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Abstract
Clustering streaming data is challenging due to many temporal dynamics, such as concept drift, concept evolution, and

feature evolution. Concept evolution is the most challenging of these. Due to concept evolution, new classes may emerge

or existing classes may disappear, so it is crucial to process streaming data continuously. This paper proposes a novel

online clustering method, specifically for streaming data with concept evolution. It consists of three phases: initialization,

clustering and outlier handling. To identify recurrences of previous data in streaming data, it is critical to preserve the

sequential properties of data chunks. In the proposed model, representatives from previous windows are added to the

current window, making it distinct from existing models. The detection and handling of outliers are very challenging tasks

in streaming data analysis. Outliers are often the first instances of a new cluster. The proposed model stores the outliers

from each data window. When the number of outliers exceeds a certain threshold, the representatives of outliers are added

to the next window to identify new classes. The lack of data sets made it necessary for us to create a synthetic data set with

22020 data instances and test the model on both synthetic and real datasets. Using Silhouette Coefficient, Calinski–

Harabasz index, and Davies–Bouldin index analysis, this model yielded the most favourable results.
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1 Introduction

A huge amount of data is generated each day from a variety

of sources. Real-time analysis of such data becomes crucial

for the expansion of their services in line with fast-

changing trends. Traditional batch data analysis models are

based on historical data. Considering the rapid change in

trends in numerous domains, this model may not be able to

predict the future. As a result, streaming data analysis has

become an unavoidable requirement in a variety of fields

such as IoT, online markets, network traffic, cyber security,

weather forecasting, and so on. The term ’streaming data’

refers to data that is continuously generated by various

sources in varying format and volume with varying

velocity. A data stream DS is represented as DS ¼
d1; d2; d3; . . .; dlf g where di is a feature vector n-dimen-

sional and l is the number of features in that stream. The

demand for ever-increasing memory capacity makes it

impossible to store such data. Therefore, streaming data

should be analyzed on the fly without having access to all

data.

Streaming data differs from batch data. One major dif-

ference is that the distribution of data in streaming data can

change over time, a phenomenon known as concept drift

[20]. Another difference between streaming data and batch

data is the dynamic nature of features. Additionally, certain

classes may appear or disappear over time, thereby varying

the number of asses, a process known as concept evolution

[18]. A new type of class usually has a different set of
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features. As a result, various chunks may have distinct

feature sets. Streaming data analysis also faces some major

challenges. First of all, data should only be processed once

and can never be retrieved. Due to the high velocity and

infinite volume of data, an efficient method and a large

memory space are required, which is not realistic. Addi-

tionally, the order of the data cannot be controlled. To

improve performance, however, it is a necessity to preserve

the properties of the previous data if the same pattern of

data is reoccurring.

Since there is unpredictability about the stream class

labels and their numbers, clustering is an ideal method for

mining and analyzing streaming data. Clustering is the

most commonly used unsupervised machine learning

method for grouping similar objects. Data clustering

involves identifying patterns in the data and classifying the

data by grouping similar data together. There are several

challenges associated with streaming data clustering like

infinite size, high speed, dynamic nature, lack of global

view of data, outliers, high dimension of data stream and so

on [38]. Since the number of clusters for each instance may

vary, we should find out how many clusters each instance

dynamically has. Streaming data can also contain outliers

similar to traditional data. Detecting and handling outliers

is a very difficult task in streaming data analysis.

To address the challenges of streaming data analysis, we

propose a fully online streaming data clustering technique

based on K-Means clustering. The method consists of three

phases: initialization, clustering, and handling outliers.

Since the method is completely online, a summary of the

data is not maintained. By adding representatives of pre-

vious windows to the current window, our model preserves

the properties of their predecessors. This eliminates the

need to store a synopsis. This is what makes our model

unique. Outliers are often the first instances of a new

cluster.Moreover, we store outliers in our model. If their

size exceeds a certain threshold, the representatives of

outliers are added to the next window. It helps in identi-

fying a new class if it exists. Thus, the model deals with

concept evolution. Also, there are no ideal datasets for

training streaming data clustering models currently. As a

result, most of the models rely on traditionally labeled data

streams for training and testing. In order to test the pro-

posed model, we created a synthetic data set with 22020

data, based on the Silhouette Coefficient, Calinski–Har-

abasz index, and Davies–Bouldin index, which produced

the best results.

