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Abstract
Blockchain, a promising technology, has been extensively applied in numerous fields, such as network security, finance,

and medical care. However, due to the low power consumption and weak computing power of the mobile environment, the

application of blockchain in this environment still faces many challenges. Therefore, edge computing has been introduced

to improve the computing power of mobile devices and encourage more mobile edge devices to join the blockchain

network. In this paper, we propose a double auction model to address the issue of edge computing resource allocation in

blockchain networks. Based on this auction model, we first propose a truthful double auction mechanism based on

breakeven (TDAMB) to determine matched pairs of edge computing service providers (ECSPs) and miners. Furthermore,

to improve the system efficiency, we propose a double auction mechanism based on a critical value (DAMCV). We also

theoretically analyze the individual rationality, budget balance and truthfulness of the proposed mechanisms. Extensive

experiments show that TDAMB and DAMCV have good effects on edge computing resource allocation in blockchain

networks.
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1 Introduction

Blockchain is the backbone technology of digital cryp-

tocurrency, represented by Bitcoin [22]. On the basis of

timestamps, data encryption, consensus mechanisms, eco-

nomic incentives and other techniques, blockchain first

solves the security problems of the trust-based centralized

model. Blockchain is essentially a technology that allows

any node in a P2P network to maintain and verify the

transactions recorded in the ledgers and make peer-to-peer

transactions without mutual trust and identity authentica-

tion. Due to the inherent advantages of blockchain tech-

nology, it has been extensively applied in network security,

finance, medical care and other fields [28].

The reliability and security of blockchain rely on the

consensus mechanism. The core component of the con-

sensus mechanism adopted by permissionless blockchains

represented by Bitcoin is proof-of-work (PoW) [18]. PoW

requires each consensus node in the network to contribute

its own computing resources to compete to calculate a

specific hash value. If the correctness of the calculated

target hash value is verified by the majority of other nodes,

the node acquires the accounting rights to the block. Then,

all transactions generated during the current period are

encapsulated in the new block and linked to the main chain

in accordance with the timing. At the same time, the

blockchain system issues a certain amount of reward to this

node, which can encourage other nodes to continue to

contribute computing power. The entire process of PoW is

known as mining, and the nodes that devote their com-

puting power to calculating hash values are known as

miners.

With the blossoming of blockchain, decentralized

application (DAPP) based on permissionless blockchain

has attracted wide attention [28]. DAPP does not rely on

traditional centralized servers and adopts blockchain
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technology to achieve decentralized management and

operation, thus possessing higher security and trans-

parency. This is a breakthrough in relations of production,

because people can quickly realize self-organized trading

platforms by independently designing smart contracts

without the support or permission of trusted intermediaries.

On the other hand, through the Nakamoto consensus pro-

tocol based on PoW, DAPP encourages people to become

consensus nodes and receive mining rewards. Unfortu-

nately, solving the PoW puzzle requires strong computing

power, which is not suitable for mobile devices with

restricted resources and computing capabilities. To allevi-

ate this bottleneck, integrating mobile edge computing

(MEC) into blockchain is a feasible solution that can pro-

vide a powerful distributed network and sufficient com-

puting resources.

Integrating MEC into blockchain has been widely

studied and applied to many fields [2, 27]. For instance, the

application of blockchain in the Internet of Vehicles (IoVs)

can be implemented by employing edge computing. Xu

et al. [26] considered roadside nodes (RSUs) in IoVs as

edge computing servers. RSUs acted as computation nodes

and blockchain nodes. Compared to vehicle nodes, RSUs

have more computing and communication resources.

Moreover, the RSUs participated in mining as miners and

assisted in the information transmission of the vehicle

blockchain network. The benefits of the introduction of

MEC into the blockchain framework are numerous. First,

edge computing technology improves the computing power

of lightweight device miners in the blockchain network [1],

so the rewards given to miners are also increased, which

attracts more miners to join the process of mining blocks,

thereby enhancing the security and robustness of the

blockchain network. Second, edge computing service pro-

viders (ECSPs) can obtain many benefits by providing

computing resources for miners.

Previous works [16, 34] have investigated the specific

offloading process. Through wireless communication pro-

tocols such as Wi-Fi or cellular networks, mobile miners

establish communication channels with edge computing

servers. The mobile miners divide the nonce space into

smaller segments or partitions and only work on a subset of

nonces locally. Through the communication channel, they

assign the remaining portions of the nonce space to the

edge computing servers for computation. The edge com-

puting servers receive the specific ranges of nonce values

and perform the necessary hash computations. Once the

tasks are completed, the results will be sent back to the

mobile miners. By offloading, some mobile miners may

have higher mining capabilities and competitive advan-

tages, which may lead to unfairness. However, it is worth

noting that the fairness of blockchain does not solely

depend on the computing resources of nodes. In the PoW

mechanism, the difficulty of mining is usually adjusted

based on the overall computing power of the network. This

means that as the total computing power in the network

increases, the difficulty will correspondingly increase,

making it difficult for resource rich nodes to gain unlimited

advantages. This adjustment ensures fairness in mining

while preventing monopoly by a few nodes. Meanwhile,

blockchain systems typically reward participants based on

their level of contribution. This mechanism makes partic-

ipants not only rely on the computing resources, but also

need to invest other resources (such as time and electricity)

to obtain higher returns. This can also achieve a relatively

fair reward method. Practically, to increase mining proba-

bility and increase profits, many miners have formed alli-

ances to form mining pools [17]. Many researchers have

also conducted research on ensuring the fairness of con-

sensus mechanisms in this situation [15].

In this paper, we study the allocation of computing

resources between ECSPs and miners with lightweight

devices in a blockchain network. The computing resources

in MEC are scarce resources, thus are very suitable for

allocation through auction which can fully motivate indi-

viduals to participate in market activities [33]. Since both

the mobile miners and ECSPs are multiple participants,

there is internal competition between the mobile miner

group and the ECSP group. Compared to traditional one-

way auction mechanisms, the double auction mechanism

can effectively solve internal competition between mobile

miners and ECSPs as well as conflicts of interest between

mobile miners and ECSPs [14]. Moreover, the pricing of

the double auction is inspired by the second price sealed

auction, thus can effectively protect the interests of both

buyers and sellers. Therefore, the interaction between

ECSPs and mobile miners can be modeled as a double

auction. The computing resources of ECSPs are considered

as commodities, mobile miners with task offloading

requirements are considered buyers, and ECSPs are con-

sidered sellers. Therefore, we propose a double auction

model between ECSPs and miners with lightweight devices

and design resource allocation and pricing algorithms

based on this model. The main contributions of this work

are summarized as follows:

• We study the characteristics of the edge computing

resource allocation problem in the blockchain scenario.

We first present a hash power function and then design

a resource allocation model based on a double auction

to maximize the social welfare of the blockchain

network.

• We design a truthful double auction mechanism based

on breakeven (TDAMB). Additionally, we prove that

the proposed double auction mechanism satisfies the

three economic properties of individual rationality,
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budget balance and truthfulness. Furthermore, to

improve the system efficiency, we extend TDAMB

and propose a double auction mechanism based on a

critical value (DAMCV); similarly, we analyze its

economic properties.

• We conduct numerical simulations to evaluate the

effectiveness of the proposed hash calculation function.

