) have ‘‘base’’ as

the default gateway, and ‘‘fw’’ as the gateway to access the

perimeter and internal networks. Therefore, the traffic

among KVM machines of the three networks always goes

through ‘‘fw’’, while the traffic directed to machines out-

side ‘‘base’’ goes through ‘‘fw’’ if and only if it comes from

the internal or the perimeter networks. All the traffic to the

outside world goes through ‘‘base’’, which has IP for-

warding and NAT enabled and routes back external traffic

through the ‘‘ext’’ network. Communications between

‘‘base’’ and any KVM machine are carried out directly,

without passing through ‘‘fw’’ (provided that the IP of

‘‘base’’ corresponding to the network of the KVM machine

is used). This arrangement is convenient because it allows

access from ‘‘base’’ to all KVM machines using SSH,

regardless of the configuration of routing and packet fil-

tering in ‘‘fw’’. The KVM machines can communicate to

Fig. 2 General structure of NETinVM

6084 Cluster Computing (2024) 27:6081–6095

123

each other via standard network protocols. All KVM

machines have the SSH service enabled by default and

there are bastion nodes offering HTTP and FTP services,

but any other standard IP service can be also configured

(NFS, SMTP,...).

Since the first paper about NETinVM was published

Pérez et al. [15], significant implementation changes have

been added to NETinVM in successive updates, although

the basic design remains unchanged. The most relevant

updates are the use of KVM (Kernel Virtual Machines) to

provide nested virtualization, the use of OVS (Open Virtual

Switch) for building virtual networks, and the use of Lib-

virt (with ‘‘virt-manager’’ and ‘‘virsh’’) to manage virtual

machines, storage and networking in ‘‘base’’. Furthermore,

since ‘‘virt-manager’’ provides each machine with a

graphical console, now it is possible to selectively start a

LXDE desktop in the KVM machines Carlos Pérez and

David Pérez [22]. Since all of these new components are

mainstream, NETinVM can now be used to teach and learn

about virtual machine management (in addition to its tra-

ditional use for learning about security, operating systems

and computer networking).

Using this virtual infrastructure, the next section

describe a hands-on lab session that guides the student

through the setting up and configuration of different VPNs.

4 VPN lab session

In this section, we describe the main features of the lab

session about VPNs designed with the nested virtualization

tool NETinVM, highlighting the exercises and questions

that the NETinVM features allow to be asked to ensure the

students understand the mechanisms underlying the open-

vpn commands.

4.1 Methodology

The lab session proposed in this work was carried out first

time in the 2022–2023 academic year in the official course

of Architecture of Computer Networks, a course in the

third year of the Degree of Computer Engineering at

University of Valencia (Spain). The course is part of sev-

eral network courses, and it focuses on the higher layers of

the TCP/IP protocol stack, as well as security issues in

networks. The course includes 4 mandatory, on-site labs

which students must attend, under the guidance, support

and supervision of an instructor (professor). Each lab group

has between 16 and 18 students, grouped in pairs.

The proposed lab session is scheduled just after half of

the semester. Since the beginning of the course, all the

material of the lab session is available to students, as if they

want to carry out the lab session in advance. This material

includes a link to download NETinVM, and two docu-

ments: first, a short introduction to VPNs, including the

VPN classification accepted by the Spanish Centro Crip-

tológico Nacional, depending on the Ministry of Defense,

Spain Centro Criptológico Nacional [23], and a brief

explanation of OpenVPN internals Crist and Keijser [24].

Second, a session guide with the exercises to be carried out

to install and configure a VPN within the NETinVM

infrastructure.

The time scheduled for all the lab sessions is two hours

and a half. The lab session starts with a written, very short

exam (10 min) which students must take individually. This

mini-exam asks questions about the concepts an steps

explained in the two documents cited above, and its pur-

pose is to ensure that students have previously studied them

and they understand what they are going to do. Next, the

students must follow the lab session guide, carrying out all

the exercises and answering all the questions asked in that

document. They must upload a report with all the exercises

and answers at the end of the lab session. The activities

indicated in the lab sessions guide are described in the next

subsections, and are the same required to set up a real VPN

on a real infrastructure.

Although in our case the lab session was carried out on-

site, and additional advantage of using NETinVM is that

the same lab session can be carried out online. In that case,

videoconferencing tools like Zoom or Teams for tutoring

sessions, since the student can share his/her screen and

even give up the control of the NETinVM machine to the

instructor. Also, remote connections using SSH can be

done. In this case the students must connect through SSH to

the instructor machine (it can be a virtual machine) and re-

direct ports to allow the SSH connection of the instructor.

For the sake of shortness, we have not included in this

section all the commands used in the lab session. Those

readers interested in the detailed commands for imple-

menting in NETinVM both an OpenVPN-based VPN and a

PKI infrastructure can check appendix 1.

Since the OpenVPN packages required for this lab are

not installed by default in the KVMmachines, we must first

install them in all the machines involved in a VPN. In

particular, these packages should be installed in the

NETinVM machines extc, intc, and inta.

