
A survey on the scheduling mechanisms in serverless computing:
a taxonomy, challenges, and trends

Mohsen Ghorbian1 • Mostafa Ghobaei-Arani1 • Leila Esmaeili1

Received: 15 September 2023 / Revised: 24 December 2023 / Accepted: 28 December 2023 / Published online: 18 February 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In recent years, serverless computing has received significant attention due to its innovative approach to cloud computing.

In this novel approach, a new payment model is presented, and a microservice architecture is implemented to convert

applications into functions. These characteristics make it an appropriate choice for topics related to the Internet of Things

(IoT) devices at the network’s edge because they constantly suffer from a lack of resources, and the topic of optimal use of

resources is significant for them. Scheduling algorithms are used in serverless computing to allocate resources, which is a

mechanism for optimizing resource utilization. This process can be challenging due to a number of factors, including

dynamic behavior, heterogeneous resources, workloads that vary in volume, and variations in number of requests.

Therefore, these factors have caused the presentation of algorithms with different scheduling approaches in the literature.

Despite many related serverless computing studies in the literature, to the best of the author’s knowledge, no systematic,

comprehensive, and detailed survey has been published that focuses on scheduling algorithms in serverless computing. In

this paper, we propose a survey on scheduling approaches in serverless computing across different computing environ-

ments, including cloud computing, edge computing, and fog computing, that are presented in a classical taxonomy. The

proposed taxonomy is classified into six main approaches: Energy-aware, Data-aware, Deadline-aware, Package-aware,

Resource-aware, and Hybrid. After that, open issues and inadequately investigated or new research challenges are dis-

cussed, and the survey is concluded.

Keywords Serverless computing � Function as a service � Scheduling algorithms � Energy-aware scheduling �
Data-aware scheduling � Deadline-aware scheduling � Package-aware scheduling � Resource-aware scheduling �
Makespan � Serverless edge computing � Resource management � Performance evaluation

1 Introduction

Cloud computing has gained significant attention in recent

years as an innovative and compelling method of deploying

cloud applications. Serverless computing has been

employed as a result of the recent evolution of enterprise

application architectures into microservice-based architec-

tures. Furthermore, with the help of this technology,

developers will have access to a simplified programming

model, simplifying the process of creating cloud applica-

tions and eliminating most—if not all—of the operational

concerns associated with infrastructure configuration.

Cloud-native code that responds to events can be deployed

rapidly [1, 2]. The function being executed by serverless

computing must be stateless and idempotent, which means

that it may be re-executed without causing any harm if it

fails. Therefore, the discussion of the system’s design is

now shifting towards strategies for managing containers

and developing software to maximize the system’s per-

formance based on a function-centric infrastructure [3, 4].

Cloud providers can utilize serverless computing to man-

age the entire development process and reduce operational

costs by optimizing and managing cloud resources effi-

ciently from the cloud provider’s perspective [5, 6].

Serverless Computing enables application developers to

break up large applications into smaller components,

allowing these components to be scaled individually.

& Mostafa Ghobaei-Arani

mo.ghobaei@iau.ac.ir

1 Department of Computer Engineering, Qom Branch, Islamic

Azad University, Qom, Iran

123

Cluster Computing (2024) 27:5571–5610
https://doi.org/10.1007/s10586-023-04264-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-2639-0900
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04264-8&domain=pdf
https://doi.org/10.1007/s10586-023-04264-8

However, this poses a new problem: managing many

functions coherently and allocating resources for them

[7, 8]. Depending on the required functionality, serverless

architectures can be used interchangeably with traditional

architectures. The decision to use serverless technology

will likely depend on other non-functional considerations,

including how operations are carried out, the cost, and the

application workload characteristics [9, 10]. Serverless

performance management practices can result in various

issues, including inconsistent and inaccurate limitations,

inefficient resource allocation, inadequate runtimes, mid-

chain function drops, concurrency collapses, and undocu-

mented function priorities from current practices. There-

fore, to alleviate these problems and create an efficient

resource management system, it is necessary to use a

resource allocation scheduler suitable for serverless and

chained functions. The scheduler is one of the main com-

ponents of the system resources management, allowing its

performance to be compared across the serverless resources

management service providers. One purpose of this feature

is to assist the user in selecting the appropriate scheduler

for the environment in which it is an implementation sys-

tem. As a result, identifying the purpose and environment

of the scheduling implementation is crucial to ensure that it

accomplishes its objectives in a system [11].

1.1 Research motivation and challenges

Serverless computing systems can utilize different sched-

ules based on the type of workload and implementation

objectives. Depending on the context and application, a

scheduler can deliver the best performance, while if it is

used in another context and application, it may deliver the

worst results. Thus, selecting a specific scheduler based on

the goals of each environment and program is more effi-

cient than choosing a variety of schedulers. Due to the

emerging nature of serverless technology, using of this will

inevitably face many challenges, particularly when allo-

cating resources. In contrast, to implement a successful and

efficient resource allocation process, it is necessary to

determine an appropriate schedule to ensure that resources

are not used inefficiently during the implementation pro-

cess. In the field of IoT, serverless computing has emerged

as one of the most promising research areas [12]. In light of

this, there is no doubt that selecting a suitable and efficient

scheduler in serverless computing is a good fit for IoT

applications, especially when it intersects with the discus-

sion of edge computing and fog computing infrastructures

[13]. Therefore, issues using a suitable scheduler to carry

out the resource-allocating process effectively and as effi-

ciently as possible to achieve maximum efficiency in this

technology is critical. However, there has been little

research conducted in the area of providing schedulers in

serverless environments. However, authors have attempted

to provide appropriate schedulers with the intended goals;

they propose appropriate solutions for existing challenges.

Despite the importance of this topic, to our knowledge, no

comprehensive and detailed study has been explicitly

published regarding the use of appropriate schedules in the

context of serverless computing.

1.2 Our contribution

This research will systematically review existing studies for

scheduling in the serverless computing field and evaluate

various scheduling techniques to provide a comprehensive

and systematic assessment of the mechanisms for selecting

and implementing schedulers based on their characteristics

and implementation. Several main contributions are pre-

sented in this review, which can be summarized as follows:

• Reviewing published articles on serverless computing

related to the scheduling approach provides insights

into each study’s scheduling methodologies and

strategies.

• We are analyzing and evaluating the latest scheduling

approaches and techniques in serverless computing.

• We are examining current approaches and developing a

classification based on these findings.

• We are discussing any underexplored or underserved

future research challenges that could be addressed to

improve scheduling techniques for serverless comput-

ing environments.

1.3 Organization of the paper

This paper is organized as follows: Sect. 2 presents back-

ground on serverless computing scheduling and various

features of scheduling applications; an overview of some

related survey articles is presented in Sect. 3, along with a

comparison of these articles. The research method used in

this study is described in Sect. 4; Sect. 5 concludes with a

classification of the techniques discussed, a summary

description of the plans, and a comparison of these tech-

niques. In Sect. 6, some discussions and comparisons are

also presented. There are some open issues outlined in

Sect. 7 that need to be addressed in the future. Finally, in

Sect. 8 the conclusion is presented.

2 Background

In this section, we provide a brief overview of serverless

computing and the scheduling process and will explain the

most important parameters involved in the scheduling

process.

5572 Cluster Computing (2024) 27:5571–5610

123

2.1 Overview of serverless computing

The serverless computing model enables cloud providers to

provide infrastructure management for customer resources

based on their needs. Serverless applications still require

servers, but developers are no longer required to manage

them. Thus, serverless enables developers to concentrate

on developing serverless applications by implementing

auto-scaling based on resource consumption [14]. Hence,

Providers of cloud services that advocate using function-as-

a-service (FaaS) in an organization should be capable of

assisting groups seeking to utilize FaaS. It is possible to

execute small, modular fragments using a serverless

architecture and a function-based model with the help of

FaaS. So, Software developers can use these services to

perform client-required functions. The serverless architec-

ture eliminates the need for developers to maintain dedi-

cated servers since applications are only activated when

used, eliminating the need to support dedicated servers

[15]. So, at the end of the function execution, once the

function has been completed successfully, it can be ter-

minated quickly to free up the same amount of computing

resources for other functions. Using FaaS, it is possible to

access applications on demand. Also, the applications can

be executed by a platform that coordinates and manages the

application resources so that they remain secure throughout

the entire process of running the application. Thus, cloud

service providers can simplify operations, reduce costs, and

improve scalability by managing servers to implement

applications [16]. This property permits them to concen-

trate more on developing application code than managing

servers. Generally, a FaaS model is an excellent choice for

simple, repetitive tasks, such as scheduling routine tasks,

processing queued messages, or handling web requests

regularly. Functions in an application are collections of

tasks defined independently as code pieces and executed

separately as individual tasks. The most efficient way to

utilize resources is to scale a single function rather than an

entire application because it does not require a whole

micro-service or application [17]. Cloud computing is a

method of federating many resources into a single machine,

and it is similar to parallel computing in many ways, such

as clustering and grid computing. Still, The main charac-

teristic of cloud computing is, however, virtualization.

Thus, computing resources can be scheduled as a service

for clients in this approach. A significant development in

computing is the availability of a wide range of highly

flexible devices, known as nodes, which can be deployed

anytime and anywhere; only a fee is incurred when they are

employed. Hence, with traditional computing environments

or data centers, achieving this goal would not be possible

due to the limitations of the existing technology [18]. It is

essential to note that unused, underused, and inactive

resources significantly impact energy waste. Therefore,

optimally scheduling cloud resources is one of a com-

pany’s most challenging tasks in managing cloud resources

[19]. There are many factors to consider when allocating

resources to cloud workloads, such as the applications

hosted in the cloud and the energy consumption of com-

puting resources. Appropriate techniques for allocating

resources are lacking to address the challenges associated

with uncertainty, dispersion, and heterogeneity within a

cloud environment. Developing more appropriate strategies

for giving resources within the cloud environment is nec-

essary [20]. By using a cloud-based approach that auto-

matically manages computing resources based on their

consumption as an influencing factor of service quality, it

is possible to resolve this issue. In addition to increased

scalability and faster development, this approach can

reduce costs [21].

2.2 Serverless computing features

A serverless computing approach will be able to respond to

all these requests and provide excellent resource manage-

ment conditions with these features. Several essential

advantages of the serverless computing approach include

scalability, security, visibility, faster development, and

reduced costs.

2.2.1 Scalability

The high scalability offered by serverless computing

technology means that developers will no longer have to

worry about the impact of heavy traffic since the system is

highly flexible and scalable. This property of serverless

computing is one of its most attractive features. Compared

to previous architectures, this architecture can address all

the concerns about scalability more efficiently than previ-

ous architectures [22]. Scalable applications can handle the

demands of many clients without experiencing a perfor-

mance loss whenever the number of requests increases. As

a result, auto-scaling instances must be designed in such a

way that they can handle traffic fluctuations regardless of

the number of users and requests. Consequently, using only

resources essential to the project is more efficient than

wasting unnecessary resources [23].

2.2.2 Visibility

It is essential to monitor a system to keep it healthy. Col-

lecting metrics such as CPU utilization, error logs, and

network traffic can use these data as inputs into incident

alert tools to prevent system failures. Sending out alarms

and notifications to staff can alert them to security, outages,

Cluster Computing (2024) 27:5571–5610 5573

123

and errors that have occurred [24]. Hence, regarding the

visibility of systems and how they perform under varying

circumstances, serverless computing achieves different

goals than serverless testing and monitoring. As a result,

serverless observability can provide insights into system

efficiency under various circumstances. A serverless com-

puting system allows for two types of visibility:

• Testing: testing allows for identifying known problems.

• Monitoring: monitoring allows for evaluating the

system’s health according to available metrics.

So, Instrumentation can be used to gather as much

information as possible from an application to identify and

resolve unknown problems. Due to the disparate, isolated,

and highly transient nature of event-driven functionality,

maintaining visibility in serverless applications is essential

and challenging [25].

2.2.3 Faster development

By utilizing serverless computing technology and

approach, developers can focus more on developing code

for the applications they are creating, increasing production

rates as rapidly as possible. Finally, this property increases

their efficiency while developing the software they are

growing, resulting in more excellent performance [26]. By

doing so, developers can spend less time on deployment

and have a faster development turnaround, thus increasing

their productivity. So, compared to traditional technolo-

gies, large backend systems can be constructed in less time

by abstraction and reduction of complexity due to tech-

nology abstraction and reduction of complexity. As a

result, the product development process is typically

accelerated, resulting in shorter delivery times, faster

deliveries, and more significant business growth. Also, the

ability to rapidly update existing products with minimal

friction and expense and to constantly experiment with new

ideas [27].

2.2.4 Security

Security of the system has become more challenging in

light of the rapid evolution of serverless applications and

their changing structure. Since more information and

resources are available in this approach, some novel chal-

lenges and complexities arise. Unlike its forerunners,

serverless security appears inherently secure due to its

characteristics, such as short function duration. In addition,

due to its architecture structure, it may also inherit security

features developed for other virtualization platforms [28].

Security challenges associated with serverless approaches

can create new, distinctive security threats. Furthermore,

the development of serverless applications will require a

significant change in mindset on the part of developers,

both in terms of how applications are developed and their

protection against malicious attacks. As more resources

equate to more permissions, a unique approach is required

to introduce security policies into provider systems. Thus,

an organization with more resources has more permissions

to manage, making it more challenging to determine the

permissions for each interaction [29]. It is essential to

provide visibility into serverless applications because they

use various cloud services across multiple versions and

regions, making it difficult to find and solve a problem.

Thus, the visibility feature can be utilized as a solution to

security challenges if deployed in a secure environment.

Hence, using the visibility feature, which combines two

parts of tests with automatic monitoring, one can detect

configuration risks and eliminate function permissions

using automated methods [30].

2.2.5 Reduced costs

Clients can save their application’s life cycle costs using

serverless computing. In addition to simplifying the

development process, serverless computing also improves

the development process’s efficiency by eliminating idle

computing time. Also, clients can receive services at the

lowest possible cost, which is both an easy process for

them to follow and cost-effective [31]. The service can be

scaled up to serve millions of clients simultaneously with

no additional cost or effort. It is not necessary to provision,

manage, or update server infrastructure during project

maintenance, so clients will only pay the cost for what they

are using. The cloud service provider handles all this, so

clients don’t have to worry about it [32].

2.3 Serverless computing architecture

An approach known as serverless architecture is wherein a

cloud provider runs code pieces and dynamically assigns

resources to the customer’s requirements. Additionally, this

approach can be applied to a wide range of scenarios, as

functions can be developed that alter resource configura-

tions to accomplish specific infrastructure management

tasks that can be achieved by using the model in particular

techniques. In other words, serverless computing utilizes

the full potential of cloud computing because it allocates

resources in real-time to meet the actual requirements of

clients and scales up and down as required by the client in

real-time. Therefore, the client only has to pay for those

resources that are used and do not have to pay for those

resources that are not necessary [33]. By using serverless

computing, all resources will automatically be scaled back

to zero when the application is inactive or when clients

have no requests. In serverless architectures, a third-party

5574 Cluster Computing (2024) 27:5571–5610

123

cloud service provider provides computing services based

on the functions of their cloud services while managing

infrastructure surveillance as part of their cloud architec-

ture. Ephemeral containers, typically composed of multiple

components, are commonly used to achieve this function-

ality. In addition to database events, file uploads, and

queues, they can also be triggered by a wide range of other

events, including monitoring signals, cron jobs, and

Hypertext Transfer Protocol (HTTP) requests [34]. The

client will not have to worry about the server in a serverless

computing model since the provider’s architecture

abstracts away the server from the client’s point of view.

The architecture of serverless computing is illustrated in

Fig. 1.

• Client Serverless functionality relies heavily on the

client interface. In addition, interface designs must

support extremely high or shallow volumes of data

transfers. An effective interface should handle short

bursts of stateless interactions [35].

• Security Running a serverless system without a security

service is impossible due to the need to ensure security

for numerous requests simultaneously. On the other

hand, it is impossible to keep track of previous

interactions due to its stateless nature, so ensuring an

authentication process has been implemented before

returning a response is critical. Serverless systems

typically provide clients with temporary credentials

through the security service, including authentication

and database [36].

• API Gateway A function-as-a-service service and its

client interface are linked using the API gateway. When

the client triggers an event, the API gateway relays the

information to the function-as-a-service service to

trigger a function [37].

• Functions as a service Function-as-a-service, the most

important component of serverless computing, assigns

resources to specific scenarios based on their needs. It is

a serverless method of running a function in any cloud

environment, allowing developers to focus on writing

code rather than worrying about infrastructure require-

ments or building and maintaining it themselves [38].

• Backend as a service A cloud-based service handles the

backend of an application in the backend as a service

model. By utilizing several critical backend features,

clients can create an exceptionally robust backend

application using this component, resulting in an

unusually practical backend application that will be

developed efficiently and effectively [39].

Fig. 1 Serverless architecture’s primary components

Cluster Computing (2024) 27:5571–5610 5575

123

An event trigger mechanism is used in serverless com-

puting. By implementing this approach, an application may

need to fetch and transmit data in various situations to

function at its optimum since it might require it to fetch and

transmit data under different conditions. When a client

creates an event trigger, it is not uncommon for the

application to fetch and transmit a particular piece of data

to create the event trigger inquiry [40]. Typically, this is

called in the world of programming an event. When a client

initiates an action to trigger an event, the application dis-

patches it to the cloud service provider in reaction to the

client’s action when the application is launched. According

to rules defined for the execution of a function, cloud

services allocate dynamic resources for the execution of the

function. Before proceeding with the process, the client

must consider one point: once the function has been

invoked, it will provide the result of its execution to the

client. It is impossible to allocate resources without a

request from the client, and it is impossible to store data

without such a request. Consequently, this allows the

application to run in real-time while reducing storage and

cost requirements. This data may be presented to the client

at any time to provide the client with the most current and

updated data [41].

2.4 Scheduling in serverless computing

The execution pattern of a serverless system shifts the

responsibility of managing application resources from cli-

ents to the cloud service provider as part of the serverless

architecture model. Since serverless models use real-time

allocation of resources, providers of serverless applications

must be able to manage resource allocation autonomously

during application execution [42]. When a serverless

platform is in its initial stages, the management can be

challenging due to the limited information available about

the resources different functions need. Consequently, in

this case, they may need help making informed resource

allocation decisions, which, in turn, may result in them

being unable to make informed resource allocation deci-

sions. Serverless architecture analysis revealed that CPU

utilization could often be a source of contention between

applications, mainly if the applications are computationally

intensive, resulting in high response latency [43]. Due to

this, providers must be aware that arbitrarily determined

resource allocation policies may result in a conflict of

resources for applications during their runtime, thus vio-

lating the service level agreement signed by the client.