Moreover, we conduct extensive comparative experi-

ments between the two proposed algorithms and the

previous algorithm. Finally, we verify the economic

properties of the proposed algorithms.

The remainder of this paper is structured as follows. The

related work is summarized in Sect. 2. The system model

of edge computing resource allocation based on double

auctions in blockchain networks is presented in Sect. 3.

Two double auction mechanisms are discussed, and the

economic properties of the proposed mechanisms are pro-

ven in Sects. 4 and 5. The performance evaluation is dis-

cussed in Sect. 6, and our conclusions and future research

directions are summarized in Sect. 7.

2 Related works

Recently, several studies on edge/cloud computing

resource allocation algorithms in blockchain networks have

been conducted. In one of the pioneering papers, Xiong

et al. [24] developed a framework for mobile blockchain,

specifically considering that miners with lightweight

devices can offload intensive tasks such as hash value

computations to an edge computing server. Xiong et al.

[25] considered the transaction model between cloud/edge

computing providers and lightweight miners in a mobile

blockchain network and proposed a two-stage Stackelberg

game model for the edge resource management in a PoW-

based blockchain network. Jing et al. [11] jointly studied

resource trading and computing offload in blockchain

enhanced D2D assisted mobile edge computing. They

modeled the resource trading problem as a Stackelberg

game, and formalized the computation offloading problem

as a mixed optimization problem. Yao et al. [29] formu-

lated the problem of cloud resource allocation and pricing

between the miners and cloud provider as a Stackelberg

model and proposed an efficient reinforcement learning

algorithm based on multiple agents. Jiao et al. [8, 9] con-

sidered the deployment of edge/cloud computing servers to

support applications based on mobile blockchain and pro-

posed computing resource allocation mechanisms to

improve the social welfare of a system based on auction

theory. The system is guaranteed to be computationally

efficient, individually rational, and truthful. Guo et al. [6]

proposed that miners with insufficient resources could

offload mining tasks such as PoW puzzle computations to

nearby non-mining-devices or to edge servers and formu-

lated the problem as double auction model and Stackelberg

model via game theory. Zhang et al. [32] studied the

resource allocation model in the Internet of Vehicles with

public blockchain networks and proposed two truthful

auction mechanisms for ECSPs and miners to optimize the

social welfare of the blockchain network.

In terms of allocation algorithms and mechanisms based

on double auctions, Feng et al. [5] studied the resource

allocation problem of a spectrum trading market composed

of spectrum holders, wireless service providers, and end

users and designed a pricing algorithm based on the

Vickrey–Clarke–Groves(VCG) mechanism and a uniform

pricing algorithm. Chen et al. [3] proposed a multichannel

spectrum resource allocation mechanism based on double

auctions. This mechanism attains truthfulness while

improving spectrum utilization. Jin et al. [10] focused on

the interaction model between cloudlets and nearby mobile

devices. The model efficiently balanced the workload from

the centralized cloud and reduced the access latency of

mobile devices. Faqiry et al. [4] applied the double auction

mechanism to microgrid energy transactions and proposed

a resource allocation algorithm that satisfies individual

rationality, high efficiency and weak budget balance. Li

et al. [14] designed a dynamic combinatorial double auc-

tion model that guarantees incentive compatible, individ-

ually rational and budget-balanced, as well as high

performance in terms of resource utilization and social

welfare. Baranwal et al. Patel et al. [19] considered how to

achieve a trade-off between energy consumption and rev-

enue in virtual resource allocation for cloud computing,

formulated this goal as a joint optimization problem and

transformed it into a multidimensional packing problem.

Moreover, they used VCG mechanism theory to design a

double auction mechanism to allocate virtual cloud com-

puting resources. Sarenche et al. [21] combined crypto-

graphic mechanisms with the characteristics of double

auction mechanisms in smart grids. They designed a pro-

tocol based on Paillier homomorphic encryption, which

ensured the security of information during the auction

process.

In general, previous research has achieved good results

for edge computing resource allocation algorithms in

blockchain networks and resource allocation mechanisms

based on double auctions. Inspired by the above works, we

apply double auction mechanism to solve the edge com-

puting resource allocation problem in blockchain networks

and design two double auction mechanisms.
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3 Edge computing resource allocation
model in blockchain networks
and mechanism design preliminaries

3.1 Double auction model design

As depicted in Fig. 1, we consider a scenario of an MEC-

enabled public blockchain network under the PoW con-

sensus protocol. We select the public chain because par-

ticipating in the public chain does not require permission.

Mobile devices and ECSPs in the edge computing envi-

ronment deploy the blockchain by running the same DAPP.

In the MEC-enabled blockchain network, miners with

lightweight devices intend to participate in the consensus

process to gain revenue by mining blocks. Each miner has

a weak local computing power and prefers to offload some

of their computing tasks to the nearby edge computing

servers deployed by the ECSPs. We abstract the two-sided

interaction between mobile miners and ECSPs to a double

auction model. We summarize the frequently used nota-

tions in Table 1.

In a market based on a double auction, there is one

auctioneer, multiple buyers and multiple sellers. To ensure

the fairness of the double auction, the auctioneer is set to be

a third-party platform. We assume that the third-party is

trustworthy. The auctioneer executes the double auction

algorithm after it collects all the information of the buy-

bids and sell-bids. In our double auction model, buyers are

the miners with lightweight devices who bid for computing

resources from the ECSPs, which are the sellers. From now

on, we use the term buyers interchangeably with miners

and the term sellers interchangeably with ECSPs. In our

double auction model, there are N buyers and M sellers. On

the buyer side, let N ¼ f1; 2; . . .;Ng be the set of mobile

miners. Each miner i (i 2 N ) declares a buy-bid

hbuyeri ¼ ðdi; viÞ, where di is her resource requirement and vi
is the valuation of her resource requirement. On the seller

side, let M ¼ f1; 2; . . .;Mg be the set of ECSPs. Each

ECSP j (j 2M) declares a sell-bid hsellerj ¼ ðcj; ajÞ, where
cj is his resource capacity and aj is the unit resource cost of

ECSP j, which represents the minimum unit price that he is

willing to charge. However, all miners and ECSPs are

selfish, that is, they may manipulate their bidding infor-

mation to improve their own profits. Miners may manipu-

late the valuations of their resource requirements. The true

value of miner i’s valuation is vtruei . The true value of ECSP

j’s unit resource cost is atruej .

Figure 2 shows the transaction flow of the double auction

mechanism between ECSPs and miners for edge computing

resource allocation. First, both ECSPs and miners report

their sell-bids and buy-bids to an auctioneer, respectively.

Then, the auctioneer collects these bids and matches the

winners among the ECSPs and miners through an allocation

algorithm and calculates the payment through a pricing

algorithm. Next, the auctioneer informs the ECSPs and

miners of the allocation solutions, which can be represented

by a matrix x ¼

x11 x12 � � � x1M
x21 x22 � � � x2M
..
. ..

. . .
. ..

.

xN1 xN2 � � � xNM

2
6664

3
7775, where xij ¼ 1

indicates that the requirement of miner i is satisfied by ECSP

j and xij=0 indicates that it is not.M
win �M denotes the set

of winning ECSPs, and N
win � N denotes the set of win-

ning miners. Then, the auctioneer requests payments from

the miners and resources from the ECSPs. The ECSPs and

miners then submit resources and payments to the auction-

eer, respectively. Eventually, the auctioneer allocates

resources to theminers and transfers payments to the ECSPs.

