
Improved clustering-based hybrid recommendation system to offer
personalized cloud services

Hajer Nabli1 • Raoudha Ben Djemaa1 • Ikram Amous Ben Amor2

Received: 4 June 2023 / Revised: 25 July 2023 / Accepted: 27 July 2023 / Published online: 23 August 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, corrected publication 2023

Abstract
The ever-increasing number of cloud services has led to the service’s identification problem. It has become difficult to

provide users with cloud services that meet their functional and non-functional requirements, especially as many cloud

services offer the same or similar functionality but with different execution constraints (cloud characteristics, QoS, price,

and so on). Service recommendation systems can solve the service’s identification problem by helping users to retrieve the

right cloud services according to their desired needs. However, the majority of service recommendation systems rely on

user feedback to locate the user’s neighbors, predict missing ratings, and rank the recommended services. As a result, users’

rating histories might cause three major problems: cold start, data sparsity, and malicious attack. In order to deal with these

issues, we propose in this paper a hybrid recommendation approach, called ‘‘HRPCS’’, that provides a list of personalized

cloud services to the active user. This approach is based on user and service clustering. In this approach, cloud services are

recommended based on the user’s needs (functional and non-functional) and QoS preferences. Then, the services are

ranked according to their prices and credibility. Further, the proposed approach returns a list of diversified cloud services.

The experimental results confirmed our expectations and proved the effectiveness of our approach.

Keywords Hybrid recommendation � Cloud services � Personalized cloud services � Clustering � QoS preferences �
Diversity

1 Introduction

Cloud Computing is a widely adopted paradigm that offers

various services on-demand [1]. Consequently, cloud pro-

viders seek to deliver powerful and reliable cloud services

to their users on a pay-as-you-go basis. At the same time,

users (individuals or businesses) are using cloud services to

meet their needs. However, with the growing number of

available cloud services, many services offer the same or

similar functionality, which makes it challenging to pro-

vide users with services that meet their requirements

exactly. Therefore, finding the relevant cloud services that

exactly meet users’ functional and non-functional needs

remains at the heart of a lot of research. In the literature,

researchers used sophisticated methods and algorithms to

help users evaluate, select, and rank the best services from

a large pool of available alternatives. These methods have

been divided into logic-based [2, 3], ontology-based [4–7],

multi-criteria decision-making (MCDM)-based [8–12], and

optimization-based [13, 14] cloud service selection

approaches. These studies, however, mainly depend on

Quality of Service (QoS) measures to objectively assess

and rank cloud services based on their performance [15]

and do not take into account user-specific preferences,

historical usage patterns, or interactions among users.

A more efficient solution is to use recommendation

systems. In fact, recommendation systems are designed to

provide personalized recommendations based on user-

specific data and interactions. This personalization ensures

that the recommended cloud services are tailored to each

user’s unique needs, leading to higher user satisfaction and

a more efficient selection process. In general, recommen-

dation systems adopt three main techniques: (i) Content-

based approaches [16] recommend services that are similar

& Hajer Nabli

nabli.hajer@yahoo.fr

1 Higher Institute of Computer Science and Communication

Technologies of Hammam Sousse, University of Sousse,

Sousse, Tunisia

2 National School of Electronics and Telecommunications of

Sfax, University of Sfax, Sfax, Tunisia

123

Cluster Computing (2024) 27:2845–2874
https://doi.org/10.1007/s10586-023-04119-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04119-2&domain=pdf
https://doi.org/10.1007/s10586-023-04119-2

to the cloud services previously used by the active user, (ii)

Collaborative filtering-based approaches [17] identify the

active user’s neighbors and predict the missing values of

the user-service matrix based on similar users’ previous

behavior, and (iii) Hybrid approaches [18] that are a

combination of content and collaborative methods. The

collaborative filtering-based technique is the most popular

and commonly used technique for recommender systems

[19, 20]. Most collaborative filtering-based approaches, on

the other hand, rely on users’ rating (or feedback) to find

the user’s neighbors, predict missing ratings, and rank the

recommended services. However, users’ rating histories

allow for the detection of three key issues: cold start, data

sparsity, and malicious attack. The cold start problem

arises when the system is unable to establish any relations

between users and services for which it lacks sufficient

data. In other terms, the cold start problem occurs when a

new user has not rated a sufficient number of services

(user’s cold start problem), or when a new service has not

been rated by a significant number of users (service’s cold

start problem) [21]. In this instance, the recommendation

algorithm will be unable to provide accurate recommen-

dations since it will be unable to locate an appropriate

neighborhood for the user or the service in order to prop-

erly predict the missing data. The data sparsity problem

occurs when a small subset of available services are rated.