4.2 Point-to-point VPN using clear text tunnel

Once the required software is installed, the first step will

consist in installing a point-to-point VPN using a clear text

tunnel between the machines intc (acting as a client) and

extc (acting as the server). We can directly follow the

examples given in the OpenVPN reference book ’’Mas-

tering OpenVPN’’ Crist and Keijser [24].

Cluster Computing (2024) 27:6081–6095 6085

123

4.2.1 Setting up the VPN from the command line

In this case the setting of the VPN is done as a single

command on two KVM machines. If everything has gone

fine, the output on the client side should be something

similar to the one shown in Fig. 3.

Figure 3 shows how the tun0 interface is opened and the

connection is established. Using this output, some ques-

tions may be asked to the students:

• Which virtual interfaces is using the VPN?

• Which sockets (local and remote) are being used? UDP

or TCP sockets?

• Which cipher algorithm is being used? Why?

At this point, students are asked to carry out the next

exercise (we will denote as ’’Exercise A’’): open new ter-

minals on both machines to ping each other, and use the

Wireshark tool in the NETinVM desktop to capture the

traffic between both sides of the connection. In order to

make students analyze the IP packet encapsulation in any

of the captured frames, the next questions may be asked:

• Analyze the first fame captured. Have the IP addresses

changed?

• Is there any VPN tunnel?

• Where can you see (if possible) the original IP

addresses 10.200.0.2 and 10.200.0.1?

Figure 4 illustrates this exercise. It shows a snapshot of the

Wireshark application, where a packet sent from intc (IP

address 10.5.2.12) to extc (10.5.0.12) is selected. The

HMAC field of the OpenVPN protocol, shown in the

intermediate frame of the snapshot, includes the IP

addresses used in the tunnel (0a c8 00 02 and 0a c8 00 01).

Also, the lower part of the snapshot shows the hexadecimal

values of the whole frame, and it can be seen that the

encapsulated IP packet shows the source and destination

addresses of the tunnel in hexadecimal format.

Next, the following exercise (which we will denote as

’’Exercise B’’): using nc application is proposed: start

Wireshark and capture the traffic in the ‘‘mirror-int’’

interface.1 Since the VPN connection keeps busy console1

of both extc and intc,2 we should login in console2 of these

machines. We will login as root, and in console2 of both

extc and intc we will use nc to generate messages to be

transmitted through the tunnel.

4.2.2 Setting up the VPN from a configuration file

The next step in the lab session consist of introducing the

student to the syntax of the main options that can be

included in a configuration file, following the examples

shown in Crist and Keijser [24]. The session guide should

explain how each option specified in the command line can

also be specified in a configuration file.

As an exercise to practise, the students are asked to

repeat the last exercise but now using configuration files

instead of the command line in both server and client.

At this point, the session guide should introduce the

daemon and log options, explaining that the implemen-

tation as a daemon prevents any output to directed to the

console. Also, it is important to highlight the use of the ps

aux | grep concatenated commands in order to see

whether the VPN is still being executed or not. As an

illustrative example, Fig. 5 shows the configuration file

which students must write on the client side.

4.3 Point-to-point VPN using pre-shared keys

The session guide explains that in this case the secret key

should be generated and copied to both ends of the con-

nection (using SCP, for example). The command option --

genkey and the level of debugging --verb are

explained. In order to copy the generated key, the shared

directory among all the KVM machines in NETinVM is

used3

At this point, the session guide asks the students to

capture a snapshot with the output generated by the com-

mand issued in the server side. An example (with increased

verbosity) is shown in Fig. 6

Fig. 3 Output in the client side (intc machine)

1 ‘‘mirror-int’’ is a virtual Ethernet interface in ‘‘base’’ that is

connected to a mirror port preconfigured in the ‘‘int’’ switch to make

it easy to capture and analyze traffic in the internal network.
2 ‘‘consoleX’’ is a terminal directly attached to a virtual serial port in

the virtual machine. This avoids that this interface generates network

traffic, making it easier to analyze captured network traffic.
3 This shared folder is implemented using a ‘‘virtualfs’’ filesystem.

‘‘virtualf’’ is a Linux kernel’s standard component that lets guest

Linux systems access to a directory in its host’s filesystem. This

access has the advantage (over SMB, NFS, or any other network

filesystem) that it doesn’t generate any network packets (simplifying

the analysis of network traffic).

6086 Cluster Computing (2024) 27:6081–6095

123

Also, students are asked to repeat the exercises A and B

of section A.1.1 to see how a sniffer cannot capture data in

clear text now, neither the tunnel IP addresses nor the text

sent by the nc application.
4.4 PKI deployment. Client/server VPN

The last part of the lab session is devoted to the client/server

mode, where the server is a single OpenVPN process to

Fig. 4 Wireshark capture

showing the encapsulated IP

addresses in the IP payload field

Fig. 5 Client configuration file

Fig. 6 Output delivered by the server to the openvpn command when

used with the –secret and increased verbosity

Cluster Computing (2024) 27:6081–6095 6087

123

which multiple clients can connect. Each authorized and

authenticated client is assigned an IP address from an address

pool managed by the server. Clients cannot communicate

among them directly. Instead, all the traffic flows through the

server (unless the ’’client-to-client’’ option is used and the

appropriate rules are set in the firewall and/or routers).