Moreover, we assume that each miner i has a local

computing power, defined as li. Therefore, miner i’s total

computing capacity is:

dtotali ¼ li þ di �
X
j2M

xij ð1Þ

Therefore, miner i’s hash power, i.e., her computing power

as a percentage of the entire computing power in the

blockchain, can be calculated as follows:

Blockchain

Data synchronization
and consensus

Offloading

Fig. 1 System model of an MEC-enabled blockchain network under

the PoW consensus protocol
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ciðd; l; xÞ ¼
dtotaliP

i2N
dtotali

¼
li þ di �

P
j2M

xij

P
i2N
ðli þ di �

P
j2M

xijÞ

¼
li þ di �

P
j2M

xij

dN

ð2Þ

The hash power function is a fraction function and satisfiesP
i2N

ci ¼ 1, and dN ¼
P
i2N
ðli þ di �

P
j2M

xijÞ is the total

computing power of the blockchain network. We use

Pmine
i to represent the probability that miner i successfully

solves the PoW puzzle. The probability is equal to her hash

power, i.e., Pmine
i ¼ ci.

Before participating in the double auction mechanism,

each miner collects unconfirmed transaction information

into her own block. Let si denote the block size of miner i.

However, even if miner i succeeds in solving the PoW

ECSP M

...

...

(1)Submit 
Sell-bids

(2)Matching

(3)Resource 
Request

Sell-bids

c=(c1,c2, ,cM) a=(a1,a2, ,aM)

Capacity Unit Cost

Buy-bids

Requirement Valuation
r=(r1,r2, ,rN) v=(v1,v2, ,vN)

Edge Computing Service Providers

Auctioneer

(4)Resource 
Response 

(5)Price
 Payment

ECSP 1

Miner 1

ECSP 2

Miner 2 Miner N

Miners

(1)Submit 
Buy-bids

(3)Price 
Charging 

(4)Price 
Payment

(5)Resource 
Allocation

Fig. 2 Workflow of the double auction mechanism in the MEC-

enabled blockchain network

Table 1 Frequently used

notations
Notation Description

N ; N Set of miners with lightweight devices and the number of miners

M; M Set of ECSPs and the number of ECSPs

hbuyeri ; hsellerj
Miner i’s buy-bid and ECSP j’s sell-bid

di Miner i’s resource requirement

vi v
true
i Miner i’s declared valuation and miner i’s truthful valuation

cj ECSP j’s resource capacity

aj a
true
j ECSP j’s declared unit resource cost and ECSP j’s truthful unit resource cost

x; xij Total allocation solutions and whether miner i’s requirement is satisfied by ECSP j

N
win

; Mwin Set of winning miners and set of winning ECSPs

li Miner i’s local computing power

ci Miner i’s hash power

Pmine
i

The probability that miner i successfully solves the PoW puzzle

si Miner i’s block size

si Propagation and verification time of miner i’s block

Porphan
i

The probability of miner i’s block becoming an orphan block

Ri Miner i’s expected reward

vi
0 Miner i’s ex post valuation

V Total social welfare of the blockchain network

U
buyer
i ; Useller

j
Miner i’s utility and ECSP j’s utility

p
buyer
i ; psellerj

The value that miner i must pay and the payment that ECSP j receives

hi Miner i’s bid density
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puzzle, she may fail to be the first one to make her block to

reach consensus, i.e., her block may become an orphan

block because it cannot be linked to the main chain of the

blockchain. It is mainly determined by the propagation and

verification time of miner i’s block, which is denoted as si.
According to the statistics provided in [20], si is a linear

function of miner i’s block size si, i.e., si ¼ n � si, where n
is a constant reflecting the effect of si on si. In the whole

blockchain network, new blocks are generated in a Poisson

process with an average rate of 1
k, where k is also called the

average block time [29]. Therefore, the probability of

miner i’s block becoming an orphan block is as follows:

Porphan
i ¼ 1� e�

1
k�si ð3Þ

As mentioned, whether miner i can be the first one to make

her block reach consensus depends on the probability of

solving the PoW puzzle, as well as timely propagation and

verification of her block. Thus, the probability that miner

i’s block reaches consensus can be expressed as follows:

Piðciðd; l; xÞ; siÞ ¼ Pmine
i � ð1� Porphan

i Þ ¼ ci � e�
1
k�n�si ð4Þ

If miner i is the first to successfully reach consensus, she

can receive a reward Ri. This reward of miner i is com-

posed of a constant reward T for mining a new block, as

well as a variable transaction reward r � si, where r repre-

sents a predefined transaction fee rate [7]. Thus, miner i’s

expected reward is calculated as follows:

Ri ¼ ðT þ r � siÞ � Piðciðd; l; xÞ; siÞ ð5Þ

In the PoW-based blockchain network, the more miners

participate, the stronger the blockchain network is, which

leads to a positive network effect, that is, the stability and

security of blockchain networks will be improved. In addi-

tion, the reward value given to the miners in the blockchain

network will also increase. According to the statistics given

in [8] and by means of curve fitting to experimental data, we

define a non-negative network effect function as follows:

wðdN Þ ¼
1� e�l2�dN

1þ l1 � e�l2�dN
ð6Þ

where dN ¼
P
i2N
ðli þ di �

P
j2M

xijÞ as mentioned is the total

quantity of computing power in the blockchain network

and l1; l2 [ 0 are curve fitting parameters. This network

effect function has a monotonously increasing concave

shape in the feasible domain.

When participating in the double auction, each miner’s

valuation in her buy-bid represents her valuation of the

required computing resources. Before the auction is com-

pleted, miner i cannot know the other information, such as

the other miners’ local computing resources, and the total

computing capacity of the blockchain network, thus we set

wðdN Þ ¼ 1. In addition, since miner i cannot know net-

work effects, we set wðdN Þ ¼ 1. Meanwhile, since miner i

cannot calculate her hash power, we set Pmine
i ¼ ci ¼ 1.

Thus, miner i’s ex ante truthful valuation can be calculated

as follows:

vi
true ¼ Ri � di ¼ ðT þ r � siÞ � e�

1
k�n�si � di ð7Þ

After the end of the double auction, each miner is informed

of the allocation results x from the auctioneer and can

evaluate the network effect of the blockchain. Therefore,

miner i’s ex post valuation vi
0 can be expressed as follows:

vi
0 ¼ vi

true � wðdN Þ � ciðd; l; xÞ

¼ ðT þ r � siÞ � e�
1
k�n�si � di �

1� e�l2�dN

1þ l1 � e�l2�dN

�
li þ di �

P
j2M

xij

P
i2N
ðli þ di �

P
j2M

xijÞ
¼ ðT þ r � siÞ � e�

1
k�n�si

�di �
1� e

�l2�
P
i2N
ðliþdi�

P
j2M

xijÞ

1þ l1 � e
�l2�

P
i2N
ðliþdi�

P
j2M

xijÞ
�

li þ di �
P
j2M

xij

P
i2N
ðli þ di �

P
j2M

xijÞ

ð8Þ

In this paper, we focus on maximizing the social welfare of

the blockchain network. Ex post valuation refers to the

assessment of a miner’s investment value based on her

actual performance in the market [9, 32]. Thus, the social

welfare is defined as the sum of miners’ ex post valuations.