The rest of the paper is organized as follows: In Sect. 2,

we present a review of previous works that mostly deal

with streaming data clustering. Our proposed algorithm and

methodology are explained in Sect. 3. Whereas Sect. 4

provides a short description of datasets, which are used for

the training of our model as ideal datasets. Section 5

describes the evaluation of the model and its analysis of

results. Conclusions, open issues, and future works are

discussed in Sect. 6.

2 Background

In this section, we discuss various recent studies and

research related to the proposed work, as well as the con-

cepts and characteristics of streaming data that would

reflect streaming data clustering such as concept drift

(Sect. 2.1), infinite length of data streams (Sect. 2.2), fea-

ture drift (Sect. 2.3), and concept evolution (Sect. 2.4).

Further, we discuss commonly used data structures in

streaming data analysis; windowing (Sect 2.5), and outliers

(Sect. 2.6).

2.1 Concept drift

Concept drift is one of the challenging streaming analytic

problems which observes the changes in the distribution of

the data over time. Concept drift can be divided into four

types: sudden, gradual, incremental, and recurring [44],

gradual drift is addressed in the proposed work. Concept

drift is responsible for the formation of new clusters, the

disappearance, or the evolution of existing clusters. Cluster

boundaries may also be affected by concept drift. Virtual

drift and real drift are two types of concept drift. A virtual

drift is a change in the unconditional probability distribu-

tion P xð Þ, while a real drift is a change in the conditional

probability distribution P yjxð Þ. Real concept drift occurs
when the cluster boundaries are changed, whereas virtual

concept drift occurs when they are not [19].

2.2 Infinite data streams

It is impossible to store all of the data in memory because

streaming data is infinite; instead, only a synopsis is stored

if needed. A special structure is therefore needed to sum-

marize the input stream incrementally. The most common

data structures are feature vectors—which represent an

overall overview of the data, prototype arrays—which

contain only a few representative samples, coreset trees—

which preserve a tree-structured summary, and grids—

which preserve the data density in a spatial manner

[35, 21, 29]

2.3 Feature drift

It occurs when certain features become irrelevant to a

learning task or cease to be relevant to the task [7]. As a

result, the associated class may change. a feature xi is

considered relevant if 9Si ¼ Xn xif g; S0i � Si such that
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P Y jxi; S0i
� �

[P YjS0i
� �

holds; otherwise, it is irrelevant [43].

Another key characteristic of streaming scenarios is time-

dependent changes in features, called feature evolution. It

is difficult and critical to develop an efficient representation

of streaming data as a dynamic vector.

2.4 Concept evolution

Labels for classes can appear or disappear through concept

evolution. Problems such as anomaly detection or handling

outliers are intrinsically related to concept evolution [18].

ECSMiner [30], CLAM [4], and MINAS [16] are some

algorithms that deal with concept evolution.

2.5 Windowing model

Stream data processing, instead of the entire set of data, use

the most recent data. A number of window models are used

for this purpose: the damped window, where the most

recent data takes precedence over the oldest data. The

landmark window, where each instance has equal weight,

and the sliding window model, where each instance is

flipped at each step [5].

2.6 Outliers

Outliers are data instances that are distinct from all other

data instances. Thakkar et al. [37] divided outlier detection

techniques into four categories.: statistical, distance-based,

density-based, and clustering-based outlier detection.

Nonparametric statistical outlier detection techniques can

be adapted to streaming data because they use the existing

data points as a distribution model. Distance-based meth-

ods [13] employ the instance’s neighbour count to deter-

mine whether it is an outlier or not. If there are no

k neighbours within a d distance, it is termed an outlier.

