
Large-scale response-aware online ANN search in dynamic datasets

Guilherme Andrade1 • Willian Barreiros Jr.1 • Leonardo Rocha2 • Renato Ferreira1 • George Teodoro1

Received: 11 July 2023 / Revised: 24 August 2023 / Accepted: 13 September 2023 / Published online: 14 October 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Similarity search is a key operation in content-based multimedia retrieval (CBMR) applications. Online CBMR applica-

tions, which are the focus of this work, perform a large number of search operations on dynamic datasets, which are

updated at run-time. Additionally, the rates of search and data insertion (updated) operations vary during the execution.

Such applications that rely on similarity search are required to fulfill these demands while also offering low response times.

Thus, it is common for the computing demands in such applications to exceed the processing power of a single computer,

motivating the usage of large-scale compute systems. As such, we propose in this work a distributed memory paral-

lelization of similarity search that addresses these challenges. Our solution employs the efficient Inverted File System with

Asymmetric Distance Computation algorithm (IVFADC) as the baseline, which is extended to support dynamic datasets. A

dynamic resource management algorithm, called Multi-Stream Adaptation (MS-ADAPT) is proposed. It allows run-time

changes on resource assignment with the goal of reducing response times. We evaluate our solution with multiple data

partitioning strategies using up to 160 compute nodes and a dataset with 344 billion multimedia descriptors. Our exper-

iments demonstrate superlinear scalability and MS-ADAPT outperforms the best static approach (oracle) by improving the

response times up to 32� on high-load cases.

Keywords Online multimedia similarity search � Approximate nearest neighbors search � Product quantization ANN �
Distributed computing

1 Introduction

Content-based multimedia retrieval (CBMR) is increas-

ingly important due to the growth of its use in several

applications [1–5]. Example applications employing

CBMR include content-based image search systems, video

identification and misuse, and several applications in social

networks such as data propagation. A common aspect with

these examples is the large and increasing amount of data

employed. A CBMR application may consist of multiple

processing steps, but at its core is the operation that finds

similar objects to an input query object in a reference

dataset (index). The multimedia objects are represented

using high-dimensional vectors (descriptors) with hundreds

to thousands of dimensions [6–8]. Thus, the similarity

search here consists of finding the nearest feature vectors in

the dataset to the query descriptor(s) measured by a dis-

tance metric, corresponding to computing the k-nearest

neighbors (k-NN) search problem [9].

The exact solution for the k-NN via exhaustive search is

not viable in CBMR because it computes distance between

& George Teodoro

george@dcc.ufmg.br

Guilherme Andrade

gandrade@dcc.ufmg.br

Willian Barreiros Jr.

willianjunior@dcc.ufmg.br

Leonardo Rocha

lcrocha@ufsj.edu.br

Renato Ferreira

renato@dcc.ufmg.br

1 Department of Computer Science, Universidade Federal de

Minas Gerais, Antonio Carlos, Belo Horizonte,

Minas Gerais 31270, Brazil

2 Department of Computer Science, Universidade Federal de

São João Del Rei, Rodovia BR-494, São João Del Rei,

Minas Gerais 36301, Brazil

123

Cluster Computing (2024) 27:3499–3519
https://doi.org/10.1007/s10586-023-04159-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04159-8&domain=pdf
https://doi.org/10.1007/s10586-023-04159-8

a query and each high-dimension descriptor in a huge

dataset. Several indexing structures, such as kd-tree,

k-means trees etc [10–12], have been proposed to reduce

the k-NN search cost. These structures organize the data

spatially to reduce the distance computations in the search

for a dataset subset. While they attained remarkable per-

formance for datasets with small dimensionality, their

ability to prune the search degrades with high-dimensional

descriptors as used in CBMR [13].

These limitations motivated the development of

approximate nearest neighbors (ANN) search algorithms

for applications that can trade off accuracy for perfor-

mance. The ANN approaches were then created to index

and search very quickly in large and high-dimensional

datasets while maintaining high response accuracy. Popular

and efficient ANN indexing solutions include Locality-

Sensitive Hashing (LSH) [14] and Inverted File System

with Asymmetric Distance Computation (IVFADC) [15].

These algorithms are built on the concept of partitioning

the space into buckets and enabling the search to take place

in a subset of buckets. In particular, IVFADC has presented

superior performance compared to competitors [15] while

using a fraction of the memory demanded by them. As

such, we use and parallelize IVFADC in this work.

Besides the advances with recent ANN indexing

strategies, there are several challenges to be addressed in

the context of online multimedia retrieval applications,

which are the focus of our work. First, most of the ANN

indexing strategies have developed sequential algorithms,

but the computing and memory requirements to search on a

huge dataset used by target applications exceed the

capacity of a single node. Second, several real-world online

applications have to deal with dynamic datasets that are

updated during the execution, but most solutions can only

deal with static datasets. Third, the load of queries (and

index updates) submitted to the system varies during the

execution in online applications. Therefore, in order to

minimize the end-user observed response times, it is nec-

essary to adjust the system parallelism and resource allo-

cation at run-time according to the load observed.

In order to address these challenges, in this work, we

propose an efficient distributed memory system for the

execution of ANN in large-scale datasets. Our solution

deploys the efficient IVFADC algorithm and evaluates

multiple data distribution/partition approaches. Further, we

have developed novel strategies to handle dynamic data-

sets. Our solutions are based on the concept of data buckets

partitioned in time and space, as opposed to the space only

approach used in previous works [16, 17] that could only

handle static datasets. This allows to quickly discard

unnecessary (outdated) data from the index while also

reducing synchronization overheads due to concurrent

indexing and searching. Finally, we have also developed a

novel algorithm called MS-ADAPT that configures the

system according to the observed input load. This run-time

optimization targets the goal of minimizing user response

times. MS-ADAPT distributes the resources among

querying and indexing tasks according to their demands,

which also change during the execution. The contributions

of this work may be summarized as follows.

• We develop a distributed memory system for execution

of ANN search using IVFADC. Our solution includes a

new data organization to support dynamic datasets. In

this setting, the data temporal aspect is considered when

instantiating ANNs algorithms’ data partitions (buck-

ets). This process enables search and insertion to occur

concurrently in different buckets or their temporal

partitions;

• We propose an adaptive resource assignment algorithm

called MS-ADAPT tune the computing resource allo-

cation among index update and search. Our approach

aims to adapt the system during the execution as the

resource allocation varies at run-time according to the

load submitted to the system. MS-ADAPT was exten-

sively compared to the best static approach (oracle) and

presented the same or superior performance, reducing

response times in up to about 32� for cases with high

loads;

• The propositions are evaluated at scale using up to 160

computing nodes with a dataset of 344 billion SIFT

multimedia descriptors. The results show that our

solutions present super-linear scalability and low

response times even when huge datasets are used.

2 Problem statement and background

2.1 Problem statement

The problem of k-nearest neighbor (k-NN) search can be

outlined as follows. Given a dataset Y containing l vectors

(yi 2 Y ji 2 1. . .l) in a D-dimensional space (RD), and a

query vector x 2 RD, the goal of k-NN search is expressed

by:

L ¼ k- argmin
i¼1...l

distðx; yiÞ; ð1Þ

Here, L constitutes a list that captures the k closest points to

x within Y. The commonly used distance metric in this

context is the Euclidean distance. However, computing

exact k-NN involves calculating the distance between the

query and every vector in Y, which can be computationally

expensive for large or high-dimensional datasets. Conse-

quently, we use approximate nearest neighbor (ANN)

search, which provides a balance between exactness and

3500 Cluster Computing (2024) 27:3499–3519

123

speed. For this purpose, we adopt the efficient IVFADC

ANN indexing approach [15].

Our focus lies on applications related to online multi-

media retrieval, which demands the indexing of large and

dynamic datasets and answer to varying query rates. Par-

allel distributed memory machines offer a powerful com-

putational environment for such applications, but most of

existing ANN parallelization techniques designed for this

environment have targeted batch execution for static

datasets [12, 18–22]. However, online applications have to

deal with dynamic datasets and must quickly answer

incoming queries to optimize response times under fluc-

tuating query rates. These applications should optimize

their system configuration for distributing compute power

between query processing and data update. However,

configurations optimized for batch execution throughput

often differ from configurations which optimize response

times under variable query rates.

We expand on the ongoing research with a paralleliza-

tion strategy involving distributed memory. We have

devised novel strategies for managing dynamic datasets.

Our solutions use the concept of temporal and spatial

partitioning of data buckets. This approach enables the

quick elimination of obsolete data and reduces resulting

synchronization from indexing and searching processes.

We also developed novel strategies to dynamically con-

figure the system based on run-time load measures with the

objective of reducing user-observed response times. Our

strategy effectively allocates resources to querying and

indexing tasks in accordance with their respective

demands, which inherently fluctuate during execution.

