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Abstract
The Internet of Things (IoTIoT) is built on a foundation of wireless sensor devices that connect humans and physical

objects to the Internet and enable them to interact with one another to improve the living conditions of citizens. Wireless

Sensor Networks (WSNs) are widely utilized in systems based on IoT to collect the data required by intelligent envi-

ronments. However, IoT � enabled WSNs encounter a variety of difficulties such as poor network lifespan, limited

throughput, and long communication delays, due to the massive non-homogenous data streaming from numerous sensor

devices. Therefore, a multi-objective intelligent clustering routing schema for IoT � enabled WSNs utilizing deep rein-

forcement learning is proposed in this paper to overcome these shortcomings. The proposed schema partitions the entire

network into various unequal clusters based on the present data load existing in sensor nodes, effectively preventing the

network from dying prematurely. In addition, an unequal clustering mechanism is utilized to balance inter-cluster and intra-

cluster energy consumption among cluster heads. The simulation findings demonstrate the effectiveness of the proposed

schema in terms of energy efficiency, delivered packets, end-to-end delay, alive nodes, energy balancing, and network

lifespan compared with the other two state-of-the-art existing schemes.

Keywords Deep reinforcement learning (DRL) � Multi-objective � Wireless sensor networks (WSNs) � Intelligent routing �
Internet of things (IoT)

1 Introduction

Over recent years, IoT device technologies have evolved

significantly, leading to the development of paradigms for

dynamic wireless sensing technology to provide seamless

communications over the Internet [1]. Wireless sensor

networks are a crucial element in the IoT that plays a basic

and vital role in collecting data and communications

through the fifth generation and beyond from the percep-

tion of sixth-generation Internet networks [2–4].

The IoT � enabled WSNs have many possibilities in

various smart applications. In the military, smart applica-

tions often involve sensitive data, privacy, and security

concerns, as well as the monitoring of critical military

zones to enhance national defense [5, 6]. In a home

automation network, valuable data is gathered from mon-

itoring sensors placed within the environment using smart

consumer sensor nodes. Subsequently, this collected data is

transmitted to the central base station with no direct human

intervention [7, 8].

The IoT � enabled WSNs play a crucial role in moni-

toring and providing real-time predictions for various

environmental events such as floods and tsunamis in

oceanic regions, monitoring rainfall patterns, detecting

seismic activities related to earthquakes, and monitoring

volcanic eruptions [9]. An innovative emergency evacua-

tion system is designed to identify potential hazards, such
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as fires, noxious gases, and the presence of individuals,

within an indoor monitoring environment [10]. The system

aims to provide a safe and unobstructed path for evacua-

tion, prioritizing the shortest and safest route for individ-

uals during emergencies.

The IoT � enabled WSNs have been introduced to

periodically record the internal conditions of the patient in

healthcare monitoring [11] and have found a wide array of

industrial applications, ranging from enhancing product

quality to promptly monitoring machine efficiency [12]. In

Smart Transportation, traffic surveillance application

leverages IoT technology to monitor and manage traffic

flow and conditions in real-time, enabling more efficient

and informed decision-making in urban mobility and

transportation management [13].

Accurate and timely data acquisition is paramount for these

real-time smart applications, ensuring that correct decisions

are madewithin their respective environments. Delays in data

collection can often result in heightened consequences, par-

ticularly in critical domains such as healthcare and forest fire

management. Therefore, the precise and prompt collection of

data has evolved into an essential requirement for these smart

applications. Mobile sink-based data acquisition stands out as

a highly significant technique for achieving accurate, delay-

free data collection, executed efficiently with commendable

performance [14, 15].

The sensors deployed in IoT � enabled WSNs contin-

uously monitor the surrounding physical environment and

transmit the sensing information directly to the Base Sta-

tion (BS). However, the repercussions of unbalanced power

consumption and reduced lifespan of battery-powered

sensor nodes limit the seamless connectivity of smart

devices over the IoT network, and thus the sensing data

will not be continually transmitted to the BS [16].

These shortcomings produce several problems within the

network, such as higher communication delay and an

imbalance in energy consumption among all the deployed

sensor nodes, which are unacceptable in particular applica-

tions. To avoid these repercussions,WSNs are often designed

in a hierarchical structure partitioned into small different

clusters [17, 18]. Each cluster has two categories of sensor

nodes: Cluster Heads (CHs) and Cluster Members (CMs).

The communication between the sensor nodes in the clus-

tering approach is classified into two communication modes:

intra-cluster and inter-cluster. In intra-cluster communication,

non-CH nodes (CMs) transmit their data to the respective CH,

while in inter-cluster communication, the respective CH fuses

the aggregated data to the BS either directly or through multi-

hop routing [19, 20]. Clustering is considered the robust

approach for increasing network lifetime and achieving higher

energy-efficient data transmission [21].

Nevertheless, the existing clustering routing approaches

in the literature suffer from severe issues, including an

increase in communication delays, ineffective performance

as evidenced by lower throughput, and a hot spot problem

[22–24]. In addition, heavy traffic loads are introduced

within the networks due to the massive messaging over-

head in portioning the networks into various clusters, par-

ticularly when the size of the network becomes larger,

which causes an unbalance in energy consumption between

all the deployed sensor nodes. Routing utilizing experi-

enced-based Reinforcement Learning (RL) is a promising

technique to solve the aforementioned issues [25].

RL represents a branch of the Machine Learning (ML)

approach that explores the interaction with the local envi-

ronment to acquire knowledge [26]. In RL technique, the Q-

Learning method is usually employed to choose a routing

path, where the reward represents the routing metric in the

learning operation. However, the state-action pairs of RL are

often small such that existing RL routing techniques cannot

exploit the most historical information of all the dynamic

network traffic changes to choose the optimal routing path,

due to the renowned ‘‘curse of dimensionality’’, and thus the

space complexity of the state-action pairs becomes a major

obstacle to the proliferation of RL routing methods [27].

The ‘‘curse of dimensionality’’ has recently been over-

come and averted to a great extent through applying DRL,

which relies on a Deep Neural Network (DNN) to realize

the logical relationship between the states and actions,

ensuring that all state-action pairs in DRL do not need to be

traversed as in Q-Learning method [28].DRL technique has

become popular in designing many successful complex

IoT systems such as resource optimization [29], cellular

scheduling [30], video streaming [31], and routing policy

against hard traffic patterns predictable [32].

Most of the prior works applying reinforcement learning

in network routing problems focus on addressing single

objective parameters such as communication delay or

message overheard. Although, in many real-life problems,

network routing methods often deal with multi-objective

parameters such as network latency, energy saving, and

channel bandwidth. The objectives can be directly related,

independent, and conflicting. In most routing problems,

some of the objectives are often conflicting with others, so

that maximizing one object leads to minimizing another.

Therefore, a trade-off between objectives is considered the

challenge issue to be addressed and overcome.