Therefore, it is crucial to ensure that the provider’s

resources are managed dynamically to ensure the smooth

operation of the provision of services [44, 45]. Scheduling

algorithms are vital to serverless computing because they

can minimize response times and maximize resource

utilization by minimizing response times. A scheduling

algorithm allows computing resources to be allocated

dynamically based on the consumption requirements

according to a consumer’s requirements. Several strategies

and methodologies have been developed to maximize

resource scheduling efficiency and achieve the best results.

Therefore, various scheduling strategies and approaches

determine resource allocation. Scheduling mechanisms for

serverless computing generally include two approaches:

affinity and load-balancing scheduling. A load-balancing

scheduling approach distributes the load equally among all

the workers in the system in order to prevent worker

overloading. In this approach, for each request that the

system receives as a load, a function must be executed as a

program within a container so that the system can respond

to the request. There are various approaches to assigning

load to workers using the scheduling method through load

balancing. They are:

• In the round-robin distributed approach, the scheduling

mechanism ensures that the load is distributed evenly

among the workers.

• In the least load assignment approach, the scheduling

mechanism ensures that the load is assigned to the

employee who has the fewest requests.

• In the random distribution approach, the scheduling

mechanism ensures that all workers are assigned a

random workload.

The selection of the suitable load-balancing approach is

based on the system implementation goals. In the affinity-

based approach, dispatches send the same kind of request

to the same worker when the worker is not overloaded.

These approaches can avoid overloading workers and

efficiently reuse discontinued containers at times when

workloads appear to be stable. It is presumed that requests

can quickly retrieve available containers on selected

workers [46]. In Fig. 2, the serverless computing schedul-

ing mechanism is illustrated based on the execution of

functions in containers on the workers.

According to Fig. 2, the requests are first sent to the

scheduler. Serverless computing requires the execution of

functions to respond to each of the sent requests. As the

execution environment in serverless computing calcula-

tions is assumed to be a functions execution-based envi-

ronment in the form of containers, each of these functions

must be executed in a container in order to respond to

requests. Hence, for the purpose of executing the functions,

a container needs to be created in each worker and used as

an environment to run the functions. The scheduler in this

mechanism is responsible for distributing the requests.

How loads are distributed or, in other words, how requests

are distributed among workers depends on the scheduling

mechanism’s approach to distributing requests. After

5576 Cluster Computing (2024) 27:5571–5610

123

determining the load distribution approach, the scheduler

tries to distribute the requests among the workers based on

the chosen approach. Scheduling algorithms in serverless

computing ensure the system’s goals are achieved. There-

fore, serverless computing service providers must choose a

scheduler approach based on sufficient knowledge to

ensure they can achieve a better and more effective result.

2.5 Scheduling metrics

Understanding the mechanisms of the algorithms, it is also

possible to define a set of criteria for evaluating the per-

formance of scheduling algorithms across a wide range of

implementations [47]. In the following, some of the most

critical factors that can be used to demonstrate the per-

formance of a scheduling algorithm will be discussed.

2.5.1 Response time

During the implementation of scheduling algorithms, the

response time factor of serverless computing is an essential

factor. Various factors determine the response times,

including the scheduler’s efficiency, the algorithms’ com-

plexity, the serverless platform characteristics, the simul-

taneous nature of the application, and the communication

delay. Therefore, to determine whether this factor is effi-

cient, a sequence of sequential requests must be sent to the

scheduling algorithm so that the scheduling algorithm

evaluates by response time. When the workload contains

heavy computing functions, the mean response time (ap-

plication performance) decreases with the number of

executors increases. The metric is calculated based on the

Eq. (1) [48].

Response time ¼ 1

l
�
Xl

a¼1

Rea ð1Þ

Fig. 2 Scheduling mechanisms in serverless computing

Cluster Computing (2024) 27:5571–5610 5577

123

In this equation, l is the number of requests that have

been processed for function execution, and Rea is the

response time of the function execution request.

2.5.2 Throughput

The performance throughput of scheduling algorithms can

be evaluated based on the number of requests received for

resource allocation for functions with different executors.

Hence, this case can be suitable when evaluating factor

throughput in scheduling algorithms for resource allocation

for requested functions. Various implementations can show

that schedulers can quickly become a bottleneck when

request rates are high, making it difficult for executor

resources to utilize fully. So, it’s crucial to note that

selecting scheduling algorithms inappropriately by provi-

ders can limit scalability and result in low throughput due

to high invocation overhead. The calculation of this metric

is based on the Eq. (2) [49]. The underlying assumption for

throughput is that for large enough, the average service

time of terminated jobs in the same type of job (local a or

offloaded l.) is based on its mean value. Then, the system

operates like a system with a predictable schedule for

which the scheduling process is throughput. Take into

account any arrival rate function execution #�H in N ¼
n�Nf g machines. Since H it is an open set, there exists

w[0 such that # ¼ 1þ wð Þ#�H. Then

Throughput ¼ #H;n

1þW
: H�f; n�N

� �
ð2Þ

is a decomposition of #, and for any n�N.

X

H:n�H

#H;n

a
þ
X

H:n�H

#H;n

l

 !
� 1

1þW
ð3Þ

In this equation # ¼ #1; #2; #3; . . .; #Nþ1ð Þ be defined as

#n ¼
X

H:n�H

#H;n; n�N ¼
XN

n¼1

X

H:n62H
#H;n ð4Þ

Then, # is a possible arrangement of arrival allocation

for any function so that the average is the arrival rate H ¼
f�Hf g allocated function to the queue.

2.5.3 Latency

In a serverless computing platform, the latency factor is

when a client requests a function when the scheduling

algorithm attempts to allocate resources and when the

function is executed. During the execution function,

request time, request analytics time, and resource alloca-

tion are included in the duration. It is of particular

importance for latency-sensitive applications. Ideally, the

scheduling algorithm should be able to handle and manage

all requests made from different locations and with varying

amounts of resources in real-time if it receives a large

number of requests. Thus, it means the scheduling algo-

rithm should be capable of performing accurate predictions

by obtaining current information and sufficient information

about the execution environment. Hence, the scheduling

algorithm can allocate resources appropriately, and it is

possible to improve resource management to determine the

most appropriate actions. Finally, reducing the server

resource consumption can simultaneously reduce the ser-

ver’s resource consumption and the job latency. It is cal-

culated based on Eq. (5) [50].

Latency ¼ kn þ mgq#g8g�K# ð5Þ

where mgq is determine the processing delays of g represents

the precedence constraint of the schedule of the jobs of Ne

g on # that is one function from aggregate existing func-

tions V ¼ #�Vf g. Also, in this equation makes sure that the

total delay incurred by a job that is used for the execution

of any function of Neg�K# does not surpass its latency

threshold.kn� Z to determine the time slot at which the job

of Neg�K# starts execution on function #.

2.5.4 CPU usage

The CPU usage factor allows for deploying resource con-

trol mechanisms in serverless computing architecture that

can be utilized to evaluate resource management in

serverless architecture providers. Therefore, by using this

factor, providers can control the amount of CPU consumed

during the execution of functions in an application, thus

allowing for the evaluation of resource utilization. In other

words, this factor makes it possible to evaluate the per-

formance of scheduling algorithms in serverless computing

systems. By measuring the number of CPU resources

consumed by the requested functions, this evaluation factor

can be used to efficiently execute a system, resulting in a

significant reduction of the number of CPU resources

consumed and an improvement in the overall performance

of the serverless computing system. This metric is calcu-

lated according to Eq. (6) [51].

CpuUsage kb;Dtð Þ ¼
P

8xa!kbf g Ca � section Ra
b;Dt

� �� �

Cb � Dt
ð6Þ

In this equation, N nodes kb 2 K that are required be

functions by microservices represent instances xa 2 X.

Hence, each node kb is bounded by compute resources,

specifically CPU limitation Cb. On the other side, Ca is

CPU usage and section Ra
b;Dt

� �
provides the section of

runtime R of the service xa on the node kb that is placed

inside Dt.

5578 Cluster Computing (2024) 27:5571–5610

123

2.5.5 Energy consumption

It is important to consider this factor when evaluating the

performance during the resource allocation process of a

scheduling algorithm in a serverless environment. This

factor can determine the amount of energy a scheduling

algorithm consumes. By analyzing the structure of a

serverless computing implementation environment care-

fully, it is possible to calculate the energy consumption of

tasks in heterogeneous or heterogeneous environments

according to the factor. By utilizing this factor, it will be

possible to develop a solution that reduces the amount of

energy consumed by serverless computing to the greatest

extent possible [52]. Besides providing information

regarding the proportions and amounts of resources used by

a scheduling algorithm during the allocation process, this

factor can also be used to demonstrate its effectiveness.

The ideal solution is minimizing resource consumption

when allocating resources in scheduling algorithms that

would reduce the total cost. Using this factor, a serverless

computing provider can select the appropriate algorithm to

be implemented during the provision of services, as each

application requires a unique approach or, in other words, a

suitable algorithm. When providing efficient services, this

factor is vital in reducing resource consumption as much as

possible. In this case, the metric is calculated in accordance

with Eq. (7) [53].

Energy ¼ Cq

EnergyP � 1� uPð Þ þ
CR

EnergyR � 1� uRð ÞÞ þ
CI

EnergyI � 1� uIð Þ

� �

ð7Þ

It is important to note that different functions consume

varying amounts of energy based on their application. As a

consequence, some functions require a processor to oper-

ate. In contrast, some applications require a disk for storing

data, while others require the exchange of information,

which may result in varying levels of energy consumption.

According to this equation, EnergyP � 1� uPð Þ is the

energy used to execute a processor-based function,

EnergyR � 1� uRð Þ is the amount of energy used for

transfer rates-based function, and EnergyI � 1� uIð Þ is the
amount of energy used for a disk IO-based function. Also,

in this equation, the amount of processing energy con-

sumed, data transfer rate, and disk IO rate are represented

by uP, uR, and uI , respectively. The variables Cq, CR, and

CI indicate the amount of energy required by a machine

based on the processing type, IO rate, and data transfer

rate.

2.5.6 Cost savings

Platforms based on serverless computing offer a pay-per-

use model in which users are billed according to the

amount of computation memory and time their functions

require. Despite some scheduling algorithms in serverless

computing environments striving to maximize resource

efficiency during function execution, algorithms may

neglect to take application-specific factors into account.

Consequently, they may violate service level agreements

(SLAs), not maximize resource utilization, not achieve

optimal resource utilization simultaneously, and cause

increased costs. By defining policies in the format of

scheduling algorithms, serverless service providers can

minimize the cost of resource consumption while meeting

the client’s application requirements, namely, the deadline

and attention to specific details [54]. The proposed algo-

rithms must be sensitive to deadlines, efficiently increase

the provider’s resource utilization, and dynamically man-

age resources to improve response times to functions,

thereby solving the increasing cost challenge [55]. Hence,

optimizing resource costs for end clients by reducing pro-

viders’ time to respond to functions is possible. Thus, an

ideal mechanism for the serverless service provider to

choose a scheduling algorithm included placing functions

and allocating adequate resources to the containerized

function implementation to maintain the resource cost at an

optimal level while meeting the desired client require-

ments. This metric is calculated using Eq. (8) [56]. In

serverless computing, the utility of node n has been defined

as the revenue derived from the execution of computation

functions minus the processing costs and the penalty for

overflow. In other words, the utility has been defined as:

Cost ¼ Cq
mqm bð Þ � Cy

mym bð Þ � Cz
mZm bð Þ ð8Þ

where Cq
m, C

y
m and Cz

m are factors affecting costs. Cq
mqm bð Þ

is the amount of revenue that the serverless computing

node m receives from the service provider as a result of

performing serverless tasks for the cloud center. qm bð Þ is

defined as the reduction in processing delay over the pro-

vider center.

2.6 A brief overview of virtualization
and containerization technologies

The process of deploying and implementing applications is

different in different environments. Hence, in this section,

we discuss how to deploy and run applications using two

approaches: virtualization and containerization. With these

two approaches, as well as serverless computing, applica-

tions can be implemented and deployed across a variety of

frameworks and environments.

2.6.1 Containerization approach

Due to the fact that containers present virtualization at the

operating system (OS) level, they are more lightweight and

Cluster Computing (2024) 27:5571–5610 5579

123

agile than traditional virtual machines (VMs) [23]. The

term container refers to an isolated, lightweight environ-

ment that packages an application along with its require-

ments in an organized manner. It is important to note that

containers share the kernel of the host OS. However, each

container has its own network connectivity, file system,

and processes. It makes it simpler to deploy applications in

a variety of environments when you use containers, as they

provide a reproducible runtime and consistent environ-

ment. Compared with virtual machines, they are more

lightweight, have a faster startup time, and consume fewer

resources than VMs. Containers are often implemented in

conjunction with container orchestration frameworks, such

as Docker and Kubernetes [57].

2.6.2 Virtualization approach

An OS can be implemented as a virtual machine (VM) by

using software simulation that plays a hypervisor role on a

physical computer system. A VM consists of its virtual

hardware, such as memory, storage, CPU, and network

interface. A VM provides strong isolation among applica-

tions and can run multiple operating systems (OSs) or

versions of the same OS simultaneously. VMs are flexible

and portable, yet they can consume a lot of resources due to

the requirement of running an entire OS on each VM [58].

Compared to VMs, containerized applications provide

portability and lightweight isolation, and serverless offer

cost efficiency and automatic scalability for event-driven

applications. It is important to consider the specific needs

of the application, the development mechanism, consider-

ations regarding resource utilization, and the level of iso-

lation required of the team when selecting between them.

Comparison of serverless, container, and VMs is shown in

Table 1.

2.7 Machine learning in serverless computing

Machine learning is one of the fields that have contributed

to the improvement and efficiency of serverless computing

systems. Combining these two technologies provides the

foundation for the use of artificial intelligence algorithms

in serverless computing systems. In addition to improving

resource management and runtime optimization, this

combination also enhances predictive capability and

accuracy. Incorporating these two technologies allows

systems to act as more intelligent units, take advantage of

each other, and interact more effectively with their input

environment. In addition to improving the development

prospects for serverless computing systems, this approach

is effective in a wide range of applications, such as image

processing, language translation, and data prediction [59].

One of the fundamental challenges associated with

serverless computing is scheduling, which is exacerbated

by fluctuations caused by changes in requests and work-

loads. Using machine learning to optimize the scheduling

process in serverless computing is an innovative and smart

solution. By using this approach, resource managers are

able to analyze execution patterns, predict resource

requirements, and improve system performance. In

serverless computing, machine learning can be used to

improve the scheduling process in a number of ways,

including:

• Increasing the potential for response The use of

machine learning in scheduling serverless computing

also increases the responsiveness of the systems since

they can more easily adapt to changes in requests and

the environment and are better able to respond

efficiently to user needs and system functions.

• Improving resource demand prediction accuracy In

serverless computing scheduling, machine learning

improves the prediction of resource demand. An

accurate analysis of data and resource requirements

over time allows machine learning models to estimate

better the amount of computing resources required at a

given moment.

• Optimizing smarter decisions The use of machine

learning in serverless computing allows the systems to

react in real-time to current information and environ-

mental conditions and to make intelligent decisions

based on needs and constraints.

• Managing resources intelligently Machine learning

technology can be integrated into serverless computing

scheduling to facilitate intelligent resource manage-

ment. By estimating resource needs accurately and

implementing intelligent decisions, resources can be

managed in the most optimal manner possible to avoid

differences between system needs and resource alloca-

tions [60].

• Enhancements to the estimation of runtimes In server-

less computing scheduling, machine learning has a

fundamental role to play in improving execution time

estimates. Machine learning models are capable of

identifying execution patterns and providing more

accurate estimates of the time required to execute code

by carefully analyzing past execution time data.

• Predicting future needs Serverless computing can

utilize machine learning as a powerful tool for predict-

ing future needs in order to optimize the scheduling

process. By analyzing past data and request change

patterns, machine learning models can predict future

needs in the best possible way in order to prepare the

scheduling process in the system to deal with future

challenges in the best possible way.

5580 Cluster Computing (2024) 27:5571–5610

123

• Enhancing credibility The use of machine learning in

the scheduling of serverless computing can increase the

system’s reliability. Users are assured of a high degree

of accuracy in estimations, smarter decisions, and

forecasting of resource needs, thus ensuring that the

system can provide quality services in the shortest

amount of time [61].

3 Related works

This section will analyze recent papers reviewed on

scheduling in serverless computing. In the following, we

will seek to give each survey article’s primary advantages

and disadvantages. So, we will take an in-depth view of

some articles in the literature. Not reviews work studies

scheduling in Serverless computing. Therefore, it can be

said that this work is one of the first studies in this domain.

One of the notable scheduling studies on serverless com-

puting was accomplished by Alqaryouti and Siyam [62].

Their survey considered various propositions incidental to

scheduling tasks in clouds. These propositions were clas-

sified according to their target functions by minimizing

execution time, execution cost, and multi-targets (time and

cost). Applying a hybrid perspective to serverless com-

puting alongside the IaaS approach in the form of one

technique leads can significantly reduce issues arising from

dependency because issues arising from dependency on the

system are from the underutilization of resources. There-

fore, their suggested algorithm compresses the schedule by

re-ordering the tasks for maximal usage of the scheduled

indolent slots related to the dependency restrictions. As a

result, as a benefit of this study, solutions were proposed

for the problem of scheduling aspects of workflows from

the clouds focused professionally. Moreover, the article

goes through some disadvantages as follows:

• Inadequate coverage and weak of recently published

papers at the time of publishing

• Lack of presentment of an organized template for

choosing articles.

• Ignoring some paramount agents when presented with

solutions proposed to the problem of scheduling,

paramount agents like productivity boost, Cost-effec-

tive in Scheduling

• Ignoring one of the essential features of scheduling on

serverless computing in the name of effortless effi-

ciency in reviewing the entire article and the proposed

solutions.

• Not to pay attention to the future path to study the

situations and challenges ahead.