2.2 Inverted file system with asymmetric
distance computation (IVFADC) indexing

This section presents the product quantization concepts,

their use in nearest neighbor search and the indexing

structure employed to reduce distance computations in

large datasets by IVFADC [15].

2.2.1 Product quantization concepts

Quantization involves the reduction of the cardinality of a

space’s representation. Given a vector x with D dimen-

sions, a quantizer, denoted as q, maps x to a vector q(x)

within the set C ¼ ci; i 2 Z, where Z is a finite index set of

size 0. . .k � 1. The values ci are referred to as centroids,

constituting the codebook C. In the k-means algorithm that

is typically employed to build C from a subset of the

dataset, every cluster (data points grouping) is symbolized

by its center, termed a ‘‘centroid’’, signifying the arithmetic

mean of the data points allocated to that cluster. This

centroid acts as a representative data point that embodies

the cluster’s central location. Effectively quantizing high-

dimensional vectors necessitates a large codebook to

minimize quantization error [15]. However, the impracti-

cality here arises from the associated high quantization cost

and the substantial memory requirement for storing C when

it is very large.

To address these challenges, the concept of product

quantization has been proposed. Using quantization, the

vector x is partitioned into m subvectors uj (j 2 1:::mÞ each
with D� ¼ D=m dimensions, assuming D is a multiple of m.

Quantization of x is formally defined as follow:

x1; . . .; xD�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

u1ðxÞ

; . . .; xD�D�þ1; . . .; xD
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

umðxÞ

! q1ðu1ðxÞÞ; . . .; qmðumðxÞÞ

ð2Þ

This leads to the quantization of x through a Cartesian

product of its quantized subvectors:

qðxÞ ¼ q1ðu1Þ � q2ðu2Þ � :::� qmðumÞ ð3Þ

The quantized vectors are expressed as compositions of

subvector quantization indices (s ¼ s1 � . . .� sm), result-
ing in a codebook C ¼ C1 � . . .� Cm with Cj representing

centroids used for individual subvector quantization.

Assuming each subvector employs k centroids, the code-

book C encompasses km quantization combinations. Thus,

using these low-complexity quantizers in subvectors

enables us creating a very large number of quantization

combinations.

To proceed with the utilization of quantization in nearest

neighbor search, the computation of distances within

quantized spaces is crucial. Among approaches proposed in

[15], the Asymmetric Distance Computation (ADC) proves

to be the most efficient. ADC calculates the distance

between a query object x and a quantized database docu-

ment y as follows:

~dðx; yÞ ¼ dðx; qðyÞÞ ¼

ffi

X
m

j¼1

dðujðxÞ; qjðujðyÞÞÞ2
v

u

u

t ð4Þ

2.2.2 Searching in quantized spaces

Even within a lower-dimensional space, performing a

thorough exhaustive search is not feasible. As a solution,

the application of an inverted file system with Asymmetric

Distance Computation (IVFADC) was suggested to

streamline the search process. This method involves storing

data elements that have been quantized to the same cen-

troid into the same inverted file system entry. Conse-

quently, the search is constrained to a limited number of

inverted file entries linked to centroids that are closest to

the query.

Cluster Computing (2024) 27:3499–3519 3501

123

Figure 1 shows the indexing structure using an inverted

file system, where each entry is associated to a represen-

tative centroid descriptor computed with a clustering pro-

cess using k-means on a training dataset. Each inverted

index entry contains a list of quantized objects (id and

code). The id can be an application specific identifier of the

original object that was quantized. The code is information

used to improve the approximation of the ADC calculation,

being the distance between the stored descriptor and the

corresponding closest centroid. Additionally, code is also

quantized with Product Quantization to reduce storage

demands.

The IVFADC indexing and searching phases are pre-

sented in Algorithm 1. Indexing follows these steps:

1. Calculates the closest centroid of the input descriptor

y (line 2).

2. Calculates the residual value ry from y to k0-th (closest)

centroid (Cc[k
0]) (line 3).

3. Calculates code through Product Quantization of

residual value (line 4).

4. Stores id and code on an entry of the inverted file

system associated with the nearest centroid (line 5).

Indexing phase produces the inverted file system where

database descriptors are quantized and stored in corre-

sponding inverted lists (buckets). Then, the search phase

takes as input: (i) the query descriptor (x), (ii) the amount

of inverted index entries to visit (w); (iii) and the number of

nearest neighbors to retrieve (k). Search phase will perform

the following steps:

1. Calculates the closest w centroids and store them in ncc

2. Searches in the inverted index entries associated with

each of these centroids (lines 8 to 11). For each entry:

(a) Calculates the residual of x to the respective

centroid (line 9).

(b) Calculates the ADC distances for all descriptors

stored in the inverted index entry (line 10).

(c) Selects the closest k descriptors and add them to

the set of found ones (line 11).

Fig. 1 ANN using inverted file

system and ADC (IVFADC)

Algorithm 1: Indexing and Searching using IVFADC
1: function Indexing(y)
2: k’ ← qc(y) ;
3: ry ← y - Cc[k’];
4: code ← qp(ry);
5: ivf[k’].append(y.id, code);

6: function Search(x, w, k)
7: nnc ← kNN(Cc, x, w);
8: for i ∈ 1 . . . w do
9: rx ← x - Cc[ncc[i]];

10: distList ← dist(index[ncc[i]], rx);
11: ann ← k-select(ann, distList,k);

12: return ann;

3502 Cluster Computing (2024) 27:3499–3519

123

3. After w entries are visited, the result of the ann set is

returned.

3 Related work

Most seminal works on ANN algorithms have focused on

proposing and improving indexing methods targeting

sequential single node machines [14, 15, 22–25]. However,

as previously discussed, a single node’s computing and

memory capabilities are typically insufficient to execute

modern CBMR applications efficiently. Therefore, in

recent years, the development of distributed memory and

GPU accelerated ANN algorithms have attracted the

attention of the industry and academic communities, which

resulted in significant advances in the domain

[12, 18–20, 26–31]. The rest of this section focuses on

discussing the parallel and distributed memory ANN

systems.

The distributed ANN parallelization proposed by [18]

employed MapReduce [32]. This strategy relied on the file

system to maintain indexed data, which were retrieved to

the main memory during query time. Consequently, it

focused on throughput/batch-oriented searching due to the

high query response time. This strategy was optimized with

an in-memory Active Distributed Hash Table [19] to store

the index. Both solutions have built parallel versions of

LSH. [20] proposed a distributed memory Index Tree

similarity search implemented using MapReduce with the

file system storing the index. This work innovated in the

use of query reordering to reduce data movements. The

paper [30] extended LSH by using sketches to prune dis-

tance computations and implemented a parallel version

using the Message Passing Interface (MPI) [33].

The Faiss library [31] developed by the Facebook AI

research group is another important tool in the domain. It

includes very efficient implementation of multiple algo-

rithms targeting CPU and GPU. Here, we leverage their

efficient code to implement the IVFADC in each local node

of our multi-node implementations and extend it to support

temporal indexes. Another popular work [34] used Spark

[35] with its Resilient Distributed Datasets (RDD) structure

to implement an ANN algorithm on the distributed memory

system. While it proposes and evaluates the system in the

context of a real-world setting, this solution still suffers

from high response times. This occurs because the system

is optimized for large query batches. The work presented in

[36] proposed a parallelization of the Hierarchical Navi-

gable Small World Networks (HNSW) ANN algorithm

[22]. They proposed a Spark-based parallelization where

the dataset is divided among nodes using a Data Equal Split

(DES) strategy, and each dataset partition is indexed

locally by a modified HNSW algorithm version that par-

titions the data creating a two-level approach. While effi-

cient, HNSW suffers from high memory use and their

experiments were limited to 180 M data points.

Only a few works in the literature consider the online

scenario in which (i) the dataset is dynamic or updated at

run-time and (ii) the load (query rates) submitted to the

system varies during the execution. The work of [29] is a

seminal solution to address dynamic datasets, and is con-

sidered to be the state-of-the-art. Their strategy consists of

a distributed memory implementation of LSH designed to

handle the insertion of new data during execution. It has

been implemented using a sliding window scheme in which

a subset of the compute nodes handle insertion with a data

structure called Delta Table. This structure is then peri-

odically merged into the static part of the index. Unfortu-

nately, this system does not handle varying query loads and

is restricted to a specific parallelization strategy, while

here, we developed multiple parallelization strategies that

also support dynamic settings. Because this is an important

reference for indexing and querying in dynamic datasets,

we used its parallelization strategy as a baseline for com-

parison in the experimental evaluation.

The work of [37] has also addressed dynamic datasets

by supporting indexing updates. They built a shared-

memory parallel version of LSH that takes advantage of

RAM and flash memory together to reduce the impact of

updates on the system performance. Another solution that

deals with dynamic datasets to support streaming data

ANN is presented in [38]. The authors leverage a graph-

based algorithm and enable quick updates using SSD

combined with RAM. In this case, updates are computed in

memory, while other parts of the indexed data are stored in

the SSD. Unfortunately, this work is also limited to a single

node.