In this part, the lab session will try to emulate the uni-

versity network with NETinVM. The VPN server will be

extc, one client will be installed in intc, and another client

will be installed in inta, and from both machines we will

access the http server through the VPN tunnel as if these

machines had another IP addresses. Also, the need for

establishing a PKI infrastructure is explained. In this ses-

sion we use the easy-rsa package for generating the items

required to set up the PKI, which are:

• A private key and a X.509 certificate for the Certifying

Authority (CA) who signs documents.

• A private key and a X.509 signed certificate for the

server.

• A private key and a X.509 signed certificate for each

client.

• A Diffie-Hellman group for the server

In NETinVM, the shared directory � /shared is used to

copy the files that should be created in the server (extc) and

then copied to each client. Also, we use the file � /

easyrsa/vars.example as a template to configure the infor-

mation to be specified in the certificates. Using the Easy-

RSA�3.0.7 package, installed in extc, the students are able

to practise the whole process of generating the PKI for the

server (extc) and the two clients (intc and inta). Files can be

copied between machines using the aforementioned shared

directory.

Once the PKI infrastructure has been set up, the guide

explain the configuration file for the server:

Listing 1 Server configuration file

proto udp
port 1194
dev tun
server 10.200.0.0 255.255.255.0
topology subnet
persist -key
persist -tun
keepalive 10 60
dh /etc/openvpn/keys/dh.pem
ca /etc/openvpn/keys/ca.crt
cert /etc/openvpn/keys/servidor.crt
key /etc/openvpn/keys/servidor.key
tls -auth /etc/openvpn/keys/ta.key 0
user nobody
group nogroup \# use ’group nogroup ’ on Ubuntu
verb 3
daemon
log -append /var/log/openvpn.log

and the one for the clients:

Listing 2 Client configuration file

client
proto udp
remote extc.example.net
port 1194
dev tun
nobind
remote -cert -tls server
tls -auth /etc/openvpn/keys/ta.key 1
ca /etc/openvpn/keys/ca.crt
cert /etc/openvpn/keys/client2.crt
key /etc/openvpn/keys/client2.key

It must be noted that the files ’’client2.key’’ and

’’client2.crt’’ should be used in inta, but these files should

be ’’client1.key’’ and ’’client1.crt’’ in intc.

In order to test the configuration, it is required that

Wireshark is installed on extc. The client/server exercise

proposed to the students in the session guide consists of

starting the LXDE desktop in extc (the session guide ref-

erences section ’’Taking advantage of KVM and libvirt’’ of

NETinVM documentation Carlos Pérez and David Pérez

[22]), and two instances of Wireshark Sharpe et al. [25].

The students should start one of the instances to capture the

traffic traversing the ’’tun0’’ interface, while the other

should capture the traffic traversing the ’’eth0’’ interface.

Then, students should issue ping commands to the VPN

server (ping -c 3 10.200.0.1) from the intc console, and

compare the frames captured by both interfaces, explaining

the differences. Figure 7 shows the different frames dis-

played by each interface.

The final step is to enable IP routing in the server (extc),

allowing the clients (inta and intc) to use the VPN tunnel to

access other machines in the server network (10.5.0.0/24).

The exercise asks the student to write down the configuration

file for a client/server VPN analogous to the one of the

University of Valencia, where the server emulating

vpn.uv.es is extc, and there are two clients emulating the

laptop of both students at their homes: inta and intc. How-

ever, in this case the tunnel will use the range of IP addresses

10.5.0.48/28, allowing the use of the IP addresses

10.5.0.49�10.5.0.62. The PKI infrastructure should assign

the client1 certificate to inta, which will establish the VPN in

first place, and the client2 certificate to intc, which will

establish the VPN in second place. The students are asked to

execute in extc the command tcpdump -i tun0 -n and

then execute in intc the command ping -c 4 10.5.0.50

The students should show the configuration files in both

server and clients, and they are asked to detail and explain

the differences existing between the output of the ping in

intc and the output of the tcpdump in extc. The output in

both machines are shown in Fig. 8. This figure shows how

6088 Cluster Computing (2024) 27:6081–6095

123

Fig. 7 Frames captured by tun0 and eth0 interfaces at extc machine when pinging from intc to the VPN tunnel address 10.200.0.1

Fig. 8 Output of the tcpdump command (in extc) and the ping command (in intc) showing the redirection carried out by the VPN

Cluster Computing (2024) 27:6081–6095 6089

123

the redirect messages are shown in both client and server,

and the differences in the number of messages exchanged.

5 Learning impact

Traditional Lecture-Based Learning (LBL), where the

teacher makes an oral presentation intended to present the

main concepts of the course, is usually complemented in

Computer Science education with exercises or labs to be

carried out by the students Dehbozorgi et al. [26]. This is

the case for a Computer Networks course at University of

Valencia. This is a mandatory course scheduled in the third

year of the Degree of Computer Engineering. The course is

part of several network courses, and it focuses on the

higher layers of the TCP/IP protocol stack, as well as

security issues in networks. Since one of the goals of this

course is to provide the students with practical skills in

computer networks, we have extended the traditional LBL

model with the lab session described in Sect. 4, introducing

students to the details of VPNs. NETinVM is run locally by

students during the lab session, with the on-site guidance

and support of the professor, although it could also be made

available online. In fact, we have used NETinVM in other

online courses. When this approach is used, the student can

share his screen and, if necessary, even let the instructor

control his copy of NETinVM.