Kjorveziroski et al. [63], in their research, reviewing

works disseminated between the years 2015 and 2021,

presented a systematic survey study of the recent pro-

gressions they created In connection with the subject of

serverless computing to the edge of the network. They

could determine eight fields in which existent serverless

edge research was concentrated. Hence, they used the

obtained classifications to study the selected articles and, in

the following, could present increased interest in using

serverless computing at the network’s edge. One subject

that is an occupied study, specifically in recent years, is the

Table 1 Comparison of

serverless, containerization, and

virtualization technologies

Comparison criteria Serverless Containerization Virtualization

Quick start Instant Fast Slow

Resource consumption Low Medium High

Vertical scalability Automatic Scalable Manual/expense

Horizontal scalability Scalable Limited Limited

Operation Local Shared Separate

Operational issues Low Moderate Complex

Configuration capability Limited Medium Abundant

Transferability Easy Easy Medium

Flexibility Very High High Good

Platform limitations None Limited Limited

Cost Inexpensive Inexpensive Expensive

Management Easy Medium Complex

Support time Medium Medium Long

Cost model Fixed resources Fixed resources Pay-per-use model

Security Secure Separate Separate

Reconfiguration required Low Low Moderate

Isolation Low level High level Full

Cluster Computing (2024) 27:5571–5610 5581

123

placement of a real edge-fog-continuum. However, many

furtherance’s are required in intelligent scheduling algo-

rithmic and efficiency improvements. Improvement of

efficient scheduling algorithms that are skilled in managing

vast content of function instantiations and eliminate in brief

quantities of time amongst diverse infrastructures; as a

producing an edge–cloud continuum, one of the open

issues presented needs to be solved for serverless com-

puting. The significant advantage of this research is the

excellent constitution of the article, encasing all correlated

works together. Regardless, this article toils from some

drawbacks, as follows:

• Lack of careful attention to any of the issues raised

• Absence of regard and review for the influential factors

in each of the issues raised

• Instead of focusing on the central issues related to the

article, it highlights trivial issues, such as how to access

the articles.

• Deficiency of examples of the application of issues

raised in the actual environment

• Absence of regard and review for the influential factors

in each of the issues raised.

Saurav and Benedict [64] researched scheduling in sci-

entific workflows. This study aims to present a workflow

management system that applies a scheduling strategy for

processes that require high scalability in the face of com-

putational workloads and compact data. These computa-

tions are used in parallel and distributed systems. Because

this system has a heterogeneous architecture, the discussion

of awareness of the energy level is crucial. In this research,

an attempt at the scientific workflow, along with the dis-

tinctive challenges in the path of energy-aware imple-

mentation, has been examined. On the other, they review

the presented analysis of state-of-the-art workflow

scheduling algorithmic regulation and the multi-target

improvement issues. Moreover, they explained the impor-

tance of energy-aware runtime structures. And they finally

suggested a reference architecture and runtime for energy-

aware scientific workflows. Researching professionals,

thorough scheduling, and reviewing corresponding main

details are the influential results of this study. Regardless,

the article suffers from some drawbacks, as follows:

• Inadequate coverage and weak of recently published

papers at the time of publishing

• Not to pay enough attention to the future path to study

the situations and challenges ahead.

• This research focuses on scheduling algorithms in

large-scale systems and, considering this issue does not

examine the performance of algorithms in the scalabil-

ity process and only expresses generalities.

• There is no mention of how scheduling algorithms are

implemented in bottlenecks. There will always be a

node or nodes in the network that will act as a

bottleneck. Therefore, these nodes, which are also

heterogeneous, make the system service process

difficult.

Shafiei et al. [65] for this survey showed a complete

outline of the recent advances and the past developments in

study fields associated with serverless computing. They

first explored serverless applications and outlined the

challenges they have fronted. Then, expansion applications

in eight parts individually converse the targets and the

viability of the serverless model in each of those parts.

Moreover, they categorized those challenges into nine

issues and explored the suggested solutions for each of

them. Finally, they suggested the fields that require addi-

tional attention from the research society and determined

available troubles. As a benefit, the paper is covered by

many suitable, outstanding quality, recently published

articles and excellent paper classification. Hence, they

observed and outlined quality of experience facets that

directly influence user satisfaction, which can take crucial

scheduling metrics in serverless computation. Regardless,

the article suffers from some drawbacks, as follows:

• Loss to review tools and implementation environments

related to the subjects presented

• Despite the expression of the payment model function-

as-a-service as one advantage of serverless computing,

in no way has this payment model been compared to

other payment models. There is no comparison between

payment models in service delivery mechanisms such

as infrastructure-as-a-service, platform-as-a-service,

function-a-a-service, and software-as-a-service has not

been made.

• In this survey, this feature has not been considered

despite the expression of auto-scaling as one feature

advantage of serverless computing. There are several

types of scaling, and there is no mention of what scaling

process is used on serverless computing.

• Given the nature of the performance and implementa-

tion of serverless computing, the expression of server-

less best practices undertaking execution could have

shown a better understanding of how to implement

serverless computing.

Xie et al. [66], in their article, attempt attempted to

present a comprehensive and organized outline of server-

less edge computing networks in the aspect of networking.

The first step is to study the design principles for com-

bining a serverless model in edge computing networks.

Then, the cooperation process and deployment and exe-

cution are shown in the next step. Finally, to entirely use

5582 Cluster Computing (2024) 27:5571–5610

123

the suggested serverless edge computing scheme, issues

such as lifecycle control and service deployment, resource

awareness, service scheduling, incentive instruments,

exceptions, etc., are explored. Furthermore, some potential

investigation subjects that should be regarded for future

research are outlined. This article has many advantages,

including a detailed study of the issues raised. In addition,

it tries to introduce the topics that will be used as research

topics in the future. Regardless, the article suffers from

some drawbacks, as follows:

• The reviewed articles bank is Inadequate.

• The subjects are presented completely abstractly, and

no details are noted.

• Lack of quality study articles

Cassel et al. [67] presented a comprehensive and sys-

tematic study that gives us insight into how Entities called

functions are off-loaded to various devices And how these

entities can interact and collaborate. Moreover, they tried

to review the crucial elements utilized to set and run

functions, the principal challenges, and open inquiries for

this issue. In the continuation of this review, programming

languages, storage services, and protocols related to the

solutions are also suggested. This article has many positive

points, like demonstrating an example of using this tech-

nology in the real world, study opportunities, and new-

found challenges in the reciprocal hybrid of serverless and

IoT, furthermore emphasizing technologies that seem

promising for the subsequent years. However, providing a

complete and comprehensive classification can be called

the most prominent feature of this article. Regardless, the

writing suffers from some drawbacks, as follows:

• Despite providing a robust classification, none of the

items shown in the classification is described and

presented only as a list.

• Because orchestrators are used as a crucial part of the

implementation process in a server-free computing

environment, this article does not refer to implementers

of this technology, such as Kubernetes.

• Attention to issues such as the use of serverless

computing, how to communicate across multiple

domains in edge computing networks, and the chal-

lenges ahead can provide deeper insights into the

capabilities of the serverless computing process. Unfor-

tunately, this article ignores this issue.

In [68], a comprehensive study on the types of scheduling

algorithms involved in serverless computing is conducted.

Through examining various types of scheduling algorithms

that are used in serverless computing, they attempted to

provide a comprehensive overview of existing approaches

and scheduling algorithms as well as their advantages and

applications. Additionally, they examine various

implementation frameworks that allow serverless computing

to be used. There are many positive aspects in this article,

such as providing a comprehensive understanding of how

scheduling algorithms are applied in serverless computing.

However, there are also some disadvantages:

• A lack of a comprehensive and comprehensive classifi-

cation of scheduling algorithms for serverless computing

• An analysis of a limited number of articles related to

scheduling algorithms

• The investigation of a limited number of parameters

and metrics used in the scheduling process

• Lack of accurate and complete comparison of schedul-

ing algorithms

According to the above articles in the field of scheduling

in serverless computing, a side-by-side comparison in

terms of the type of review, Objectives to be examined,

Implementation layers, investigating the evaluation

parameters used, and the year of publication of the

reviewed articles is summarized in Table 2.

4 Research methodology

This section presented instructions for exploring relevant

articles on scheduling in serverless computing. The pri-

mary segments for creating a knowledge-great review are

searching, collecting, organizing, and analyzing related

papers. Conducting a systematic technique that involves

restricting the benchmarks of the issues and gathering and

assessing those specific issues will be available to inves-

tigators. This plan describes the mechanism of discovering

important issues in relevant fields.

4.1 Question formalization

The purpose of this research is to survey essential factors

and techniques employed in studied articles at a particular

time, along with the primary topics and challenges asso-

ciated with scheduling on serverless computing. Since

covering the complete examination of scheduling in

serverless computing and showing related open issues is

the primary purpose of the current survey, several related

questions must be answered to focus on connected worries.

Related research questions are shown in Table 3.

4.2 Data Analysis and papers choices

The systematic running structure of opting for and ana-

lyzing papers is outlined as follows:

• Published papers associated with scheduling in server-

less computing mechanisms between 2018 and 2023

Cluster Computing (2024) 27:5571–5610 5583

123

Ta
bl
e
2

C
o
m
p
ar
is
o
n
o
f
si
d
e-
b
y
-s
id
e
re
v
ie
w

p
ap
er
s
o
n
sc
h
ed
u
li
n
g
in

se
rv
er
le
ss

co
m
p
u
ti
n
g

R
es
o
u
rc
es

T
y
p
e

o
f

re
v
ie
w

O
b
je
ct
iv
es

to
b
e
ex
am

in
ed

Im
p
le
m
en
ta
ti
o
n

la
y
er

In
v
es
ti
g
at
in
g
th
e
ev
al
u
at
io
n
p
ar
am

et
er
s

P
u
b
li
ca
ti
o
n

C
lo
u
d

F
o
g

E
d
g
e

T
h
ro
u
g
h
p
u
t

R
es
p
o
n
se

ti
m
e

C
o
st

sa
v
in
g
s

L
at
en
cy

E
n
er
g
y

co
n
su
m
p
ti
o
n

C
P
U

u
sa
g
e

D
ea
d
li
n
e

[6
2
]

R
ev
ie
w

In
v
es
ti
g
at
in
g
th
e
sc
h
ed
u
li
n
g
p
ro
b
le
m

o
f
cl
o
u
d
-

b
as
ed

sc
ie
n
ti
fi
c
w
o
rk
fl
o
w
s

P
ro
v
id
in
g
so
lu
ti
o
n
s
to

th
e
re
sc
h
ed
u
li
n
g
p
ro
b
le
m

4
8

8
8

4
4

8
8

8
4

2
0
1
8

[6
3
]

R
ev
ie
w

In
v
es
ti
g
at
io
n
o
f
th
e
sc
h
ed
u
li
n
g
p
ro
ce
ss

fo
r

se
rv
er
le
ss

co
m
p
u
ti
n
g
in

th
e
co
n
te
x
t
o
f
th
e

In
te
rn
et

o
f
T
h
in
g
s

In
v
es
ti
g
at
io
n
o
f
th
e
tr
an
sf
er

p
ro
ce
ss

o
f
se
rv
er
le
ss

co
m
p
u
ti
n
g
to

th
e
ed
g
e
o
f
th
e
n
et
w
o
rk

8
8

4
8

4
4

4
8

8
8

2
0
2
1

[6
4
]

S
u
rv
ey

In
v
es
ti
g
at
io
n
o
f
p
ro
b
le
m
s
re
la
te
d
to

th
e
en
er
g
y

co
n
su
m
p
ti
o
n
o
f
sc
ie
n
ti
fi
c
w
o
rk
fl
o
w
s
in

co
m
p
u
ti
n
g
en
v
ir
o
n
m
en
ts

E
x
am

in
at
io
n
o
f
th
e
en
er
g
y
-a
w
ar
e
sc
h
ed
u
li
n
g

p
ro
ce
ss

in
cl
o
u
d
-b
as
ed

ap
p
li
ca
ti
o
n
s

4
8

8
4

8
4

8
4

4
8

2
0
2
1

[6
5
]

S
u
rv
ey

E
x
am

in
in
g
th
e
sc
h
ed
u
li
n
g
ch
al
le
n
g
es

as
so
ci
at
ed

w
it
h
se
rv
er
le
ss

co
m
p
u
ti
n
g

A
ss
es
si
n
g
th
e
re
as
o
n
s
an
d
g
o
al
s
b
eh
in
d
se
rv
ic
e

p
ro
v
id
er
s’

m
ig
ra
ti
o
n
to

se
rv
er
le
ss

se
rv
ic
es

4
8

8
8

4
4

4
4

4
4

2
0
2
1

[6
6
]

R
ev
ie
w

In
v
es
ti
g
at
io
n
o
f
se
rv
er
le
ss

ed
g
e
co
m
p
u
ti
n
g

n
et
w
o
rk
s
b
as
ed

o
n
sc
h
ed
u
li
n
g

In
v
es
ti
g
at
in
g
cr
it
ic
al

te
ch
n
ic
al

ch
al
le
n
g
es

o
f

se
rv
er
le
ss

co
m
p
u
ti
n
g

4
8

4
8

4
4

8
4

8
8

2
0
2
1

[6
7
]

R
ev
ie
w

E
x
am

in
in
g
th
e
w
ay

in
w
h
ic
h
fu
n
ct
io
n
s
ar
e
lo
ad
ed

o
n
d
if
fe
re
n
t
d
ev
ic
es

an
d
h
o
w

th
ey

in
te
ra
ct

w
it
h

o
n
e
an
o
th
er

In
co
rp
o
ra
ti
n
g
se
rv
er
le
ss

co
m
p
u
ti
n
g
in
to

th
e
Io
T

ap
p
li
ca
ti
o
n
s

4
4

4
8

8
8

4
4

8
8

2
0
2
1

[6
8
]

R
ev
ie
w

A
n
al
y
zi
n
g
d
if
fe
re
n
t
sc
h
ed
u
li
n
g
al
g
o
ri
th
m
s

A
n
ex
am

in
at
io
n
o
f
v
ar
io
u
s
se
rv
er
le
ss

co
m
p
u
ti
n
g

p
la
tf
o
rm

s

4
4

8
8

4
8

8
4

8
4

2
0
2
3

5584 Cluster Computing (2024) 27:5571–5610

123

• To identify significant synonyms and keywords for

scheduling in serverless computing, can apply the

following considered string words are applied:

1. (‘‘Scheduling’’ OR ‘‘Energy-aware scheduling’’ OR

‘‘Resource-aware scheduling’’ OR ‘‘Package-aware

scheduling’’ OR ‘‘Data-aware scheduling’’ OR

‘‘Deadline-aware scheduling’’ OR ‘‘Hybrid’’)

AND (‘‘Serverless’’) OR (‘‘Serverless Computing’’)

OR (‘‘Serverless Scheduling’’) OR (‘‘FaaS’’) OR

(‘‘Function-as-a-Service’’)).

• The search was done in October 2023, using restrictions

on the time scope from 2018 to 2023. The final results

showed 444 papers. In the following, by studying some

crucial sections, like the Abstract, Goals, Contributions,

and Conclusion, at the beginning of this process and as

the first step, 180 articles unrelated to the research

subject were identified and consequently eliminated. In

the Next step, Because of worthless papers with inferior

content, study System models, Approaches, Implemen-

tation mechanisms, Results of the research, and Solu-

tions provided for the future in the remaining papers. In

continuation of the review at the beginning, 131 papers

were inscribed as unsuitable; six papers were surveyed,

nine papers were repeated, and two books were left out

of this process. Therefore, 148 papers have been

deleted. Finally, 116 remaining journal papers were

inscribed as marked relevant for the study specimen, in

which 23 papers were irrigated to serverless computa-

tion and have been deleted. In selecting relevant

articles, 39 articles were irrigated to scheduling and

have been deleted. In the end, the remaining 54 papers

related to scheduling in serverless computing

approaches are included in the survey.

An illustration of the flowchart for the incorporation and

elimination of options is shown in Fig. 3.

Appropriate papers associated with scheduling in

serverless computing have been reviewed in reputable sci-

entific databases, as shown in Table 4.

Also, the detailed distribution of these 54 chosen papers

between 2018 and October 2023 is shown in Fig. 4. As

depicted in the chart, most papers were published between

2021 and 2022 in the corresponding field with an

Table 3 Research questions

Index Questions Descriptions

TQ1 What classification is used for scheduling in serverless

computing?

The systematic scheduling classification in serverless computing could be

presented as Energy-aware, Resource-aware, Package-aware, Data-

aware, Deadline-aware, and Hybrid Strategies. Showing this systematic

classification Causes the discovery of unconsidered fields to cover

suitably. This question is answered in Sect. 6

TQ2 What performance metrics are usually applied to scheduling

in serverless computing?

Studied articles assumed different metrics to perform predefined

conditions. The numerous significant ones are as follows: Latency, Cost,

Execution time, CPU utilization, Energy, Bandwidth, Response time,

Throughput, Deadline, Memory utilization, and quality of service

(QoS). Comprehending these metrics Causes us to find available crucial

subjects. This question is answered in Sect. 6

TQ3 Which case studies are used in the scheduling of serverless

computing approaches?

The proposed methods can pursue different goals. Some of these goals

can be specific, and some can be general-purpose and used for more

than one approach. Investigators can study the discovery of this

benchmark to examine it appropriately in particular fields. This question

is answered in Sect. 6

TQ4 What evaluation tools are utilized for scheduling in the

serverless computing approach?

The studied scheduling in serverless computing articles possibly uses

different assessment tools to simulate and implement the suggested

strategy. Such information can be used to select the best and most

valuable tools for scheduling in serverless computing. This question is

answered in Sect. 6

TQ5 What programming languages are utilized for scheduling in

the serverless computing approach?

The studied scheduling in serverless computing articles possibly uses

diverse programming languages to implement the suggested strategy.

Such knowledge can be used to select the best and most influential

programming languages for scheduling in serverless computing. This

question is answered in Sect. 6

TQ6 What are the future research directions and open

perspectives for scheduling in the serverless computing

approach?

This question attempts to explain more orientations in this field. These

orientations can help researchers understand their topics of interest and

use them to solve their research problems. This question is answered in

Sect. 7

Cluster Computing (2024) 27:5571–5610 5585

123

accelerating interest by researchers. Over this period, 2021

has the highest percentage of published articles. In addi-

tion, as it is depicted in Fig. 5, the percentages of the

mentioned papers were compared to the number of articles

and publishers’ titles for each year. As shown, during

2018–2023, IEEE has taken the highest position among

other publishers.