In other recent works, we have developed strategies to

deal with varying query loads [21, 27]. First, we paral-

lelized Hypercurves [27] to allocate the processing in CPU

and GPU under varying loads to minimize response times.

We have further developed a distributed memory version

of IVFADC [21] targeting GPU. The latter work tunes at

run-time the number of queries bundled for execution with

the GPU targeting response time reduction. In both cases,

however, the dataset is considered static, and only a single

data partition strategy is used in the distributed memory

execution. We have also developed a parallel framework

for executing ANN search algorithm on distributed

machines in which multiple data partitions strategies were

proposed [17]. This system is the baseline work in which

our contributions are built and the data partitions it

implemented are presented in the next section.

Table 1 categorizes the related work on distributed

ANN according to the main features required for a fast

Cluster Computing (2024) 27:3499–3519 3503

123

online search of dynamic datasets: (1) in-memory indicates

whether the index is stored in fast memory (RAM);

(2) data partition employed for distributed execution: DES

that divides data equally among nodes, BES that divides

buckets of data among nodes and SABES/SABES?? that

considers data spatial organization in the partitioning.

These strategies are discussed in Sect. 4.3; (3) if data

partition is locality-aware/organizes the index targeting to

minimize the number of nodes involved in a search; (4) if

dynamic datasets (run-time index update) are supported;

and, (5) indicates if the solution is optimized to deal with

query load variations expected to occur in the online sys-

tem due to the user interaction. As may be noticed, our

work is the only one to support multiple data partition

strategies and includes data-aware partitioning that signif-

icantly improves performance compared to other approa-

ches. Also, when it refers to dynamic datasets and varying

query loads (rates), our work is the only solution to address

both aspects, which are essential to improve performance

and user experience in modern CBMR applications.

4 Scalable distributed memory
parallelization

This section presents the distributed memory architecture

proposed to address the challenges of ANN in large data

volumes. This solution intends to allow for rapid deploy-

ment on distributed environments enabling the use of

different data partitioning strategies. This architecture

extends the approach proposed in [16] with the ability to

handle dynamic datasets. The next sections detail the

architecture and the proposed parallelization strategies.

4.1 Architecture

The system architecture is built using a set of processes

organized into a dataflow scheme. Each dataflow stage may

be instantiated multiple times depending on its computa-

tion demands. The stages used in our solution are:

(i) Readers/Object Streamers: responsible for distributing

the initial dataset and streaming of data objects (updates)

received during the execution among Query Processors

(QP); (ii) Coordinators (Co): that receive the query stream

and send queries to a specific set of QPs and aggregate the

global set of nearest neighbors retrieved by those QPs;

(iii) Query Streamers (QS): responsible for generating

queries stream; (iv) Query processors (QP): responsible for

maintaining a local index in each node in which it is

instantiated and for computing the ANN local search. The

distributed memory solution organizes the stages into the

Index building and Search/Production phases.

The Index Building Phase works with two steps. The

first step is responsible for configuring the IVFADC

indexing data structure, which consists of computing a set

of Representing Centroids (Cc). In the second step, through

the method sendTo, data objects are distributed among

Table 1 Comparison between distributed ANN search strategies

Indexing algorithm In-memory Data partition Locality-aware Dynamic datasets Varying query rate

LSH [18] 7 BES 7 7 7

LSH [19] 4 BES 7 7 7

Index Tree [20] 7 BES 7 7 7

eCP [34] 4 BES 7 7 7

LSH [29] 4 DES 7 7 7

FLANN [12] 4 DES 7 7 7

Multicurves [27] 4 DES 7 7 4

IVFADC [21] 4 DES 7 7 4

SLASH [30] 4 DES 7 7 7

HNSW [22] 7 DES 7 7 7

LC [39, 40] 4 BES 7 4 7

LSH [29] 4 DES 7 4 7

IVFADC [17] 4 DES/BES 4 7 7

SABES

SABES??

This work (IVFADC) 4 DES/BES 4 4 4

SABES

SABES??

3504 Cluster Computing (2024) 27:3499–3519

123

QPs following some partitioning strategy. Objects received

by QPs are then kept locally after indexing.

The Search/Production Phase handles the execution of

object insertions (updates) and query streams. The Query

Streamers (QS) processes send queries to the system,

which the Coordinators (Co) receive (Fig. 2). The query

message is forwarded, following the implementation of the

forward method defined by the underlying partitioning

strategy to the Query Processors (QP) nodes responsible for

processing it. The Coordinator waits until the local sear-

ches are finished and the QPs return local results to be

aggregated into a global response. In parallel and inde-

pendently, the Object Streamer (OS) processes distribute

new descriptors among QPs (bottom part of Fig. 2). In

essence, they generate a stream of data being received to be

indexed during the execution. These data are processed

using the same strategy of the index building in which the

sendTo method computes the QPs to which descriptors are

sent according to the partitioning strategy implemented.

Details on how the QPs efficiently handle on-the-fly

indexing are presented in Sect. 5.

4.2 Intra-stage parallelization

We have developed the QPs as a multithreaded stage using

the Pthreads library. Intra-node parallelization is necessary

due to this being the most compute-demanding stage as it

executes the actual local nearest neighbors. With the intra-

node shared memory parallelization, we only need a single

QP process running per compute node, which reduces the

number of data partitions to one per node, also reducing

overall interprocess communication.

As shown in Fig. 3, the QP internal architecture is

implemented using the following threads: (i) Reception

Thread: responsible for receiving queries and descriptors.

The queries are stored into a query queue (QQ) for further

processing, while new objects are stored into the object

queue (OQ). (ii) Local Search Threads: are workers threads

that, when idle, access the QQ and retrieve a new query,

seen as (1.c) in Fig. 3. This type of worker will perform a

local search process (search method of the Temporal Index

discussed in Sect. 5), visiting buckets of interest and find-

ing the nearest k-neighbors locally according to the ANN

algorithm instantiated in the system on (1.d). When the

local search finishes, the results are sent to the Coordinator

responsible for that particular query; (iii) Insertion

Threads: are in charge of retrieving objects from the OQ

(2.c), and inserting them into the index (2.d). The insertion

of a new object into the index is a very fast process. As

insertion and searching takes place in parallel, adequate

control access is implemented to avoid race conditions,

discussed in Sect. 5. (iv) Stream Controller Thread: in our

Fig. 2 The search phase

processes queries (top) and

executes descriptors insertions

(bottom) in parallel. The

searches involve the QS that

sends queries to Cos, which, in

turn, forward them (using the

forward function) to the QPs

responsible for the search. The

QPs retrieve their local nearest

objects and send them back to

the Co for aggregation, then

generating the final results. The

insertion involves the Object

Streamers that send new objects

to the QPs according to the data

partition strategy implemented

in the sendTo

Cluster Computing (2024) 27:3499–3519 3505

123

solution that implements runtime tuning of the resource

allocated to handle input data insertion and query pro-

cessing, the Stream Controller thread is in charge of

monitoring the system (3.a) and changing the assignment

of threads to insertion and query processing (3.b). The

design and implementation of the adaptation method exe-

cuted by the Streams Controller are presented in Sect. 6.

This is executed with the goal of reducing the response

times observed by the users.

4.3 Data partitioning strategies

This section describes the data partition strategies imple-

mented and evaluated in our system. This includes tradi-

tional approaches found in the literature (DES and BES),

and the Spatial-Aware Bucket Equal Split (SABES) and

Spatial-Aware Bucket Equal Split with Data Balancing

(SABES??) proposed in our work. The development of

strategies is performed by only changing the forward and

sendTo routines of the system.

4.3.1 Data equal split (DES)

The DES strategy splits the dataset equally among the QP

processes in a round-robin fashion during the construction

phase. This means that for each centroid, each entry within

it is distributed evenly, one at a time, to each QP, being all

centroids represented on all QPs, as shown in Fig. 4. This

can be done by using the sendTo routine. Consequently, in

each QP there will be entries in the local index for all

buckets, while the descriptors are distributed among QPs.

Thus, the search requires visiting all QP nodes in the dis-

tributed memory machine and the forward method imple-

ments a query broadcast. This strategy was found in

several previous works [12, 28, 29].

Using the IVFADC, which is the basis of this work, each

QP has a complete IVF structure with entries associated

with all representative centroids (Cc). By sending the query

to all QPs, it is guaranteed that the w lists associated with

the closest centroids will be fully visited, since the

descriptors in these lists are divided among QPs. Figure 4

illustrates the described process.

4.3.2 Bucket equal split (BES)

The Bucket Equal Split strategy is based on the distribution

of buckets among QPs. Thus, using IVFADC, the inverted

file entries are evenly distributed among the QPs and this

distribution ensures that all objects in a given bucket will

be stored together in a single QP. Since jCcj centroids are
available, the ith QP (QPi, i 2 1. . .n) stores jCcj=n cen-

troids. Custom implementations of sendTo and forward are

presented in Algorithm 2. Figure 4 illustrates the data

organization proposed by BES.