We formulate the double auction model as an integer

programming model with the goal of maximizing the social

welfare of blockchain network. The integer programming

model can be formulated as follows:

Maximize : V ¼ max
X
i2N

vi
0

¼ max
X
i2N

li þ di �
P
j2M

xij

P
i2N
ðli þ di �

P
j2M

xijÞ

� 1� e
�l2�

P
i2N
ðliþdi�

P
j2M

xijÞ

1þ l1 � e
�l2�

P
i2N
ðliþdi�

P
j2M

xijÞ
� vi

ð9Þ

s:t: :
X
i2N

di � xij� cj; 8j 2M ð10aÞ
X
j2M

xij� 1; 8i 2 N ð10bÞ

xij 2 f0; 1g; 8i 2 N ; 8j 2M ð10cÞ
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The objective V represents the total social welfare of the

blockchain network, and our goal is to maximize it. The

previously defined decision variable xij indicates whether

the requirement of miner i is satisfied by ECSP j. Formula

(10a) is a capacity constraint that ensures that the total

amount of computing resources provided by each ECSP

cannot exceed his resource capacity. Formula (10b) indi-

cates that each miner can be served by at most one ECSP.

Formula (10c) indicates that the value of xij is 1 or 0.

3.2 Mechanism design preliminaries

The benefit obtained by each miner or ECSP in the

double auction is expressed by his or her utility.

According to the above definitions, the user utilities of

miners and ECSPs under the double auction model are

defined as follows:

• Utility of miner. Miner i has a utility function defined as

the difference between her truthful valuation and

payment, which is defined as follows [13]:

U
buyer
i ¼ vtruei � p

buyer
i if i 2 N

win

0 otherwise

(

where p
buyer
i is the value that miner i must pay

according to the payment algorithm. Each miner is

committed to optimizing her utility.

• Utility of the ECSP. ECSP j has a utility function

defined as the payment from miners he serves minus his

truthful unit resource cost multiplied by the resource he

allocates, which is defined as follows [13]:

Useller
j ¼

psellerj �
P
i2N

di � xij � atruej if j 2Mwin

0 otherwise

(

where psellerj is the payment that ECSP j receives. Each

ECSP is committed to optimizing his utility.

Individual rationality, budget balance and truthfulness are

the three critical properties that guarantee the economic

stability of the double auction mechanism [12]. This paper

is commited to designing a double auction mechanism that

satisfies these three economic properties. The desired

properties are defined as follows:

Definition 1 (Individual rationality) A double auction is

individually rational if no buyer (miner) and no seller

(ECSP) suffer losses after participating in the auction. This

means that for all miners and ECSPs winning the auction,

p
buyer
i � vtruei ; psellerj �

X
i2N

di � xij � atruej ; 8i 2 N ; 8j 2M

ð11Þ

Definition 2 (Budget balance) A double auction is budget

balanced if the auctioneer’s profit is nonnegative. The

auctioneer’s profit is defined as the difference between the

value received from miners and the fees paid to ECSPs:
X

j2Mwin

psellerj �
X

i2N win

p
buyer
i ð12Þ

Definition 3 (Truthfulness) A double auction is truthful if

no matter how other miners and ECSPs bid, no miner i or

ECSP j can improve his or her own utility by bidding

untruthfully.

4 A truthful double auction mechanism
based on breakeven (TDAMB)

4.1 The framework of TDAMB

In this section, we propose TDAMB. The TDAMB

mechanism is composed of a candidate determination

part and a winner determination & pricing part. In the

candidate determination part, we first build a bid density

set H ¼ ðh1; h2; . . .; hNÞ, where hi ¼ vi
di
, and then sort the

bid densities of miners in H in nonincreasing order. We

sort the ECSPs’ unit resource costs in a in nondecreasing

order. Therefore, miners with higher bid densities and

ECSPs with lower ask values are more likely to win the

auction. To balance the number of winning miners and

ECSPs, we eliminate the failed miners and ECSPs by

breakeven, and the breakeven is determined as in

[10, 23] as ajb , where b ¼ bMþ1
2
c. Meanwhile, the bid

density breakeven index for the miners is the maximum

index that satisfies k ¼ argmink2Nfhikþ1\ajbg. During the

selection of auction winners and pricing stage, we allo-

cate computing resources according to the bid densities

of miners and the current resource capacities of ECSPs.

All the winning miners pay according to the breakeven

price ajb , and the winning ECSPs are charged according

to the breakeven price.
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In Algorithm 1, Lines 1–8 select the candidate miners

and ECSPs. All the unit resources costs of ECSPs that are

higher than ajb are eliminated: a0  faj1 ; aj2 ; . . .; ajb�1g. For
the candidate miners, the miners whose bid densities are

higher than the breakeven point are selected:

H0  fhi1 ; hi2 ; . . .; hikg. Lines 9–17 allocate resources

according to the bid densities of miners and the current

resource capacities of ECSPs. The winning ECSPs are

charged ajb , and all winning miners must pay according to

the breakeven price ajb . After resource allocation is com-

pleted, the social welfare of the blockchain network is

calculated according to the resource allocation

scheme (Line 18 to Line 25).

4.2 Proof of desirable properties

Theorem 1 TDAMB satisfies individual rationality.

Proof For any miner i, according to the TDAMB algo-

rithm, if miner i wins the auction, her bid density is not

lower than the breakeven price, and the payment is

p
buyer
i ¼ ajb � di� hi � di ¼ vi; i.e., the miner’s payment is

not higher than her bid. Therefore, miner i will not sustain a

loss in the auction.

For any ECSP j, according to the TDAMB algorithm, if

ECSP j wins the sell-bid, the unit resource cost is not

higher than the breakeven price. Therefore,

psellerj ¼ ðcj � cj
0Þ � ajb �ðcj � cj

0Þ � aj, i.e., the ECSP

charges no less than his asking price. Therefore, TDAMB

satisfies individual rationality. h

Theorem 2 TDAMB satisfies budget balance.

Proof According to the TDAMB algorithm, all winning

miners pay according to the breakeven price ajb and the

winning ECSPs are charged the price ajb ; i.e.,
P

j2Mwin

psellerj ¼
P

i2N win

p
buyer
i . Therefore, TDAMB satis-

fies budget balance. h

To prove that TDAMB is truthful, we must prove that

for any miner i or ECSP j, he or she cannot improve his or

her utility by submitting an untruthful declaration valua-

tion. To accomplish this, we first prove that the winner

determination process satisfies monotonicity for both

miners and ECSPs, and then prove that the pricing process

is bid-independent. Through the above claims, we can

prove that TDAMB is truthful.

(1) Monotonic winner determination

The following two lemmas summarize the monotonicity

of the winner determination process for TDAMB.