5 Scheduling mechanisms in the serverless
computing

Serverless computing is an event-driven mechanism in

which structures called applications are illustrated by the

events that trigger them. Service provider frameworks, as

Fig. 3 Choosing criteria and evaluating frameworks

Years

Fig. 4 Shows the percentage of investigation articles diversity with

the publisher based on the publication year

Table 4 Involved credible scholarly databases

Database Links related to databases

Springer http://link.springer.com

ACM http://www.acm.org

Wiley http://onlinelibrary.wiley.com

IEEE explorer http://ieeexplore.ieee.org

Elsevier https://www.elsevier.com

MDPI https://www.mdpi.com

Other Publication –

5586 Cluster Computing (2024) 27:5571–5610

123

http://springerlink.bibliotecabuap.elogim.com
http://www.acm.org
http://onlinelibrary.wiley.com
http://ieeexplore.ieee.org
https://www.elsevier.com
https://www.mdpi.com

serverless platform functions, tried displaying occurrences

via straightforward function abstractions and making out

even acts logic among their cloud environments. This

structure permits developers to turn big applications into

smallish functions, permitting application parts to scale

separately [69]. However, this mechanism raises fresh

trouble in the logical management of an extensive collec-

tion of functions, especially in optimizing resource allo-

cation and managing resources distributed between

functions. Serverless computing, usually because of the

payment model it has provided for providing its services

been raised as a cost-saving tool [70]. Serverless comput-

ing has been suggested as a cost-saving mechanism

because of the payment model for providing its services.

One of the essential ways to save costs is the proper and

optimal allocation of resources to functions [71]. There-

fore, it is necessary to use a mechanism called scheduling

for the optimal allocation of resources. The scheduling

process is a strategic-based framework for allocating and

distributing resources to devices in a network [72]. This

section categorizes and studies the scheduling in the

serverless computation domain for chosen papers by the

suggested taxonomy. Different classifications of scheduling

on serverless computing have been proposed in the litera-

ture. In this survey paper, a scheduling mechanism is used

to detect the main subjects of resource allocation in

serverless computing. So, a subject discovery criterion is

used, recognizing six principal classifications. This mea-

sure includes issues in diverse classes with various factors

and restrictions that cannot be reasonably regarded as a

single issue. All techniques present in the study have been

categorized into one of these six principal classes, as shown

in Fig. 6. As explained earlier, scheduling algorithms are

organized into six classes: energy-aware, Data-aware,

Deadline-aware, Package-aware, Resource-aware, and

hybrid. In the ensuing, we demonstrate some explanations

associated with the kinds of scheduling in serverless

computing matching the suggested taxonomy, and relevant

papers will be concisely studied for each method.

5.1 Energy-aware scheduling mechanisms

This part describes related features to the energy-aware

method, which is considered a serverless computing

scheduling strategy. Next, the studies papers on this

domain are investigated. Scheduling resources efficiently

on a provider using energy-aware scheduling is possible.

So that the scheduler will be able to understand how the

decisions they make will impact the amount of energy

consumed, enabling the scheduler to make decisions based

on the amount of power utilized and the quantity of energy

available [73]. The central concept behind energy-aware

scheduling in cloud environments involves the use of

passive structures, such as containers or cold-state envi-

ronments, for the systems to consume as little energy as

possible. Employing this approach finally reduces the

amount of energy consumed throughout the system [74].

5.1.1 Overview of energy-aware scheduling plans
in serverless computing

In this part, the various plans will be studied and then

recapitulated at the end of this section. A resource

scheduling technique with low energy consumption was

proposed by Kallam et al. [73]; the technique is developed

based on detailed investigations of a MapReduce frame-

work’s structure, operation, and energy consumption

troubles associated with scheduling jobs in a heterogeneous

environment. This procedure ensures that all storage nodes

are efficiently checked to achieve energy conservation by

developing a resource schedule for all the jobs. As a result

of the proposed method, the average processing time was

N
um

be
ro

fp
ap

er
s

Years

Fig. 5 Shows the percentage of

investigation articles diversity

with the publisher based on the

years and Database

Cluster Computing (2024) 27:5571–5610 5587

123

significantly reduced compared to the state-of-the-art

technique.

Aslanpour et al. [74] analyzed case studies performed in

the cloud with the idea that to eschew cold start functions,

they should invoke functions by transmitting fake requests,

which are considered warm functions. This study aims to

ensure that the up-and-running approachability of edge

nodes is as high as possible while ensuring that the change

does not adversely affect data transmission quality or ser-

vice quality.

Gunasegaram et al. [75] propose a solution to the

problem of colossal container overprovisioning and

microservice-agnostic scheduling, which results in poor

resource usage, particularly during high workload fluctua-

tions, thereby proposing Fifer as a solution to this issue.

Moreover, Fifer minimizes overall latency by creating

containers in advance, thus avoiding cold starts. In contrast

to most serverless platforms, Fifer has state-of-the-art

schedulers that help improve container utilization and

reduce cluster-wide energy requirements.

Aslanpour et al. [76] tried to review the issue of effi-

ciently managing energy consumption in very resource-

limited edge nodes in their investigation. Their findings

demonstrate that while the idle state and CPU consume the

most energy in edge devices, the connection process also

consumes a significant amount of energy.

Table 5 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

energy-aware scheduling algorithms and approaches.

5.2 Data-aware scheduling mechanisms

In this part, an overview of the data-aware scheduling

strategy in serverless computing is provided. With its pli-

able and varied nature, both in terms of provisioning and

allocating resources, the cloud environment poses great

difficulties when managing the resources effectively,

especially when dealing with data movement among mul-

tiple areas simultaneously. For cloud environments to be

able to manage their resources effectively and efficiently, it

is necessary to consider these points [77]. Thus, it can be

concluded that by using a data-aware scheduling model

(data affinity), applications can be scheduled intelligently

according to the available information and using data-

aware scheduling. Therefore, implementing data-aware

scheduling as part of workflow applications can also result

in significant performance improvements and efficient

resource allocation based on the characteristics of variable

workloads [78].

5.2.1 Overview of data-aware scheduling mechanisms

The various techniques are studied and summarized in this

part at the end of this section.

Rausch et al. [77] propose a container scheduling

mechanism enabling platforms to maximize edge infras-

tructure utilization. The study concluded that the trade-off

between data and computational movement is crucial when

implementing data-intensive functions in serverless edge

computing.

Fig. 6 Proposed taxonomy of scheduling in serverless computing

5588 Cluster Computing (2024) 27:5571–5610

123

Wu et al. [78] have proposed a method of on-the-fly

computing that utilizes efficient multiplexing techniques to

reduce the complexity of cloud programming and eliminate

the complexity of data analysis by using on-the-fly data

collection. Due to its on-demand execution capability, it

can provide instant multitenancy and response. In addition

to demonstrating the possibility of incorporating the on-

the-fly computing method for processing remote sensing

data into a serverless system with high reliability and

performance, the authors also described how they could use

the model to process data collected through sensor net-

works efficiently.

Yu et al. [79] propose a serverless platform of scalable

and low latency called Pheromone. This platform advo-

cates a data-centric orchestration approach in which the

data flow triggers function invocations. Pheromone uses a

two-level, shared-nothing scheduling hierarchy to schedule

functions near the feed-in. Compared to open-source and

commercial platforms, Pheromone significantly reduces

latencies. Furthermore, Pheromone provides an easy way to

implement many applications, including real-time query-

ing, stream processing, and MapReduce sorting.

Das [80] demonstrated that combining Ant Colony

Optimization (ACO) with a map-reduce application

increases the serverless platform’s efficiency. The pro-

posed model aims to employ MapReduce on Amazon Web

Services serverless infrastructure by using a scheduling

algorithm called Ant Colony Optimization (ACO).

According to the paper, appropriate task scheduling may be

able to address the current lack of support for big data

applications on serverless platforms.

Seubring et al. [81] propose a data locality-aware

scheduler method for serverless edge platforms. The pro-

posed method uses the metadata available in the edge

network to optimize the scheduling of functions and con-

strain execution to the local network. Finally, it shows that

moving the execution closer to the data reduces the band-

width (cost) and time spent moving the data.

Jindal et al. [82] present a Function-Delivery-as-a-Ser-

vice (FDaaS) framework. A FDaaS allows functions to be

delivered to the target platform in a way that fits the

platform’s requirements. Moreover, FDaaS allows collab-

oration between multiple target platforms and data local-

ization and reduces data access latency by transferring data

nearer to the target platform. Finally, it shows that

employing scheduling functions for an edge platform

reduced overall energy consumption without violating SLO

requirements.

Table 5 Comparison of peer-reviewed technical studies on energy-aware scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[73] Reducing total energy

consumption without generating

scheduling overhead

Insufficient steps to

implement integrated

energy efficiency

Energy NA Cloud Simulation

Reduced execution time in

comparison to advanced methods

Data distribution and

replication

dependencies are not

considered

Time

[74] Enhancing the availability of the

bottleneck node

Heterogeneous edge

nodes are not

investigated

Energy Python Edge Implementation

Increasing the efficiency and

portability of resources

Lack of consideration of

scalability challenges

Throughput

[75] Minimizing overall response

latency

The proposed approach

is not compared to

similar approaches

Energy Python Cloud Simulation

Reducing energy consumption

while maintaining SLOs

Using inappropriate

evaluation parameters

when evaluating

Latency

[76] Enhancing the efficiency of energy

consumption

Edge computing needs

are not addressed on a

broader scale

Energy Python Edge Implementation

Calculating the energy

consumption of the CPU,

memory, storage, bandwidth, and

protocol

Renewable energy

sources are not

considered

Cost

Cluster Computing (2024) 27:5571–5610 5589

123

Nestorov et al. [83] present a high-performance model

capable of predicting the performance of inter-functional

data exchanges using serverless workloads with a high

degree of accuracy. As part of this model, parallelism, data

locality, resource requirements, and scheduling policies are

also considered to evaluate the performance of data-in-

tensive workloads. The results show that deploying and

scheduling workloads in this model can enhance

performance.

Przybylski et al. [84] present scheduled individual calls

of functions passed to a load balancer to optimize metrics

related to response times. In addition, they demonstrated

that employing data-driven scheduling strategies improved

performance compared with the baseline FIFO or round-

robin scheduling. In this way, they could adapt SEPT and

SERPT strategies without experiencing any noticeable

increase in computational or memory consumption.

Garcı́a-López et al. [85] propos ServerMix system. The

ServerMix system uses a combination of serverless and

serverful components to accomplish an analytics task. In

the first phase of the research, three fundamental trade-offs

have been examined, including those that relate to the

serverless computing model of today and their relationship

with data analysis. Finally, this paper explores how Ser-

verMix can improve overall computing performance by

simplifying the effects of disaggregation, isolation, and

scheduling.

HoseinyFarahabady et al. [86] demonstrate when a

serverless platform is used to execute several data-inten-

sive functional units, it face many challenges regarding

workload consolidation. Finally, Performance evaluations

are conducted using modern workloads and data analytic

benchmark tools in their four-node platform, illustrating

the efficiency of the proposed solution to mitigate the QoS

violation rate for high-priority applications.

Tang and Yang [87] present a Lambdata framework for

data-aware scheduling. Lambdata is a serverless computing

system that allows developers to declare a cloud function’s

data intents, including reading and writing data. It is

demonstrated in Lambda that once data intents have been

defined, the Lambdata mechanism performs a variety of

optimizations to improve speed, such as caching data

locally and scheduling functions based on the locality of

the code and the data. In a Lambdata evaluation, turn-

around time has been sped up by 1.51x, and monetary costs

have been reduced.

Table 6 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

data-aware scheduling algorithms and approaches.

5.3 Deadline-aware scheduling mechanisms

In this part, an outline of the deadline-aware scheduling

approach in serverless computing is discussed. The use of a

serverless computing approach has been found to have

many advantages. Aside from these advantages, they can

also be used to schedule tasks ahead of deadlines. Hence,

this helps resource allocation operations run more effi-

ciently for all request tasks since many tasks can be com-

pleted by a specific date. On the other hand, they tried to

present suitable resource allocation for all tasks with

deadline execution. Therefore, to maintain the efficiency of

resource allocation operations, it is possible to schedule

tasks using deadlines so that a sufficient number of tasks

can be completed by the deadline, ensuring that operations

run as efficiently as possible [88]. The scheduling process

will likely be biased toward task type selection with shorter

expected execution times due to the operation mechanics of

this strategy. Because shorter tasks are more susceptible to

implementation in this strategy, they are estimated to take a

shorter time to complete, increasing their chances of suc-

cess [89]. This strategy is scheduled and implemented so

that meeting the latency deadline is one of its priorities. It

is necessary to address this issue to minimize the possi-

bility of many deadlines falling by the wayside due to a

lack of schedule for future events [90].

5.3.1 Overview of deadline-aware scheduling mechanisms

In this part, the various approaches are reviewed and then

outlined after this section. Singhvi et al. [88] present

Archipelago, a serverless architecture that supports multi-

ple tenants and performs low-latency tasks via a DAG of

functions, each with a deadline for latency. Finally, they

demonstrated that with this framework, they were in a

position to reduce overall latency by 36X compared to the

existing serverless frameworks. And with these frame-

works, they could satisfy the latency specifications for

more than 99% of actual workloads for applications.

Mampage et al. [90] present a policy for dynamic

resource management and function assignment in applica-

tions based on serverless computing from the viewpoint of

both the client and the provider. Finally, they found that a

dynamic CPU-share policy outperformed a static resource

allocation policy by 25% in fulfilling deadlines for the

needed functions compared to a static approach.

Wang et al. [91] propose employing a model-driven

approach. Their work presents a LaSS serverless platform

that runs latency-sensitive computations at the edge.

Finally, shown by their simulations, LaSS can be pro-

grammed to re-provision container capabilities as rapidly

as possible while preserving fair share distributions based

5590 Cluster Computing (2024) 27:5571–5610

123

Table 6 Comparison of peer-reviewed technical studies on data-aware scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[77] Improved job placement

quality as compared to

advanced Kubernetes

scheduling

Inadequate consideration of the

dynamic nature of edge systems

Throughput Python Cloud Simulation

Establishing accurate timing

parameters to achieve

goals

A lack of context-aware scalability Time Edge

[78] Increasing the speed of

response

Inattention to differences in

execution times between nodes

Latency Python Cloud Implementation

Optimizing the reading and

conversion of data

structures

Evaluating the project without

taking into account essential

parameters, such as the cost of

implementation

Time

[79] Reducing performance

interaction delays during

data exchange

Disregarding the energy consumed

in storing and retrieving data

Latency Python Cloud Implementation

The reduction of real-time

querying and execution of

a variety of applications

Lack of use of history-aware

approaches to reduce event

response times

Throughput C??

[80] Reducing the overhead

caused by data storage

The scheduling function provided is

not optimal as compared to similar

approaches

Cost Python Cloud Implementation

Faster storage of data Inattention to the process of storing

big data in a serverless

environment

Time

[81] Reduced time spent moving

data

An evaluation of different workloads

has not been conducted

Throughput Python Edge Simulation

Providing high throughput

with minimal resource

consumption

Loading strategies aren’t

incorporated into schedulers

Cost

[82] Implementation of the

process of data

localization

Lack of investigation into the

performance of the proposed

approach on different types of data

Energy Python Cloud Implementation

Reducing the consumption

of energy in general

Incorporating AWS Lambda into the

proposed approach provides better

performance

Time Edge

[83] Providing a solution to the

problem of data sharing

Automating the configuration of

work details can improve the

performance

Latency NA Cloud Simulation

Deploying intensive

workloads more quickly

Data-intensive workloads are not

used in the evaluation process

Time

[84] Enhancing the performance

of data-driven scheduling

decisions

Increasing workload pressure on the

system results in reduced

performance of the proposed

approach

Latency C?? Cloud Simulation

Reducing the response time

to requests

Time

[85] Improve computing

performance by reducing

separation processes and

data separations

A lack of performance in the face of

big data

Latency Python Cloud Implementation

Assisting with the

scheduling process for a

variety of programs

The algorithm does not perform well

when applied to real data sets

Cost

Cluster Computing (2024) 27:5571–5610 5591

123

on their simulations. A LaSS can also accurately predict

the resources required for serverless functions when

workloads are highly dynamic.

Rama Krishna et al. [92] suggested a SledgeEDF. They

used the extension of real-time scheduling to a serverless

runtime. For this reason, Sled EDF was suggested to pursue

advanced research in this area. SledgeEDF improved the

latency of the server-free function by introducing a

scheduler for handling a large volume of mixed high-pri-

ority workloads simultaneously. As a result of imple-

menting an admissions controller and fine-tuning module

configurations, the runtime was able to satisfy 100% of the

deadlines.

Pawel and Rzadca [93] present a framework algorithm

that can be applied to cloud-based applications on the FaaS

system. They also made some desirable modifications to

the architecture. Finally, it provides successors for each

task in the queue, enabling the scheduler to know which

environments must be configured in advance. Based on the

simulation results, it was evident that these methods can

enhance the efficiency of FaaS. Also, scheduling consid-

ering constraints and startup times is more effective and

efficient when the system is under heavy load.

Table 7 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

deadline -aware scheduling algorithms and approaches.

5.4 Package-aware scheduling mechanisms

This part provides an introduction to the package-aware

scheduling strategy used in serverless computing. In

serverless computing, functions are run in pre-allocated

containers or VMs on pre-allocated servers. These appli-

cations can operate in pre-allocated containers, allowing

them to begin operations quickly and efficiently. The

functions in question require one or more separate pack-

ages to function correctly. These packages can be separated

or related to ensure their proper functioning because

function execution mechanisms depend entirely on an

entity known as a package to function correctly. These

functions can start a little slower when needed on a large

package [94]. One of the computational nodes in serverless

technologies is responsible for retrieving required packages

and application libraries upon invocation requests. Finally,

if the computation node receives a request for their invo-

cation, a try is required, and the mentioned node will

retrieve related library packages. On one or more worker

nodes, there is a possibility of installing a preloaded

package to make it possible to reuse the execution envi-

ronment of one or more worker nodes over another worker

node. By utilizing this opportunity, it has been possible to

reduce the start-up time for the tasks and the turnaround

time to complete them, thereby allowing them to be com-

pleted in a shorter amount of time and becoming more

efficient. In addition to predicting future library require-

ments based on the libraries already available and installed,

it is also possible to use this scheduling strategy to predict

future library needs [95].