During the bucket distribution phase, sendTo method

receives an object y to be indexed and calculates its closest

centroid k0, which in turn, is associated with the inverted

list entry in which y should be stored (line 2). The mapping

from the centroid to the QP instance is then computed

(line 3) and returned (line 4).

Fig. 3 Internal organization of a

Query Processor (QP). It

interacts with the Coordinator,

receiving queries and objects to

insert, and returns query results.

The internal thread pool

allocation adapts to the current

state of both query and object

queues. The figure also

exemplifies the query (1) and

insertion (2) workflows

3506 Cluster Computing (2024) 27:3499–3519

123

In the search phase, instead of sending the query x to all

QPs as in DES, it will use only the set of QPs storing the

w buckets represented by the closest centroids of the query

x. So, as shown in Algorithm 2, the forward method cal-

culates the w closest centroids of x query (line 6) and then

finds which are the QP instances storing those centroids (or

inverted lists associated with them) (line 8). The BES

approach tends to use a smaller number of QPs for

searching than DES, as it sends the query object to at most

min(w, n), where n is the number of QP instances and w the

number of centroids visited. w tends to be much smaller

than n in large distributed systems.

4.3.3 Spatial-aware bucket equal split (SABES)

SABES extends BES by proposing a distribution where

buckets close in space are assigned to the same QP. The

SABES premise is that spatially close buckets have a high

probability of being visited by the same query. Conse-

quently, storing sets of buckets close together on the same

QP would reduce the number of QPs used to answer

queries.

Fig. 4 DES and BES

distribution approaches using

IVFADC. For this example,

initial data points a� s are
organized in centroids c1 � c5.
In DES, all QPs have IVF

entries for all centroids, and the

associated lists have descriptors

divided among several different

machines. In BES, centroids are

distributed among QPs with all

its descriptors. For BES, the

coordinator has a mapping of

centroids to QPs

Algorithm 2: SendTo and Forward for BES
1: function sendTo(y)
2: k’ ← qc(y) ;
3: target ← k′/n ;
4: return target

5: function forward(Cc, x, w, n)
6: nnc ← kNN(Cc, x, w) ;
7: for i ∈ 1 . . . w do
8: target ← target ∪ ncc[i]/n ;

9: return target;

Algorithm 3: Building SABES regions, SendTo and Forward methods

1: function regionConstruction(Cc, n)
2: R ← k-means(Cc, n) ;
3: return R;

4: function sendTo(R, y)
5: k’ ← qc(y) ;
6: target ← getRegion(R, k′) ;
7: return target;

8: function forward(Cc, R, x, w)
9: nnc ← kNN(Cc, x, w) ;

10: for i ∈ 1 . . . w do
11: target ← target ∪ getRegion(R,nnc[i]) ;

12: return target;

Cluster Computing (2024) 27:3499–3519 3507

123

SABES has a pre-processing step where the buckets are

grouped into n macro regions R, each macro region Ri will

be assigned to a QPi. Using the IVFADC approach, these

regions are calculated using the k-means algorithm taking

the set of representative centroids Cc as input. This

implementation is seen in the regionConstructionðCc; nÞ
method of Algorithm 3. The return R is a dictionary that

associates each centroid with the macro region it was

grouped into. This dictionary will later be used in the

sendTo and forward methods. The operations sendTo and

forward are also presented in Algorithm 3 and have similar

implementations to the same methods present in the BES

approach. The main change is the function getRegion,

which queries the dictionary where centroids are mapped to

the macro regions Ri. This function simply accesses the

dictionary indexed by the centroid id and returns its

respective region. Figure 5 complements the algorithm

discussed by showing a visualization of the distribution

proposed by SABES.

4.3.4 Spatial-aware bucket equal split with data balancing
(SABES11)

SABES?? groups buckets considering their spatial loca-

tion and the number of objects associated with them. This

grouping balances the sum of objects in macro regions and

is implemented through the weighted k-means algo-

rithm [41] which aims to balance the weights (number of

descriptors in each buckets), while at the same time pre-

serving spatial proximity between those in the same group.

Algorithm 4 presents the regionConstruction method

implemented by the SABES?? for the IVFADC strategy.

This method runs offline in a pre-processing phase, and

consists of executing the weighted k-means (line 2) that

calculates the set of centroids (macro regions R). This

strategy maintains the spatial proximity between the cen-

troids (buckets) allocated in each QP, however, it balances,

by best effort, the amount of objects stored in each of the

instances. The sendTo and forward methods for the

SABES?? solution are exactly the same as those used by

SABES. Figure 5 shows the components of this discussed

approach. As may be noticed, it is expected that the number

Fig. 5 Data partitioning strategies SABES and SABES??. By considering the number of points in each region, SABES?? reduces workload

imbalance for searching

Algorithm 4: Building SABES++ regions
1: function regionConstruction(Cc, n)
2: R ← weighted-k-means(Cc, n) ;
3: return R;

3508 Cluster Computing (2024) 27:3499–3519

123

of points in regions created by SABES?? will be more

balanced.

5 Searching in dynamic temporal datasets

The temporal index extension aims to enable efficient

searching and indexing of streaming of data. It includes

challenges in terms of the data organization and parti-

tioning as it must: (i) accommodate parallel search and

insertion of new data and (ii) enable searching in a time

window defined by the user, while efficiently releasing old

data no longer of interest.

The first aspect defined here is the data stream window

model used to partition the data in time. There are two

main windowing models: fixed and sliding window [42].

The fixed window partitions the time-space into non-

overlapping segments, whereas the sliding window slides

in time with a specified time interval (see Fig. 6). While

the latter may enable a finer-grained partitioning/searching,

the sliding window is harder to be efficiently implemented

because search and data removal would have to consider

each data element timestamp instead of a fixed range that

can be used to group several items. As such, we adopt that

fixed windowing model here. The main impact of this

decision is that search is carried out in time windows with

any time overlap with user defined time window.

The proposed temporal index organizes buckets into two

levels: (i) Spatial: the object is stored in the nearest bucket

as defined by the search algorithm (e.g., for IVFADC) and;

(ii) Temporal: an object x in a bucket is stored in different

partitions (according to the time window model) depending

on when object x was received/inserted (t(x)). In essence,

there is a subpartition of buckets in time. The temporal size

of windows (s) in seconds and the number of windows to

be searched in the past are application parameters [29].

Figure 7 shows the organization of a local index through

temporal buckets. Most of the computation in the search

will be carried out without interference from the insertion,

since only the latest time window bucket partition will

receive updates. As data are organized in temporal parti-

tions, the definition of which data should be considered

during the search is simple as it is to discard old partitions

that are no long required.

The local insertion and search in the temporal index are

performed using the regular algorithms of the ANN method

(IVFADC) but with appropriate index partitions. For the

insertion, it is always considered the newest partition in

time for the respective bucket, whereas the search will

consider the time partitions T according to the user input

parameters. Our system parallelizes the search internally in

each QP process by employing multiple computing threads.

In this case, the search is executed in parallel by having

each thread independently processing subpartitions of the

index. Those subpartitions consist of the w centroids of

interest used in IVFADC (spatial partitions) and the tem-

poral partitions within each of those centroids.

It is important to highlight that the operations of

indexing new objects and the search process happen

simultaneously in the Temporal Index. However, there is

concurrency between queries (reading) and index updates

(writing) only on the latest temporal window Tn. To

manage these concurrent operations, a synchronization

based on the read/write locks [43] is proposed. This

approach ensures that the access to a bucket is limited to

one indexing operation at a time, but multiple searches can

take place concurrently. In this way, before starting a

writing operation/insertion in a bucket, the thread respon-

sible for the operation obtains the corresponding lock. If

successful, the operation is executed. Otherwise, it waits

until the bucket is freed. This strategy allows the entire

Temporal Index to be consulted and new descriptors to be

indexed with the cost of synchronizing only one temporal

bucket partition (the most recent).

6 Run-time resource adaptation

The online scenario to which CBMR applications are

submitted is dynamic not only in terms of the dataset being

updated at run-time, but also with respect to the query and

data insertion rates (load) that vary during the execution.

Minimizing the response times in this setting is complex,

because resource allocation to handle incoming queries and

data insertions that leads to the best response time varies at

run-time. Thus, an online dynamic resource allocation

strategy is fundamental to achieve a good performance.

The query response time (qr) may be decomposed into

processing time (p) and queue waiting time (wt):

qr ¼ p þ wt. It is important to highlight that the queue

waiting time (wt) is affected by (i) the number of queries

waiting to be processed in the query queue (QQ) and

(ii) query blocking times that take place when the index is

outdated. In this case, if there are object insertions pending

or index updates that affect the queries waiting to beFig. 6 Windowing models: a fixed; b sliding

Cluster Computing (2024) 27:3499–3519 3509

123

processed, those insertions must be processed before the

query can be executed. The number of queries waiting and

processing blocking times also depend on the computing

resources (CPU cores or threads) allocated for query pro-

cessing (EQP) and insertion (IPP). Thus, the system tuning

needs to adjust the values of the tuple [EQP, IPP] during

the execution focusing on reducing the query response

time.