The feasibility of the proposed LBL activity (the lab

session) fully relies on NETinVM, since the set up of

different VPNs would significantly affect the configuration

of the actual network infrastructure of the University,

taking into account that 45 students were enrolled in the

course. Therefore, we asked the students to evaluate the

activity, instead of the tool. Concretely, we made an

anonymous and voluntary survey, asking the students

(grouped by teams formed by two or three students) to

evaluate the proposed activity, carried out as the 4th lab

session. In particular, we asked two questions with button

answers, where the students selected one among the four

lab sessions carried out during the course. Also, a third

question asked for a mark (ranging between 0 and 10

points, being 10 the best possible one) to evaluate the

activities carried out in the proposed lab session. Never-

theless, only 23, 17 or 24 students answered the different

questions of the survey. Since the necessary number of user

answers in studies focused on human-computer interaction

should be no less than 40 Hornbaek [27], no statistically

significant studies can be performed on the answers of the

23 students who answered the survey (it was a voluntary,

anonymous survey). Nevertheless, some general ideas can

be extracted.

The first question of the survey was in which of the lab

sessions of the course did the student think that he/she had

learned the most about the topic of the session. Table 1

shows the results for this question, both in absolute values

and in terms of percentage. This table shows that almost

40% of the students considered that this lab session had

provided them with the highest level of learning over the

rest of lab sessions.

The other question asked the students which lab session

they thought it was the most useful one for their profes-

sional activity. Table 2 shows the results corresponding to

this question, which was answered by 17 students. Again,

the proposed lab session was selected by more than 40% of

the students.

Finally, the students were requested to evaluate the

activities carried out in the proposed lab session by

selecting a mark ranging between 0 and 10 points, being 10

the best possible one. Table 3 shows the results of the

survey. Each column shows each of the possible values

(ranging from 0 to 10) answered, and the only row in the

table shows, for each of these values, the number of stu-

dents who answered that value. A total of 24 students

answered this question. Around a 74% of the students

marked the activity with 7 points or higher, and the average

mark is 7,17. These results show that students at least do

not consider that the tool used in the lab session reduces the

potential learning, as a real network infrastructure often

does. Therefore, we can conclude that the proposed lab

session is a feasible way of introducing students in actual

but complex computer network concepts like VPNs.

6 Conclusions and future work

In this work, we have proposed an implementation of a lab

session about Virtual Private Networks based on

NETinVM. A fully guided lab text is delivered to students

with the exercises to be carried out to install and config-

ure a VPN within the NETinVM infrastructure. Different

VPN configurations are deployed and analyzed, ranging

from simple, point-to-point VPN with no encryption nor

authentication launched from the command line, to a client/

server mode VPN using a Public Key Infrastructure (PKI)

with X.509 certificates. The procedure to install and con-

figure OpenVPN in NETinVM is exactly the same as the

one required in a real world scenario with physical com-

puters and networks. This means that the NETinVM

infrastructure is well suited to autonomous student work

and self-learning activities. Although nested virtualization

components are generally available, setting up the virtual

infrastructure necessary to perform activities similar to the

one presented in this paper would require a significant

effort, even for people with the adequate computer skills.

Evaluation results show that the level of learning

achieved by the students through this lab session seems to

6090 Cluster Computing (2024) 27:6081–6095

123

be higher than in the other lab sessions of the course, and

they consider this lab useful for their professional devel-

opment. Also, the average evaluation of the lab session is

high. These results show that students at least do not

consider that the tool used in the lab session is an

impairment that prevents or reduce the potential learning,

like a real network infrastructure often is. Therefore, we

can conclude that the proposed lab session is a feasible way

of introducing students in actual but complex computer

network concepts like VPNs.

As a future work to be done, we plan to carry out the

same lab in other courses the next term, extending the

survey to more students for collecting a statistically sig-

nificant number of answers which allow a complete

human-computer study.

We think this experiment suggests several interesting

topics of future work to be done. First of all, we plan to to

carry out the same lab in other courses the next term,

extending the survey to more students for collecting a

statistically significant number of answers which allow a

complete human-computer interaction study.

We also plan to test other complex network scenarios,

such as other VPN services (eg: WireGuard), LAN seg-

mentation with VLANs, network filtering with NFTA-

BLES or load balancing using reverse proxies.

Although not directly related with networks, we also

plan to tackle system administration scenarios, such has

using containers, remote backup of KVM virtual machines,

live migration of KVMs, network filesystems such as NFS

or testing advanced features of BTRFS.

We are also performing security exercises based on the

instructor’s remote access to the students’ NETinVM (with

express consent, of course). And lastly we are testing ways

of hosting large numbers of NETinVM instances on a

personal computer using design options similar to those

used to accommodate a handful of nested KVM machines

in a virtual machine with only 4 GB of RAM, such as

NETinVM itself.