Inspired by the potential of DRL and given the afore-

mentioned limitations, this paper proposes a multi-objective

intelligent clustering routing schema for IoT � enabled

WSNs to avoid hot spot problem, reduce latency and message

overhead as well as prolong network lifetime. An unequal

clustering mechanism is proposed to balance the intra-cluster

and inter-cluster energy consumption that prolongs network

lifespan and maximizes network throughput as well as avoid

hot spot issue.
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Moreover, a Multi-Objective DRL(MODRL) intelligent

routing technique is proposed to minimize network latency

and network messaging overhead. Thus, an enhanced net-

work quality of service is obtained and the problem of

network partition can be avoided and overcome, through

intelligent clustering routing in IoT � enabledWSNs.

The following are the main contributions of this study.

(1) The study introduces a new mechanism based on

unequal clustering to effectively prevent the hot spot

problem in IoT � enabledWSNs. This mechanism

alleviates uneven energy consumption among nodes,

ultimately enhancing network reliability and longevity.

(2) The study presents an innovative load-balancing

schema, both intra-cluster and inter-cluster, to optimize

energy consumption in IoT � enabledWSNs. This

schema aims to prolong the network lifespan and

maximize overall network throughput, providing a

more sustainable and efficient network infrastructure.

(3) Furthermore, the study introduces an intelligent

routing technique based on MODRL for reducing

network latency and minimizing messaging overhead

significantly. By adopting MODRL, the study con-

tributes to more efficient and responsive communi-

cation within the network.

(4) Finally, comprehensive simulations illustrate the

efficiency and effectiveness of the introduced schema.

The findings highlight that the introduced schema

outperforms existing schemes, signifying a substantial

improvement in system performance and contributing

valuable insights into IoT � enabledWSNs.

This paper is organized as follows: Section two dis-

cusses the related work. Section three covers the prelimi-

naries through which introduced principles are presented.

The detailed design of the MODRL-based clustering rout-

ing schema is given in section four. Complexity analysis of

the proposed schema is discussed in section five. Sec-

tion six presents simulation experiments results and dis-

cussion. Section seven concludes the study.

2 Related work

A brief overview of the existing literature review that

concentrates on routing methods in IoT � enabled WSNs

using experienced-based reinforcement learning is intro-

duced in this section. The existing literature works can be

categorized as follows.

2.1 RL-based routing protocols

The first attempt to apply a reinforcement learning

approach to the routing problem is proposed in [33]. A Q-

routing algorithm for packet routing, based on the

Q-learning model, is proposed to choose the best route that

achieves a single objective parameter, the smaller mean

delivery delay. However, the limited lifespan of battery-

powered sensor nodes is not considered in this algorithm,

resulting in a shorter network lifespan.

An Adaptive Spanning Tree Routing Protocol (ASTRP)

is proposed in [34] based on reinforcement learning to

achieve two objectives, load balancing and congestion

evasion. The simulations demonstrate that the proposed

routing protocol is robust for unexpected failures. How-

ever, the protocol suffers from significant communication

delays resulting in low throughput, particularly in larger-

scale networks of high traffic loads.

An Adaptive Routing (AdaR) strategy is proposed for

WSNs in [35] based on Q-Learning and Least Squares

Policy Iteration (LSPI). The AdaR considers multi-objec-

tive parameters such as residue energy, hop count, and

aggregated proportion to evaluate an optimal Q-value for a

given policy. The results demonstrate that AdaR obtains a

high convergence speed. However, it has a poor

throughput.

A Feedback Routing for Optimizing Multiple Sinks

(FROMS) method based on Q-learning for multicast routing

is proposed in [36] for WSNs. FROMS considers multi-ob-

jective parameters such as communication delay, battery

energy, and hop count to choose the optimal path, which

delivers packets from a source node to multiple sinks.

FROMS has a drawbacks of low network lifespan and high

messaging overhead. An extension to FROMS,E � FROMS,

is introduced in [37] to address energy consumption in WSNs.

A routing protocol is presented in [38] for underwater

WSNs. The remaining node energy and the node group’s

average energy are considered to choose a forward node

and balance energy consuming. The proposed protocol

prolongs the network lifespan over other protocols. How-

ever, it suffers from a poor ratio of delivery packets. A

Distributed Adaptive Cooperative Routing (DACR) proto-

col is proposed in [39] considering reliability, communi-

cation delay, and residual energy to find the optimal path

that consumes the lowest amount of energy to prolong

network lifespan.

Multi-agent Reinforcement Learning Based Self-Con-

figuration and Self-Optimization protocol (MRL � SCSO)

is proposed in [40] for unattended WSNs. It considers both

remaining energy and buffer length for effective routing, as

well as utilizing sleep scheduling schema to conserve

energy. This protocol provides a longer network lifespan

and higher throughput, however, it has drawbacks of

increasing communication delay and poor delivery of

packets.

A Reinforcement-Learning Based Routing (RLBR) pro-

tocol is proposed in [41] to improve the network lifespan of
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WSNs. The protocol considers three parameters such as

remaining energy, hop count, and link distance to find the

next forwarder node. This protocol provides a gain to

decrease the total energy consumed and increase the

delivery of packets. However, it has drawbacks of high

communication delay and energy imbalance.

In [42], a Q-learning-based Data Aggregation-aware

Energy-Efficient Routing (Q� DAEER) protocol is pro-

posed. The protocol considers link distance, energy node,

hop count, and dynamics of node data aggregation to find

the optimal path that prolongs network lifespan and

decreases energy consuming. An RL� based routing

protocol is presented in [43] to achieve effective energy

consumption and improve network lifespan. It considers

the current state of the network to find an optimal route that

minimizes the delay and increases the reliability.

Another work for underwaterWSNs is presented in [44]. An

RL� based routing approach is proposed to set up the optimal

path to a destination. It considers residual energy and the

underwater environment to select the forwarder node on the

optimal routing path. A Q-learning-based transmission routing

scheme is proposed in [45] to decrease and balance the energy

consumption of the sensor nodes and prolong the network

lifespan. The routing scheme considers four factors, distance,

transmission direction, residual energy, and energy consump-

tion to find a suitable forwarder node that obtains effective

energy transmission in a distributed manner.

An RL� based tree routing algorithm is proposed in

[46] to achieve multi-objective in WSNs such as minimiz-

ing link breaking and congestion avoidance. The algorithm

formulates three types of cognitive metrics to find the best

parent node in the tree routing. The algorithm provides a

gain to reduce the delay, increasing the packet delivery

ratio, and reducing energy consumption.

2.2 DRL-based routing protocols

Numerous routing protocols employ DRL, and the majority

of them use it to select a data routing relay node. The study

in [47] develops a deep-Q-network-based cooperative and

adaptive approach to identify the optimum relay node. In

WSNs, compared to Q-learning-based methods, it enhances

the Quality of Service (QoS) for networks. In essence, the

approach disregards communication delay and just con-

centrates on node relaying.