The reasoning behind MS-ADAPT is to reduce query

processing time while allocating enough resources to

insertions so that the index is kept updated over the exe-

cution time. Outdated buckets considerably penalize query

response time, as queries are blocked until pending inser-

tion tasks are executed. The blocking of query processing

will occur if the index outdate is higher than a user defined

parameters called Bucket Outdated Flexibility (BOF). In

fact, this parameter adds a flexibility to the process that

enables insertions to be more appropriately handled, for

instance, during periods of lower query processing rates for

applications. A similar parameter was used in the previous

work [29].

MS-ADAPT presented in Algorithm 5 involves three

main steps: (i) Monitoring; (ii) Optimization; (iii) Recon-

figuration. The first step collects metrics to analyze the

system load: Query Arrival Rate (QAR), Query queue size

(QQS), and Maximum outdated bucket (MOB) (line 3).

Because MS-ADAPT is executed in define time intervals,

these metrics correspond to what was observed since the

last MS-ADAPT execution. The subscripts i and i� 1 in

the metrics refer, respectively, to the current and previous

values.

The optimization phase is carried out with two main

cases: (i) evaluating MOB and (ii) evaluating QAR and

QQS. These are illustrated on Fig. 8. For case (i) MOB

(lines 5 to 9): (i.a) MOB near BOF. There are buckets with

outdated interval close to the acceptable limit, thus it is

necessary to improve insertion rate. For that sake, the

number of threads assigned to insertion (IPP) should be

increased, as is performed in line 6. (i.b) MOB is zero.

Buckets are up to date and resources assigned to insertion

could be assigned to query execution, thus increasing the

number of threads assigned to EQP (increaseEQP in

Fig. 7 The temporal index

organizes objects by spatial and

temporal proximity. Every

s seconds interval, a new

temporal bucket/window T is

created, and an object x with

time t(x) into the appropriate

spatial and temporal bucket

Algorithm 5: MS-ADAPT Algorithm

1 def ms adapt(EQP , IPP , BOF , step):
2 Step 1: Monitoring
3 MOBi, QQSi, QARi ← monitor()
4 Step 2: Optimizing
5 if MOB ≥ BOF then
6 [EQP][IPP] ← decreaseEQP (EQP, IPP, step)

7 else
8 if MOB == 0 then
9 [EQP][IPP] ← increaseEQP (EQP, IPP, IPP)

10 if (QQSi > QQSi−1) ∨ (QARi > QARi−1) then
11 [EQP][IPP] ← increaseEQP (EQP, IPP, step)

12 if QARi < QARi−1 then
13 [EQP][IPP] ← decreaseEQP (EQP, IPP, step)

14 Step 3: Return new conf. for deployment
15 return [EQP][IPP]

3510 Cluster Computing (2024) 27:3499–3519

123

line 9). The MS-ADAPT considers the number of available

threads to be allocated between the levels of parallelism

EQP and IPP such that |EQPj þ jIPPj ¼ AvailableThreads.

Thus, every time the algorithm changes one of the values

(EQP or IPP), the other value must be updated to maintain

their sum equal to the number of available threads. This is

observed in the algorithm as the return of increase or

decrease functions is a tuple [EQP, IPP]. Further, there is

also an step that configures the size of the change in EQP

and IPP every time they are adjusted. The default value of

the algorithm is 1, but it could be adjusted accordingly. For

instance, in our experiments, we used a step of 5 to reduce

the number of possible [EQP, IPP] configurations and,

consequently, experiments necessary in the comparison of

MS-ADAPT to static configurations.

As stated, case (ii) observes QAR metric variation:

(ii.a) QAR increase (line 11). The systems is experiencing

a large number of query requests and, consequently, the

query parallelism (EQP) should grow to improve the sys-

tem throughput. (ii.b) QQS increase (line 11). There is an

accumulation in the query task queue. Thus, resources

should be assigned to query processing in order to optimize

throughput/minimize response times. (c) QAR reduction

(line 13). A decrease in the query rate indicates it may be

possible to release query processing threads to insertion

tasks, enhancing IPP. After computing the [EQP, IPP]

configuration for the current system load, the

reconfiguration step begins and threads are reassigned to

different processing tasks as they finish their current job.

We wanted to highlight that MS-ADAPT is a heuristic

algorithm and, as such, it is was not expected to return the

best solution for the current system status in each call.

Instead, it was designed as a lightweight solution that is

frequently executed to explore online load variations in

order to adapt to changes and improve response times. We

used this approach because trying to derive the configura-

tion that would lead to the best performance is complex and

costly, and would probably offset the gains with the

adaptation due to the constant load variations and need to

compute that configuration frequently.

7 Experimental evaluation

This section evaluates the performance of our parallel

IVFADC. Experiments were carried out using a cluster

machine in which each node is equipped with a AMD

EPYC 7742 processor with 64 cores at 3.40 GHz and

256GB of RAM. For each compute node, 60 out of 64

cores were bound to computing in a Query Processor (QP)

for either query or insertion processing. Thus, MS-ADAPT

is allowed to configure the usage of 60 threads for

[EQP, IPP]. The remaining 4 cores of each compute node

were statically allocated for communication and other

management operations.

Fig. 8 Illustration of how MS-ADAPT decisions for two different

examples are presented. On the first, only the impact of MOB and

BOF are displayed (top part). On the second example, both QAR and

QQS metrics are evaluated (two bottom graphs). On a given time that

MS-ADAPT is executed (vertical dashed lines), it can allocate more

query resources (EQP??), allocate more insertion resources (EQP–),

or make no changes. Please notice that every time EQP changes, IPP

is also modified to maintain all resources in use

(|EQPj þ jIPPj ¼ AvailableThreads)

Cluster Computing (2024) 27:3499–3519 3511

123

The experiments used a dataset with up to 344 billion

SIFT descriptors. The quality of the search was evaluated

based on the recall for the 100 nearest neighbors returned

(1-recall@R = 100). Here we are interested in the online

setting with varying workloads, which we simulated using

Poisson distributions. These use a fixed k for each exper-

iment, but changed between runs to show the system per-

formance under different loads. Thus, we have a Poisson

distribution for query arrival rate and another for the

insertion arrival rate. In both cases, k is set with the fol-

lowing 5 query level factors (QLF) and 5 insertion level

factors (ILF): 0.2, 0.4, 0.6, 0.8, and 1.0, multiplied by the

maximum throughput for query and insertion rates. The

maximum throughput was calculated by executing the

system in a setting in which all queries or insertions

requests were available in the beginning of the experiment

(batch). This rate was computed for each number of QPs

used.

The experiments considered only cases in which the sum

of k for query and insertion were � 1.2. Cases with higher

arrival rates are extreme overloads in which queue waiting

times would dominate the response times. The experiments

executed in Sects. 7.2, 7.3, and 7.4 have used different ILF

factors and they correspond to cases with dynamic datasets.

In these cases, MS-ADAPT was executed every 0.1 s. We

noticed that a executing it in time intervals between 0.1 and

0.5 s led to negligible differences to response times.

In our experimental settings, 11 different static config-

urations were used as a baseline, varying EQP and IPP in

steps of 5 threads (e.g., [5][55], [10][50], . . ., [55][5]). MS-

ADAPT is compared against the static configuration with

the best average performance among all QLF 9 ILF levels

evaluated. Our code is available in.1

7.1 IVFADC vs FLANN

This section performs a comparison of IVFADC with

FLANN [23] and the exhaustive search. FLANN is based

on the Priority Search K-Means Tree strategy, and, in turn,

the exhaustive search was executed with the Faiss library

that uses the BLAS/LAPACK libraries and serves as a solid

reference for understanding trade-offs between exact and

approximate searches. 1 M SIFT descriptors dataset and

10 K queries were used for this evaluation. Quality was

measured using the 1-recall@1 metric [15], which tells us

the percentage of query results in which the nearest

neighbor is ranked first. The experiments were run

sequentially using a single CPU core, and performance is

evaluated as the accuracy is varied. In this case, FLANN

automatically selects the parameters for each given preci-

sion, while w and Cc were modified in IVFADC (shown as

w /# of centroids Cc in Fig. 9), along with R (size of the list

of k nearest neighbors) needed to achieve a given quality.

The trade-offs between accuracy and performance for

IVFADC and FLANN are shown in Fig. 9. As observed,

for the same level of accuracy, IVFADC is significantly

faster than FLANN. Also, IVFADC uses 26 MB of RAM,

while FLANN required about 600 MB of memory. Low

memory cost is another important attribute of IVFADC to

allow indexing of very large datasets. Also, the exhaustive

search took 57 s to run, which is much slower than

IVFADC, even when IVFADC is set to achieve high

accuracy (e.g. about 95%).