5.4.1 Overview of package-aware scheduling mechanisms

In this part, the variety of strategies is analyzed and sum-

marized after this section. Dayong and D He [94] present

an approach that employs a scheduling algorithm to com-

plete the scheduling process despite the problems

encountered with pod-by-pod scheduling. Finally, they

demonstrated that the scheduling process with the new

algorithm is significantly more efficient compared to pod-

by-pod scheduling in terms of pod start-up latency, and pod

start-up latency has dramatically decreased compared to

pod-by-pod scheduling.

Table 6 (continued)

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[86] Enhance the total

throughput

The proposed approach has not been

tested with a variety of modern

workloads

Throughput Java Cloud Implementation

A reduction in the number

of violations of QoS for

applications

Failure to evaluate the performance

of the proposed approach using

important evaluation parameters

Time

[87] Enhancing the scheduling

process’ speed

The proposed approach has not been

tested against a variety of

workloads in order to determine its

performance

Cost Python Cloud Simulation

Reducing the cost of

operations

Time

5592 Cluster Computing (2024) 27:5571–5610

123

T Gustavo et al. [95] raise the issue of the vanilla load

balancers used by FaaS schedulers that do not strive to

reduce package and file transmissions. Finally, to demon-

strate the utility of the proposed approach, they have

included a package-aware scheduling algorithm for the

scheduler.

Gabriel et al. [96] undertook a research effort that

focused on problems that the existing FaaS schedulers

faced. The proposed scheduler PASch using the Open-

Lambda framework was implemented and evaluated

through real-world experiments and simulations. Finally,

results from the evaluations of the proposed PASch have

demonstrated that it provides a 1.29 9 speedup over the

least loaded balancer and a 23 9 reduction in 80th per-

centile latency.

B Ting et al. [97] present a novel Attribute-aware Neural

Network Approach (ANAM) to cope with scenarios where

a client’s desire for the selected item is not explicitly

tracked. Finally, their findings concluded that the purpose

ANAM approach is an effective tool for recommending the

basket base for the future.

Chetabi et al. [98] have proposed reinforcement learning

algorithms, SARSA and SFSchlr. SFSchlr is a function

scheduling algorithm that can be used in a function as a

form service environment. SFSchlr, which they introduced,

executes the learning operation online and is aware of the

data dependencies. They have implemented and evaluated

SFSchlr with two scheduling algorithms as well as a new

dependency-aware scheduler, demonstrating that the pro-

posed algorithm improves function turnaround times by up

to 58% and resource utilization by up to 69.5%.

Ebrahimpour et al. [99] have focused on timing issues

and cold starts. Keeping operating environments warm can

decrease cold start times but increase costs. In this paper,

the authors propose an approach to creating a trade-off

using four different types of decision-making at runtime

Table 7 Comparison of peer-reviewed technical studies on deadline -aware scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[88] Reducing the

execution time of

requests

Lack of consideration for the

system’s performance under a

variety of workloads

Latency Python Cloud Implementation

Reducing overhead

expenses

The proposed approach has not been

tested in systems with non-

homogeneous members

Time

[90] Response time to

requests has been

improved

A lack of dynamic implementation

of the resource management

process

Cost NA Cloud Simulation

Reducing the

consumption of

resources

The efficiencies of the proposed

approach in heterogeneous cloud

environments have not been

evaluated

Time

[91] Reducing the time

required for resource

allocation

Only Poisson entry and service

processes are considered in this

approach

Latency Python Edge Implementation

Resources are

allocated in an

optimal manner

Failure to consider the composition

of serverless functions when

making scheduling

CPU JavaScript

[92] Utilization of

resources in the most

efficient manner

Low latency is not guaranteed in

edge systems

Throughput C?? Cloud Implementation

Providing real-time

admissions

management

Latency Edge

[93] Providing superior

performance over

other scheduling

algorithms

Failure to test and verify workflows

on parallel machines

Time NA Cloud Simulation

Reduction of response

latency by a

significant amount

Ignoring important parameters Latency

Cluster Computing (2024) 27:5571–5610 5593

123

based on a heuristic method and analyzing function

dependency graphs, function call frequencies, and other

environmental variables. Compared to the constant time

method (that is, the method used by Amazon), the proposed

method shows a 32% improvement.

Table 8 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

package -aware scheduling algorithms and approaches.

5.5 Resource-aware scheduling mechanisms

The client in a serverless environment sends a request to

the service provider as an event when they request the

service from the provider. Hence, the service provider is

not only obliged to respond to these requests but also must

allocate the resources necessary to process them. It is

imperative to note that one of the most critical factors that

need to be considered when dealing with these requests is

the basis on which the provider responds to them. In other

words, it is crucial to consider how resources are allocated

from the service provider to the consumer. Hence, a pro-

vider uses a scheduling mechanism to allocate resources to

requests received to accomplish this task [100]. There are

several different kinds of serverless applications, and the

way these applications use resources varies greatly. These

are two examples of resource allocation events in research

computing. There is a possibility that several CPU-con-

suming functions might be affected by a slowdown in

performance because when they are co-located on one

physical node, they are in direct competition for resources.

Therefore, if these functions are located on one physical

node, resource contention may result in delays in the

execution of invoked functions [101].

5.5.1 Overview of resource-aware scheduling mechanisms

Different strategies will be discussed and summarized in

the following section. Suresh and Gandhi [100] present an

approach for scheduling functions at the function level that

minimizes the cost of provisioning resources while meeting

the performance requirements of customers by incorpo-

rating resource-aware scheduling. Based on the study’s

results, they found that compared to existing baselines, the

approach significantly improved resource efficiency by

between 36 and 55% while ensuring that application

latency remains acceptable, in addition to this significant

increase in resource efficiency.

Yuvaraj et al. [101] propose a machine-learning model

that enables the parallel processing of the tasks assigned to

the queue of events and the serverless service’s dispatcher

framework to identify the most efficient way to dispatch

the tasks. The simulation results show that the proposed

GWO-RIL can reduce running time and adapt to various

loads under various conditions based on the simulation

results.

Cheng and Zhou [102] present a framework whereby

streaming applications can be automatically scheduled and

allocated resources based on their needs through an ARS

(FaaS) service. In light of the results of this study, a more

flexible and efficient scheduling method has been devel-

oped, enabling resources to be made autonomously avail-

able on demand and dealing with fluctuations in streaming

data and unforeseen conditions in real-time through a

flexible and efficient approach.

Lakhan et al. [103] present a novel, cost-effective, and

stable framework for the IoT using a blockchain-enabled

fog cloud infrastructure. Based on the simulation results,

the proposed algorithms are superior to all existing baseline

strategies regarding performance when implementing the

applications compared to existing baseline approaches.

Kim et al. [104] developed a fine-grained CPU cap

management approach incorporated into an intelligent

resource manager that continuously adjusts the CPU usage

limits (or CPU caps) for different applications with exact/

similar performance requirements. Lastly, their research

has shown that resource managers outperform other

heuristics in average response time and skewness by

decreasing them by 94 and 44%, respectively, while not

overusing the CPU resources.

Table 9 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

resource -aware scheduling algorithms and approaches.

5.6 Hybrid

Due to the limited number of articles and studies related to

the scheduling process in serverless computing, in the

previous articles, we tried to perform the scheduling pro-

cess, which has more studies, in the form of separate and

specialized taxonomies to be analyzed. Therefore, in this

section, some studies examine the types of timings whose

number does not reach more than one or two. We may even

find articles in which scholars have tried to Use a combi-

nation of timings. There are very few of them, so it has

been decided to ensure they are placed in a section under

the term hybrid. Hence, this taxonomy section will exam-

ine schedulers of various types.

5.6.1 Hybrid scheduling mechanisms

A variety of approaches will be examined and analyzed in

the following section. Patterson et al. [105] present

5594 Cluster Computing (2024) 27:5571–5610

123

HiveMind, the first distributed coordination framework that

allows users to execute sophisticated task workflows

between edge and cloud resources in a fast, scalable, and

programmable way. The researchers demonstrated that

HiveMind is significantly better suited for performance

prediction and battery performance than existing decen-

tralized and centralized technologies while incurring sig-

nificantly less network traffic than existing decentralized

and centralized technologies.

Soltani et al. [106] propose an approach that consists of

designing a migration-based distributed mechanism for

executing long-term Serverless functions in a distributed

environment. Using this approach, one can continuously

transfer a function from one cloud platform to another

whenever that function approaches its maximum duration

limit. To conclude, they created a case study illustrating

how the proposed approach can be applied with the help of

a generic application for machine learning built on top of

the scientific framework ANTDROID.

Zhang et al. [107] present a new serverless approach that

uses the interaction between the client and the fog cloud to

provide better service when analyzing video using DNNs

by taking advantage of the benefits of serverless architec-

ture. Finally, they showed that VPaaS had been thoroughly

tested on many standard video datasets, concluding that it

is more accurate than other available solutions. Maintain-

ing high accuracy while decreasing radio transmission

times by up to 62.5%, cloud monetary costs by up to 50%,

and bandwidth consumption by up to 21% is the key to

reducing bandwidth usage, radio transmission times, and

cloud monetary costs.

Table 8 Comparison of peer-reviewed technical studies on package -aware scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[94] Reduced latency caused

by pod launch

The proposed approach in the public

cloud platform has not been

checked

Latency NA Cloud Simulation

Allocation of resources in

the most efficient

manner

The proposed approach has not been

tested with different workloads

Time

[95] Optimization of the

scheduling process

close to the data

The proposed approach has not been

compared with other scheduling

algorithms

Latency Go Cloud Simulation

Allocation of resources in

the most efficient

manner

Evaluating without considering

important parameters

Time

[96] Reducing the time it

takes to respond to

requests

The proposed approach has not been

evaluated with a variety of dynamic

workloads

Latency Python Cloud Simulation

Optimizing performance

and providing better

results

Failure to consider different

balancing parameters

Cost

[97] Resource optimization

for consumption

Failure to investigate the effect of

multiple factors on the decision-

making process

Time NA Cloud Simulation

Increasing the speed of

response to requests

A lack of evaluation of the proposed

approach against a variety of

workloads

CPU

[98] Increasing resource

availability and

reducing overall costs

The proposed approach has not been

tested with different loadings

Time Python Cloud Implementation

Increasing the efficiency

of resource utilization

The evaluation process does not take

into account important parameters

CPU

[99] Reducing the time it

takes to respond to

requests

The proposed scheduler can be

improved by applying deep-

learning algorithms

Time JavaScript Cloud Simulation

Implementing requests at

a lower cost

Failure to select the appropriate

evaluation parameters

Cost

Cluster Computing (2024) 27:5571–5610 5595

123

Gadepalli et al. [108] present a new Wasm-based

framework called aWsm that allows serverless computing

at the edge using Wasm. Lastly, they present a preliminary

assessment of the performance and reliability of aWsm

using a set of MiBench micro benchmarks as functions,

characterized by the use of a small amount of memory

(ranging from 10 to 100 bytes) and an average startup time

(12 s to 30 s) for a sample of these benchmarks.

Fard et al. [109] present an approach that measures

microservices’ memory and CPU requirements, regardless

of whether a micro-service runs on a private cluster or an

enterprise cloud. Based on the results of the experiments,

they found that the proposed method can provide a very

high level of scalability and simultaneously increase the

utilization of both the memory and the CPU, leading to a

higher throughput when compared to the standard system.

Zhang et al. [110] propose a system for deploying and

offloading IoT applications that combine serverless tech-

nology with teleoperability, aiming to expand the server-

less model. Finally, they concluded that the STOIC

approach reduced the execution time (response latency)

and resulted in 92% to 97% placement accuracy with a

very low response latency.

Aytekin and Johansson [111] present an implementation

of a parallel resource allocation method for solving the

problem of the limitations and performance of serverless

runtimes. Finally, they have shown that they can achieve

relative speedups of up to 256 workers with efficiencies of

over 70%, even with as few as 64 workers.

Huang et al. [112] present a robust joint cloud frame-

work for IoT systems by utilizing a serverless model called

HCloud, which uses trusted collaborative clouds. Finally,

the evaluation results found that HCloud could signifi-

cantly enhance the performance of serverless workloads at

negligible costs compared to other options.

Zhang et al. [113] propose the HyperFaaS framework to

minimize the overhead associated with implementing ICS

and reduce the costs associated with its performance. To

achieve this goal, they tried to use request streaming in this

work and to pipe data directly from the worker to the server

without parsing any HTTP headers to accomplish this task.

To evaluate this framework, in the first implementation of

Table 9 Comparison of peer-reviewed technical studies on resource-aware scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[100] Utilizing resources in a

more efficient manner

Disregarding the difference in the

execution time of different

functions

CPU Python Cloud Implementation

Responding to requests

more quickly

Failure to test the proposed

approach with a variety of

workloads

Time Edge

[101] Reducing energy

consumption

Using deep learning techniques can

enhance the performance of the

proposed method

Energy Java Cloud Simulation

Reducing the time it takes

to respond to requests

CPU

[102] Providing high-

performance HPC Cloud

resources

Evaluations that fail to take into

account important parameters

Energy NA Cloud Simulation

Responding to requests

more quickly

Lack of comparison between the

proposed approach and other vital

approaches

Time

[103] Using blockchain

technology to ensure the

security of the system

Failure to ensure that the proposed

approach is applicable in a variety

of contexts

Cost Java Cloud Implementation

Improve the efficiency of

resource allocation

A lack of accuracy in the results

obtained

Time Python Fog

[104] Reduced skewness and

average response time

Resources such as CPUs have not

been considered in the proposed

approach

CPU Python Cloud Implementation

Utilization of CPU

resources in the most

efficient manner

The proposed approach has not been

tested on a variety of workloads

Time

5596 Cluster Computing (2024) 27:5571–5610

123

the software, they tried using only the memory and CPU

resources will be analyzed to evaluate the software.

Denninnart et al. [114] present a method to guarantee

that the implementations of serverless computing can be

robustly used when using HC systems, especially if the HC

systems are overcrowded at the time of deployment. Fol-

lowing applying the pruning mechanism to several variants

of homogeneous and heterogeneous computing systems, a

substantial improvement in the system’s robustness has

been observed. The assessment results indicate that the

system’s robustness has improved (up to 35%).

Ling et al. [115] proposed a new framework for the

operation of devices and the edge of cloud environments in

the telecommunication industry called Lite-Service.

Finally, the empirical results have shown that the Lite-

Service framework is efficient for scheduling and building

telecom applications on the device, the edge, and the cloud,

based on their empirical results.

Silab et al. [116] argue that by providing multi-step

decision-making processes, machines can allocate tasks to

achieve their goals as effectively as possible, reducing

average response times to users. Finally, the evaluation

showed that it is possible to increase the speed of the

decision-making process by nearly 21% using the proposed

cache-assisted serverless architecture.

Tychalas and Karatza [117] discuss how load-balancing

methods can decrease the operational costs of a system and

introduce a new method (SaMW) that reduces expenses

while maintaining a relatively low Mean Response Time

while lowering the operating costs of the system. They also

showed reduced total expenses and network traffic. In the

Low Load scenario, the Utilization of Remote Fast Con-

tainers is reduced to 1%, while the Utilization of Slow

Remote Containers is reduced to 2%.

Mujezinović and Ljubović [118] present a more inte-

grated approach for achieving cloud-like functionality that

can improve upon existing techniques that are efficient and

based around cloud computing. Using the AWS Fargate

technology, they proposed an approach based on a pro-

ducer–consumer model that can meet a wide range of

needs. Finally, they demonstrated that this concept could

acquire high-frequency data in a system.

Denninnart and Salehi [119] present SMSE, the first

serverless platform explicitly designed to deliver multi-

media streaming services, because they believe multimedia

streaming to be one of the most popular applications in the

information technology field. Finally, implementing SMSE

prototypes in real-world settings demonstrated that SMSE

could reduce containerization overhead and make time (up

to 30%) when providing multimedia functionality, com-

pared to general-purpose serverless cloud platforms that

provide function provisioning methods.

Ao et al. [120] describe how the Sprocket system can be

used on the AWS Lambda serverless cloud platform by

explaining how it was designed and implemented. They

demonstrated that, under various conditions, Sprocket

meets its performance goals of high parallelism, low

latency, and low cost (10 s to process a 3600-s video

1000-way parallel for less than $3).

Wen et al. [121] propose StepConf, a platform for

automating the configuration of resources for functions

based on workflow execution. Finally, they examined

StepConf’s performance on AWS Lambda and found that

when compared with baselines, StepConf saved 40.9% in

costs while meeting SLOs.

Nesen and Bhargava [122] propose a framework that

allows data from multimodal sources to be processed using

a serverless computing infrastructure to extract features

and patterns from the data. They concluded that serverless

approaches might be advantageous when workloads are

uneven and unpredictable because they outsource scala-

bility issues to a third party while keeping costs low.

Wu et al. [123] propose multisite transactional causal

consistency (MTCC) protocols for decreasing the latency

of IO operations and guaranteeing application-wide con-

sistency in serverless Function-as-a-Service (FaaS) archi-

tectures. Finally, they demonstrate orders of magnitude

improvements in performance thanks to caching while

protecting against consistency anomalies that may arise in

the future.

Carver et al. [124] propose Wukong, a novel serverless

parallel computing approach that combines locality-en-

hanced, decentralized scheduling (based on Amazon

Lambda), delayed I/O, and task clustering to provide high

efficiency, data locality, and optimal scalability while

remaining cost-effective and efficient. They have demon-

strated that Wukong exhibits optimal scaling behavior,

decreases running time by up to 98.53% compared to

numpywren, and significantly reduces network I/O by

order of magnitude.

Tang et al. [125] present a partially observable

stochastic game (POSG) for task scheduling competition

that is proposed to provide serverless edge computing

nodes to and non-cooperatively schedule jobs based on the

locally observed state of the system. Edge-computing

heterogeneous nodes in the network are rational individuals

interested in optimizing their scheduling utility but are

limited to using local observations. Also, with the help of

the dual-depth recurrent Q-network (D3RQN) approach,

they developed a multi-agent job scheduling algorithm that

approximates the optimal solution to the proposed partial

observability problem.

De Palma et al. [126] presented an expressive language

for specifying serverless scheduling policies that expressed

constraints on the topologies of schedulers and processing

Cluster Computing (2024) 27:5571–5610 5597

123

nodes. The authors implemented their approach as an

extension to the OpenWhisk framework, and by imple-

menting relevant scenarios, they demonstrated that their

extension is on par with vanilla OpenWhisk and sometimes

performs better.