Inwireless ad-hocnetworks, [48]developsamulti-hop routing

strategy utilizing the DDQN paradigm in DRL to find the best-

relaying node. Additionally, it is a routing protocol for selecting

relay nodes that ignores communication delay and message

overhead. The study in [49] proposes a DRL� based routing

protocol tofind theoptimumshortest path fornetworkcontrol and

management. This method just takes distance into account when

routing data. Hence, this strategy results in poor QoS.

The study in [50] investigates the viability of the DRL

method to solve a problem with two objectives: maximizing

throughput and energy-effective routing. The study intro-

duces a multi-objective actor-critic model-based Proximal

Policy algorithm (PPO) to find near-optimal solutions.

A decentralized collaborative DRL� based routing

protocol is introduced in [51] to efficiently enhance and

manage P2P wireless sensor network routing. It learns

WSN routing policies using extended parameters for state

space and a neural network.

The work in [52] investigates the utilization of routing

technology and DRL together to provide an effective

routing technique for adapting to changes in network

topology. The nodes can decide on routing based on energy

consumption level and network traffic load to find the

optimal path. A DRL technique is adopted in [53] to

optimize routing in dynamic Internet of Things networks.

The routing strategy is implemented in both distributed and

centralized modes.

The study in [54] introduces a fault diagnosis model

referred to as Multi Fault Detector (MFD) for sensor nodes,

which is based on a Neural Network (NN) approach. The

model utilizes historical data encompassing instances of both

faults and fault-free conditionswithin the network. TheMFD

model is engineered to handle a diverse range of fault types,

including hard permanent, soft permanent, intermittent, and

transient faults. Notably, the proposed MFD model goes

beyondmere fault detection; it is also capable of categorizing

the faulty nodes and identifying problematic links associated

with the sensor nodes in the network, thus providing a

comprehensive fault diagnosis solution.

2.3 Cluster-based learning routing protocols

Clustering means partitioning nodes into several groups,

with each group belonging to its cluster header. The use of

reinforcement learning in cluster-based routing protocols

has been extensively studied. The authors of FROMS

extend their work in [55] and propose a Q-learning-based

cluster routing technique to cope with energy conservation.

The algorithm takes two objectives into account such as

battery power and hop count to determine the efficient

CHs. This algorithm provides lower clustering overhead,

however, it has a problem with energy holes.

The study in [56] proposes a Q-learning-based hierar-

chical routing scheme. The scheme takes three objectives

into account such as residual node energy, link distance,

and hop count to perform routing and clustering within a

network. However, it performs poorly in large-scale WSNs

in terms of delay and throughput.

The work in [57] proposes an RL� based clustering

routing algorithm to effectively conserve energy and pro-

long network lifespan in IoT � enabledWSNs. The
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algorithm considers four different objectives such as dis-

tance, traffic intensity, delay, and energy level for efficient

CH selection. In addition, the algorithm utilizes DRL to

identify the shortest path for data transmission. The study

in [58] presents an RL� based clustering routing algo-

rithm for effective energy control in WSN. This algorithm

aims to maximize each node’s long-term reward through

optimizing routing policies. Additionally, the algorithm

proposes three energy management strategies to improve

network lifetime.

The research in [59] proposes an RL� based enhanced

clustering routing algorithm to manage energy efficiently

in WSNs. The algorithm takes two different objectives into

account such as hop count, and initial energy to determine

the effective CH. Moreover, three stages are introduced to

look for the most efficient data transmission routing path.

The work in [60] proposes an RL� based clustering

routing strategy to reduce energy consumption and extend

network lifespan. The strategy considers two factors such

as initial energy and hop count to determine the prelimi-

nary Q-value for CH selection. In addition, hop count and

remaining energy are considered to select the optimum

routing path for transmitting data.

A novel method called floating node-assisted cluster-

based routing has been presented in [61] for effective data

collecting in underwater acoustic sensor networks, utilizing

the unique characteristics of underwater communication. In

this method, clusters are formed by dividing the network

space into cubes. Each CH in the cubes is wired to a

floating node and source nodes are in charge of transmit-

ting the sensed data to the nearest CH or floating node. The

floating nodes receive the data collected by the CHs and

transmit it across a radio frequency link to the on-shore

monitoring center.

In [62], the authors introduce an intelligent fault-toler-

ance technique in order to enhance the resilience of

IoT � enabledWSNs. The proposed key solutions

encompass a range of techniques, including the utilization

of a Maximum Coverage Location Problem (MCLP)

method for identifying optimal locations for CH placement.

Additionally, the study introduces a MODRL method,

which serves a dual purpose: fault detection with minimal

energy consumption and the selection of optimal data

routing paths under fault-free conditions. The study also

presents a mobile sink-based data-gathering scheme de-

signed to further enhance the network’s overall reliability.

3 Preliminaries

This section discusses the fundamental principles

employed in the proposed work.

3.1 Energy model

To assess the energy consumed by a sensor node when

transmitting and receiving a data bit, ETx and ERx, the

energy model adopted in [63] is taken into consideration.

The required energy to receive and transmit data of size l

bits over a distance d is expressed as

ETxðl; dÞ ¼
l � Etx

elec þ l � efs � d2; d\d0

l � Etx
elec þ l � eamp � d4; d� d0

(
ð1Þ

ERxðlÞ ¼ l � Erx
elec ; ð2Þ

where Eelec denotes the energy dissipation per bit in the

receiver or transmitter circuits, eamp and efs represent the

energy consumed by the power amplifier per data bit for

multi-path radio channel and free space models, respec-

tively. In addition, the radio channel model is specified by

the threshold distance d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
efs=eamp

p
, and the physical

distance between sender and receiver nodes is denoted by d.

3.2 Wireless sensor network model

Wedepict ourWSNmodel as a directed graph G ðV;EÞ, where
V stands for the set of vertices andE for the set of directed edges

that each connects an ordered pair of vertices. The vertices

represent sensor (non-CHorCH) nodes and the edges represent

wireless links between them. The cluster head nodes are dis-

tinguished as advanced nodes in comparison to other sensor

nodes. The sensor nodes are connected toCH nodes within the

communication radio CH range. It is assumed the following to

evolve the proposed routing algorithm.

1. Advanced nodes and sensor nodes are distributed at

random over a square area.

2. Each sensor node has the same limited energy capacity,

processing power, and memory storage.

3. The sensor node may adjust the level of its transmitter

power based on the receiver’s distance.

4. Sensor nodes and advanced nodes remain stationary.

5. Advanced nodes have more effective energy compared

to sensor nodes.

6. Contrasted with sensor nodes, the number of advanced

nodes is extremely low.

7. The sink node (base station) has unlimited energy.

The WSN model initially assumes that each sensor node

has the same maximum residual energy.

4 MODRL-based clustering routing schema

This section introduces the proposed schema’s compre-

hensive design process in more detail. Four stages make up

the proposed schema: (1) initialization stage, (2) unequal
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cluster construction stage, (3) MODRL-based clustering

routing stage, and (4) Energy consumption stage.