7.2 The impact of MS-ADAPT to response time

This evaluation measures the impact of MS-ADAPT to

response time. We employed a Temporal Index with T ¼ 4

and s ¼ 360 so that the amount of data indexed during the

tests do exceed the machine RAM, where T represents the

number of temporal partitions and s the time interval in

which these partitions are updated. The greater the value of

T, the greater the amount of data available for search, and

in turn, the greater the s, the faster the process of discarding

data. See Fig. 7 for details. IVFADC was configured with

Cc ¼ 4096 and w ¼ 16 that leads to a 1-recall@R = 100

equivalent of 63:7%. The initial index contains 1 billion

SIFT descriptors and a single QP node was used. We have

chosen these values of Cc and w because they are in the

range of values that have shown to attain a reasonable

compromise between quality and search time in the origi-

nal IVFADC paper [15]. Additionally, we have not seen

significant differences among strategies for different algo-

rithms’ parameters.

The system throughput for cases in which it is submitted

only for query processing and insertions was first mea-

sured. These rates are, respectively, 126.18 and 9350.15

tasks per second. These values were them used in the rest

of experiments to multiply the intensity levels k to calcu-

late the average of the Poissons used.

The response times using a best static configuration and

MS-ADAPT to set [EQP, IPP] for BOF = 0, which means

that the index must be updated for a query to be executed,

are presented in Fig. 10. Only the upper part of the matrix

with configurations is filled because of the restriction

QLF þ ILF� 1.2. Meaning that the system load is lim-

ited to 120% of the maximum throughput it may achieve.

The configuration [20][40] achieved the best average

response time for static cases. It can be observed, as

expected, that as the intensity of the tasks streams (QLF

and IFL) increase there is a growth in response times. It is

specially true for cases in which QLF ? IFL is � to 1,

where the system is overloaded and queuing time domi-

nates the response times.1 https://github.com/guineri/msadapt_pqanns.

3512 Cluster Computing (2024) 27:3499–3519

123

https://github.com/guineri/msadapt_pqanns

Further, MS-ADAPT kept, in all cases, the average

response time close to or smaller than the best static con-

figuration. The ability of MS-ADAPT to adapt during the

execution enables it to respond to variation of the load

factor effectively. It is important to highlight that, in each

predefined QLF�ILF combination there are variations in

the intensity of the streams given the arrival of the tasks

follows a Poisson distribution. That said, even the best

static settings can still be a sub-optimal solution. MS-

ADAPT is able to adapt to these variations, and in these

cases we can see that the average response time was

smaller than the best static settings.

7.3 The effect of BOF to response times

This section evaluates the impact of changes in BOF to the

response times. The algorithm configurations are the same

used in previous section. Here we have used BOF values of

5 and 10 s, meaning that an index bucket with pending

insertions from up to those values can still be used to

process queries. The results are presented in Figs. 11

and 12.

The increase in BOF resulted in better response times

for all cases due to flexibility added by the scenario.

However, it may be also observed that MS-ADAPT has

been able to make better use of BOF. For instance, for QLF

and IFL configurations summing 1 and 1.2 and BOF = 5

as compared to BOF=0, the static configuration had an

average response time reduction of 1.48� and 3.08�,

respectively. For the same configurations (QLF?ILF

summing 1 and 1.2), MS-ADAPT reduces the average

execution time in 9:1� and 32:3� vs the best static setting.

The BOF = 10 contributed to slightly smaller response

times for high load cases, but the gains as compare to

BOF = 5 as smaller than in the migration from BOF = 0

to BOF = 5. This shows that a flexibility to deal with

bucket updates is sufficient for MS-ADAPT to accommo-

date multiple tasks (insertion and query) effectively.

7.4 Scalability of different partitioning
strategies

This section evaluates the performance and scalability of

our distributed memory IVFADC with different partition-

ing strategies. We have executed a weak-scaling evaluation

in which the size of indexed dataset increases proportion-

ally to the number of compute nodes. This is more

appropriate than strong-scaling in our application domain

because we have to deal with very large and increasing

datasets. The system was executed in the following set-

tings: (i) 40 nodes (8 Co; 32 QPs) and 86 billion SIFT

descriptors; (ii) 80 nodes (16 Co; 64 QPs) and 172 billion

SIFT descriptors; (iii) 160 nodes (32 Co; 128 QPs) and

344 billion SIFT descriptors. The IVFADC was configured

to use Cc ¼ 8192 and w ¼ 8, which resulted in a 1-re-

call@100 of 58.3%. The values of Cc and w were modified

as compared to previous experiments because we used a

large per QP node dataset here, thus we wanted to have

similar execution times and recall as before to enable large-

scale runs without very high resource utilization. Multiple

partitioning strategies were employed: DES, BES, SABES,

and SABES??. In addition, three different data stream

intensity scenarios were considered: ILF = 0.2, 0.4 and 0.6

(all using QLF = 1.0). For comparative purposes, the

parallelization strategy described in [29] was executed

under the same conditions using the IVFADC as the

baseline search algorithm.

Figure 13 shows the experimental results. As observed,

the scalability of the distributed memory machines is

superlinear for BES, SABES, and SABES??. Interest-

ingly, as the intensity of the insertion stream grows, the

impact on the reduction of the query throughput is more

intense in the SABES distribution strategy. This aspect is

Fig. 9 Comparison between

IVFADC and competitors at

different search quality levels

Cluster Computing (2024) 27:3499–3519 3513

123

directly related to the data imbalance in this approach,

which increases when more descriptors are indexed. Fur-

thermore, the [29] parallelization has similar behavior of

DES partitioning, as it essentially benefits from equal data

partitioning as well. However, the difference in perfor-

mance between from DES is due to the fact that the

insertions, in the [29] solution, happen in a data structure

(Delta Table) separate from the structure in which queries

are computed. This aspect eliminates synchronizations

necessary in cases when query and insertion takes place in

the same data structure. The [29] solution proposes

aggregations (between Delta and Static Tables) with a

greater volume of data in more spaced time intervals,

which shows us that, when the data distribution is equal,

this mechanism tends to be more efficient as insertions and

queries happen on the same index.

The superlinear scalability attained by BES, SABES,

and SABES?? is a consequence of accessing a smaller

number of QPs to answer a query on these cases. For

instance, when 32 QPs are employed, DES uses all 32 QPs,

as expected, while BES and SABES need an average of

only 12.7 and 4.3 QPs, respectively, to respond to a query.

This aspect consolidates the assertion that by distributing

buckets close in space in the same Query Processor, as

proposed by SABES and SABES??, we are increasing the

search locality, which will happen in only a subset of QPs.

(a) Best Static configuration: 22 and 40 threads,
respectively, for query an insertion processing.

(b) MS-ADAPT

Fig. 10 Comparison between best static configuration and MS-ADAPT using BOF = 0

(a) Best Static configuration: 25 and 35 threads,
respectively, for query an insertion processing.

(b) MS-ADAPT

Fig. 11 Comparison between baseline and MS-ADAPT using BOF = 5

3514 Cluster Computing (2024) 27:3499–3519

123

The SABES?? that reduces the imbalance among QPs

has been able to significantly improve SABES in all cases.

For instance, for the case with QLF ¼ 1:2 and IFL ¼ 0:4,

SABES?? throughput is about 1.2� higher than that

attained by SABES. Data balancing in SABES and

SABES?? is shown in Table 2 which presents the maxi-

mum and minimum number of descriptors indexed by QPs

in both approaches. There is a significant reduction in the

imbalance of data with SABES??.

8 Conclusions and future directions

CBMR applications are becoming popular in several online

services. These services have to deal with very large and

increasing datasets, which require the use of distributed

memory computing systems to match their processing

demands. New challenges are faced in this scenario due to

the dynamic dataset and load characteristics as queries

should be processed on-the-fly as new data are inserted.

In this work, we address these challenges with paral-

lelization strategies and a run-time system with optimiza-

tion to deal with online CBMR services. Our approach

enables concurrent processing of queries and data inser-

tions in a stream fashion, and also optimizes the use of

computing resources targeting to reduce query response

time in scenarios where query/insertion rates vary during

the execution. This is achieved with an algorithm for

adapting resource allocated to deal with the query/insertion

streams, called MS-ADAPT. MS-ADAPT identifies varia-

tions in intensity of the streams and chooses the best

configuration of resource allocation (CPU cores) to be

used. The results show that static solutions for this problem

are suboptimal given the variability of load of queries and

insertions streams, while MS-ADAPT can adapt at run-

time reaching average response time close to or better than

the best static configuration in several scenarios evaluated.

For the future work we intend to enable the use of GPUs

in the search to further improve the throughput attained by

our solutions. This study will also allow us to understand

the impact of this hardware to each parallelization strategy

as we believe the gains may be different with each

approach. In fact, we expect that spatial-aware strategies

may attain higher speedups as the data required to answer a

search are located in a few nodes. The current version of

the SABES?? strategy performs the balanced centroids

distribution with a clustering computed before execution.