Lakhan et al. [127] developed a serverless and bound-

based Boltzmann machine algorithmic framework for

mobility-aware security dynamic service composition in

healthcare workflows. According to this study, the deep

stochastic neural network trains probabilistic representa-

tions at every stage of the workflow task sequencing,

including service composition, scheduling, and security. In

terms of safety and application cost, the system-based

methods developed outperformed traditional methods by

25% and 35%, respectively.

Table 10 provides a comprehensive comparison of

advantages, disadvantages, performance metrics, pro-

gramming languages, implementation layers, and evalua-

tion tools of the technical studies reviewed, with a focus on

hybrid scheduling algorithms and approaches.

6 Discussion

This section demonstrates a discussion and rational

assessment of the existing scheduling strategies in server-

less computing. The rational investigation and reports are

based on the present TQs in Sect. 4:

• TQ1 What classification is used for scheduling in

serverless computing?

Based on the suggested taxonomy, an actuarial

comparison between scheduling strategies in serverless

computing is illustrated in Figure 7. Six strategy cases

are considered according to the represented taxonomy

for scheduling in serverless computing. The systematic

classification of scheduling in serverless computing

could be presented as Energy-aware, Resource-aware,

Package-aware, Data-aware, Deadline-aware, and

Hybrid Strategies take 8%, 10%, 8%, 22%, 10% and

42% coverage, respectively. As depicted in Figure 7,

most of the investigation chosen papers are related to

the Hybrid strategy, with a percentage coverage of 42 in

the literature. But if we want to consider a specific

strategy, data-aware scheduling has been chosen as the

most widely used specific strategy for research by

covering 2 of the considered studies.

• TQ2 What performance metrics are usually applied to

scheduling in serverless computing?

As the performance metrics for scheduling strategies

in serverless computing, some characteristics are

investigated and accommodated in Fig. 8. It is neces-

sary to mention that because some investigation papers

were multi-goals, some metrics may be observed in

more than one paper. The investigation of these

characteristics illustrates that latency has the most

usage on scheduling strategies in serverless computing

with 27% and then energy with 20% in the second rank;

Throughput, Response time, Cost, and CPU with 16%,

14%, 12% and 11% rank, respectively, the next places

in the chart. Therefore, many characteristics like Cost

and CPU with low coverage attention are considered

open challenges in scheduling strategies in serverless

computing.

• TQ3 Which case are studies used to schedule serverless

computing approaches?

The case studies of the scheduling strategies in

serverless computing are shown in Fig. 9. Following is

a collection of existing case studies that were employed

as examples of the application of scheduling in

serverless computing. This collection consists of Gen-

eral applications, vehicular networks, Machine learn-

ing, Stream Processing, IOT, Anomaly Detection,

Multimedia Processing, Healthcare, Farm, Face Detec-

tion, and Telecom. The methods presented can be used

to achieve a variety of objectives. Some goals can be

specific, while others can be more general and used for

various purposes. As a result, some papers have

included more than one case study in the context of

their research. Most of the studies selected in the

literature utilized General Application for their case

studies, with a percentage coverage of 52 of the

literature. Nevertheless, if we want to consider a

specific case study, Multimedia processing has been

chosen as the most widely used case study, with 15% of

the studies considered. Particular technologies like

smart farms, healthcare, machine learning, telecommu-

nications, face detection, anomaly detection, and stream

processing do not attract as much attention as others.

• TQ4 What evaluation tools are utilized for scheduling

in the serverless computing approach?

According to Figure 10, 38% of study papers used

the AWS tool. Also, 26% of the research articles have

not determined tools for their proposed model. In

addition, OpenWhisk, OpenFaaS, Kubernetes, and

Azure tools with 16%, 12%, 6%, and 2% rank,

respectively, the following places in the chart.

• TQ5 What programming languages are utilized for

scheduling in the serverless computing approach?

Several programming languages are employed to

implement scheduling strategies in serverless comput-

ing, as shown in Fig. 11. There is also a need to point

out that some of the research papers were multi-tool

implemented, which means that some research used

more than one programming language. In investigating

these programming languages, it was revealed that

5598 Cluster Computing (2024) 27:5571–5610

123

Table 10 Comparison of peer-reviewed technical studies on hybrid scheduling algorithms and approaches

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[105] Optimizing the

consumption of energy

Failure to address the cold start

issue

Energy Python Edge Simulation

Support for a large

number of edge devices

without degrading

performance

The evaluation process was

conducted without

consideration of the important

factors

Throughput C??

[106] Reducing the response

time through a

migration approach

The lack of consideration for a

fairer distribution of functions

among nodes than just random

selection

Energy Java Cloud Simulation

Responding to requests

with less delay

Time

[107] Reducing bandwidth

consumption

Topology not suitable for the

proposed approach

Throughput Python Cloud Simulation

Reducing the cost of

operations

Performing analyses without

considering the importance of

privacy

Time Fog

[108] Introducing a new

approach to serverless

management at the edge

The lack of a profile module to

track and analyze the

performance of functions

Latency Javascript Cloud Implementation

A reduction in the

average startup time

Lack of experimentation with

different scheduling strategies

Time

[109] Providing a scalable

mechanism that utilizes

both memory and CPU

at the same time

Inability to scale microservices in

the cloud using the proposed

approach

CPU Go Cloud Simulation

Reducing implementation

complexity

Failure to evaluate the

performance of the proposed

approach in light of various

workloads

Cost

[110] Reduce overall execution

time

Inability to implement the

proposed approach on

heterogeneous hardware

CPU Go Cloud Implementation

Keeping the system

responsive when

excessive requests are

received

Failure to test the performance of

the proposed solution with

different workloads

Latency Edge

[111] Support for intensive

calculations

Inaccurate calculation of

execution times

Time NA Cloud Implementation

Increasing the speed at

which requests are

responded to

A lack of incoming network

connections during runtime

Energy

[112] Optimizing the process of

resource consumption

The failure to use important

parameters in the evaluation

process

Throughput Python Cloud Simulation

Reducing the costs

associated with

responding to requests

Cost

[113] Optimizing the use of

consumption resources

such as CPU and

memory

The cold start challenge is not

taken into consideration

CPU NA Cloud Simulation

Responding to requests at

a lower cost

The proposed approach has not

been tested with different

workloads

Cost

Cluster Computing (2024) 27:5571–5610 5599

123

Table 10 (continued)

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[114] An implementation of the

proposed approach on

heterogeneous and

homogeneous

computing systems

Energy and cost parameters are

not examined in the proposed

approach

Time NA Cloud Simulation

Significant improvement

in system robustness

Throughput

[115] Reduced execution time

despite changes in load

Failure to investigate a

reservation-based decentralized

resource management process

that can be much more efficient

Latency C?? Cloud Simulation

Increasing performance

and adapting to

different scenarios

Throughput Edge

[116] Improve the average

response time

Using intelligent schedulers can

reduce some of the

dependencies between

functions

Latency Python Cloud Simulation

Making decisions in a

more efficient manner

Using machine learning

techniques can improve the

current decision-making

process

Time Go

[117] Reduce the cost of

operations

In the Microservices paradigm,

heterogeneous computing

systems can reduce energy

consumption and monthly

operating expenses

Energy NA Cloud Simulation

Reducing the average

response time

Cost

[118] Optimization of the

allocation pattern

Not paying attention to topics

related to automatic

deployment

Time Python Cloud Implementation

Enhancing the scalability

of the system

Tests of the proposed approach

with different workloads were

not conducted

CPU

[119] Reduced overhead and

construction time

associated with

containerization

Continuity of edge-to-cloud

approach is not verified

Latency NA Cloud Implementation

Enhancements to

multimedia processing

Failure to incorporate important

evaluation parameters into the

evaluation process

Cost

[120] Improving the response

time of the system to

requests

Using process parallelization in

this approach enables

applications to be launched on-

demand with minimal startup

delay

Latency Python Cloud Implementation

Reducing the costs

associated with

responding to requests

Cost

[121] Improving system

performance in the

process of responding to

requests

The cold start challenge is not

taken into consideration

Energy Python Cloud Implementation

Workflow optimization The proposed approach has not

been tested with different

workloads

Cost

5600 Cluster Computing (2024) 27:5571–5610

123

Fig. 7 Classification of scheduling in serverless computing

Performance metric

Fig. 8 Performance metrics of the scheduling strategies in serverless

computing

Table 10 (continued)

References Advantages Disadvantage Metrics Programming

language

Implementation

layer

Evaluation

tools

[122] Optimizing the system’s

cost and speed

The proposed approach does not

utilize a serverless

recommendation mechanism

Time NA Cloud Implementation

Providing the ability to

process data from a

variety of sources

A lack of consideration of

important evaluation

parameters in the proposed

approach

Cost

[123] Increasing the speed of

response to requests

Not paying attention to topics

related to automatic

deployment

Time Python Cloud Simulation

Increasing the efficiency

of resource allocation

Latency

[124] Reducing the execution

time

Inability to scale microservices in

the cloud using the proposed

approach

Time Python Cloud Implementation

Reducing the costs

associated with

responding to requests

Throughput

[125] Utilization of deep

learning technology to

enhance the proposed

approach

The proposed approach has not

been tested with different

workloads

Energy NA Edge Simulation

Optimization of resource

allocation

Inaccurate calculation of

execution times

CPU

[126] Assuring an

equitable allocation of

resources

Utilizing technologies such as

deep learning can optimize the

scheduling performance and

automate decision-making

Latency JavaScript Cloud Implementation

Reducing the time it takes

to respond to requests

Time Edge

[127] Reducing the costs

associated with

responding to requests

Uncertainty regarding the use of

resources

CPU Java Edge Simulation

Increasing the safety of

the proposed approach

The proposed approach is not

suitable for use in dynamic

environments

Time

Cluster Computing (2024) 27:5571–5610 5601

123

Python had the most significant utilization for imple-

mentation tools on scheduling strategies in serverless

computing, with 61% of the utilization. Further, 9 % of

the research articles do not specify the programming

language for the proposed model in their papers.

Finally, C/C??, Golang, Java, and JavaScript

programming languages with 10%, 9%, 9%, and 2%

ranks, respectively, are in the following places in the

chart.

7 Open issues

This section discusses some open issues related to

scheduling and implementing challenges in serverless

computing systems. Scheduling is a crucial issue in

resource allocation on serverless computing that various

approaches, such as energy-aware, resource-aware, etc.,

can effectively handle. In serverless computing systems,

scheduling-based methods primarily address the allocation

of resources by providers, considering the client’s dyna-

mism in the cloud environment. In the implementation of

serverless computing, the old resource allocation approach

has been transformed into an on-demand execution

approach where resources are allocated on a demand basis.

In the serverless computing approach, providers and cus-

tomers can decrease their service costs according to con-

sumer demand by switching from a rental approach to a

pay-per-use approach. Even though reducing task com-

pletion time remains the most critical objective. However,

cloud service providers are now primarily responsible for

resource utilization and isolation measures. Several general

challenges are discussed in the following sections that

should be addressed during the development of scheduling

algorithms and may cause problems in the future.

7.1 Future research opportunities

This subsection aims to provide a technical answer to the

following question:

Fig. 9 Some case studies are

presented related to the

scheduling strategies in

serverless computing

Fig. 10 Evaluation tools the scheduling strategies in serverless

computing

Fig. 11 Using programming languages to implement scheduling

strategies in serverless computing

5602 Cluster Computing (2024) 27:5571–5610

123

Hence, this section presents a new perspective and

emphasizes the need to motivate experts and researchers to

dig deeper into the subject to present relevant challenges

that have not been addressed previously. Hence, a research

direction challenge is presented based on the currently

available assessment criteria. According to TQ6, we sug-

gest new informative challenges and open issues. Figure 12

depicts current open issues through their main challenges

of scheduling algorithms in serverless computing systems

based on further directions in this issue. Based on Fig. 12,

there is a new open issue in the scheduling algorithm for

serverless computing as follow below:

TQ6: What are the future research directions and open

perspectives for scheduling in the serverless computing

approach?

Based on the discussions mentioned above, we have

categorized this technical question into nine categories:

Compatibility costs, Component coordination, Differences

in capability, Heterogeneity characteristics, Differences in

goals, Awareness of the surroundings, Accessibility to

resources, Storage of data and Access time to data. Due to

the inherent non-deterministic nature of scheduling algo-

rithms in resource allocation optimization problems, they

can be considered hybrid with other event-triggering

algorithms.

• Compatibility costs By utilizing the serverless

approach, providers can determine the best method for

performing each task according to the cumulative task

duration they provided due to shifting goals and choose

the most efficient approach. Thus, providers are facing a

new scheduling challenge at the task level. However, it

is crucial to understand that this change and adaptability

also come with a cost and are not without their costs. As

scheduling algorithms are primarily developed to

reduce costs and maximize resources, this case can

create a challenge for scheduling algorithms in opti-

mizing resource allocation [77, 79, 101].

• Component coordination Orchestrating applications on

serverless computing required load balancing and

application-independent engineering to find the right

balance between proactive resource allocation, data

locality, and suitable response time guarantees that

satisfy both parties. It will be difficult for serverless

computing providers to overcome scheduling chal-

lenges if they ignore the correct configuration for

orchestration. In other words, not orchestrating between

all the provider components in every system in a

Fig. 12 Serverless computing

scheduling algorithm open

issues

Cluster Computing (2024) 27:5571–5610 5603

123

serverless computing approach can create problems for

scheduling processes in resource allocation, leading to a

decrease in efficiency, increasing costs, and eventually

a reduction in the quality of service provided to clients.

Hence, it is the provider’s responsibility to resolve these

scheduling challenges according to the appropriate

approach they use [83, 94, 101, 116].

• Differences in capability As a result of serverless

providers’ performance and capability differences,

awareness-based scheduling algorithms, when faced

with different situations, can deviate from the schedule-

considered goal that must then be achieved, resulting in

the execution deviating from the schedule. Conse-

quently, this execution may violate any of the specified

restrictions. For instance, when the maximum number

of concurrent clients has been reached, this event may

be even more harmful. The workflow might suffer when

multiple tasks need to coincide. The reason confronting

this type of challenge is a significant difference between

the prevailing infrastructure and the optimal system,

which causes an essential challenge. To resolve this

challenge, function-as-a-service providers that provide

this type of service in various ways can be evaluated

based on their structure, performance, and mechanisms.

A practical method of facilitating this process is

continuously monitoring the invoked and used func-

tions [74, 83, 86, 90].

• Characteristics of heterogeneity The best feature of

serverless computing is edge-device implementation.

Edge devices have the feature of being heterogeneous,

which means they have a variety of processing capac-

ities and different types of processing resources.

Serverless providers must,therefore, be able to adapt

to this heterogeneous property, respond appropriately to

varying requests, and manage all client requests in

various ways. Hence, this issue causes providers to

select different scheduling approaches based on envi-

ronment, applications, and demand. Consequently, this

causes them to face various challenges when attempting

to improve the quality of service presented to clients.

For instance, in the case of stateless, short-lived

processes, it is necessary to adjust the scheduling

process to accommodate the reduced latency and time

required to access resources. Resource allocation effi-

ciency can be maximized, reducing energy consump-

tion, response times, deadlines, and costs. It can

increase the level of user satisfaction with the services

provided. In contrast, the service provider should ensure

that requests are answered as efficiently and quickly as

possible for data users who work with time-sensitive

data. Providers always need to be required to develop a

comprehensive, intelligent, and detailed scheduling

algorithm that fits and is compatible with all

applications’ performance specifications. The issue is

a significant challenge for providers [90, 104, 107].

• Differences in goals A provider’s goal is to make the

maximum use of their resources. In contrast, the

customer’s goal is to get the most accurate responses

possible as soon as possible. The amount of computing

power or memory required will vary depending on the

requirements of the function in many different circum-

stances. As such, this can be a very challenging task

regarding local conditions. For instance, serverless

providers might charge a fee based on the time it takes

to perform a particular function or impose an execution

time limit based on how long the function must run

before it can be executed. Users must consider paral-

lelism constraints, overheads, and how the data is

obtained when scheduling the processing of created

workloads, employing functions, and allocating

resources for those workloads. However, the scheduling

approach for cloud functions remains a significant

challenge [80, 94].

• Surrounding awareness Once an idealized infrastruc-

ture is in place, it should be possible to execute

requested functions immediately after they are submit-

ted instead of delaying them for some time. Imple-

menting this event can be very challenging in an actual

implementation environment. Scheduling different

resources according to the optimization criteria con-

straints, costs, and time can be extremely time-

consuming and challenging. Therefore, it is possible

to consider dynamic or static schedules based on the

environment, application, and objective of the schedule

event schedule can be implemented in several different

ways depending on the application, the goal, and the

environment. In a static approach, tasks are allocated to

computing resources before execution based on infor-

mation acquired from previous operations, for example.

As far as using resources is concerned, this method is

inarguably inefficient on the serverless platform. On the

other hand, dynamic approaches monitor the execution

schedule during execution to adjust it more efficiently

and effectively. When deadlines are at risk, delegating

tasks to quicker functions may be an option. Dynamic

approaches differ from static approaches in that they

have to be set based on awareness of various environ-

mental events; otherwise, there will be an increase in

the implementation costs if the scheduler is not set

based on awareness of these events [73, 100, 118, 124].

• Access to resources Sometimes, specific processes may

require more additional resources than the logical limit

allocated, which can result in difficulties in scheduling

algorithms executing those processes and allocating

resources. Thus, this issue reduces resources, which

prevents other processes from completing their tasks.

5604 Cluster Computing (2024) 27:5571–5610

123

The specific limitations imposed by the service

providers on the execution time for cloud functions

will delay the execution of serverless computing

functions. There are particular limitations on the

execution time of serverless computing functions

imposed by the providers. It is critical to use a hybrid

execution strategy to execute tasks that may exceed the

time limitation. It is necessary to use standard VMs to

perform these tasks. However, there is still an issue

regarding virtual machine deployment, which requires

determining the size of VMs at the outset and the

duration of their startup and shutdown [85, 91, 125].

• Data storage Because serverless computing functions

are generally stateless, it is usually necessary to employ

an external storage device to store temporary data that

the serverless computing function needs to access. As a

result, the existing structure of serverless computing

can be used to store objects. The data is not transmitted

directly among resources in serverless computing

scheduling, as opposed to traditional scheduling of

heterogeneous sources, in which the data is transmitted

directly among resources. Due to this issue, scheduling

algorithms in awareness-based schedules may face

challenges in maximizing resource allocation efficiency

and performance that need additional data by increasing

awareness-based scheduling processes [90, 108, 122].