4.1 Initialization

In the initialization stage, the sink node broadcasts an

advertisement message BS_ADV to all sensor nodes within

its coverage area. Each sensor node that receives a

BS_ADV replies to BS with an RPL MSG including sensor

location, ID, and residual energy. Then, each sensor node

in turn sends an SN_ADV message to neighbor nodes,

containing sensor ID and residual energy to hold.

4.2 Unequal cluster construction

Once the WSN is initialized,BS collects and stores all

network-entire information, such as sensor ID, distance,

and residual energy. Following that,BS maintains a list of

all sensor node’s information in decreasing order of

remaining energy and picks the top 10% of them as

advanced nodes (CHs). The proposed schema adopts an

unequal cluster mechanism to balance network-entire

energy consumption (load) and avoids hot spot problem.

As the forwarding load increases with node proximity to

the base station, a cluster nearer to the BS should be smaller

in size than a cluster further away.

To produce an unequal cluster that balances the load

between the clusters nearest to the BS and clusters further

away from it, each advanced node ADk should compute its

cluster radius using the equation below.

RADk
¼ 1� c � dmax � dADk BS

dmax � dmin

� �
� Rmax ;

8k ; k 2 f1; � � � ; ng ;
ð3Þ

where dADk BS is the distance between BS and any

advanced node ADk, dmin and dmax stand for the minimum

and maximum distance from the selected CHs to BS,

respectively, c is a weighted factor with a value between 0

and 1, and Rmax is the maximum transmission range of

advanced nodes. The distance is calculated as dij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
; where ðxi; yiÞ and ðxj; yjÞ are the

coordinates of the two nodes.

The size of the nearest BS cluster in the proposed schema is

small in comparison to the farthest cluster to spend less energy

on intra-cluster communication traffic and conserve more

energy for inter-cluster relay communication traffic. In other

words, it balances the load generated by the aggregation of data

from both inter-cluster heads and intra-cluster members. In

addition, when the CH distance to BS rises, the corresponding

cluster radius gradually rises to maintain theCH node’s and its

cluster member nodes’ dissipation of energy in balance.

Figure 1 depicts our proposed unequal clustering-based WSN

schema architecture.

Once CHs are elected and their cluster radii are determined,

the next challenge is the cluster formation. Each advanced node

broadcasts cluster-forming message CLFM within its coverage

cluster radius area to form themembers of the cluster (non-CHs).

The CLFM includes information about advanced node residual

energy, location, distance toBS, and ID. In this context, there are

four potential cases for replying to the message, as follows:

Case 1: If a sensor (non-CH) node overhears and receives

the CLFM, it responds to the corresponding advanced node

with cluster member joining message CMJ containing its

residual energy, location, and ID.

Case 2: A sensor (non-CH) node may overhear and receive

the CLFM frommultiple advanced nodes. In such a case, the

sensor node will select the advanced node with maximum

residual energy as its corresponding CH.

If there are more than one CH has the same maximum

residual energy, the CH with the smallest ID is picked.

Case 3: Sensor (non-CH) nodes may be located in an

intersecting area of the cluster radius of neighboring

advanced nodes. In such cases, these sensor nodes are

referred to as autonomous non-CH nodes. The autono-

mous sensor nodes have the option of sending CMJ to

whichever of the neighboring clusters at random.

Case 4: If a sensor (non-CH) node does not overhear and

receive theCLFM. In such a case, this sensor node is referred

to as a lone node and broadcasts an assistance message

ASSIST to neighboring nodes within its communication

range.Eachneighboringnode replieswith a respondmessage

RPM containing its ID, location, and corresponding

advanced node information (ID and residual energy). Then,

the lone node sends a CMJ to the corresponding CH which

has themaximum residual energy and closest distance toBS.

The details of unequal cluster construction are provided

in Algorithm 1.

Fig. 1 Unequal clustering-based WSN schema architecture
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Algorithm 1 Unequal cluster construction
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4.3 MODRL-based clustering routing algorithm

The problem with routing is considered a multi-objective

problem in which the optimal routing path should be

determined based on several parameters in

IoT � enabledWSNs. There are two phases in the proposed

clustering routing algorithm: intra-cluster routing and inter-

cluster routing.

4.3.1 Intra-cluster MODRL-based routing

Utilizing a MODRL-based framework, the sensor nodes

(non-CHs) and advanced nodes (CHs) collaborate in order

to optimize intra-cluster routing. The sensor node cluster

members act as multi-agents for routing data packets to

advanced nodes (CHs). Three objectives are considered

carefully to optimize intra-cluster routing, where maxi-

mizing network throughput is the first; reducing the net-

work latency is the second; and extending the limited

sensor battery lifespan is the third.

However, the MODRL-based are often conflicting with

one another, thus maximizing one usually results in mini-

mizing another. Hence, trade-offs among objectives must

be taken into account in this challenging scenario. A Pareto

optimality [64] frequently served as the basis for providing

compromise options between the objectives and evaluating

MODRL algorithms.

Intra-cluster routing aims to transfer data packets from

multiple source nodes (sensors) to the destination (corre-

sponding CH). If the sources are within the CH transmis-

sion range, the data is transferred directly to CH;

otherwise, it is transferred indirectly through relaying of
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multiple nearby nodes. A multi-objective Markov Decision

Processes (MDP) optimization is used to represent intra-

cluster routing.

An MDP model is a tuple (stt; act; pr; rwt), where stt 2
ST is a finite set of states, act 2 AC is a finite set of

actions,pr ðsttþ1jstt; actÞ 2 PR is the transition probability,

and rwt ðstt; actÞ 2 RW is a reward function. In intra-

cluster routing, the tuples of MDP are defined as follows.

State space: At any time t, the state space of agent

i (sensor i) is denoted as stit ¼ fdAD; cii; isig, where dAD is

the destination of the current generated packet of agent i

towards its corresponding advanced node (CH), cii is the

current information of agent i, and isi is the information of

agent i0s neighboring sensor nodes.

Action space: The action space of agent i at time t is

denoted as acit ¼ fADi;NAig, where ADi is the corre-

sponding advanced node to which the agent i belongs, and

NAi represents the set of neighbor nodes of agent i within

its associated cluster.

Reward function: At any time t, the agent i receives a

vector of three rewards for each conflicting objective. The

three reward functions of each agent i are introduced under

the given constraints as follows:

4.3.1.1 Throughput maximization

rwi
1;t ¼ ðnpit � ps Þ=tdit; ð4Þ

where npit represents the number of successfully delivered

packets to its corresponding advanced node ADi, ps is the

packet size, and tdit is the time it takes a sensor node to

deliver a packet.

4.3.1.2 Delay minimization

rwi
2;t ¼ qtit þ ttit ; ð5Þ

where qtit and ttit stand for sensor node queuing time and

sensor node transmission time, respectively.