There is no assumption made on the distribution model. As

a result, it works well with data streams. However, they fail

to cope with high-dimensional data streams. If the density

around the instance is comparable to that of its neighbours,

it is not an outlier. Otherwise, it is considered an outlier.

This is more effective than distance-based approaches,

although it has a larger computational complexity. Data

instances that do not belong to any clusters are considered

outliers in clustering-based outlier detection methods [8].

3 Related works

In order to cluster streaming data, most works have used

variations of clustering methods used for traditional batch

data clustering. The recent stream clustering algorithms

can be broadly divided into three types: partition-based

clustering, distance-based clustering, and density-based

clustering (Fig. 1).

3.1 Online–offline clustering

The majority of existing methods (for example, CluStream

[2], DenStream [12], StreamKM?? [1], or ClusTree [26])

divide the clustering operation into two phases [35]: online

phase and offline phase. In online phase, data instances are

summarized and stored in a specific data structure. This

synopsis is updated whenever a new data point is arrived.

On synopsis, the actual clustering occurs during the offline

phase. It runs periodically or re-clusters every time a new

data instance appears, ensuring the clusters are always up-

to-date.

MuDi-Stream (Multi density data stream clustering

algorithm [6]) is a hybrid method that employs density-

based as well as grid-based techniques. Outliers are iden-

tified using grids after input data instances are clustered

using a density-based technique. Core mini-clusters are

utilized for data summarization. Core mini-clusters are

feature vectors that have been customized. They maintain

the weight, centre, radius, and the foremost distance

between a data point and the mean. During the online

phase, core mini-clusters are built and updated for each

new data instance. As a result, final clustering is done

during the offline phase.

3.2 Fully online clustering

DPClust [39], CEDAS [24], DBIECM [41], FEAC-Stream

[15] and Adaptive Stream k-means [33] are the fully online

clustering algorithms.

Adaptive stream K-Means [33] and FEAC-Stream [15]

are k-means based algorithms for clustering data streams

with a variable number of clusters. There are two main

phases to these algorithms: the initialization and the con-

tinuous clustering. In initialization part, the value of ‘k’ is

determined by the Silhouette coefficient calculation func-

tion. Being fully online, these algorithms don’t keep a

summary of the data, but maintain the clustering result.

FEAC-Stream Tracked the clustering quality during the

execution using the Page-Hinkley (PH) test [31], and if the

quality deteriorates. Hence, the algorithm should be adap-

ted. The quality of clustering in FEAC-Stream is deter-

mined by three hyperparameters: size of data sequence,
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decay rate, and minimum weight threshold. The adaptive

stream K-Means measures and monitors standard devia-

tions and means of input data streams in order to detect

concept drift. Existing cluster centroids become invalid

when there is concept drift.

CEDAS (Clustering of evolving data streams into arbi-

trarily shaped clusters [24]) is a density-based clustering

technique for forming irregular shape clusters from

evolving data streams. The damped window model is used

with the help of a linear decay function rather than an

exponential decay function. CEDAS maintains a data

synopsis in micro-clusters and constructs a graph structure

out of micro-clusters which are larger than an initialized

threshold. The decay rate, micro-cluster radius, and mini-

mum density threshold are the three parameters required by

CEDAS. These parameters are directly related to the input

data and have a significant impact on clustering quality.

Improved Data Stream Clustering Algorithm [40] is a

density-based algorithm that is suitable for arbitrary-

shaped clusters. This algorithm constantly changes

threshold values, depending on the input data. There are

two main phases to this algorithms, initialization and the

continuous clustering. Using DBSCAN clustering on the

n number of data instances, major micro-clusters and

critical micro-clusters are created during the initialization

phase.The final clustering process will include major

micro-clusters with high densities. Low densities charac-

terise critical micro-clusters, which are treated as potential

outliers. During the continuous clustering phase, new data

instances are intended to be placed to the closest major

micro-cluster.If the nearest major micro-cluster does not

suit, it is then added to the nearest critical micro-cluster. If

neither of these options is appropriate, a new micro-cluster

will form. A damped window model is used and low

weighted major and critical micro-clusters are removed

periodically. The threshold values for major and critical

micro-clusters in the algorithm are global instead of unique

to each cluster.