Appendix 1 Detailed VPN Lab session

Point-to-point VPN using clear text tunnel

Since the OpenVPN packages required for this lab are not

installed by default in the KVM machines, we must first

install them in all the machines involved in a VPN. We

must enter as root in the console of the machine, and

execute the commands #apt-get update and #apt

install openvpn. Since this lab uses the NETinVM

machines extc, intc, and inta, these commands should be

executed in these three machines to install openvpn in all

of them.

Once the required software is installed, the first step will

consist in installing a point-to-point VPN using a clear text

tunnel between the machines intc (acting as a client) and

extc (acting as the server). We can directly follow the

examples given in the OpenVPN reference book ’’Mas-

tering OpenVPN’’ Crist and Keijser [24].

Setting up the VPN from the command line

In this case the setting of the VPN is done as a single

command on each machine:

1. Start the server side in listening mode:

root@extc: ~# openvpn --ifconfig

10.200.0.1

10.200.0.2 --dev tun

2. Start the client side:

root@intc: ~# openvpn --ifconfig

10.200.0.2

Table 1 Evaluation of the

learning achieved in each of the

four lab sessions

Possible values (lab session number)

Lab sess. 1 Lab sess. 2 Lab sess. 3 Lab sess. 4

Number of answers 5 (22%) 2 (9%) 7 (30%) 9 (39%)

Table 2 Perception of the lab

sessions usefulness
Possible values (lab session number)

Lab sess. 1 Lab sess. 2 Lab sess. 3 Lab sess. 4

Number of answers 1 (30%) 0 (0%) 6 (26%) 10 (43%)

Table 3 Evaluation of the activity provided by the students

Marks obtained (in the range from 0 to 10)

0 2 4 5 6 7 8 9 10 Avg.

Number of answers 1 1 2 1 2 5 8 1 3 7.17

Cluster Computing (2024) 27:6081–6095 6091

123

10.200.0.1 --dev tun --remote

extc.example.net

If everything has gone fine, the output on the client side

should be something similar to the one shown in Fig. 3,

which shows how the tun0 interface is opened and the

connection is established.

Next, the following exercise (which we will denote as

’’Exercise B’’) using nc application is proposed: start

Wireshark and capture the traffic in the ‘‘mirror-int’’

interface.4 Since the VPN connection keeps busy console1

of both extc and intc,5 we should login in console2 of these

machines. We will login as root, and in console2 of extc we

will type

root@extc: # nc -l -p 31000

In console2 of intc (client side) we will type first

root@intc: # nc 10.200.0.1 31000

Next, we will type any message we want to transmit

through the tunnel, for example:

root@intc: # nc 10.200.0.1 31000 hi, from

the client side

Setting up the VPN from a configuration file

The next step in the lab session consist of introducing the

student to the syntax of the main options that can be

included in a configuration file, following the examples

shown in Crist and Keijser [24]. The session guide should

explain that each option specified in the command line with

the syntax

--\option[\option arguments[
can also be specified in a configuration file using the

syntax

\some option[\option-arguments[
that is, removing the two dashes before the option of the

command line.

The invocation of the configuration file from the com-

mand line is done using the arguments

--config\conf_file_name[
when invoking openvpn.

As an exercise to practise, the students are asked to

repeat the last exercise but now using configuration files

instead of the command line in both server and client.

At this point, the session guide should introduce the

daemon and log options, explaining that the implemen-

tation as a daemon prevents any output to directed to the

console. Also, it is important to highlight the use of the ps

aux | grep concatenated commands in order to see

whether the VPN is still being executed or not. As an

illustrative example, Fig. 5 shows the configuration file

which students must write on the client side.

Point-to-point VPN using pre-shared keys

The session guide explains that in this case the secret key

should be generated and copied to both ends of the con-

nection (using SCP, for example). The command

root@extc: # openvpn --genkey --secret

secret.key

is explained. Also it is explained that if OpenVPN starts

with an augmented level of debugging (greater or equal

than –verb 7) then the keys are printed when program is

started.

At this point, an example using NETinVM is shown. In

order to copy the generated key, the shared directory

among all the KVM machines in NETinVM is used6: in

extc, the command

root@extc: # cp secret.key./shared

while in intc we will copy the key to the working

directory:

root@intc: # cp./shared/secret.key /

root

And we start the OpenVPN daemon in both ends. In the

server the command is:

root@extc: # openvpn --ifconfig

10.200.0.1 10.200.0.2 --dev tun --secret

secret.key --verb 7

while in the customer is:

root@intc: # openvpn --ifconfig

10.200.0.2

10.200.0.1 --dev tun --secret secret.key

--remote extc.example.net

At this point, the session guide asks the students to

capture a snapshot with the output generated by the com-

mand issued in the server side.