Algorithm 1 Truthful Double Auction Mecha-
nism Based on Breakeven (TDAMB)

Require: ECSPs’ unit resource cost profile :a =
(a1, a2, ..., aM ); ECSPs’ resource capacity pro-
file :c = (c1, c2, ..., cM ); Miners’ bid profile
:v = (v1, v2, ..., vN ); Miners’ demand profile
:d = (d1, d2, ..., dN );

Ensure: The allocation solution: x; The total
social welfare: V ; Miners’ payment profile:
pbuyer; ECSPs’ revenue profile: pseller;

1: Mwin ← ∅,Nwin ← ∅, V ← 0,x ←
∅,pbuyer ← ∅,pseller ← ∅

2: Build a bid density set Θ = (θ1, θ2, ..., θN )
where θi = vi

di

3: Sort the bid densities of miners in Θ
in non-increasing order,such that Θ =
(θi1 , θi2 , ..., θiN ),θi1 ≥ θi2 ≥ · · · ≥ θiN

4: Sort the ECSPs’ unit resource costs in
a in ascending order,such that a =
(aj1 , aj2 , ..., ajM

),aj1 ≤ aj2 ≤ · · · ≤ ajM

5: Find the median of a as ajβ
where β = �M+1

2 �
6: Find the bid density breakeven index, k =

argmink∈N{θik+1 < ajβ
}

7: Select the unit resource costs of ECSPs less
than the breakeven a′ ← {aj1 , aj2 , ..., ajβ−1},
c′ ← {cj1 , cj2 , ..., cjβ−1}

8: Select the bids of miners higher than the bid
density breakeven Θ′ ← {θi1 , θi2 , ..., θik}

9: for all q = 1, 2, ..., k do
10: Sort the ECSPs’ current resource capaci-

ties in c′ in descending order,such that c′ =
(cj1 , cj2 , ..., cjβ−1) ,cj1 ≥ cj2 ≥ · · · ≥ cjβ−1

11: for all g = 1, 2, ..., β − 1 do
12: if cjg

≥ diq then
13: Mwin ← Mwin ∪ {jg},Nwin ←

Nwin ∪ {iq}, xiqjg
← 1, cjg

← cjg
− diq ,

pbuyeriq
← ajβ

· diq , psellerjg
← psellerjg

+ pbuyeriq
14: break
15: end if
16: end for
17: end for
18: calculate dN , w(dN ) according to x
19: for all i = 1, 2, ..., N do
20: for all j = 1, 2, ...,M do
21: if xij = 1 then
22: V ← V + li+di

dN
· w(dN ) · vi

23: end if
24: end for
25: end for
26: return x,pbuyer,pseller, V
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Lemma 1 If miner i declares a buy-bid hbuyeri ¼ ðdi; viÞ
and can bid successfully, when the information submitted

by other miners and ECSPs remains unchanged, by bidding

ðdi; v0iÞ with vi
0 � vi, miner i also wins the bid.

Proof Since miner i bids successfully, the bid density is

not lower than the breakeven price. When her bid increa-

ses, the bid density increases simultaneously. According to

the allocation rules, miner i can still win the bid. h

Lemma 2 If ECSP j declares a sell-bid hsellerj ¼ ðcj; ajÞ
and can bid successfully, when the information submitted

by other ECSPs and miners remains unchanged, by bidding

ðci; a0jÞ with aj
0 � aj, ECSP j also wins the bid.

Proof Since ECSP j bids successfully, the unit resource

cost is not higher than the breakeven price. According to

the allocation rules, when the sell-bid decreases, ECSP j

can still win the bid. h

(2) Bid-independent pricing

We show that pricing is independent of bidding for both

winning miners and ECSPs.

Lemma 3 When the information submitted by other miners

and ECSPs is given, if bids vi and v0i can both be made

successfully, the payments of miner i are the same.

Proof According to the TDAMB algorithm, when miner i

bids successfully, the payment is related only to the

breakeven price and the miner’s resource requirement.

Therefore, when bids vi and v0i are both made successfully,

the payments are the same. h

Lemma 4 When the information submitted by other

ECSPs and miners is given, if the unit resource costs ai and

a0i can both be bid successfully, ECSP j is charged the same

price.

Proof According to the TDAMB algorithm, when ECSP j

bids successfully, the charged price is related to only the

breakeven price and the resource capacity. Therefore, the

pricing is bid independent for ECSPs. h

Lemma 5 TDAMB satisfies truthfulness for miners.

Proof To prove this lemma, we must prove that no miner i

can improve her utility by bidding vi 6¼ vtruei . We examine

all possible cases individually, as shown in Table 2.

• CASE 1: For these two bidding strategies, miner i fails

in the auction and does not need to pay, resulting in her

utility being zero.

• CASE 2: This case arises only when vi\vtruei

(Lemma 1). In this case, miner i bids untruthfully and

loses the auction, leading to a utility of zero. In contrast,

miner i wins the auction when she bids truthfully.

Theorem 1 ensures that the utility she obtains in this

case is nonnegative. Therefore, the utility of a truthful

bidding by miner i is not lower than that of an

untruthful bidding.

• CASE 3: This case arises only when vi [ vtruei

(Lemma 1). In this case, miner i wins the auction when

she bids untruthfully and loses when she bids truthfully.

According to the TDAMB algorithm, there must be

hi
true\ajb � hi. Therefore, the utility when the miner

bids untruthfully is vi
true � ajb � di\0, which is lower

than that of a truthful bidding (zero utility).

• CASE 4: For both bids, miner i wins the auction; by

Lemma 3, we know the payments are both ajb � di,
resulting in the same utility.

In summary, no miner can improve her utility by making

untruthful bids (Table 2). Our proof is complete. h

Lemma 6 TDAMB satisfies truthfulness for ECSPs.

Proof Similarly, to prove this lemma, we must prove that

no ECSP j can improve his utility by bidding aj 6¼ atruej . We

also examine all the possible cases individually, as shown

in Table 2.

• CASE 1: The same as the miner case.

• CASE 2: This case arises only when aj [ atruej

(Lemma 2). Theorem 1 ensures a nonnegative utility

when ECSP j submits truthful bid and wins the auction.

Therefore, the utility of a truthful bidding by ECSP j is

not lower than that of an untruthful bidding.

• CASE 3: This case arises only when aj\atruej

(Lemma 2). In this case, ECSP j wins the auction when

he bids untruthfully and loses when he bids truthfully;

according to the TDAMB algorithm, aj� ajb\atruej .

Therefore, the utility when the ECSP bids untruthfully

is ðcj � cj
0Þ � ðajb � atruej Þ\0 (cj

0 is the remaining

resource capacity when the allocation is complicated),

which is lower than that when ECSP j bids truthfully

(zero utility).

• CASE 4: For both bids, ECSP j wins the auction.

According to Lemma 4, the payments are both

ðcj � cj
0Þ � ðajb � atruej Þ[ 0, leading to the same utility.

Table 2 Four possible results for two bidding strategies, where 4

indicates the bidder wins and7 indicates she fails

Case 1 2 3 4

The bidder bids untruthfully 7 7 4 4

The bidder bids truthfully 7 4 7 4
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From the above, no ECSP can improve his utility by

making untruthful bids. Our proof is complete. h

Theorem 3 TDAMB satisfies truthfulness.

Proof Lemmas 5 and 6 together prove that TDAMB

satisfies truthfulness. h

Theorem 4 The time complexity of TDAMB is polynomial.