DBIECM [41] is an online, distance-based, evolving

data stream clustering technique that utilizes the Davies

Bouldin index (DBI) rather than the shortest distance as the

assessment criterion. It is a better variant of the Evolving

Clustering Method (ECM) [25]. When a new data instance

d is arrived and the distance of d is lower than radius of any

cluster,d can be to this cluster. Whenever the distance

between a cluster and d exceeds the maximum cluster

radius r0, a new cluster is created. The number and quality

of DBIECM clusters are affected by the hyperparameter

maximum cluster radius r0.

On streaming data clustering, Zhang et al. [42] inte-

grated coreset caching with the K-Means algorithm. A

multi-view representation learning approach was intro-

duced by Jie Chen et al. [14] for clustering streaming data

from multiple views. An algorithm for clustering evolving

streaming data based on sparse representations is proposed

by Jinping Sui et al, [36] consisting of two steps: statistical

learning and online clustering. Nordahl et al. [32] devel-

oped a new evolutionary clustering algorithm

Fig. 1 Recent streaming data

clustering algorithms
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(EvolveCluster) capable of modeling data streams con-

taining evolving information. Liao et al. [27] proposed an

ensemble classification approach for evolving data streams,

where the first step is to handle concept drift, then the

outliers are dealt with.

In the literature, it was noted that some streaming data

clustering is performed online and offline for better results.

Several other methods are used only in online phases, but

most of them store synopses to improve results. In fully

online models, the first step is to estimate how many

clusters are in each window of the data stream. There are

very few methods for detecting and handling outliers. A

fully online stream clustering model is proposed that esti-

mates the number of clusters ’k’, detects and handles

outliers without storing the synopsis. Furthermore, the

proposed model’s performance is incrementally improved

by preserving the properties of previous data windows.

3.3 Benchmark datasets

It is rare to have real-time data streams for analyzing

streaming data. Thus, most models stream traditional data

sets using some streaming mechanism such as Apache

Kafka or simulate synthetic data streams using some

applications. There are some data repositories used for

stream data clustering, such as Meetup RSVP Stream37,

National Weather Service Public Alerts38, and Stream

Data Mining Repository39: a repository includes four dif-

ferent datasets, namely Sensor Stream (2,219,803 instan-

ces, 5 features, and 54 classes), Power Supply Stream

(29,928 instances, 2 features, and 24 classes), Network

Intrusion Detection 10 percentage Subset (494,021 instan-

ces, 41 features, and 23 classes), and Hyper Plane Stream

(100,001 instances, 10 features, and 5 classes). Data mining

framework Massive Online Analysis (MOA) [9] includes

four datasets that are suitable for data stream analysis.

Table 1 summarizes some other popular datasets used for

streaming datasets. Except for the Charitable Donation

Dataset, all datasets in this section have true class labels.

It is clear from this discussion that most datasets used

for streaming data analysis are labeled and thus suitable for

supervised learning. As of today, there are no datasets that

satisfy all of the characteristics of streaming data. The

characteristics of streaming data can be observed in only a

few data sets. Concept evolution problems can be

demonstrated using Forest Cover type [10] datasets.

4 Proposed methodology

In this section we discuss the proposed method with its

workflow (Fig. 2), windowing (Sect. 3.2), algorithms

(Algorithms 1, 2, 3, 4, and 5), and phases (Sect. 3.3).

4.1 Overview of proposed method

Figure 2 illustrates the proposed streaming data clustering

framework. We propose a fully online method for clus-

tering streaming data that uses the K-Means algorithm. The

method consists of three phases: initialization, clustering,

and handling outliers. Since the model is fully online, no

summary of data is stored. By adding representatives of

previous windows to the current window, our model pre-

serves the properties of their predecessors without storing

previous data or a synopsis. This is what makes our model

distinctive. During the initialization phase, k is estimated

based on the inertia of the data instances in the window.