PKI deployment. Client/server VPN

The last part of the lab session is devoted to the client/

server mode, where the server is a single OpenVPN process

to which multiple clients can connect. Each authorized and

authenticated client is assigned an IP address from an

address pool managed by the server. Clients cannot com-

municate among them directly. Instead, all the traffic flows

4 ‘‘mirror-int’’ is a virtual Ethernet interface in ‘‘base’’ that is

connected to a mirror port preconfigured in the ‘‘int’’ switch to make

it easy to capture and analyze traffic in the internal network.
5 ‘‘consoleX’’ is a terminal directly attached to a virtual serial port in

the virtual machine. This avoids that this interface generates network

traffic, making it easier to analyze captured network traffic.

6 This shared folder is implemented using a ‘‘virtualfs’’ filesystem.

‘‘virtualf’’ is a Linux kernel’s standard component that lets guest

Linux systems access to a directory in its host’s filesystem. This

access has the advantage (over SMB, NFS, or any other network

filesystem) that it doesn’t generate any network packets (simplifying

the analysis of network traffic).

6092 Cluster Computing (2024) 27:6081–6095

123

through the server (unless the ’’client-to-client’’ option is

used and the appropriate rules are set in the firewall and/or

routers).

In this part, the lab session will try to emulate the uni-

versity network with NETinVM. The VPN server will be

extc, one client will be installed in intc, and another client

will be installed in inta, and from both machines we will

access the http server through the VPN tunnel as if these

machines had another IP addresses. Also, the need for

establishing a PKI infrastructure is explained. In this ses-

sion we use the easy-rsa package, which should be installed

in extc. Thus, the whole process of installing the package

and generating the following items is detailed in the session

guide:

• Download the correct version from GitHub:

root@extc: # wget -P

/https://github.com/OpenVPN/easy-

rsa/releases/download/v3.0.7/EasyRSA

�3.0.7.tgz

• Extract the tarball and rename the directory:

root@extc: # tar xvf EasyRSA

�3.0.7.tgz

root@extc: # mv �/EasyRSA �3.0.7/

�/easyrsa/

• In OpenVPN we need to create:

– A private key and a X.509 certificate for the

Certifying Authority (CA) who signs documents.

– A private key and a X.509 signed certificate for the

server.

– A private key and a X.509 signed certificate for

each client.

– A Diffie-Hellman group for the server

The EasyRSA�3.0.7 package, installed in extc, allows the

students to practise the whole process of generating a PKI

for the server as well as two clients, that are installed in intc

and inta. The initialization of the environment is started

with the command

extc: �/easyrsa#./easyrsa init-pki

This command creates a directory called ’’pki’’. At this

point, the Diffie-Hellman module should be generated:

extc: �/easyrsa#./easyrsa gen-dh

which generates a file called dh.pem in the pki/

directory.

Next, we should generate the public and private keys for

the Certification Authority (CA). When using this com-

mand, we should use the ’’nopass’’ option to avoid the need

of providing a password each time the private key is used.

The exact command is

extc: �/easyrsa#./easyrsa build-ca

nopass

which generates the public key (ca.crt file) and the pri-

vate key (ca.key) of the CA. Next, we will create a private

key for the server, and a X.509 certificate signing request

(CSR) including its public key:

extc: �/easyrsa#./easyrsa gen-req

servidor nopass

OpenVPN also needs the server certificate, digitally

signed by the CA. In order to get it, the guide explains the

required command:

extc: �/easyrsa#./easyrsa sign-req

server servidor

This command leaves the signed certificate in the file

/root/easyrsa/pki/issued/servidor.crt. The next step con-

sists of creating the private key and the X.509 digital

certificate for each client, and signing the latter with the

CA created before with the commands

extc: /easyrsa#./easyrsa gen-req cli-

entX nopass

extc: /easyrsa#./easyrsa sign-req cli-

ent clientX

extc: /easyrsa#./easyrsa sign-req cli-

ent clientX

Finally, OpenVPN needs a symmetric key for TLS,

which can be generated in the server with the command

extc: �/easyrsa# openvpn --genkey --

secret ta.key

At this point, the files required for the server (dh.pem,

ca.crt, servidor.key, servidor.crt, and ta.key) should be

copied to the directory /etc/openvpn/keys in the server

(extc), and for each client (intc and inta machines) the

required files (clientX.key, ca.crt, and ta.key) should also

be copied (through the use of the ‘‘shared’’ directory) to the

directory /etc/openvpn/keys of intc (X=1) and inta (X=2).

Once the PKI infrastructure has been set up, the guide

explain the configuration file for the server, as shown in

listing 1, and also for the clients, as shown in listing 2.

It must be noted that the files ’’client2.key’’ and

’’client2.crt’’ should be used in inta, but these files should

be ’’client1.key’’ and ’’client1.crt’’ in intc.

In order to carry out the next exercise, it is required that

Wireshark is installed on extc,

root@extc: �# apt-get update

root@extc: �# apt install wireshark

The client/server exercise proposed to the students in the

session guide consists of starting the LXDE desktop in extc

(the session guide references section ’’Taking advantage of

KVM and libvirt’’ of NETinVM documentation Carlos

Pérez and David Pérez [22]), and two instances of Wire-

shark Sharpe et al. [25]. The students should start one of

the instances to capture the traffic traversing the ’’tun0’’

interface, while the other should capture the traffic

traversing the ’’eth0’’ interface. Then, students should issue

ping commands to the VPN server (ping -c 3 10.200.0.1)

Cluster Computing (2024) 27:6081–6095 6093

123

from the intc console, and compare the frames captured by

both interfaces, explaining the differences.