4.3.1.3 Lifespan maximization

rwi
3;t ¼ reit= ðtrit � tpitÞ ; ð6Þ

where reit is the sensor node i0s remaining energy, trit is

the sensor node i0s transmission rate, and tpit is the sensor

node i0s transmission power.

Thus, at any time t, the reward vector for agent i can be

represented as

R
*i

t ¼ ½maxðrwi
1;tÞ ; minðrwi

2;tÞ ; maxðrwi
3;tÞ� ð7Þ

s:t: Constrain 1 : reit � reth;

Constrain 2 : tpit � tpth;

Constrain 3 : qtit � qtth;

where reth represents sensor node threshold energy, tpth
represents maximum sensor node transmitting power, and

qtth is the sensor node queuing time threshold.

Furthermore, there is a separate state-action value

function (Q-value) for each objective

Qjðst; acÞ ; j ¼ 1 to 3, and the vector of Q-values that

includes Qjðst; acÞ for each objective j may be defined as

Q~ðst; acÞ ¼ Q1ðst; acÞ ; Q2ðst; acÞ ; Q3ðst; acÞ½ � ð8Þ

A policy in multi-objective MDP, denoted by W, is the

probability of choosing action act 2 AC in state stt 2 ST .

The policy W can be improved by Q-value. So, knowing

Qðst; acÞ enables to acquire the optimal policy via

choosing the action having the highest Q-value. The esti-

mation of QWðst; acÞ function employing the Bellman

equation [26] can be defined as

QWðst; acÞ ¼ E fRt þ cQWðsttþ1; actþ1Þg; ð9Þ

where c indicates the learning rate,Rt is the instant reward,

and Ef�g is the expectation.

Substituting for all objectives in the reward vector in (9)

using the distribution function [65]

EWfQWðst; acÞg ¼
X1
t¼0

DWðsttÞ WðactjsttÞ QWðstt; actÞ;

ð10Þ

where DW indicates the distribution function. A Deep Q-

network (DQN) is utilized to approximate Qðst; acÞ values.

Thus, a separate DQN is used as an approximator for each

Qjðst; acÞ, and multiple of DQNs operating in parallel

would control such an agent. Figure 2 depicts the three

DQNs multi-objective parallel architecture of our pro-

posed model.

A DQN offers the approximation of the function

Qðst; ac; hÞ by the state-of-the-art in this field, where h are

the neural network’s learnable parameters. There is a

Qjðst; ac; hjÞ function of DQNj that is related to the

objective j, as demonstrated in our proposed model uti-

lizing multiple DQNs. Each DQNj is optimized utilizing

the following loss function:

LossðhjÞ ¼ E&½ðTrj � Qjðstt; actjhjÞÞ2�; ð11Þ

where Trj is the target value and can be expressed as

Trj ¼
rwj; if actþ1 ¼ u;

rwj þ d max
ac

tþ1

Qjðsttþ1; actþ1jh
�
j Þ; otherwise;

8<
:

ð12Þ
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where d represents the discount factor, Qjðstt; actjhjÞ and

Qjðstt; actjh�j Þ represent on-line network and target net-

work, respectively.

In addition, the learning process is improved by utilizing

experience replay, and for each DQNj, actions, experi-

enced rewards, and states are stored in a replay memory

Gj. Then, a sample of prior experiences chosen evenly at

random from the relevant replay memory Gj is used to

train each DQNj, during iterations. These obtained samples

act as mini-batches to optimize gradient descent. The

Rectifier Linear Unit (ReLU) is used as the activation

function and adaptive moment as an optimizer (Adam) to

minimize the loss function.

One of the most significant aspects of multi-objective

optimization is the selection of actions based on a variety

of objectives, which may be independent, conflicting, or

complimentary. A popular approach to dealing with this

important aspect is the transformation of multi-objective

problems into a single objective using scalarization func-

tions, which are utilized as a scoring technique for action

choice strategies to acquire a combined score for action ac

for various objectives j. The typical action selection

methods of single-objective reinforcement learning, such

as Boltzmann and e-greedy, can therefore be employed in

deciding which action to select given these scores.

A scalarization of Q~ðst; acÞ , considering Q~ðst; ac; jÞ-
values, and a weight vector are applied for selecting the

particular single action ac. The typical approach is to apply

a linear scalarization function [66], so that, the scalarized

Q-values can be obtained as

SQðst; acÞ ¼
X3
j¼1

wj � Q~ðst; ac; jÞ; ð13Þ

where wj 2 ½0; 1� is the weighted coefficient of each

objective j,
P3
j¼1

wj ¼ 1, and Q~ðst; ac; jÞ denotes the DQNj

function of each objective j.

The Q-values are normalized (re-scaled) using the min–

max scaling function to guarantee that the values with

various scales have the same impact and accurately rep-

resent votes for certain actions. The scaling function is as

follows.

scale ðq~jÞ ¼
q~j �minðq~jÞ

maxðq~j �minðq~jÞÞ
ð14Þ

After normalization, Eq. (13) can be defined as:

SQðst; acÞ ¼
X3
j¼1

wj � scale ðq~jÞ ð15Þ

Then, the action ac0 correspondent to the maximal value

of scaled SQðst; acÞ is regarded the greedy action in state

st, and evaluated as

greedyac0 ðstÞ ¼ max
ac0

SQðst; ac0Þ ð16Þ

Algorithm 2 describes the learning process of the pro-

posed DQN architecture for multiple objectives

optimization.
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Algorithm 2 Multi-objective DQN architecture

4.3.2 Inter-cluster MODRL-based routing

In inter-cluster routing, advanced nodes (CHs) act as multi-

agents for routing data packets toward the base station (BS)

using aMODRL framework. Three objectives are considered

carefully to optimize inter-cluster routing, where maximiz-

ing network throughput is the first; reducing the network

latency is the second; and minimizing the traffic load upon

advanced nodes (CHs) is the third. A multi-objective MDP

is used to resolve these conflicting objectives.

Inter-cluster routing aims to transfer data packets aggre-

gated at CHs from their sensor node members to the base

station (BS) while maintaining a balanced traffic load upon

them. If a CH is connected to the BS, the aggregated data is

transferred there directly; otherwise, it is transferred indi-

rectly through the relaying of other CH nodes. The inter-

cluster routing is represented as a multi-objective Markov

Decision Processes (MDP) optimization model. The fol-

lowing defines the tuples of MDP for inter-cluster routing.

State space: At any time t, the state space of agent k (CHk)

is denoted as stkt ¼ fdBS; cik; iskg, where dBS denotes the base

station’s destination of aggregated packets from an agent

k (CHk), ci
k is the current information of agent k, and isk is

the information of agent k0s neighboring CHs nodes.

Action space: The action space of agent k at time t is

denoted as ackt ¼ fBS;NAkg, where BS is the base sta-

tion’s destination, and NAk represents the set of CHs

neighbor nodes of agent k.