This ’k’ is used to perform K-Means clustering on the data

window. Each cluster’s radius, which is calculated from its

mean and standard deviation, can be used to determine

clusters and outliers. Outliers are often the first instances of

a new cluster. Outliers can be stored for each window. If

the number of outliers reaches the average size of clusters,

then outliers will be added to the next window for clus-

tering and identifying the new cluster if it exists. This is

how the proposed method handles outliers as well as

clustering the evolving data streams.

4.2 Windowing

In streaming data clustering, it must cluster the most recent

data rather than the entire data. Therefore, the proposed

model uses the adaptive landmark window [5] model that

includes N most recent data points. Data between two

landmarks is included in the landmark window model. The

number of instances or the elapsed time determines the

window length. In the proposed model, window length is

determined by instance count. This windowing model starts

where the old window ends, and successive windows don’t

Table 1 Popular datasets

Dataset Instances Features Classes

Forest cover type [10] 581,012 54 7

Poker-hand [3] 829,201 10 10

Electricity [23] 45,312 8 2

Adult-census [28] 32,541 14 2

Network intrusion 4,898,431 41 23

Detection

Charitable donation

191,779 481 NS1

Sensor stream 2,219,803 5 54

Power supply stream 29,928 2 24

Hyper plane stream 100,000 10 5

1 Not Specified
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overlap. But the representatives of previous data are added

to the current window, so we use an adaptive landmark

windowing model. Equation 1 can be used to determine

window instances and equation 2 to determine the window

number of a particular data instance (Fig. 3). Here, l is the

window length, dj is the jth instance, and SWn is the nth

window. Indexes j and n begin at zero.

SWn ¼½dn�l; . . .; dðnþ1Þ�l�1� ð1Þ

n ¼ j

l

� �
ð2Þ

Fig. 2 Architecture of proposed model

Fig. 3 Adaptive landmark

window
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4.3 Handling outliers

There may be patterns of some data instances that are

different from other patterns in a particular data set called

outliers. An outlier may be present due to malicious

activities, data collection problems, instrument errors, or

transmission problems [5]. Outlier may negatively affect

the data analysis. So, identifying and handling the outliers

are crucial issues in data analysis. Detecting outliers from

streaming data can be difficult. There is no way to detect

outliers with a K-Means model. Outliers are separated

based on a threshold distance. Mean and standard deviation

are used to set threshold distance. In some cases, outliers

are the first instances of new clusters. For this reason, they

are stored. Outliers are added with the next window of data

once the number of outliers exceeds the average cluster

size. Rather than adding all outliers, our model adds some

representatives of outliers to the next window for pre-

serving their properties.
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4.4 Get representatives

To get representation each cluster is micro-clustered again

using the K-Medoid clustering technique and the micro-

cluster centers are stratified samples for representing the

cluster. The number of micro-clusters ’k’ is estimated at 10

percent of the cluster size. As a result of merging all the

representatives and adding to the next data window, we can

make all properties of data points in the previous data

window live. In this way, the model preserves the prop-

erties of its predecessors without storing any data or syn-

opsis of its predecessor.

5 Dataset

There may be some data points that are outliers in some

cases. However, at times, the number of outliers at a par-

ticular location will increase and form a new class. The

proposed model is excellent for clustering these types of

data and identifying novel classes. However, there are

several real-time use cases for such problems, and the

analysis of evolving data and identifying novel classes are

major challenges in streaming data analysis. According to

all the literature that we have reviewed, there is a lack of

datasets that satisfy all of the characteristics of streaming

data. The characteristics of streaming data can only be

observed in a few data sets. As part of our training and

testing process, we have created a synthetic data set. Then,

using both synthetic and real datasets, our model is

evaluated.

5.1 Forest cover type [17]

Seven types of forest cover are described in this data set.

The forest cover type dataset contains 581,012 instances

with 54 features and seven classes. The labels for the

classes range from 1 to 7. Classes 1, 2, and 5 are present in

all Windows, however, classes 3,4,6, and 7 appear and

disappear several times.
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5.2 Shuttle [17]

The data set consists of 58,000 instances, 9 numeric attri-

butes, and 7 classes. About 80 percent of the dataset

belongs to Class 1. Instances are state logs (Shuttle) data.