Proof The TDAMB algorithm mainly consists of the

candidate determination part, the selection of winners and

pricing part and the social welfare calculation part. In the

candidate determination stage, the highest time complexity

is sorting candidates and the other parts are linear (Line 1

to Line 8). We use the classic fast sorting method, thus we

spend OðN logNÞ sorting the miners (Line 3) and

OðM logMÞ sorting the ECSPs (Line 4). In the selection of

winners and pricing stage, when traversing each candidate

miner, we sort all the candidate ECSPs based on the

remaining capacity and find the ECSP that meets the

capacity constraint (Line 9 to Line 17). The worst-case

time complexity of this process is OðNM logMÞ. In the

social welfare calculation stage, we traverse each case of

xij, so the time complexity is O(NM). Therefore, the overall

time complexity of TDAMB is OðN logN þ NM logMÞ,
which is polynomial. The time complexity of the ICAMP

algorithm commonly used for comparison in the research

of bidirectional auction mechanisms is OðNMðM þ logNÞÞ
[10]. Therefore, the TDAMB algorithm has lower time

complexity and more efficient execution. h

5 A double auction mechanism based
on a critical value (DAMCV)

5.1 The framework of DAMCV

As many feasible pairs of miners and ECSPs are not

included according to the breakeven, the system efficiency

of TDAMB is limited. To enhance the system efficiency ,

we design a double auction mechanism based on a critical

value, i.e., DAMCV, which partly relaxes the constraints

on the truthfulness of ECSPs. The critical idea of DAMCV

is to maintain as many feasible matches among miners and

ECSPs as possible, and the pricing scheme is based on the

critical value of buyers. On the basis of the definition in

[30, 31], if the miner’s bid is not lower than her critical

value, the miner must win the auction; otherwise, she will

lose.

Algorithm 2 A Double Auction Mechanism
Based on Critical Value (DAMCV)

Require: ECSPs’ unit resource cost profile :a =
(a1, a2, ..., aM ); ECSPs’ resource capacity pro-
file :c = (c1, c2, ..., cM );Miners’ bid profile
:v = (v1, v2, ..., vN ); Miners’ demand profile
:d = (d1, d2, ..., dN );

Ensure: The allocation solution: x; The total
social welfare: V ; Miners’ payment profile:
pbuyer; ECSPs’ revenue profile: pseller;

1: Mwin ← ∅, Nwin ← ∅,V ← 0,x ←
∅,pbuyer ← ∅,pseller ← ∅

2: Build a bid density set Θ = (θ1, θ2, ..., θN )
where θi = vi

di

3: Sort the bid densities of miners in
Θ in descending order,such that
Θ = (θi1 , θi2 , ..., θiN ),θi1 ≥ θi2 ≥ · · · ≥ θiN

4: Sort the ECSPs’ unit resource costs in
a in ascending order,such that a =
(aj1 , aj2 , ..., ajM

),aj1 ≤ aj2 ≤ · · · ≤ ajM

5: Select the unit resource costs of ECSPs
not higher than θi1 ,a

′ ← {aj1 , aj2 , ..., ajh
} ,

c′ ← {cj1 , cj2 , ..., cjh
}

6: Select the bids of miners not less than aj1

Θ′ ← {θi1 , θi2 , ..., θik}
7: for all q = 1, 2, ..., k do
8: for all g = 1, 2, ..., h do
9: if cjg ≥ diq and θiq ≥ ajg then

10: Mwin ← Mwin ∪ {jg}, Nwin ←
Nwin ∪ {iq}, xiqjg

← 1, cjg
← cjg

− diq
11: break
12: end if
13: end for
14: end for
15: for all i = 1, 2, ..., N do
16: for all j = 1, 2, ...,M do
17: if xij = 1 then
18: pbuyeri ← vi, p

buyer
i

′ ← 0, vi ←
(pbuyeri + pbuyeri

′
)/2

19: while pbuyeri − pbuyeri

′
< ε

20: DAMCV Allocation
21: if theni ⊆ Nwin′ do
22: pbuyeri ← vi, vi ← (pbuyeri +

pbuyeri

′
)/2

23: else
24: pbuyeri

′ ← vi, vi ← (pbuyeri +
pbuyeri

′
)/2

25: end if
26: end while
27: end if
28: end for
29: end for
30: calculate dN , w(dN ) and social welfare V

according to x
31: return x,pbuyer,pseller, V
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The candidate determination method in Algorithm 2 is

similar to that of TDAMB. ECSPs and miners are first

sorted according to the same rules as TDAMB, as shown in

Lines 3 and 4. Next, we eliminate the failed ECSPs whose

asks are higher than hi1 and miners whose bid densities are

less than aj1 , as shown in Lines 5 and 6. In the winner

determination and pricing part, we allocate resources

according to the bids of miners and ECSPs and the current

resource capacities of ECSPs (Line 7 to Line 14). For the

winning miners, Lines 15–29 use the dichotomy to find the

critical values. All winning miners must pay according to

their critical values, and the winning ECSPs are charged

with the matching miners’ payments. After resource allo-

cation is completed, the social welfare of the blockchain

network is calculated according to the resource allocation

scheme (Line 30).

5.2 Proof of desirable properties

Theorem 5 DAMCV satisfies individual rationality.

Proof For any miner i, according to the DAMCV algo-

rithm, if miner i wins the auction, her payment is her

critical value, which is not higher than her bid. Therefore,

miner i will not sustain a loss in the auction.

For any ECSP j, according to the DAMCV algorithm, if

ECSP j wins the sell-bid, no charged price is less than his

asking price. Therefore, DAMCV satisfies individual

rationality. h

Theorem 6 DAMCV satisfies budget balance.

Proof According to the DAMCV algorithm, the payment

price depends on the miners’ critical values, i.e.,
P

j2Mwin

psellerj ¼
P

i2N win

p
buyer
i . Therefore, DAMCV satis-

fies budget balance. h

Similar to TDAMB, to prove DAMCV’s truthfulness for

miners, we show that for miners, the winner determination

process is monotonic and the pricing process is bid-inde-

pendent. Through these two claims, we prove DAMCV’s

truthfulness for miners.

Lemma 7 The winner determination of DAMCV is

monotonic for miners.

Proof Since miner i bids successfully, the bid density is

not lower than her critical value. When the bid increases,

the bid density increases. According to the allocation rules,

miner i can still win the bid. h

Lemma 8 The pricing of DAMCV is bid independent for

miners.

Proof According to the DAMCV algorithm, when miner i

bids successfully, the payment is related to only her critical

value. Therefore, when bids vi and v0i are both made suc-

cessfully, the payments are the same. h

Theorem 7 DAMCV satisfies truthfulness for miners.

Proof We prove this theorem by showing that no miner i

can improve her utility by bidding vi 6¼ vtruei . We examine

all possible cases individually, as shown in Table 2.

• CASE 1: For these two bidding strategies, miner i fails

in the auction and she does not need to pay, leading to a

utility of zero.

• CASE 2: This case arises only when vi\vtruei

(Lemma 7). In this case, miner i bids untruthfully and

loses the auction, resulting in a utility of zero. In

contrast, miner i wins the auction when she bids

truthfully. Theorem 4 ensures that the utility she

obtains in this case is nonnegative. Therefore, the

utility of a truthful bidding by miner i is not lower than

that of an untruthful bidding.

• CASE 3: This case arises only when vi [ vtruei

(Lemma 7). In this case, miner i wins the auction when

she bids untruthfully and loses when she bids truthfully.

According to the DAMCV algorithm, her truthful bid is

lower than her critical value, and her untruthful bid is

not lower than her critical value. Therefore, the utility

when the miner bids untruthfully is less than zero,

which is less than that when miner i bids truthfully

(zero utility).

• CASE 4: For both bids, miner i wins the auction;

according to Lemma 8, the payments are both made

according to her critical value, leading to the same

utility.