Reward function: At any time t, the agent k receives a

vector of three rewards for each conflicting objective. The

three reward functions of each agent k are introduced

under a given constraint as follows.
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4.3.2.1 Throughput maximization

rwk
1;t ¼ ðnpkt � ps Þ=tdkt ; ð17Þ

where npkt represents the number of successfully deliv-

ered packets to BS, ps is the packet size, and tdkt is the

time it takes CHk to deliver a packet.

4.3.2.2 Delay minimization

rwk
2;t ¼ qtkt þ ttkt ; ð18Þ

where qtkt and ttkt stand for CHk queuing time and CHk

transmission time, respectively.

4.3.2.3 Traffic load minimization

rwk
3;t ¼ rekt � ps� spkt ; ð19Þ

where rekt is the advanced node k0s remaining energy, ps

is the packet size, and spkt represents the number of suc-

cessfully serviced packets by CHk.

Thus, at any time t, the reward vector for agent k can

be represented as

R
*k

t ¼ ½maxðrwk
1;tÞ ; minðrwk

2;tÞ ; minðrwk
3;tÞ� ð20Þ

s:t: Constrain 1 : rekt � reADth ;

Constrain 2 : qtkt � qtADth ;

where reADth represents advanced node threshold energy,

and qtADth is the advanced node queuing time threshold.

Our proposed model for inter-cluster MODRL-based

routing is shown in Fig. 2 as a three DQNs multi-objective

parallel architecture, and algorithm 2 describes the learning

process of the proposed DQN architecture for multiple

objectives optimization.

4.4 Total energy consumption

The BS calculates the maximum energy consumed by

CHs based on their inter-cluster and intra-cluster traffic

loads after unequal clustering formation and MODRL-

based clustering routing construction. The energy con-

sumed by any non-CH node (cluster member) is repre-

sented as

EcmðjÞ ¼ l � Etx
elec þ l � efs � d2chðjÞ; ð22Þ

where dchðjÞ is the distance between cluster member j and

its corresponding CHj. The total energy consumption of

CHk owing to intra-cluster activity is represented as

ECH�intraðkÞ ¼ NCHðkÞ � ERx þ NCHðkÞ � EDA

þ ETxðkÞ; ð23Þ

where NCHðkÞ is the number of cluster members of CHk,

and ETxðkÞ is the energy dissipated by CHk to transmit the

aggregated data toward other CH or BS. In addition, EDA

and ERx represent the energy dissipated by CHk due to

data aggregation and data reception, respectively.

Additionally, for inter-cluster traffic load, CHk serves as

a relay node. Therefore, the total energy consumed by CHk

as a result of inter-cluster activity can be presented by

ECH�interðkÞ ¼ RLCHðkÞ � ERx þ RLCHðkÞ � ETxðkÞ;
ð24Þ

where RLCHðkÞ is the number of packets incoming from

other CHs.

w1

w3

w2

Fig. 2 Three DQNs parallel

architecture
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5 Complexity

In this section, the complexity analysis is investigated in

terms of message complexity and computational time

complexity, as well as network lifespan is estimated, in

order to demonstrate the effectiveness of the proposed

routing schema.

5.1 Complexity of clustering mechanism

Message complexity: It takes initial l messages to broad-

cast BS_ADV to all sensor nodes. Then, advanced nodes

reply with n messages. Cluster radius allocation requires

n messages by CHs. Then, it takes l� n non-CH mes-

sages for joining these n CHs. Thus, the message com-

plexity can be expressed as Oðlþ nþ nþ ðl� nÞÞ. As

n\\\l, then the message complexity � OðlÞ.
Time complexity: OðlÞ time is taken to broadcast

BS_ADV message and OðnÞ time is taken by advanced

nodes to reply. Cluster radius allocation takes OðnÞ time

by CHs and Oðl� nÞ time is taken by non-CHs to join

these nCHs. Therefore, the time complexity � OðlÞ.

5.2 Complexity of DRL-based intelligent
clustering data routing schema

5.2.1 Message complexity

The n CHs receive l� n non-CH messages in intra-

cluster routing, while BS receives n messages from n

CHs in inter-cluster routing. Thus, the message complexity

is expressed as Oðl� nþ nÞ� OðlÞ.

5.2.2 Time complexity

The routing schema proposes three DQNs having the same

architecture and working in parallel. We consider the DQN

architecture which takes up less memory and faster routing

schema execution. The routing schema utilizes Convolu-

tional Neural Network (CNN) layers. The CNN consists of

two Depthwise Separable Convolution (DSC) layers and

three Fully Connected (FC) layers. The complexity is

computed in terms of multiply-accumulate operations

(MACCs).

The total MACCs for DSC layers is given by:

C1in � H1out �W1out � ðK1 � K1 þ C1outÞ þ C2in � H2out

�W2out � ðK2 � K2 þ C2outÞ;
ð25Þ

where Cin � Hout �Wout is the feature map size, K � K

represents kernel size, and Cout denotes the number of

convolution kernels. The computation performed by the FC

layer is given by:

y ¼ matmulðx;WÞ þ b ; ð26Þ

where W is I � J matrix holding the weights of the layer,

x is a vector of I input values, b represents a vector of J

bias values that are also included, and y is also a vector of

size J containing the output values computed by the FC

layer. Then, the total MACCs for FC layers can be repre-

sented as

ð I1 � J1Þ þ ð I2 � J2Þ þ ð I3 � J3Þ ð27Þ

The activation function’s computational time is so brief

that it can be disregarded. Therefore, the time complexity

of the proposed DRL� based intelligent clustering data

routing schema is given by:

O

C1in � H1out �W1out � ðK1 � K1 þ C1outÞ
þC2in � H2out �W2out � ðK2 � K2 þ C2outÞ

þðð I1 � J1Þ þ ð I2 � J2Þ þ ð I3 � J3ÞÞ

0
B@

1
CA ðl� n

þ nÞ

�

O
C1in � H1out �W1out � ðK1 � K1 þ C1outÞ

þC2in � H2out �W2out � ðK2 � K2 þ C2outÞ

 !
l

ð28Þ

5.3 Estimated network lifespan of the proposed
intelligent clustering routing schema

Network Lifespan (NLS) is defined as the amount of time a

network is alive for data collecting up until the last node

dies within the network due to energy consumption. Let

TEin represent the network’s total initial energy. Addi-

tionally, let TEex represent the total energy expended by

all sensor and advanced nodes during the data processing,

clustering routing process, clustering formation, and other

activity of the network.

Therefore, NLS can be defined as the lowest ratio of the

network’s overall initial energy to its overall energy con-

sumption. Therefore, NLS can be represented as

NLS ¼ min ðTEin=TEexÞ ð29Þ

6 Performance evaluation

In this section, we evaluate the performance of the pro-

posed multi-objective clustering routing schema through

simulations under various system parameters. The perfor-

mance of the proposed routing schema is compared with
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RLBEEP [58] and EER-RL [60]. The simulation is carried

out within an area of 100 9 100 m2 network. The sensor

nodes are distributed randomly over this area.