• Access time to data Furthermore, the serverless

approach employs a stateless worker pattern, meaning

that every function must externalize the information

required to maintain two consecutive calls. Although

considered environments implemented by providers

may remain operational after the event has been

completed, it’s not guaranteed that this environment

will remain active. In other words, it means the

implementation of a specific

environment for a specific event. Hence, the time spent

accessing data and initializing code during the execution of

a function also has a time-related aspect to billed execution

time. Even though this amount is less compared to the time

expended on VMs, it remains significant compared to the

duration of the entire function. Failure to pay attention to

this case could result in additional costs. Since scheduling

algorithms are primarily designed to optimize resource

allocation and reduce costs, this case can pose a challenge

to scheduling algorithms [81, 90, 110, 115].

8 Conclusion

Serverless computing has allowed developers to concen-

trate solely on developing their applications since it leaves

users to put aside infrastructure settings. In addition, it has

introduced a new payment model and a microservice

architecture that provides many advantages, such as con-

verting an application to functions. Serverless computing is

being considered as a mechanism to implement and use

functions in devices at the edge of the network, such as IoT

devices with limited resources, leading to a particular focus

on optimal resource utilization. The scheduling approach is

an essential step in optimizing the process of utilizing

resources most efficiently, providing providers of server-

less services with a mechanism to maximize their resource

allocation and utilization efficiency. In this article, an

attempt has been made to examine new approaches and

algorithms used in the scheduling algorithms in serverless

computing. Next, an attempt has been made to provide the

taxonomy process presented in this research based on the

approaches and algorithms used in serverless computing.

The proposed taxonomy is classified into six main fields:

Energy-aware, Data-aware, Deadline-aware, Package-

aware, Resource-aware, and Hybrid. Based on these fac-

tors, which have been derived from the review articles, the

technical questions listed in Sect. 4.1 in the tabular form

(i.e., Table 3) have been answered using comparative

charts to help explain the results. The research challenges

were discussed as important issues and open issues. It is

important to note that these challenges are presented

explicitly for serverless environments with their dynamic

behaviors and resource scheduling problems. In this regard,

these investigated challenges may have an important role in

the future directions of the field of studies in which moti-

vated researchers work.

Author contributions MG, MG-A, LE conducted this research. MG:

Methodology, Software, Validation, Writing original draft. MG-A:

Investigation, Resources, Data curation, Visualization. LE: Investi-

gation, Visualization.

Funding This research received no specific grant from any funding

agency in the public, commercial, or not-for-profit sectors.

Data availability The datasets used or analyzed during the current

study are available from the corresponding author on reasonable

request.

Declarations

Competing interests We certify that there is no actual or potential

conflict of interest in relation to this article.

Ethical approval All procedures performed in studies involving

human participants were in accordance with the ethical standards of

the institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical

standards. This article does not contain any studies with human par-

ticipants or animals performed by any of the authors.

Cluster Computing (2024) 27:5571–5610 5605

123

References

1. Li, Y., Lin, Y., Wang, Y., Ye, K., Xu, C.: Serverless computing:

state-of-the-art, challenges and opportunities. IEEE Trans. Serv.

Comput. 16(2), 1522–1539 (2022)

2. Barcelona-Pons, D., Sutra, P., Sánchez-Artigas, M., Parı́s, G.,

Garcı́a-López, P.: Stateful serverless computing with crucial.

ACM Trans. Softw. Eng. Methodol. 31(3), 1–38 (2022)

3. Sharma, P.: Challenges and opportunities in sustainable

serverless computing. ACM SIGENERGY Energy Inform. Rev.

3(3), 53–58 (2023)

4. Cao, Y., Niu, B., Wang, H., Zhao, X.: Event-based adaptive

resilient control for networked nonlinear systems against

unknown deception attacks and actuator saturation. Int.

J. Robust Nonlinear Control (2024). https://doi.org/10.1002/rnc.

7231

5. Lee, H., Satyam, K., Fox, G.: Evaluation of production server-

less computing environments. In: 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), pp. 442–450. IEEE

(2018)

6. Wu, W., Zhang, L., Wu, Y., Zhao, H.: Adaptive saturated two-

bit-triggered bipartite consensus control for networked MASs

with periodic disturbances: a low-computation method. IMA J.

Math. Control. Inf. (2024). https://doi.org/10.1093/imamci/

dnae002

7. Le, D.N., Pal, S., Pattnaik, P.K., OpenFaaS. Cloud computing

solutions: architecture, data storage, implementation and secu-

rity. 287–303 (2022)

8. Marin, E., Perino, D., Di Pietro, R.: Serverless computing: a

security perspective. J. Cloud Comput. 11(1), 1–12 (2022)

9. Huang, S., Zong, G., Zhao, N., Zhao, X., Ahmad, A.M.: Per-

formance recovery-based fuzzy robust control of networked

nonlinear systems against actuator fault: a deferred actuator-

switching method. Fuzzy Sets Syst. 480, 108858 (2024). https://

doi.org/10.1016/j.fss.2024.108858

10. Tarahomi, M., Izadi, M., Ghobaei-Arani, M.: An efficient

power-aware VM allocation mechanism in cloud data centers: a

micro genetic-based approach. Cluster Comput. 24, 919–934
(2021). https://doi.org/10.1007/s10586-020-03152-9

11. Mampage, A., Karunasekera, S., Buyya, R.: A holistic view on

resource management in serverless computing environments:

taxonomy and future directions. ACM Comput. Surv. 54(11s),
1–36 (2022)

12. Benedetti, P., Femminella, M., Reali, G., Steenhaut, K.:

Experimental analysis of the application of serverless computing

to IoT platforms. Sensors 21(3), 928 (2021)

13. Sarkar, S., Wankar, R., Srirama, S.N., Suryadevara, N.K.:

Serverless management of sensing systems for fog computing

framework. IEEE Sens. J. 20(3), 1564–1572 (2019)

14. Xue, B., Yang, Q., Jin, Y., Zhu, Q., Lan, J., Lin, Y., Tan, J.,

et al.: Genotoxicity assessment of haloacetaldehyde disinfection

byproducts via a simplified yeast-based toxicogenomics assay.

Environ. Sci. Technol. 57(44), 16823–16833 (2023). https://doi.

org/10.1021/acs.est.3c04956

15. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L., Zhang, Y.:

Major factors controlling fracture development in the Middle

Permian Lucaogou Formation tight oil reservoir, Junggar Basin,

NW China. J. Asian Earth Sci. 146, 279–295 (2017). https://doi.

org/10.1016/j.jseaes.2017.04.032

16. Rajan, A.P.: A review on serverless architectures-function as a

service (FaaS) in cloud computing. TELKOMNIKA (Telecom-

mun. Comput. Electron. Control) 18(1), 530–537 (2020)

17. Hellerstein, J.M., Faleiro, J., Gonzalez, J.E., Schleier-Smith, J.,

Sreekanti, V., Tumanov, A., Wu, C.: Serverless computing: one

step forward, two steps back. arXiv preprint arXiv:1812.03651

(2018)

18. Naranjo, D.M., Risco, S., de Alfonso, C., Pérez, A., Blanquer, I.,

Moltó, G.: Accelerated serverless computing based on GPU

virtualization. J. Parallel Distrib. Comput. 139, 32–42 (2020)

19. Bebortta, S., Das, S.K., Kandpal, M., Barik, R.K., Dubey, H.:

Geospatial serverless computing: architectures, tools and future

directions. ISPRS Int. J. Geo Inf. 9(5), 311 (2020)
20. Patros, P., Spillner, J., Papadopoulos, A.V., Varghese, B., Rana,

O., Dustdar, S.: Toward sustainable serverless computing. IEEE

Internet Comput. 25(6), 42–50 (2021)

21. Hassan, H.B., Barakat, S.A., Sarhan, Q.I.: Survey on serverless

computing. J. Cloud Comput. 10(1), 1–29 (2021)

22. Jia, Z., Witchel, E.: Nightcore: efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In:

Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Oper-

ating Systems, pp. 152–166 (2021)

23. Grafberger, A., Chadha, M., Jindal, A., Gu, J., Gerndt, M.:

FedLess: secure and scalable federated learning using serverless

computing. In: 2021 IEEE International Conference on Big Data

(Big Data), pp. 164–173. IEEE (2021)

24. Kelly, D., Glavin, F., Barrett, E.: Serverless computing: Behind

the scenes of major platforms. In: 2020 IEEE 13th International

Conference on Cloud Computing (CLOUD), pp. 304–312. IEEE

(2020)

25. Khatri, D., Khatri, S.K., Mishra, D.: Potential bottleneck and

measuring performance of serverless computing: a literature

study. In: 2020 8th International Conference on Reliability,

Infocom Technologies and Optimization (Trends and Future

Directions) (ICRITO), pp. 161–164. IEEE (2020)

26. Kjorveziroski, V., Bernad Canto, C., Juan Roig, P., Gilly, K.,

Mishev, A., Trajkovik, V., Filiposka, S.: IoT serverless com-

puting at the edge: open issues and research direction. Trans.

Netw. Commun. (2021)

27. Lenarduzzi, V., Daly, J., Martini, A., Panichella, S., Tamburri,

D.A.: Toward a technical debt conceptualization for serverless

computing. IEEE Softw. 38(1), 40–47 (2020)

28. Golec, M., Ozturac, R., Pooranian, Z., Gill, S.S., Buyya, R.:

iFaaSBus: a security-and privacy-based lightweight framework

for serverless computing using IoT and machine learning. IEEE

Trans. Ind. Inf. 18(5), 3522–3529 (2021)

29. Mondal, S.K., Pan, R., Kabir, H.M., Tian, T., Dai, H.N.:

Kubernetes in IT administration and serverless computing: an

empirical study and research challenges. J. Supercomput. 78(2),
2937–2987 (2022)

30. Prakash, A.A., Kumar, K.S.: Cloud serverless security and ser-

vices: a survey. In: Applications of Computational Methods in

Manufacturing and Product Design, pp. 453–462. Springer,

Singapore (2022)

31. Kumari, A., Behera, R.K., Sahoo, B., Misra, S.: Role of

serverless computing in healthcare systems: case studies. In:

International Conference on Computational Science and Its

Applications, pp. 123–134. Springer, Cham (2022)

32. Zhang, Y., Goiri, Í., Chaudhry, G.I., Fonseca, R., Elnikety, S.,

Delimitrou, C., Bianchini, R.: Faster and cheaper serverless

computing on harvested resources. In: Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles,

pp. 724–739 (2021)

33. Yan, M., Castro, P., Cheng, P., Ishakian, V.: Building a chatbot

with serverless computing. In: Proceedings of the 1st Interna-

tional Workshop on Mashups of Things and APIs, pp. 1–4

(2016)

34. Sewak, M., Singh, S.: Winning in the era of serverless com-

puting and function as a service. In: 2018 3rd International

5606 Cluster Computing (2024) 27:5571–5610

123

https://doi.org/10.1002/rnc.7231
https://doi.org/10.1002/rnc.7231
https://doi.org/10.1093/imamci/dnae002
https://doi.org/10.1093/imamci/dnae002
https://doi.org/10.1016/j.fss.2024.108858
https://doi.org/10.1016/j.fss.2024.108858
https://doi.org/10.1007/s10586-020-03152-9
https://doi.org/10.1021/acs.est.3c04956
https://doi.org/10.1021/acs.est.3c04956
https://doi.org/10.1016/j.jseaes.2017.04.032
https://doi.org/10.1016/j.jseaes.2017.04.032
http://arxiv.org/abs/1812.03651

Conference for Convergence in Technology (I2CT), pp. 1–5.

IEEE (2018)

35. Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., Guo, M.: The

serverless computing survey: a technical primer for design

architecture. ACM Comput. Surv. 54(10s), 1–34 (2022)

36. Sankaran, A., Datta, P. and Bates, A.: Workflow integration

alleviates identity and access management in serverless com-

puting. In: Annual Computer Security Applications Conference,

pp. 496–509 (2020)

37. Stigler, M.: Understanding serverless computing. In: Beginning

Serverless Computing, pp. 1–14. Apress, Berkeley (2018)

38. Ginzburg, S., Freedman, M.J.: Serverless isn’t server-less:

measuring and exploiting resource variability on cloud FaaS

platforms. In: Proceedings of the 2020 Sixth International

Workshop on Serverless Computing, pp. 43–48 (2020)

39. Taibi, D., Spillner, J., Wawruch, K.: Serverless computing-

where are we now, and where are we heading? IEEE Softw.

38(1), 25–31 (2020)

40. Ghorbian, M., Ghobaei-Arani, M.: A Blockchain-enabled

serverless approach for IoT healthcare applications. In: Server-

less Computing: Principles and Paradigms, pp. 193–218.

Springer, Cham (2023)

41. Casale, G., Artač, M., Van Den Heuvel, W.J., van Hoorn, A.,

Jakovits, P., Leymann, F., Long, M., Papanikolaou, V., Pre-

senza, D., Russo, A., Srirama, S.N.: Radon: rational decompo-

sition and orchestration for serverless computing. SICS Softw.-

Intensive Cyber-Phys. Syst. 35(1), 77–87 (2020)

42. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.:

Serverless computing: an investigation of factors influencing

microservice performance. In: 2018 IEEE International Con-

ference on Cloud Engineering (IC2E), pp. 159–169. IEEE

(2018)

43. Xu, Z., Zhang, H., Geng, X., Wu, Q., Ma, H.: Adaptive function

launching acceleration in serverless computing platforms. In:

2019 IEEE 25th International Conference on Parallel and Dis-

tributed Systems (ICPADS), pp. 9–16. IEEE (2019)

44. Adzic, G., Chatley, R.: Serverless computing: economic and

architectural impact. In: Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, pp. 884–889

(2017)

45. Mohanty, S.K., Premsankar, G., Di Francesco, M.: An evalua-

tion of open source serverless computing frameworks. Cloud-

Com 2018, 115–120 (2018)

46. Aske, A., Zhao, X.: Supporting multi-provider serverless com-

puting on the edge. In: Proceedings of the 47th International

Conference on Parallel Processing Companion, pp. 1–6 (2018)

47. Kaffes, K., Yadwadkar, N.J., Kozyrakis, C.: Centralized core-

granular scheduling for serverless functions. In: Proceedings of

the ACM Symposium on Cloud Computing, pp. 158–164 (2019)

48. Mahmoudi, N., Khazaei, H.: Performance modeling of server-

less computing platforms. IEEE Trans. Cloud Comput. 10(4),
2834–2847 (2020)

49. Kaffes, K., Yadwadkar, N.J., Kozyrakis, C.: Practical scheduling

for real-world serverless computing. arXiv preprint arXiv:2111.

07226 (2021)

50. Zuk, P., Rzadca, K.: Scheduling methods to reduce response

latency of function as a service. In: 2020 IEEE 32nd Interna-

tional Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD), pp. 132–140. IEEE (2020)

51. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khan-

delwal, A., Pu, Q., Shankar, V., Carreira, J., Krauth, K., Yad-

wadkar, N., Gonzalez, J.E.: Cloud programming simplified: a

berkeley view on serverless computing. arXiv preprint arXiv:

1902.03383 (2019)

52. Bisht, J., Vampugani, V.S.: Load and cost-aware min-min

workflow scheduling algorithm for heterogeneous resources in

fog, cloud, and edge scenarios. Int. J. Cloud Appl. Comput.

12(1), 1–20 (2022)

53. Majewski, M., Pawlik, M., Malawski, M.: Algorithms for

scheduling scientific workflows on serverless architecture. In:

2021 IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pp. 782–789. IEEE

(2021)

54. Mahmoudi, N., Khazaei, H.: MLProxy: SLA-aware reverse

proxy for machine learning inference serving on serverless

computing platforms. arXiv preprint arXiv:2202.11243 (2022)

55. Nezafat Tabalvandani, M.A., Hosseini Shirvani, M., Motameni,

H.: Reliability-aware web service composition with cost mini-

mization perspective: a multi-objective particle swarm opti-

mization model in multi-cloud scenarios. Soft Comput. 1–24

(2023)

56. Suresh, A., Somashekar, G., Varadarajan, A., Kakarla, V.R.,

Upadhyay, H., Gandhi, A.: Ensure: efficient scheduling and

autonomous resource management in serverless environments.

In: 2020 IEEE International Conference on Autonomic Com-

puting and Self-Organizing Systems (ACSOS), pp. 1–10. IEEE

(August)

57. Pathak, P., Singh, P.: Kubernetes and Docker the Star Duo of

container culture. In: Proceedings of 3rd International Confer-

ence on Machine Learning, Advances in Computing, Renewable

Energy and Communication: MARC 2021, pp. 79–90. Springer,

Singapore (2022)

58. Balaji, K., Sai Kiran, P., Sunil Kumar, M.: Power aware virtual

machine placement in IaaS cloud using discrete firefly algo-

rithm. Appl. Nanosci. 13(3), 2003–2011 (2023)

59. Jiang, J., Gan, S., Du, B., Alonso, G., Klimovic, A., Singla, A.,

Wu, W., Wang, S., Zhang, C.: A systematic evaluation of

machine learning on serverless infrastructure. VLDB J. 1–25

(2023)

60. Wang, H., Niu, D., Li, B.: Distributed machine learning with a

serverless architecture. In: IEEE INFOCOM 2019-IEEE Con-

ference on Computer Communications, pp. 1288–1296. IEEE

(2019)

61. Mampage, A., Karunasekera, S., Buyya, R.: Deep reinforcement

learning for application scheduling in resource-constrained,

multi-tenant serverless computing environments. Future Gener.

Comput. Syst. 143, 277–292 (2023)

62. Alqaryouti, O., Siyam, N.: Serverless computing and scheduling

tasks on cloud: a review. Am. Acad. Sci. Res. J. Eng. Technol.

Sci. 40(1), 235–247 (2018)

63. Kjorveziroski, V., Filiposka, S., Trajkovik, V.: IoT serverless

computing at the edge: a systematic mapping review. Computers

10(10), 130 (2021)

64. Saurav, S.K., Benedict, S.: A taxonomy and survey on energy-

aware scientific workflows scheduling in large-scale heteroge-

neous architecture. In: 2021 6th International Conference on

Inventive Computation Technologies (ICICT), pp. 820–826.