5.3 KDDcup 99 [17]

This paper uses the 10 percent version of the dataset. It has

23 classes, 34 numerical features, and 494,021 instances.

Each instance is a TCP connection record that has been

created and pulled from an MIT Lincoln Laboratories local

area network. Every class is a specific kind of cyber attack.

5.4 Synthetic dataset

The synthetic dataset consists primarily of two classes with

ten thousand data points each, which are drawn at specific

locations. A random sample of 20 outliers is added to the

dataset, then the dataset is shuffled. The third class is also

generated with 2000 data points at a certain location and

distributed to the existing dataset in such a way that the

initial data chunks contain the most data points from the

first two classes and the subsequent chunks contain more

data points from the third class in increasing order, with

some outliers in each chunk. We employ adaptive win-

dowing of varying sizes for both synthetic and real

datasets.

6 Result analysis

The hyper-parameters of the proposed model are the

threshold for outliers and the number of cluster represen-

tatives. However, the most efficient performance could be

obtained by a threshold of 25 percent growth of the edge of

each cluster, and 10 percent of each cluster’s size as a

representative. Figure 4 shows the clustering result of some

sample windows of synthetic data. These hyper-parameters

may be changed for other datasets based on their charac-

teristics. Figure 5 shows how results vary with window

size, while Fig. 6 shows how results vary with the threshold

for outliers. Therefore, different datasets require different

window sizes for the initial window. In contrast, the

threshold and the number of representatives have only a

small effect on the results. Therefore, we set the threshold

at 25 percent growth of the edges of each Cluster, and 10

percent of the cluster’s size as a representative.

In cases where the ground truth labels are unknown, the

model must be evaluated using the model itself. To eval-

uate the proposed model, we calculate the Silhouette

Coefficient, Calinski–Harabasz index, and Davies–Bouldin

index.

6.1 Complexity analysis

Suppose l is the length of the data stream, and we divide it

into b blocks (windows), each with a size of n ¼ l
b. We

cluster each window into K clusters using K-Means clus-

tering, an algorithm of complexity O n2ð Þ. In the next step,

we select some representatives of each cluster K with size

m ¼ n
K by using the K-Medoid clustering technique, which

has a complexity of O m � k � tð Þ, where k ¼ m � 0:1 and t

is the constant number of iterations. As a result, the total

complexity of the algorithm is calculated as follows:

� b O n2
� �

þ O K � m2
� �� �

where, m ¼ n
K

� b O n2
� �

þ O K � n

K

� 	2

 �� 


� b O n2
� �

þ O K � n2

K2


 �� 


� b O n2
� �

þ O
n2

K


 �� 


� b O n2
� �� �

where, n ¼ l
b

� b O
l2

b2


 �� 


� O
l2

b


 �

Thus, the complexity is directly proportional to the square

of the length of the string l and inversely proportional to the

number of blocks b.

6.2 Silhouette coefficient [34]

For each sample, the Silhouette Coefficient consists of two

scores:

a: The intra-cluster distance.

b: The mean nearest cluster distance

When a set of samples is considered, the Silhouette

Coefficient is the mean of the Silhouette Coefficients for

each sample. Incorrect clustering will receive a score of -1

while highly dense and well-separated clustering will

receive a score of ?1. A score of zero indicates clusters

Cluster Computing (2024) 27:2983–2998 2991

123



overlapped. We achieve a higher Silhouette Score using

both real and synthetic datasets with the proposed model

(Figs. 7, 8, 9, 10).

6.3 Calinski–Harabasz index [11]

The Calinski–Harabasz index is also known as the Vari-

ance Ratio Criterion. Calinski–Harabasz scores higher

Fig. 4 Sample Windows clustering results: the yellow points are the

outliers, and the stars are the cluster centroids. This observation

shows that the data stream windows start with two classes and some

outliers. Outliers are becoming more common in one region, and then

they form a new class
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when the clusters are more well-defined. Index values are

calculated as the ratio of the sum of inter and intra cluster

dispersion for all clusters (distance squared is the measure

of dispersion).