The final exercise in the lab session requires the acti-

vation of routing in the server (extc) with the command

root@extc: �# sysctl -w

net.ipv4.ip_forward=1

The exercise asks the student to write down the con-

figuration file for a client/server VPN analogous to the one

of the University of Valencia, where the server emulating

vpn.uv.es is extc, and there are two clients emulating the

laptop of both students at their homes: inta and intc.

However, in this case the tunnel will use the range of IP

addresses 10.5.0.48/28, allowing the use of the IP addresses

10.5.0.49�10.5.0.62. The PKI infrastructure should assign

the client1 certificate to inta, which will establish the VPN

in first place, and the client2 certificate to intc, which will

establish the VPN in second place. The students are asked

to execute the command

root@extc: �# tcpdump -i tun0 -n

and then execute the command

root@intc: �# ping -c 4 10.5.0.50

The students should show the configuration files in both

server and clients, and they are asked to detail and explain

the differences existing between the output of the ping in

intc and the output of the tcpdump in extc. The output in

both machines are shown in Fig. 8. This figure shows how

the redirect messages are shown in both client and server,

and the differences in the number of messages exchanged.

Author contributions JMO designed and taught the computer network

lab session during the second term of academic course 2022–2023. He

also carried out the surveys shown and analyzed in this work. CP

designed and developed the nested virtualization tool, and he helped

in the design of the lab session. Both authors participated in the

writing of the article.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Sarkar, N.: Teaching computer networking fundamentals using

practical laboratory exercises. Educ. IEEE Trans. 49(2), 285–291
(2006)

2. Trabelsi, Z., Alketbi, L.: Using network packet generators and

snort rules for teaching denial of service attacks. In: Proceeding

of 18th ACM Conference on Innovation and Technology in

Computer Science Education. ACM, New York, pp 285–290

(2013)

3. O’Grady, M.J.: Practical problem-based learning in computing

education. Trans. Comput. Educ. 12(3), 10:1-10:16 (2012).

https://doi.org/10.1145/2275597.2275599

4. Carter, J.: (ed) ITiCSE ’13: Proceedings of the 18th ACM Con-

ference on Innovation and Technology in Computer Science

Education. ACM, New York (2013)

5. Bhat, A.Z., Mir, A.W., Pandey, J., et al.: Nested virtualization, an

implementation scenario for higher education institutions, solu-

tion, and performance issues. In: 2022 10th International Con-

ference on Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), pp 1–5 (2022), https://

doi.org/10.1109/ICRITO56286.2022.9965019

6. Cogitative Software FZE: OMNeT?? Discrete Event Simulator.

Accessed 14 May 2023 (2023), URL https://omnetpp.org/

7. Binkert, N., Beckmann, B., Black, G., et al.: The gem5 simulator.

SIGARCH Comput. Archit. News 39(2), 1–7 (2011). https://doi.

org/10.1145/2024716.2024718

8. Cisco Networking Academy: Cisco Packet Tracer. Accessed 14

May 2023 (2023), URL https://www.netacad.com/courses/

packet-tracer

9. Contributors, M.P.: Mininet: An Instant Virtual Network on your

Laptop (or other PC). Accessed 24 May 2023 (2023), URL

https://mininet.org/

10. Salah, K.: Harnessing the cloud for teaching cybersecurity. In:

Proc. of the 45th ACM Technical Symposium on Computer

Science Education. ACM, New York pp 529–534 (2014), https://

doi.org/10.1145/2538862.2538880

11. Willems, C., Klingbeil, T., Radvilaviciusyz, L., et al.: A dis-

tributed virtual laboratory architecture for cybersecurity training.

In: IEEE proceedings of the 6th International Conference on

Internet Technology and Secured Transactions. IEEE, Los

Alamitos, pp 408–415 (2011)

12. Abraham, S.: Virtual learning tools in cyber security education.

In: 16th Annual NY State CyberSecurity Conference,

pp. 408–415. IEEE, Los Alamitos (2013)

13. Xu, L., Huang, D., Tsai, W.T.: Cloud-based virtual laboratory for

network security education. Educ. IEEE Trans. 57(3), 145–150
(2014). https://doi.org/10.1109/TE.2013.2282285

14. Son CJoon; Irrechukwu, Fitzgibbons, P.: A comparison of virtual

lab solutions for online cybersecurity education. Commun. Int.