IEEE (2021)

65. Shafiei, H., Khonsari, A., Mousavi, P.: Serverless computing: a

survey of opportunities, challenges, and applications. ACM

Comput. Surv. 54(11s), 1–32 (2022)

66. Xie, R., Tang, Q., Qiao, S., Zhu, H., Yu, F.R., Huang, T.: When

serverless computing meets edge computing: architecture,

challenges, and open issues. IEEE Wirel. Commun. 28(5),
126–133 (2021)

67. Cassel, G.A.S., Rodrigues, V.F., da Rosa Righi, R., Bez, M.R.,

Nepomuceno, A.C., da Costa, C.A.: Serverless computing for

Internet of Things: a systematic literature review. Future Gener.

Comput. Syst. 128, 299–316 (2022)

68. Ghobaei-Arani, M. and Ghorbian, M.: Scheduling mechanisms

in serverless computing. In: Serverless Computing: Principles

and Paradigms, pp. 243–273. Springer, Cham (2023)

Cluster Computing (2024) 27:5571–5610 5607

123

http://arxiv.org/abs/2111.07226
http://arxiv.org/abs/2111.07226
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/2202.11243

69. Pérez, A., Risco, S., Naranjo, D.M., Caballer, M., Moltó, G.:

On-premises serverless computing for event-driven data pro-

cessing applications. In: 2019 IEEE 12th International Confer-

ence on Cloud Computing (CLOUD), pp. 414–421. IEEE (2019)

70. Jarachanthan, J., Chen, L., Xu, F., Li, B.: AMPS-Inf: automatic

model partitioning for serverless inference with cost efficiency.

In: 50th International Conference on Parallel Processing,

pp. 1–12 (2021)

71. Hosseini Shirvani, M., Noorian Talouki, R.: Bi-objective

scheduling algorithm for scientific workflows on cloud com-

puting platform with makespan and monetary cost minimization

approach. Complex Intell. Syst. 8(2), 1085–1114 (2022)

72. Wu, S., Tao, Z., Fan, H., Huang, Z., Zhang, X., Jin, H., Yu, C.,

Cao, C.: Container lifecycle-aware scheduling for serverless

computing. Software 52(2), 337–352 (2022)

73. Kallam, S., Patan, R., Ramana, T.V., Gandomi, A.H.: Linear

weighted regression and energy-aware greedy scheduling for

heterogeneous big data. Electronics 10(5), 554 (2021)

74. Aslanpour, M.S., Toosi, A.N., Cheema, M.A., Gaire, R.:

Energy-aware resource scheduling for serverless edge comput-

ing. In: 2022 22nd IEEE International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), pp. 190–199. IEEE

(2022)

75. Gunasekaran, J.R., Thinakaran, P., Chidambaram, N., Kan-

demir, M.T., Das, C.R.: Fifer: tackling underutilization in the

serverless era. arXiv preprint arXiv:2008.12819 (2020)

76. Aslanpour, M.S., Toosi, A.N., Gaire, R. and Cheema, M.A.:

WattEdge: a holistic approach for empirical energy measure-

ments in edge computing. In: International Conference on Ser-

vice-Oriented Computing, pp. 531–547. Springer, Cham (2021)

77. Rausch, T., Rashed, A., Dustdar, S.: Optimized container

scheduling for data-intensive serverless edge computing. Future

Gener. Comput. Syst. 114, 259–271 (2021)

78. Wu, J., Wu, M., Li, H., Li, L., Li, L.: A serverless-based, on-the-

fly computing framework for remote sensing image collection.

Remote Sens. 14(7), 1728 (2022)

79. Yu, M., Cao, T., Wang, W., Chen, R.: Restructuring serverless

computing with data-centric function orchestration. arXiv pre-

print arXiv:2109.13492 (2021)

80. Das, S.: Ant Colony Optimization for MapReduce Application

to Optimise Task Scheduling in Serverless Platform (Doctoral

dissertation, Dublin, National College of Ireland) (2021)

81. Seubring, W., Lazovik, A., Blaauw, F.: Data Locality Aware

Scheduling on a Serverless Edge Platform (Doctoral disserta-

tion) (2021)

82. Jindal, A., Gerndt, M., Chadha, M., Podolskiy, V., Chen, P.:

Function delivery network: extending serverless computing for

heterogeneous platforms. Software 51(9), 1936–1963 (2021)

83. Nestorov, A.M., Polo, J., Misale, C., Carrera, D., Youssef, A.S.:

Performance evaluation of data-centric workloads in serverless

environments. In: 2021 IEEE 14th International Conference on

Cloud Computing (CLOUD), pp. 491–496. IEEE (2021)

84. Przybylski, B., _Zuk, P., Rzadca, K.: Data-driven scheduling in

serverless computing to reduce response time. In: 2021 IEEE/

ACM 21st International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), pp. 206–216. IEEE (2021)

85. Garcı́a-López, P., Sánchez-Artigas, M., Shillaker, S., Pietzuch,

P., Breitgand, D., Vernik, G., Sutra, P., Tarrant, T., Ferrer, A.J.:

Servermix: tradeoffs and challenges of serverless data analytics.

arXiv preprint arXiv:1907.11465 (2019)

86. HoseinyFarahabady, M.R., Taheri, J., Zomaya, A.Y. and Tari,

Z.: Data-intensive workload consolidation in serverless

(Lambda/FaaS) platforms. In: 2021 IEEE 20th International

Symposium on Network Computing and Applications (NCA),

pp. 1–8. IEEE (2021)

87. Tang, Y. and Yang, J.: Lambdata: optimizing serverless com-

puting by making data intents explicit. In: 2020 IEEE 13th

International Conference on Cloud Computing (CLOUD),

pp. 294–303. IEEE (2020)

88. Singhvi, A., Houck, K., Balasubramanian, A., Shaikh, M.D.,

Venkataraman, S., Akella, A.: Archipelago: a scalable low-la-

tency serverless platform. arXiv preprint arXiv:1911.09849

(2019)

89. Asghari Alaie, Y., Hosseini Shirvani, M., Rahmani, A.M.: A

hybrid bi-objective scheduling algorithm for execution of sci-

entific workflows on cloud platforms with execution time and

reliability approach. J. Supercomput. 79(2), 1451–1503 (2023)

90. Mampage, A., Karunasekera, S., Buyya, R.: Deadline-aware

dynamic resource management in serverless computing envi-

ronments. In: 2021 IEEE/ACM 21st International Symposium

on Cluster, Cloud and Internet Computing (CCGrid),

pp. 483–492. IEEE (2021)

91. Wang, B., Ali-Eldin, A., Shenoy, P.: Lass: running latency

sensitive serverless computations at the edge. In: Proceedings of

the 30th International Symposium on High-Performance Parallel

and Distributed Computing, pp. 239–251 (2021)

92. Krishna, S.R., Majji, S., Kishore, S.K., Jaiswal, S., Kostka,

J.A.L., Chouhan, A.S.: Optimization of time-driven scheduling

technique for serverless cloud computing. Turk. J. Comput.

Math. Educ. 12(10), 1–8 (2021)

93. Zuk, P., Rzadca, K.: Reducing response latency of composite

functions-as-a-service through scheduling. J. Parallel Distrib.

Comput. 167, 18–30 (2022)

94. Fan, D. and He, D.: A scheduler for serverless framework base

on kubernetes. In: Proceedings of the 2020 4th High Perfor-

mance Computing and Cluster Technologies Conference & 2020

3rd International Conference on Big Data and Artificial Intelli-

gence, pp. 229–232 (2020)

95. Totoy, G., Boza, E.F., Abad, C.L.: An Extensible Scheduler for

the OpenLambda FaaS Platform. Min-Move’18 (2018)

96. Aumala, G., Boza, E., Ortiz-Avilés, L., Totoy, G., Abad, C.:

Beyond load balancing: package-aware scheduling for serverless

platforms. In: 2019 19th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID),

pp. 282–291. IEEE (2019)

97. Bai, T., Nie, J.Y., Zhao, W.X., Zhu, Y., Du, P., Wen, J.R.: An

attribute-aware neural attentive model for next basket recom-

mendation. In: The 41st International ACM SIGIR Conference

on Research & Development in Information Retrieval,

pp. 1201–1204 (2018)

98. Chetabi, F.A., Ashtiani, M., Saeedizade, E.: A package-aware

approach for function scheduling in serverless computing

environments. J.f Grid Comput. 21(2), 23 (2023)

99. Ebrahimpour, H., Ashtiani, M., Bakhshi, F., Bakhtiariazad, G.:

A heuristic-based package-aware function scheduling approach

for creating a trade-off between cold start time and cost in FaaS

computing environments. J. Supercomput. 1–49 (2023)

100. Suresh, A., Gandhi, A.: Fnsched: an efficient scheduler for

serverless functions. In: Proceedings of the 5th international

workshop on serverless computing, pp. 19–24 (2019)

101. Yuvaraj, N., Karthikeyan, T., Praghash, K.: An improved task

allocation scheme in serverless computing using gray wolf

Optimization (GWO) based reinforcement learning (RIL)

approach. Wirel. Pers. Commun. 117(3), 2403–2421 (2021)

102. Cheng, Y. and Zhou, Z.: Autonomous resource scheduling for

real-time and stream processing. In: 2018 IEEE SmartWorld,

Ubiquitous Intelligence & Computing, Advanced & Trusted

Computing, Scalable Computing & Communications, Cloud &

Big Data Computing, Internet of People and Smart City Inno-

vation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/

SCI), pp. 1181–1184. IEEE (2018)

5608 Cluster Computing (2024) 27:5571–5610

123

http://arxiv.org/abs/2008.12819
http://arxiv.org/abs/2109.13492
http://arxiv.org/abs/1907.11465
http://arxiv.org/abs/1911.09849

103. Lakhan, A., Mohammed, M.A., Rashid, A.N., Kadry, S., Pan-

ityakul, T., Abdulkareem, K.H., Thinnukool, O.: Smart-contract

aware ethereum and client-fog-cloud healthcare system. Sensors

21(12), 4093 (2021)

104. Kim, Y.K., HoseinyFarahabady, M.R., Lee, Y.C., Zomaya,

A.Y.: Automated fine-grained cpu cap control in serverless

computing platform. IEEE Trans. Parallel Distrib. Syst. 31(10),
2289–2301 (2020)

105. Patterson, L., Pigorovsky, D., Dempsey, B., Lazarev, N., Shah,

A., Steinhoff, C., Bruno, A., Hu, J., Delimitrou, C.: A hardware-

software stack for serverless edge swarms. arXiv preprint arXiv:

2112.14831 (2021)

106. Soltani, B., Ghenai, A. and Zeghib, N.: A migration-based

approach to execute long-duration multi-cloud serverless func-

tions. In: ICAASE, pp. 42–50 (2018)

107. Zhang, H., Shen, M., Huang, Y., Wen, Y., Luo, Y., Gao, G.,

Guan, K.: A serverless cloud-fog platform for dnn-based video

analytics with incremental learning. arXiv preprint arXiv:2102.

03012 (2021)

108. Gadepalli, P.K., Peach, G., Cherkasova, L., Aitken, R., Parmer,

G.: Challenges and opportunities for efficient serverless com-

puting at the edge. In: 2019 38th Symposium on Reliable Dis-

tributed Systems (SRDS), pp. 261–2615. IEEE (2019)

109. Fard, H.M., Prodan, R., Wolf, F.: Dynamic multi-objective

scheduling of microservices in the cloud. In: 2020 IEEE/ACM

13th International Conference on Utility and Cloud Computing

(UCC), pp. 386–393. IEEE (2020)

110. Zhang, M., Krintz, C., Wolski, R.: Edge-adaptable serverless

acceleration for machine learning Internet of Things applica-

tions. Software 51(9), 1852–1867 (2021)

111. Aytekin, A., Johansson, M.: Exploiting serverless runtimes for

large-scale optimization. In: 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pp. 499–501. IEEE

(2019)

112. Huang, Z., Mi, Z., Hua, Z.: HCloud: a trusted JointCloud

serverless platform for IoT systems with blockchain. China

Commun. 17(9), 1–10 (2020)

113. Zhang, J., Wang, A., Li, M., Chen, Y., Cheng, Y., HyperFaaS: a

truly elastic serverless computing framework

114. Denninnart, C., Gentry, J., Salehi, M.A.: Improving robustness

of heterogeneous serverless computing systems via probabilistic

task pruning. In: 2019 IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW),

pp. 6–15. IEEE (2019)

115. Ling W, Tian C, Ma L, Hu Z.: Lite-Service: a framework to

build and schedule telecom applications in device, edge and

cloud. In: 2018 IEEE 20th International Conference on High

Performance Computing and Communications; IEEE 16th

International Conference on Smart City; IEEE 4th International

Conference on Data Science and Systems (HPCC/SmartCity/

DSS) 2018 Jun 28, pp. 708–717. IEEE (2018)

116. Silab, M.V., Hassanpour, S.B., Khonsari, A., Dadlani, A.: On

skipping redundant computation via smart task deployment for

faster serverless. In: ICC 2022-IEEE International Conference

on Communications (pp. 5475–5480). IEEE (2022)

117. Tychalas, D., Karatza, H.: SaMW: a probabilistic meta-heuristic

algorithm for job scheduling in heterogeneous distributed sys-

tems powered by microservices. Clust. Comput. 24(3),
1735–1759 (2021)

118. Mujezinović, A., Ljubović, V.: Serverless architecture for

workflow scheduling with unconstrained execution environ-

ment. In: 2019 42nd International Convention on Information

and Communication Technology, Electronics and Microelec-

tronics (MIPRO), pp. 242–246. IEEE (2019)

119. Denninnart, C. and Salehi, M.A.: SMSE: a serverless platform

for multimedia cloud systems. arXiv preprint arXiv:2201.01940

(2022)

120. Ao, L., Izhikevich, L., Voelker, G.M., Porter, G.: Sprocket: a

serverless video processing framework. In: Proceedings of the

ACM Symposium on Cloud Computing, pp. 263–274 (2018)

121. Wen, Z., Wang, Y. and Liu, F.: StepConf: SLO-aware dynamic

resource configuration for serverless function workflows. In:

IEEE INFOCOM 2022-IEEE Conference on Computer Com-

munications, pp. 1868–1877. IEEE (2022)

122. Nesen, A., Bhargava, B.: Towards situational awareness with

multimodal streaming data fusion: serverless computing

approach. In: Proceedings of the International Workshop on Big

Data in Emergent Distributed Environments, pp. 1–6 (2021)

123. Wu, C., Sreekanti, V., Hellerstein, J.M.: Transactional causal

consistency for serverless computing. In: Proceedings of the

2020 ACM SIGMOD International Conference on Management

of Data, pp. 83–97 (2020)

124. Carver, B., Zhang, J., Wang, A., Anwar, A., Wu, P., Cheng, Y.:

Wukong: a scalable and locality-enhanced framework for

serverless parallel computing. In: Proceedings of the 11th ACM

Symposium on Cloud Computing, pp. 1–15 (2020)

125. Tang, Q., Xie, R., Yu, F.R., Chen, T., Zhang, R., Huang, T., Liu,

Y.: Distributed task scheduling in serverless edge computing

networks for the internet of things: a learning approach. IEEE

Internet Things J. 9(20), 19634–19648 (2022)

126. De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., Zavattaro,

G.: Topology-aware serverless function-execution scheduling.

arXiv preprint arXiv:2205.10176 (2022)

127. Lakhan, A., Mohammed, M.A., Rashid, A.N., Kadry, S.,

Abdulkareem, K.H., Nedoma, J., Martinek, R., Razzak, I.:

Restricted Boltzmann machine assisted secure serverless edge

system for internet of medical things. IEEE J. Biomed. Health

Inform. 27(2), 673–683 (2022)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Mohsen Ghorbian is a Ph.D.

candidate in the computer sci-

ence department of the Islamic

Azad University of Qom. He

received the B.Sc and M.Sc

degree in Software Engineering

from Islamic Azad University.

His research interests are cloud

computing, serverless comput-

ing, blockchain, and machine

learning techniques.

Cluster Computing (2024) 27:5571–5610 5609

123

http://arxiv.org/abs/2112.14831
http://arxiv.org/abs/2112.14831
http://arxiv.org/abs/2102.03012
http://arxiv.org/abs/2102.03012
http://arxiv.org/abs/2201.01940
http://arxiv.org/abs/2205.10176

Mostafa Ghobaei-Arani received
the Ph.D. Degree in Software

Engineering from Islamic Azad

University, Science and

Research Branch, Tehran, Iran.

He is Assistant Professor of

Computer Engineering Depart-

ment, Qom Branch, Islamic

Azad University, Qom, Iran. He

has published more than 80

journal papers in the area of

distributed systems. His

research interests include dis-

tributed computing, cloud com-

puting, autonomic computing,

edge/fog computing, serverless computing, soft computing, big data,

and the IoT.

Leila Esmaeili is a faculty

member of Computer Engi-

neering at the Islamic Azad

University of Qom. Moreover,

she is a Ph.D. Candidate at

Amirkabir University of Tech-

nology (Tehran Polytechnic),

Department of Computer Engi-

neering and Information Tech-

nology. Her research interests

revolve around process mining,

organizational mining, and rec-

ommender systems in the con-

text of interactive systems such

as social commerce and IoT.

5610 Cluster Computing (2024) 27:5571–5610

123

	A survey on the scheduling mechanisms in serverless computing: a taxonomy, challenges, and trends
	Abstract
	Introduction
	Research motivation and challenges
	Our contribution
	Organization of the paper

	Background
	Overview of serverless computing
	Serverless computing features
	Scalability
	Visibility
	Faster development
	Security
	Reduced costs

	Serverless computing architecture
	Scheduling in serverless computing
	Scheduling metrics
	Response time
	Throughput
	Latency
	CPU usage
	Energy consumption
	Cost savings

	A brief overview of virtualization and containerization technologies
	Containerization approach
	Virtualization approach

	Machine learning in serverless computing

	Related works
	Research methodology
	Question formalization
	Data Analysis and papers choices

	Scheduling mechanisms in the serverless computing
	Energy-aware scheduling mechanisms
	Overview of energy-aware scheduling plans in serverless computing

	Data-aware scheduling mechanisms
	Overview of data-aware scheduling mechanisms

	Deadline-aware scheduling mechanisms
	Overview of deadline-aware scheduling mechanisms

	Package-aware scheduling mechanisms
	Overview of package-aware scheduling mechanisms

	Resource-aware scheduling mechanisms
	Overview of resource-aware scheduling mechanisms

	Hybrid
	Hybrid scheduling mechanisms

	Discussion
	Open issues
	Future research opportunities

	Conclusion
	Author contributions
	Data availability
	References