Calinski–Harabasz score s is defined as the ratio of the

measure of dispersion within and between clusters when

comparing a set of data E of size n with k clusters:

Fig. 5 Result variation with respect to Window size

Fig. 6 Result variation with respect to Threshold for outliers

Fig. 7 Silhouette score—synthetic data

Fig. 8 Silhouette score—forest cover type

Fig. 9 Silhouette score—shuttle

Fig. 10 Silhouette score—KDDcup 99
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S ¼ trðXkÞ
trðYkÞ

� n� k

k � 1

where trðXkÞ is trace of the inter-cluster dispersion matrix

and trðYkÞis the trace of the intra-cluster dispersion matrix

defined by:

Yk ¼
Xk

p¼1

X

x�Cp

x� cp
� �

x� cp
� �T

Xk ¼
Xk

p¼1

np cp � cE
� �

cp � cE
� �T

Fig. 11 Calinski–Harabasz score—synthetic dataset

Fig. 12 Calinski–Harabasz score—forest cover type

Fig. 13 Calinski–Harabasz score—Shuttle

Fig. 14 Calinski–Harabasz score—KDDcup 99

Fig. 15 Davies–Bouldin index—synthetic dataset

Fig. 16 Davies–Bouldin index—forest cover type
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where Cp the set of points in cluster p, cp the center of

cluster p, cE the center of E, and np the number of points in

cluster p. We achieve a better Calinski-Harabaz index for

both real and synthetic datasets with the proposed model

(Figs. 11, 12, 13, 14).

6.4 Davies–Bouldin index [22]

Davies–Bouldin scores are easier to compute than Silhou-

ette scores. Indexes like this one are used to represent the

degree of similarity between clusters; where similarity is a

measure of the distance between clusters in relation to their

size. Due to the fact that the distances are calculated only

point-by-point, the index depends entirely on the quantity

and feature information in the dataset. The lowest score is

zero. Lower values indicate better partitioning. The pro-

posed model achieves a better Davies-Bouldin index for

both real and synthetic datasets with the proposed model

(Figs. 15, 16, 17, 18).

The index is defined as the average similarity between

each cluster Ci for i ¼ 1; . . .; k and Cj. In the context of this

index, similarity is defined as a measure Rij that trades off:

si is the cluster diameter

dij is the distance between cluster centroids i and j

Rij ¼
si þ sj
dij

Then Davies–Bouldin index can be defined as:

DB ¼ 1

k

Xk

i¼1

maxRij i 6¼jð Þ

6.5 Comparison

Using four datasets, the proposed model was compared

with three existing data stream clustering algorithms pro-

vided by massive online analysis—CluStream, ClusTree,

and DenStream. All competing algorithms were measured

for clustering quality using three metrics: clustering purity,

Normalized Mutual Information, and F-measure. For each

metric, we calculated the mean and standard deviation

(Table 2).

Fig. 17 Davies–Bouldin index—shuttle

Fig. 18 Davies–Bouldin index—KDDcup 99

Table 2 Performance

comparison among different

algorithms on four datasets-

Mean and Standard deviation

(%)

Datasets Metrics Proposed model CluStream ClusTree DenStream

Forest cover type Purity 78.02 (16.65) 68.76 (16.4) 67 (17.3) 70.03 (16.09)

NMI 27.67 (11.06) 22.3(12.92) 21(13.12) 19(10.87)

F-measure 57.56(10.78) 42.56(12.45) 39(12.67) 44.23 (10.29)

Shuttle Purity 77.67(3.67) 65.32(5.43) 68.43(7.54) 69.87 (6.9)

NMI 63.64(3.02) 46.32 (5.96) 56.21(4.65) 42.78(6.05)

F-measure 76.32(3.06) 51.09 (4.87) 54.67 (6.89) 47.24 (5.48)

KDDcup 99 Purity 90.02(2.63) 84.21(4.67) 75.34(7.97) 67.43(7.43)