In summary, no miner can improve her utility by making

untruthful bids. Our proof is complete. h

Theorem 8 The time complexity of DAMCV is polynomial.

Proof The DAMCV algorithm consists of four parts: the

candidate determination part, the selection of winners part,

the pricing part and the social welfare calculation part. The

candidate determination stage is similar to that of TDAMB,

we spend OðN logN þM logMÞ to sort the miners and

ECSPs (Line 1 to Line 6). In the selection of winners stage,

when traversing each candidate miner, we traverse the

candidate ECSPs to find the ECSP that meets the capacity

constraint (Line 7 to Line 14). The worst-case time com-

plexity of this process is O(NM). In the pricing stage, for

each xij ¼ 1, we use the dichotomy to find the critical

values and every time we call the previous program with

the time complexity of OðN logN þM logM þ NMÞ (Line
15 to Line 29). In the worst-case scenario, the time com-

plexity of dichotomy is related to the maximum bid of all
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the miners bmax and the accuracy e. The time complexity of

dichotomy is Oðlogðbmax=eÞÞ. Thus, the time complexity of

the pricing stage is OððN logN þM logM

þNMÞ logðbmax=eÞÞ. Therefore, we can conclude that the

time complexity of DAMCV is OððN logN þM logM

þNMÞ logðbmax=eÞÞ, which is polynomial. h

6 Experimental results and analysis

This section first conducts a real-world experiment to

verify our proposed hash power function. We use the

Ethereum platform because Ethereum utilizes PoW con-

sensus mechanism and it is one of the most well-estab-

lished and widely adopted blockchain platforms. Then,

through multiple sets of numerical simulation experiments,

we evaluate the system efficiency of our proposed TDAMB

and DAMCV under different miner and ECSP scales.

Finally, we verify the economic properties of the proposed

algorithms.

6.1 Verification of the hash power function

We first design a DAPP based on Ethereum on the Android

platform and implement it on the Alibaba Cloud Elastic

Compute Service (ECS). There are three ECSPs with 8

vCPUs and 16 GB memory and three lightweight miners

with 2 vCPUs and 4 GB memory in the entire blockchain

network. Each ECSP provides services to one miner. The

CPU utilization of the ECSPs and miners is managed by

the Docker platform. To verify our presented hash power

function, we fix two lightweight miners’ local computing

powers (miner CPU utilization) at 50 and 100, and we fix

two lightweight miners’ requests (ECSP CPU utilization) at

40 and 60. Figure 3 depicts the change in miner 3’s hash

power, that is, the proportion of the number of blocks

miner 3 successfully mines to the total number of blocks

when she has different local computing power and resource

requests. Figure 3a fixes miner 3’s local computing power

to 50 and varies miner 3’s resource request. Figure 3b fixes

miner 3’s resource request to 50 and varies miner 3’s local

computing power. To remove the influence of randomness

and ensure the correctness of the experiment, we tested 10

blockchain networks, each of which generated 100 blocks,

and averaged the experimental results. As expected, the

hash power defined in formula (1) fits the real results well.

6.2 Numerical results

To evaluate the effectiveness of our proposed double auction

mechanisms, we introduce the existing ICAMP algorithm

[10] for comparison. ICAMP is an incentive-compatible

double auction algorithm. We vary the number of miners

from 50 to 500 and the number of ECSPs from 10 to 100. The

miners’ block sizes are uniformly distributed within

(0,1000], the local computing power is uniformly distributed

on the interval (0,5] and the demand is uniformly distributed

on the interval (0,20]. The resource capacity of the ECSPs

follows a uniform distribution within [50,100], and the unit

resource cost of the ECSPs follows a uniform distribution

over [10,60]. The other parameter values are the same as

those in [9]. To ensure the universality of the experiment,

each experimental result is the average of 100 simulations.

6.2.1 Performance under different miner scales

In this experiment, to analyze the relationship between

performance and miner size, we fix the number of ECSPs at

(a) Hash power over different resource requirements

(b) Hash power over different local computing powers

Fig. 3 Comparison of real experiment results with our proposed

function
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50 and vary the number of miners from 50 to 500. The

performance of our algorithms is analyzed under different

miner scales in terms of social welfare, the resource uti-

lization of ECSPs, the ratio of successful miners and

ECSPs, and the total user utility of miners and ECSPs. The

comparison results of the three algorithms in terms of

social welfare are shown in Fig. 4. The social welfare of all

algorithms increases simultaneously with the number of

miners. TDAMB and DAMCV both exhibit clear superi-

ority to ICAMP, as ICAMP allows an ECSP to serve only

one miner. Additionally, DAMCV results in higher social

welfare than TDAMB because TDAMB eliminates some

feasible pairs of ECSPs and miners.

Figure 5 compares the average resource utilization rates

of successful ECSPs. Resource utilization is defined as

(Total allocated resources / Total resource capacity of

successful ECSPs). All the ratios of ICAMP are very low

because ICAMP allows an ECSP to serve only one miner

and the resources of the remaining ECSPs are sufficient. As

the number of miners increases, the resource utilization of

TDAMB and DAMCV increases and the utilization of

DAMCV is typically higher than that of TDAMB. This is

because more winning miners and ECSPs are selected in

DAMCV, and thus more hardware resources are utilized.

Figure 6 compares the ratios of successful miners and

ECSPs. As shown in Fig. 6a, as the number of miners

increases, the ratios of served miners for ICAMP and

DAMCV decrease because the competition becomes fier-

cer. The ratio of TDAMB remains approximately 0.45

because TDAMB eliminates approximately half of the

miners according to the breakeven value. The ratios of the

successful miners for our proposed algorithms are both

typically higher than that of ICAMP. This is due to our

mechanisms can select more miners. As shown in Fig. 6b,

all the ratios of successful ECSPs of ICAMP are higher

Fig. 4 The social welfare under different miner scales

Fig. 5 The resource utilization of ECSPs under different miner scales

(a) Comparison of the ratios of miners served

(b) Comparison of the ratios of ECSPs served

Fig. 6 The ratios of successful miners and ECSPs under different

miner scales
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than those of our proposed algorithms because ICAMP

allows an ECSP to serve only one miner.

Figure 7 compares the total utility of miners and ECSPs.

As shown in Fig. 7a, the total utility of miners for both of

our proposed algorithms is higher than that of ICAMP at all

miner scales. Interestingly, the utility of miners in TDAMB

increases quickly when the scale of miners is less than 300

and decreases very slowly when the scale of miners is

large. This is because when the miner scale is large, each

miner competes with greater intensity, and the payment of

each successful miner increases; thus, the utility of each

successful miner decreases. In spite of this, the total

number of successful miners does not increase substan-

tially, thus leading to a lack of increase in total utility. In

Fig. 7b, we can see a comparison of the total utility of

ECSPs, and the performance of our proposed algorithms is

much better than that of ICAMP. This is because our

algorithms can select more miners and ECSPs, and thus the

total payment and utility increase. In general, as the miner

scale increases, the results of ICMAP do not change much,

and our proposed algorithms TDAMB and DAMCV are

more superior to ICMAP.