Two simulation scenarios are carried out to investigate

the performance evaluation of our proposed schema. The

scenarios for the simulation are described in detail below.

• Simulation scenario 1: In this scenario, there are 200

sensor nodes deployed randomly in the network size

area, and BS is located at the center of the monitoring

area, i.e., (50, 50).

• Simulation scenario 2: In this scenario, there are 300

sensor nodes deployed randomly in the network size

area, and BS is located outside the monitoring area,

i.e., (250, 200).

Tables 1 and 2 show the parameters of the simulation.

The results for each simulation are the mean of 20 runs

with various seed values. The effectiveness of the three

routing protocols is compared uniformly.

6.1 Performance evaluation metrics

The effectiveness of the proposed routing schema is eval-

uated in terms of the following metrics:

6.1.1 Energy efficiency ,(EEÞ

The number of packets delivered per unit energy con-

sumed, which is expressed as

EE ¼ NPD=TEex ; ð30Þ

where TEex is the total energy consumption, and NPD

represents the number of delivery packets.

TEex ¼
Xl
j¼1

ðE j
in�E j

reÞ; ð31Þ

where E j
in represents the initial energy of node j, and this

value is consistent for all nodes in the network, and l

stands for the total number of nodes within the net-

work.E j
re, on the other hand, corresponds to the residual

energy of a specific node j.

6.1.2 Delivered packets over time

The number of delivered data packets to the BS over time.

Delivery packets ðtÞ ¼
Xl
j¼1

pjðtÞ; ð32Þ

where l stands for the total number of nodes within the

network, and pjðtÞ is the number of packets successfully

delivered by a node j to the BS during time t.

6.1.3 End-to-end delay

The time it takes for data packets to arrive at the BS.

End � to� end delay ¼
Xl
j¼1

ðqtj þ ttj þ ptj þ dtjÞ ; ð33Þ

where l stands for the total number of nodes within the

network, qtj, ttj, ptj, and dtj stand for sensor node queuing

delay, sensor node transmission delay, sensor node pro-

cessing delay, and sensor node propagation delay,

respectively.

6.1.4 Alive nodes over time

Number of alive nodes in the network over time.

Alive nodes ðtÞ ¼
Xl
j¼1

d ðE j
reðtÞ[ETHÞ; ð34Þ

where l stands for the total number of nodes within the

network,E j
reðtÞ represents the residual energy of node j at

Table 1 System simulation parameters

Parameter Value

Network size 100 9 100 m2

Number of sensor nodes 200, 300

do 87 m

Data packet size 512 bits

EDA 5 nJ/bit/signal

Eelec 50 nJ/bit

efs 10 pJ/bit/m2

eamp 0.0013 pJ/bit/m4

Initial energy 2 J

Table 2 Simulation parameters for the DQN model

Parameter Value

Replay memory capacity 2000

The size of Mini-batch 64

Episodes EP 200

Steps T 400

Iterations Z 300

Discount factor 0.9

Learning rate 0.01

Maximum e-greedy 0.9

Activation function ReLU

Optimizer Adam
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time t,ETH is the threshold energy that determines whether

a node is considered alive or dead, and d ð�Þ is a mathe-

matical function that returns 1 if the condition inside the

parentheses is true and 0 if it’s false.

Therefore, as described in Eq. (34), the summation

involves nodes ranging from 1 to l, and it evaluates whe-

ther each node’s residual energy E j
reðtÞ at time t exceeds

the threshold energy ETH . If the condition is satisfied (i.e.,

the node is alive), it contributes a value of 1 to the

cumulative sum; otherwise, it contributes 0.

6.1.5 Network lifespan

The time until the First Node Exhausted (FNE), or until

Half of Nodes Exhausted (HNE), or until the Last Node

Exhausted (LNE).

The calculation of FNE involves identifying the mini-

mum time t at which the energy of a node drops below or

equals the threshold energy (ETH), i.e., the point in time

when the first sensor node (j) within the network exhausts

its energy reserves.

FNE ¼ min
t
ð
Xl
j¼1

d ðE j
reðtÞ�ETHÞÞ; ð35Þ

where
P

denotes the loop counter involves nodes ranging

from 1 to l.

The calculation of LNE involves identifying the maxi-

mum time t at which the energy of a node drops below or

equals the threshold energy (ETH), i.e., the point in time

when the last sensor node (j) within the network exhausts

its energy reserves.

LNE ¼ max
t
ð
Xl
j¼1

d ðE j
reðtÞ�ETHÞÞ; ð36Þ

where
P

denotes the loop counter involves nodes ranging

from 1 to l.

HNE is identified by locating the time t when the

number of nodes with energy less than or equals to the

threshold energy (ETH) is equal to half of the total nodes,

i.e., the point in time when half of the nodes in the network

are exhausted.

HNE ¼ min
t
ð
Xl
j¼1

d ðE j
reðtÞ�ETHÞ ¼

l

2
Þ: ð37Þ

Therefore, as described in Eq. (37), the summation

involves nodes ranging from 1 to l, and it evaluates whe-

ther each node’s residual energy E j
reðtÞ at time t drops

below or equals the threshold energy ETH . If the condition

is satisfied (i.e., the node is exhausted), it contributes a

value of 1 to the cumulative sum; otherwise, it contributes

0.

6.1.6 Energy balancing

The amount of average energy consumption of CHs.

Energy balancing ðtÞ ¼

Pn
k¼1

Ek
CHðtÞ

n
; ð38Þ

where n stands for the total number of cluster heads within

the network, and Ek
CHðtÞ ¼ Ek

CH�intraðtÞ þ Ek
CH�interðtÞ is

the energy consumed by the cluster head k during time t.

6.2 Performance evaluation results

In this section, the performance evaluation results for the

proposed schema compared to the other two existing

schemes are presented by the metrics for performance

evaluation.

6.2.1 Energy efficiency ,(EEÞ

Figure 3a and b show the number of delivered packets to

the BS versus energy consumption in scenario 1 and sce-

nario 2 respectively. It is shown from Fig. 3a and b that the

number of delivered packets in the three routing schemes

increases as the energy consumption increases, and which

in the proposed schema is more than that in RLBEEP and

EER-RL.

In scenario 1, the proposed schema improves EE by 37

and 84% as compared to EER-RL and RLBEEP schemes,

respectively. In addition, it is demonstrated that the pro-

posed schema outperforms EER-RL and RLBEEP, and

improves 39.2 and 86.60% more EE than both of them

respectively, in scenario 2.

The reasoning is that advanced nodes with high energy

serve as a CHs and an intelligent DRL� based algorithm

determines the optimal path route for data routing. More-

over, employing a multi-objective intelligent strategy gives

more opportunities for increasing the delivery of packets to

the base station, in which the multi-hop data routing path is

used to carry out the inter-cluster routing process among

the CHs.