NMI 88.43(3.02) 76.32 (5.07) 64.87(6.08) 68.54 (4.03)

F-measure 91.45(2.76) 82.56 (3.08) 69.03 (4.05) 74.32 (5.87)

Synthetic dataset Purity 85.46 (1.67) 74.32 (3.94) 80.32 (2.54) 75.28 (2.97)

NMI 79.63 (2.76) 68.43 (2.54) 78.65 (3.54) 68.43 (3.87)

F-measure 83.95 (2.07) 72.45 (3.87) 79.43 (2.97) 72.43 (2.755)
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Summarizing the different aspects discussed in the

results analysis section, the proposed model shows its

superiority over existing methods in terms of concept

evolution, concept preservation, and handling outliers. The

novel stream clustering technique maintains a consistent

range of values for different evaluation metrics, such as the

silhouette coefficient, the Calinski–Harabasz index, and the

Davies–Bouldin index, and proves that the proposed model

is superior to the existing one.

7 Conclusion

The features of each chunks in evolving data streams may

vary. As a result, clustering of evolving data streams and

finding new classes are the major challenges in streaming

data analysis. Using K-Means clustering, we proposed a

fully online streaming data clustering method. The method

is divided into three phases: initialization, clustering and

outliers handling. The uniqueness of the model is reflected

in handling outliers. In the proposed model, the outliers

from each window are stored, and representatives of these

outliers are added to the next window to identify new

classes. Thus we handle the concept evolution. In stream-

ing data analysis, another barrier is the lack of datasets for

the training. In order to test the proposed model, we created

a synthetic dataset with 22020 data instances. Based on the

evaluation of the Silhouette Coefficient, Calinski–Harabasz

index, and Davies–Bouldin index, the model performed

very well. Due to the high velocity and volume of real-

world data, the proposed model faces some challenges

while analyzing it. In the future, we will model a scalable

and distributed clustering algorithm for handling real-

world streaming data.
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1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K.,

Lammersen, C., Sohler, C.: Streamkm?? a clustering algorithm

for data streams. J. Exp. Algorithmics 17, 2 (2012)

2. Aggarwal, C.C., Yu Philip, S., Han, J., Wang, J.: A framework

for clustering evolving data streams. In: Proceedings 2003 VLDB

Conference, pp. 81–92. Elsevier (2003)

3. Aggarwal, C.C., Yu, P.S.: On classification of high-cardinality

data streams. In: Proceedings of the 2010 SIAM International

Conference on Data Mining, pp. 802–813. SIAM (2010)

4. Al-Khateeb, T., Masud, M.M., Khan, L., Aggarwal, C., Han, J.,

Thuraisingham, B.: Stream classification with recurring and novel

class detection using class-based ensemble. In: 2012 IEEE 12th

International Conference on Data Mining, pp. 31–40. IEEE

(2012)

5. Alaettin, Z., Volkan, A.: Data stream clustering: a review. Artif.

Intell. Rev. 54(2), 1201–1236 (2021)

6. Amini, A., Saboohi, H., Herawan, T., Wah, T.Y.: Mudi-stream: a

multi density clustering algorithm for evolving data stream.

J. Netw. Comput. Appl. 59, 370–385 (2016)

7. Barddal, J.P., Gomes, H.M., Enembreck, F., Pfahringer, B.: A

survey on feature drift adaptation: definition, benchmark, chal-

lenges and future directions. J. Syst. Softw. 127, 278–294 (2017)

8. Bhosale, S.V.: A survey: outlier detection in streaming data using

clustering approached. Int. J. Comput. Sci. Inf. Technol. 5,
6050–6053 (2014)

9. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H.,

Jansen, T., Seidl, T.: Moa: massive online analysis, a framework

for stream classification and clustering. In: Proceedings of the

First Workshop on Applications of Pattern Analysis, pp. 44–50.

PMLR (2010)

10. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial

neural networks and discriminant analysis in predicting forest

cover types from cartographic variables. Comput. Electron.

Agric. 24(3), 131–151 (1999)
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