6.2.2 Performance under different ECSP scales

In this test, we fix the number of miners at 300, and the

number of ECSPs varies from 10 to 100. We also analyze

the performance with respect to social welfare, the resource

utilization of ECSPs, the ratio of successful miners and

ECSPs, and the total utility of miners and ECSPs. Figure 8

shows that the social welfare of TDAMB and DAMCV is

noticeably higher than that of ICAMP. As shown in Fig. 8,

the social welfare of TDAMB and DAMCV increases

sharply when the scale of ECSPs is less than 30 and

decreases when the number of ECSPs is large. This is

because when the number of ECSPs is small, the compe-

tition between ECSPs is not fierce. With the increase in

ECSPs, more ECSPs and miners are selected as winners,

and thus, social welfare increases. As shown in Fig. 9, all

the ratios of ICAMP are very low, and when the number of

ECSPs increases, the resource utilization of TDAMB and

DAMCV decreases. This is because when the ECSP scale

is large, the resources of the remaining ECSPs are suffi-

cient. As shown in Fig. 10a, as the number of ECSPs

increases, the ratios of served miners for ICAMP and

DAMCV increase sharply and the ratios for TDAMB

change little when the scale of the ECSPs is more than 30.

This is because when the number of ECSPs increases,

DAMCV can select many more miners. As shown in

Fig. 10b, when the number of ECSPs increases, the ratios

of served ECSPs for DAMCV decrease because the com-

petition among ECSPs becomes fiercer. The ratio of

TDAMB increases when the scale of ECSPs is less than 30

(a) Comparison of the utility of miners

(b) Comparison of the utility of ECSPs

Fig. 7 The utility of served miners and ECSPs under different miner

scales Fig. 8 The social welfare under different ECSP scales
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and decreases when the number of ECSPs is large, and the

ratio of ICAMP shows little change. This is because when

the number of ECSPs increases, the competition between

ECSPs in DAMCV becomes fiercer. In Fig. 11a, DAMCV

exhibits clear superiority to ICAMP and TDAMB. This is

because DAMCV can serve many more miners. As shown

in Fig. 11b, the utility of ECSPs in TDAMB and DAMCV

increases sharply when the scale of miners is lower than 50

and decreases very slowly when the number of ECSPs is

large. This is because when the scale of ECSPs is small, the

competition between ECSPs is not fierce. With the increase

in ECSPs, more ECSPs are selected, thus, the utilities of

ECSPs increase. However, when the scale of ECSPs

becomes large, the competition becomes fiercer.

Fig. 9 The resource utilization of ECSPs under different ECSP scales

(a) Comparison of the ratios of miners served

(b) Comparison of the ratios of ECSPs served

Fig. 10 The ratios of successful miners and ECSPs under different

ECSP scales

(a) Comparison of the utility of miners

(b) Comparison of the utility of ECSPs

Fig. 11 The utility of served miners and ECSPs under different ECSP

scales
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6.2.3 Economic property verification

This experiment verifies the economic properties of

TDAMB and DAMCV. In Fig. 12a and b, we compare the

bid density, payment density and ask for TDAMB and

DAMCV with 50 ECSPs and 50 miners. Each bar in the

histogram represents a successful match between ECSPs

and miners. There are far more winning miners in DAMCV

than that in TDAMB. For both TDAMB and DAMCV,

each winning miner pays a price not higher than her bid

density; at the same time, each winning ECSP is charged a

price not lower than his ask. Thus, both TDAMB and

DAMCV are individually rational.

Figure 13 shows the truthfulness of TDAMB and

DAMCV. Figure 13a shows the situation for miner 1 in

TDAMB. Her truthful buy-bid hbuyer1 ¼ ð10; 390Þ, where 10
is her resource requirement and 390 is the truthful valua-

tion of her resource. Thus her truthful bid density is 39. The

breakeven price of the TDAMB algorithm is 34. When

miner 1 wins, as she requires 10 resources and the break-

even price is 34, she needs to pay 34� 10 ¼ 340.

According to the definition of miner utility, i.e., the utility

is the difference between her truthful valuation and her

payment, the utility of miner 1 is 390� 340 ¼ 50. When

her bid falls below 340, she will fail in the auction, leading

to a utility of zero. When miner 1’s bid exceeds 340, she

can always win the auction, and her utility is always 50,

because if miner 1 wins, the change in her bid has no effect

on the breakeven price; therefore, there will not be any

(a) Comparison of bid density, payment density
and ask price for TDAMB

(b) Comparison of bid density, payment densityen
and ask price for DAMCV

Fig. 12 Individual rationality of TDAMB and DAMCV

(a) Miner in TDAMB

(b) ECSP in TDAMB

(c) Miner in DAMCV

Fig. 13 Truthfulness of TDAMB and DAMCV
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change in the payment, and the utility will remain

unchanged.

Figure 13b shows the situation for ECSP 1 in TDAMB.

ECSP 1’s truthful sell-bid hseller1 ¼ ð30; 24Þ, where 30 is his

resource capacity and 24 is the truthful unit resource cost of

ECSP 1, which represents the minimum unit price that he is

willing to charge. In the TDAMB algorithm, ECSP 1

successfully allocates 21 resources and the breakeven price

is 34. When ECSP 1 wins, as the utility is the payment

from miners he serves minus his truthful unit resource cost

multiplied by the resource he allocates, ECSP 1’s utility is

21� 34� 21� 24 ¼ 210. By constantly changing his bid,

as long as his unit resource cost is lower than 34, ECSP 1

can always win the auction, and his utility remains at 210.

When the unit resource cost exceeds 34, he fails in the

auction, so the utility is 0.

As shown in Fig. 13c, in DAMCV, the critical value of

miner 1 is 22. When miner 1’s bid density is lower than 22,

i.e., her bid is lower than 220, she cannot win the auction

and her utility is zero. When the miner’s bid is higher than

220, her utility remains at 390� 220 ¼ 170, because when

miner 1 wins the auction, changing her bid will not change

her critical value; therefore, the payment will never change,

and the utility will remain unchanged.

7 Conclusion

This paper focuses on the problem of edge computing

resource allocation in a blockchain network. Specifically,

we propose two double auction mechanisms, TDAMB and

DAMCV, to maximize the social welfare of blockchain

networks. We also prove that TDAMB satisfies three

economic properties–individual rationality, budget balance

and truthfulness–for both miners and ECSPs, while

DAMCV can achieve higher system efficiency and guar-

antee individual rationality, budget balance and truthful-

ness for miners but cannot satisfy truthfulness for ECSPs.

In our experiments, we first verified the proposed hash

power function with a real-world experiment on a PoW-

based blockchain network. Finally, compared with the

enumeration algorithms and the methods reported in

existing research, our proposed auction mechanisms obtain

better results in terms of social welfare, the ratio of suc-

cessful miners and ECSPs, the total user utility of miners

and ECSPs, the resource utilization of ECSPs, and algo-

rithm execution time. In future work, we will study online

time-varying edge computing resource allocation problems

in blockchain networks to improve the practicality of

double auction mechanisms. Multiple types and time-

varying hardware resources are considered. The system

runs in time slots and ECSPs can provide multiple types of

hardware resources for a long time. Moreover, at each time

slot, the capacity of each hardware resource for each ECSP

is variable. Meanwhile, miners can specify the start and

end times for using hardware resources. The resource

requirements of each miner are also time-varying. On the

other hand, we intend to incorporate security and credi-

bility into the design of auction mechanisms. We plan to

design a secure and privacy edge computing double auction

mechanism based on order preserving encryption, Paillier

homomorphic encryption and other algorithms. Addition-

ally, we intend to proof the security through the random-

oracle machine model.
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