6.2.2 Delivered packets over time

Figure 4a and b show the number of delivered packets to

the BS versus time in scenario 1 and scenario 2 respec-

tively. It is shown from Fig. 4a and b that the number of

delivered packets in the three routing schemes increases as

the time increases, and which in the proposed schema is

higher than that in RLBEEP and EER-RL.

According to Fig. 4a for scenario 1, the proposed

schema delivers 43% more packets than EER-RL and 89%

more packets than RLBEEP. Additionally, it is shown from
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Fig. 4b that the proposed schema outperforms EER-RL and

RLBEEP, and increases 41.6 and 87.3% more packet

delivery than both of them respectively, in scenario 2.

The reasoning is due to identifying the optimal routing

path utilizing an intelligent DRL� based algorithm based

on multiple objectives such as packet size, remaining

energy, traffic rate, and queuing time, and thus minimizes

traffic congestion, which in turn reduces packet delivery

loss.

6.2.3 End-to-end delay

Figure 5a and b depict the end-to-end delay of delivered

packets versus node density in scenario 1 and scenario 2

respectively. It is shown from Fig. 5a and b that the end-to-

end delay in the three routing schemes increases as the

node density increases, and which in the proposed schema

is lower than that in RLBEEP and EER-RL.

In scenario 1, it is observed that the proposed schema

can decrease the end-to-end delay by approximately 41.46

and 51.23% compared to EER-RL and RLBEEP, respec-

tively. Additionally, it is demonstrated that the proposed

schema reduces end-to-end delay by up to 44.5% compared

to EER-RL and up to 53.6% compared to RLBEEP in

scenario 2.

The reasoning is due to the intelligent DRL� based

algorithm that assigns an appropriate inter-cluster relay

traffic load to a CH. As a result, there is less traffic con-

gestion, which decreases queuing time and lessens the end-

to-end delay for delivered packets.

6.2.4 Alive nodes over time

Figure 6a and b show the percentage of alive nodes within

the network over time in scenario 1 and scenario 2

respectively. It is shown from Fig. 6a and b that the three

routing schemes experience a decline in the percentage of

alive nodes as time goes on, which in the proposed schema

is higher than that in RLBEEP and EER-RL.

In scenario 1, the proposed schema enhances the number

of alive nodes by 68.1 and 81.2% as compared to EER-RL

and RLBEEP schemes, respectively. In addition, it is

demonstrated that the proposed schema outperforms EER-

RL and RLBEEP, and improves 71.2 and 83.4% more alive

nodes than both of them respectively, in scenario 2. The

reason is that the proposed schema addresses the hot spot

problem by adopting an unequal cluster mechanism that

balances the entire network’s load, which in turn promotes

network stability.

6.2.5 Network lifespan

Figure 7a and b depict the lifespan of the network as rep-

resented by the time until FNE, or until HNE, or until

LNE, in scenario 1 and scenario 2 respectively. It is shown

from Fig. 6a and b that the proposed schema outperforms

the other routing schemes across all lifespan metrics

(FNE,HNE and LNE).

In scenario 1, under FNE criterion the proposed schema

improves the network lifespan by 26.4 and 58.8% as

compared to EER-RL and RLBEEP schemes, respectively.

On the other hand, the proposed schema outperforms EER-

(a) Scenario 1

(b) Scenario 2

Fig. 3 Energy efficiency ðEEÞ
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RL and RLBEEP schemes in terms of HNE by 23.8 and

50%, respectively.

Similarly, under the LNE criterion, the proposed

schema outperforms the EER-RL and RLBEEP schemes in

terms of network lifespan by 15.24 and 42.37%, respec-

tively. The reason is the effective load balancing among the

CHs, as well as non� CH nodes.

Additionally, the proposed schema outperforms EER-

RL and RLBEEP schemes across all lifespan metrics in

scenario 2. The reason is due to the intelligent DRL�
based algorithm substantially decreases message overhead

throughout the data routing stage which makes networks

less energy-intensive. Thus, all sensor nodes’ energy con-

sumption is decreased in both inter-cluster and intra-cluster

environments, which greatly improves their lifespan in

dense scenarios.

6.2.6 Energy balancing

This section examines the energy balance (uniform energy

consumption) amongst CHs, as shown by estimating the

amount of average energy consumption of CHs. Figure 8a

and b show the amount of average energy consumption of

CHs within the network over time in scenario 1 and sce-

nario 2 respectively. Compared with EER-RL and

RLBEEP schemes, the proposed schema maintains a

roughly equal amounts of average energy consumption of

CHs in both scenarios.

The reason is due to the intelligent DRL� based

algorithm elects the optimal relay CH nodes to reduce and

equally balance the intra-cluster and inter-cluster traffic

load amongst the CHs.
(a) Scenario 1

(b) Scenario 2

0 100 200 300 400 500 600
Time (ms)

0

1

2

3

4

5

6
D
el
iv
er
y
Pa

ck
et
s

104

Proposed
EER-RL
RLBEEP

0 100 200 300 400 500 600
Time (ms)

0

1

2

3

4

5

6

7

De
liv

er
yP

ac
ke
ts

104

Proposed
EER-RL
RLBEEP

Fig. 4 Delivered packets over time

(a) Scenario 1

(b) Scenario 2

0 20 40 60 80 100 120 140 160 180 200
Number of Nodes

0

1

2

3

4

5

6

Co
m
m
un

ica
tio

n
De

la
y

Proposed
EER-RL
RLBEEP

0 50 100 150 200 250 300
Number of Nodes

0

1

2

3

4

5

6

7

Co
m
m
un

ica
tio

n
De

la
y

Proposed
EER-RL
RLBEEP

Fig. 5 End-to-end delay

Cluster Computing (2024) 27:4941–4961 4957

123



7 Conclusions

A multi-objective intelligent clustering routing schema is

proposed for IoT � enabled WSNs utilizing Deep Rein-

forcement Learning, in this paper. The proposed schema

involves an innovative unequal clustering mechanism in

which an advanced node serves as a cluster head and keeps

track of the deployment and management of sensor nodes

to prohibit the network from dying prematurely. Energy

consumption balancing is achieved to prevent network

partition and hot spot problems.

The proposed schema considers various objective

parameters for inter-cluster routing and intra-cluster

routing that dramatically improve both network perfor-

mance and network lifespan. Furthermore, this study ana-

lyzes the proposed schema’s message and time complexity

as well.

In addition, comprehensive simulations under different

system parameters have been carried out to demonstrate the

superior performance of our proposed intelligent routing

schema in terms of energy efficiency, delivered packets,

end-to-end delay, alive nodes, energy balancing, and net-

work lifespan compared with the other two existing

approaches. As a future work, a fault tolerance mechanism

will be involved in our proposed schema to improve its

reliability.
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