Inf. Manag. Assoc. 12(4), 81–96 (2012)

15. Pérez, C., Orduña, J.M., Soriano, F.: A nested virtualization tool

for information technology practical education. SpringerPlus

(2016). https://doi.org/10.1186/s40064-016-2041-8

16. Riverbed Technology: Riverbed modeler. Accessed 14 May 2023

(2023), URL https://support.riverbed.com/content/support/soft

ware/steelcentral-npm/modeler-index.html

17. Boson, L.L.C.: NetSim network simulator. Accessed 24 May

(2023), URL https://www.boson.com/netsim-cisco-network-

simulator

18. SolarWinds Worldwide: GNS: The software that empowers net-

work professionals. Accessed 14 May 2023 (2023), URL https://

gns3.com/

6094 Cluster Computing (2024) 27:6081–6095

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1109/ICRITO56286.2022.9965019
https://doi.org/10.1109/ICRITO56286.2022.9965019
https://omnetpp.org/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.netacad.com/courses/packet-tracer
https://www.netacad.com/courses/packet-tracer
https://mininet.org/
https://doi.org/10.1145/2538862.2538880
https://doi.org/10.1145/2538862.2538880
https://doi.org/10.1109/TE.2013.2282285
https://doi.org/10.1186/s40064-016-2041-8
https://support.riverbed.com/content/support/software/steelcentral-npm/modeler-index.html
https://support.riverbed.com/content/support/software/steelcentral-npm/modeler-index.html
https://www.boson.com/netsim-cisco-network-simulator
https://www.boson.com/netsim-cisco-network-simulator
https://gns3.com/
https://gns3.com/

19. Jason A. Donenfeld: Wireguard: fast, modern, secure VPN tun-

nel. Accessed 25 May 2023 (2023), URL https://www.wireguard.

com/

20. Howtoforge Linux tutorials: How to install wireguard vpn on

debian 11. Accessed 25 May 2023 (2023), URL https://www.

howtoforge.com/how-to-install-wireguard-vpn-on-debian-11/

21. Pérez, C., Pérez, D.: Netinvm: A tool for teaching and learning

about systems, networks and security. Accessed 10 Nov 2022

(2020), URL http://www.netinvm.org

22. Carlos Pérez, David Pérez.: Netinvm: A tool for teaching and

learning about systems, networks and security. Accessed 15 Dec

2022 (2016), URL https://informatica.uv.es/*carlos/docencia/

netinvm/netinvm.html#taking-advantage-of-kvm-and-libvirt-or-

how-to-use-the-lxde-desktop-in-the-kvms

23. Centro Criptológico Nacional.: Guı́a de seguridad de las tic ccn-

stic-836 - seguridad en redes privadas virtuales (vpn). (2022),

URL https://www.ccn-cert.cni.es/

24. Crist, E., Keijser, J.: Mastering OpenVPN. Community experi-

ence distilled, Packt Publishing, (2015) URL https://books.goo

gle.es/books?id=5VUqjgEACAAJ

25. Sharpe, R., Warnicke, E., Lamping, U.: Wireshark user’s guide.

Accessed 15 Dec 2022 (2020), URL https://www.wireshark.org/

docs/wsug_html_chunked/

26. Dehbozorgi, N., MacNeil, S., Maher, M.L., et al.: A comparison

of lecture-based and active learning design patterns in cs edu-

cation. In: 2018 IEEE Frontiers in Education Conference (FIE),

pp 1–8 (2018), https://doi.org/10.1109/FIE.2018.8659339

27. Hornbaek, K.: Some whys and hows of experiments in human-

computer interaction. Found. Trends Hum.-Comput. Interact.

5(4), 299–373 (2013). https://doi.org/10.1561/1100000043

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing (2024) 27:6081–6095 6095

123

https://www.wireguard.com/
https://www.wireguard.com/
https://www.howtoforge.com/how-to-install-wireguard-vpn-on-debian-11/
https://www.howtoforge.com/how-to-install-wireguard-vpn-on-debian-11/
http://www.netinvm.org
https://informatica.uv.es/%7ecarlos/docencia/netinvm/netinvm.html#taking-advantage-of-kvm-and-libvirt-or-how-to-use-the-lxde-desktop-in-the-kvms
https://informatica.uv.es/%7ecarlos/docencia/netinvm/netinvm.html#taking-advantage-of-kvm-and-libvirt-or-how-to-use-the-lxde-desktop-in-the-kvms
https://informatica.uv.es/%7ecarlos/docencia/netinvm/netinvm.html#taking-advantage-of-kvm-and-libvirt-or-how-to-use-the-lxde-desktop-in-the-kvms
https://www.ccn-cert.cni.es/
https://books.google.es/books?id=5VUqjgEACAAJ
https://books.google.es/books?id=5VUqjgEACAAJ
https://www.wireshark.org/docs/wsug_html_chunked/
https://www.wireshark.org/docs/wsug_html_chunked/
https://doi.org/10.1109/FIE.2018.8659339
https://doi.org/10.1561/1100000043

	Using a nested virtualization tool for teaching VPN fundamentals
	Abstract
	Introduction
	Network simulation tools
	Background
	VPN lab session
	Methodology
	Point-to-point VPN using clear text tunnel
	Setting up the VPN from the command line
	Setting up the VPN from a configuration file

	Point-to-point VPN using pre-shared keys
	PKI deployment. Client/server VPN

	Learning impact
	Conclusions and future work
	Appendix 1 Detailed VPN Lab session
	Point-to-point VPN using clear text tunnel
	Setting up the VPN from the command line
	Setting up the VPN from a configuration file

	Point-to-point VPN using pre-shared keys
	PKI deployment. Client/server VPN

	Author contributions
	Open Access
	References