However, in dynamic datasets, data imbalance may appear

during the execution as new data items are indexed. As

such, it may be interesting to further evaluate this aspect

and study strategies that could reconfigure the data distri-

bution at run-time. Additionally, while MS-ADAPT

attained reasonable gains compared to the static strategy,

we intend to investigate other strategies. The main goal

will be aimed at the trade-off between better allocations

and time to compute such solutions. Finally, we also want

to evaluate data partition solutions to deal with heteroge-

neous machines. The heterogeneity could be in different

components of the machine as the processor, memory

capacity, attached storage technology etc. These settings

are more likely to be found in cloud environments.

(a) Best Static configuration: 35 and 25 threads,
respectively, for query an insertion processing.

(b) MS-ADAPT

Fig. 12 Comparison between baseline and MS-ADAPT using BOF = 10

Cluster Computing (2024) 27:3499–3519 3515

123

(a) QLF=1.0 e ILF=0.2

(b) QLF=1.0 e ILF=0.4

(c) QLF=1.0 e ILF=0.6

25

Fig. 13 Query throughput of

IVFADC in a weak scaling
evaluation, where data

partitioning strategies and

intensity of the insertion stream

were varied

3516 Cluster Computing (2024) 27:3499–3519

123

Author contributions All authors contributed to the study conception

and design. Material preparation, data collection and analysis were

performed by GA and WBJ. The first draft of the manuscript was

written by GA and GT and all authors commented on previous ver-

sions of the manuscript. All authors read and approved the final

manuscript.

Funding This work was supported in part by National Council of

Scientific and Technological Development (CNPq), Fundação de

Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coor-

denação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES),

PRPq/UFMG.

Data Availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

References

1. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimen-

sional spaces: index structures for improving the performance of

multimedia databases. ACM Comput. Surv. 33, 322–373 (2001).

https://doi.org/10.1145/502807.502809

2. Amato, F., Greco, L., Persia, F., et al.: Content-Based Multimedia

Retrieval, pp. 291–310. Springer International Publishing, Cham

(2015)

3. Sitaula, C., Shahi, T.B., Marzbanrad, F., et al.: Recent advances

in scene image representation and classification. Multimed. Tools

Appl. (2023). https://doi.org/10.1007/s11042-023-15005-9

4. Dujaili, M.J.A.: Survey on facial expressions recognition: data-

bases, features and classification schemes. Multimed. Tools Appl.

(2023). https://doi.org/10.1007/s11042-023-15139-w

5. Khunsongkiet, P., Bootkrajang, J., Techawut, C.: Low-level

feature image retrieval using representative images from mini-

mum spanning tree clustering. Multimed. Tools Appl. (2023).

https://doi.org/10.1007/s11042-023-15605-5

6. Wan, J., Wang, D., Hoi, S.C.H., et al.: Deep learning for content-

based image retrieval: a comprehensive study. In: Proceedings of

the 22Nd ACM International Conference on Multimedia. ACM,

New York, NY, USA, MM ’14, pp. 157–166 (2014). https://doi.

org/10.1145/2647868.2654948

7. Douze, M., Jégou, H., Sandhawalia, H., et al.: Evaluation of

GIST descriptors for web-scale image search. In: Proceedings of

the ACM International Conference on Image and Video Retrie-

val. ACM, New York, NY, USA, CIVR ’09, pp. 19:1–19:8

(2009). https://doi.org/10.1145/1646396.1646421

8. Jégou, H., Perronnin, F., Douze, M., et al.: Aggregating local

image descriptors into compact codes. IEEE Trans. Pattern Anal.

Mach. Intell. 34(9), 1704–1716 (2012). https://doi.org/10.1109/

TPAMI.2011.235

9. Zezula, P., Amato, G., Dohnal, V., et al.: Similarity Search: The

Metric Space Approach, vol. 32. Springer Science & Business

Media, Berlin (2006)

10. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for

finding best matches in logarithmic expected time. ACM Trans.

Math. Softw. 3(3), 209–226 (1977). https://doi.org/10.1145/

355744.355745

11. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest

neighbor. In: Proceedings of the 23rd International Conference on

Machine learning, ICML ’06, pp. 97–104 (2006). https://doi.org/

10.1145/1143844.1143857

12. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for

high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell.

36(11), 2227–2240 (2014). https://doi.org/10.1109/TPAMI.2014.

2321376

13. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and

performance study for similarity-search methods in high-dimen-

sional spaces. In: Proceedings of the 24rd International Confer-

ence on Very Large Data Bases. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, VLDB ’98, pp. 194–205 (1998).

https://doi.org/10.5555/645924.671192

14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high

dimensions via hashing. In: Proceedings of the 25th International

Conference on Very Large Data Bases. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, VLDB ’99,

pp. 518–529 (1999). https://doi.org/10.5555/645925.671516

15. Jegou, H., Douze, M., Schmid, C.: Product quantization for

nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell.

33(1), 117–128 (2010). https://doi.org/10.1109/TPAMI.2010.57

16. Andrade, G., Teodoro, G., Ferreira, R.: Scalable and efficient

spatial-aware parallelization strategies for multimedia retrieval.

In: 32nd IEEE International Symposium on Computer Architec-

ture and High Performance Computing, SBAC-PAD 2020, Porto,

Portugal, September 9–11, 2020, pp. 124–131. IEEE (2020).

https://doi.org/10.1109/SBAC-PAD49847.2020.00027

17. Andrade, G., Ferreira, R., Teodoro, G.: Spatial-aware data par-

tition for distributed memory parallelization of ANN search in

multimedia retrieval. Parallel Comput. 115, 102992 (2023).

https://doi.org/10.1016/j.parco.2022.102992

18. Stupar, A., Michel, S., Schenkel, R.: RankReduce—processing

K-nearest neighbor queries on top of MapReduce. In: Proceed-

ings of the 8th Workshop on Large-Scale Distributed Systems for

Information Retrieval (LSDS-IR’10), pp. 1–6 (2010). http://ceur-

ws.org/Vol-630/lsdsir2.pdf

19. Bahmani, B., Goel, A., Shinde, R.: Efficient distributed locality

sensitive hashing. In: Proceedings of the 21st ACM International

Conference on Information and Knowledge Management

(CIKM), pp. 2174–2178 (2012). https://doi.org/10.1145/2396761.

2398596

20. Moise, D., Shestakov, D., Gudmundsson, G., et al.: Indexing and

searching 100M images with Map-reduce. In: Proceedings of the

3rd ACM Conference on International Conference on Multimedia

Retrieval, ICMR ’13, pp. 17–24 (2013). https://doi.org/10.1145/

2461466.2461470

21. Souza, R., Fernandes, A., Teixeira, T.S.F.X., et al.: Online mul-

timedia retrieval on CPU-GPU platforms with adaptive work

partition. J. Parallel Distrib. Comput. 148, 31–45 (2021). https://

doi.org/10.1016/j.jpdc.2020.10.001

Table 2 Data distribution using SABES and SABES??

Strategy # of QPs Data distribution

Min Max Std

SABES 4 167,078,445 336,612,032 89,578,841

32 14,249,858 62,618,917 12,678,393

SABES?? 4 160,689,301 390,357,008 75,624,558

32 21,451,654 46,859,624 4,549,251

The minimum and maximum quantity of objects (descriptors)

assigned to a QP and the standard deviation across all 32 QPs

Cluster Computing (2024) 27:3499–3519 3517

123

https://doi.org/10.1145/502807.502809
https://doi.org/10.1007/s11042-023-15005-9
https://doi.org/10.1007/s11042-023-15139-w
https://doi.org/10.1007/s11042-023-15605-5
https://doi.org/10.1145/2647868.2654948
https://doi.org/10.1145/2647868.2654948
https://doi.org/10.1145/1646396.1646421
https://doi.org/10.1109/TPAMI.2011.235
https://doi.org/10.1109/TPAMI.2011.235
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.5555/645924.671192
https://doi.org/10.5555/645925.671516
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/SBAC-PAD49847.2020.00027
https://doi.org/10.1016/j.parco.2022.102992
http://ceur-ws.org/Vol-630/lsdsir2.pdf
http://ceur-ws.org/Vol-630/lsdsir2.pdf
https://doi.org/10.1145/2396761.2398596
https://doi.org/10.1145/2396761.2398596
https://doi.org/10.1145/2461466.2461470
https://doi.org/10.1145/2461466.2461470
https://doi.org/10.1016/j.jpdc.2020.10.001
https://doi.org/10.1016/j.jpdc.2020.10.001

22. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world

graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836
(2020). https://doi.org/10.1109/TPAMI.2018.2889473

23. Muja, M., Lowe, D.: Fast approximate nearest neighbors with

automatic algorithm configuration. In: VISAPP 2009—Proceed-

ings of the 4th International Conference on Computer Vision

Theory and Applications, vol. 1, pp. 331–340 (2009)

24. Santini, S.: A meta-indexing method for fast probably approxi-

mately correct nearest neighbor searches. Multimed. Tools Appl.

81(21), 30465–30491 (2022). https://doi.org/10.1007/s11042-

022-12690-w

25. Chávez, E., Marroquı́n, J.L., Navarro, G.: Fixed queries array: a

fast and economical data structure for proximity searching.

Multimed. Tools Appl. 14(2), 113–135 (2001). https://doi.org/10.

1023/A:1011343115154

26. Kruliš, M., Skopal, T., Lokoč, J., et al.: Combining CPU and

GPU architectures for fast similarity search. Distrib. Parallel

Databases 30(3), 179–207 (2012). https://doi.org/10.1007/

s10619-012-7092-4

27. Teodoro, G., Valle, E., Mariano, N., et al.: Approximate simi-

larity search for online multimedia services on distributed CPU-

GPU platforms. VLDB J. 23(3), 427–448 (2014). https://doi.org/

10.1007/s00778-013-0329-7

28. Andrade, G., Fernandes, A., Gomes, J.M., et al.: Large-scale

parallel similarity search with product quantization for online

multimedia services. J. Parallel Distrib. Comput. 125, 81–92

(2019). https://doi.org/10.1016/j.jpdc.2018.11.009

29. Sundaram, N., Turmukhametova, A., Satish, N., et al.: Streaming

similarity search over one billion tweets using parallel locality-

sensitive hashing. Proc. VLDB Endow. 6(14), 1930–1941 (2013).

https://doi.org/10.14778/2556549.2556574

30. Meisburger, N., Shrivastava, A.: Distributed tera-scale similarity

search with MPI: provably efficient similarity search over billions

without a single distance computation. CoRR abs/2008.03260

(2020). arXiv:2008.03260

31. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search

with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2021). https://

doi.org/10.1109/TBDATA.2019.2921572

32. Dean, J., Ghemawat, S.: MapReduce: simplified data processing

on large clusters. Commun. ACM 51(1), 107–113 (2008). https://

doi.org/10.1145/1327452.1327492

33. Forum, M.P.: MPI: a message-passing interface standard. Tech-

nical report, USA (1994)

34. Gudmundsson, G.T., Jónsson, B.T., Amsaleg, L., et al.: Proto-

typing a web-scale multimedia retrieval service using spark.

ACM Trans. Multimed. Comput. Commun. Appl. (2018). https://

doi.org/10.1145/3209662

35. Zaharia, M., Chowdhury, M., Franklin, M.J., et al.: Spark: cluster

computing with working sets. In: Proceedings of the 2nd USE-

NIX Conference on Hot Topics in Cloud Computing, Hot-

Cloud’10, p. 10 (2010)

36. Doshi, I., Das, D., Bhutani, A., et al.: LANNS: a web-scale

approximate nearest neighbor lookup system. Proc. VLDB

Endow. 15(4), 850–858 (2021). https://doi.org/10.14778/

3503585.3503594

37. Zhu, N., Lu, Y., He, W., et al.: Towards update-efficient and

parallel-friendly content-based indexing scheme in cloud com-

puting. Int. J. Semant. Comput. 12(2), 191–213 (2018). https://

doi.org/10.1142/S1793351X1840010X

38. Singh, A., Subramanya, S.J., Krishnaswamy, R., et al.: Fresh-

diskann: a fast and accurate graph-based ANN index for

streaming similarity search. CoRR abs/2105.09613 (2021). arXiv:

2105.09613

39. Gil-Costa, V., Marin, M.: Load balancing query processing in

metric-space similarity search. In: 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

(CCGRID 2012), pp. 368–375 (2012). https://doi.org/10.1109/

CCGrid.2012.30

40. Yang, K., Wang, H., Du, M., et al.: An efficient indexing tech-

nique for billion-scale nearest neighbor search. Multimed. Tools

Appl. (2023). https://doi.org/10.1007/s11042-023-14825-z

41. Kerdprasop, K., Kerdprasop, N., Sattayatham, P.: Weighted

K-means for density-biased clustering. In: Tjoa, A.M., Trujillo, J.

(eds.) Data Warehousing and Knowledge Discovery. Springer,

Berlin, Heidelberg (2005)

42. Wei, X., Liu, Y., Wang, X., et al.: A survey on quality-assurance

approximate stream processing and applications. Future Gener.

Comput. Syst. 101, 1062–1080 (2019). https://doi.org/10.1016/j.

future.2019.07.047

43. Lev, Y., Luchangco, V., Olszewski, M.: Scalable reader-writer

locks. In: Proceedings of the Twenty-First Annual Symposium on

Parallelism in Algorithms and Architectures, pp. 101–110 (2009)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Guilherme Andrade holds a

degree in Computer Science

from the Federal University of

São João del Rei (2012) and a

Master’s Degree in Computer

Science at Federal University of

Minas Gerais (2014). He cur-

rently is a PhD candidate in

Computer Science from the

Computer Science Department

(DCC) at the Federal University

of Minas Gerais, working on

research in the areas of high

performance computing in

heterogeneous architectures.

Willian Barreiros Jr. holds a

degree in Computer Engineer-

ing from the University of Bra-

sı́lia (2016) and a Master’s

Degree in Computer Science at

University of Brası́lia (2018).

He currently is a PhD candidate

in Computer Science from the

Computer Science Department

at the Federal University of

Brası́lia, working on research in

the areas of high performance

computing in heterogeneous

architectures.

3518 Cluster Computing (2024) 27:3499–3519

123

https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1007/s11042-022-12690-w
https://doi.org/10.1007/s11042-022-12690-w
https://doi.org/10.1023/A:1011343115154
https://doi.org/10.1023/A:1011343115154
https://doi.org/10.1007/s10619-012-7092-4
https://doi.org/10.1007/s10619-012-7092-4
https://doi.org/10.1007/s00778-013-0329-7
https://doi.org/10.1007/s00778-013-0329-7
https://doi.org/10.1016/j.jpdc.2018.11.009
https://doi.org/10.14778/2556549.2556574
http://arxiv.org/abs/2008.03260
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3209662
https://doi.org/10.1145/3209662
https://doi.org/10.14778/3503585.3503594
https://doi.org/10.14778/3503585.3503594
https://doi.org/10.1142/S1793351X1840010X
https://doi.org/10.1142/S1793351X1840010X
http://arxiv.org/abs/2105.09613
http://arxiv.org/abs/2105.09613
https://doi.org/10.1109/CCGrid.2012.30
https://doi.org/10.1109/CCGrid.2012.30
https://doi.org/10.1007/s11042-023-14825-z
https://doi.org/10.1016/j.future.2019.07.047
https://doi.org/10.1016/j.future.2019.07.047

Leonardo Rocha is an Associ-

ated Professor at Computer

Science Department at Federal

University of São João Del Rei,

Brazil. He holds a PhD in

Computer Science from Federal

University of Minas Gerais,

Brazil (2009). His research

interests include Information

Retrieval, Data Mining,

Machine Learning and Recom-

mender Systems, having pub-

lished about 200 papers in these

areas.

Renato Ferreira is a full profes-

sor in the Department of Com-

puter Science at Universidade

Federal de Minas Gerais. His

research focuses on compiler

and run-time support for high

performance computing and

large, dynamic datasets. It

involves both high performance,

important issue from the appli-

cations end-users’ perspective,

and high-level programming

abstractions, important for the

application domain developers.

George Teodoro received his

M.S. and Ph.D. degrees in

Computer Science from the

Universidade Federal de Minas

Gerais (UFMG), Brazil, in 2006

and 2010. He is currently an

assistant professor in the Com-

puter Science Department at the

University of Brasilia (UnB),

Brazil. His primary areas of

expertise include high perfor-

mance runtime systems for

efficient execution of biomedi-

cal and data-mining applications

on distributed heterogeneous

environments.

Cluster Computing (2024) 27:3499–3519 3519

123

	Large-scale response-aware online ANN search in dynamic datasets
	Abstract
	Introduction
	Problem statement and background
	Problem statement
	Inverted file system with asymmetric distance computation (IVFADC) indexing
	Product quantization concepts
	Searching in quantized spaces

	Related work
	Scalable distributed memory parallelization
	Architecture
	Intra-stage parallelization
	Data partitioning strategies
	Data equal split (DES)
	Bucket equal split (BES)
	Spatial-aware bucket equal split (SABES)
	Spatial-aware bucket equal split with data balancing (SABES++)

	Searching in dynamic temporal datasets
	Run-time resource adaptation
	Experimental evaluation
	IVFADC vs FLANN
	The impact of MS-ADAPT to response time
	The effect of BOF to response times
	Scalability of different partitioning strategies

	Conclusions and future directions
	Author contributions
	Data Availability
	References