Hence, the rating matrix used for recommendation is rather

sparse. As a result of this, identifying similar users or

services becomes difficult. Consequently, the similarity

between two users or services cannot be calculated and

eventually, the accuracy of prediction becomes extremely

low [21]. The malicious attack problem arises when users

create malicious profiles that contain biased and deceptive

feedback in order to sway the active user’s decision and

influence the ranking of recommendations in their favor

[22]. As a result, user satisfaction declines and recom-

mendation accuracy falls to low levels.

To cope with the above-mentioned problems, we pre-

sent, in this paper, ‘‘HRPCS’’, a hybrid recommendation of

personalized cloud services approach. The novelty of our

research lies in the development of an enhanced clustering-

based hybrid recommendation approach that effectively

addresses the challenge of providing personalized cloud

services to users. By combining clustering techniques with

recommendation algorithms, our proposal leverages the

advantages of both approaches to deliver accurate and

personalized recommendations. Indeed, our proposed

approach is based on user and service clustering. A key

factor in accurate clustering is the proper determination of

similar users and services. As a result, we presented a novel

similarity measure for users based on their QoS prefer-

ences, location, and usage traces, as well as a similarity

measure for services based on their location and usage

traces. These equations are also valid for new users and

new services where we can maintain the users’ QoS pref-

erences and location and the services’ location, and

therefore solve the user and service cold start problems. In

addition, we adopted the clustering method to reduce the

computational complexity and address the data sparsity

issue. Furthermore, integrating the elimination of users’

feedback into recommender systems offers a promising

approach to tackling the pressing issue of malicious

attacks. By removing users’ feedback, particularly from

unverified or suspicious sources, the system can signifi-

cantly reduce the impact of certain types of attacks.

Notably, shilling attacks, profile injection attacks, and data

poisoning attacks, which heavily rely on manipulating

feedback to promote certain items and influence recom-

mendations, can be mitigated. The absence of maliciously

crafted feedback prevents the infiltration of misleading data

into the training process, thus fostering a more secure and

trustworthy recommendation environment. Indeed, the

absence of user-generated feedback helps to neutralize the

influence of fake positive ratings and manipulated prefer-

ences, preventing attackers from distorting the system’s

recommendations. Moreover, by minimizing its reliance on

user data, the recommender system can reduce its vulner-

ability to privacy breaches and user-targeted exploits.

Additionally, we focus on ranking the services based on

their prices and credibility. The credibility of each service

is calculated based on the expected QoS parameter values

(declared by the service provider) and observable QoS

parameter values (specific measurements related to the

performance of a service that can be easily observed,

monitored, and quantified). Finally, our approach is foun-

ded on the concept of diversity. This diversity allows for

less redundancy in the list of recommendations while also

taking into account the diverse interests of users.

The motivation behind this study stems from the

increasing demand for personalized cloud services, where

users expect recommendations that align with their specific

requirements. By offering improved recommendations, the

proposed approach not only enhances user satisfaction but

also contributes to the optimization of resource allocation

and utilization in cloud environments. This paper aims to

make a significant impact on the field by presenting an

innovative solution that addresses the challenges of per-

sonalization in cloud service recommendations. Indeed, we

are interested in contributing the following in this paper in

order to design an approach that effectively recommends

personalized cloud services:

• A clustering-based hybrid recommendation approach is

presented for delivering personalized cloud services

that match the user’s needs (functional and non-

functional) and QoS preferences.

2846 Cluster Computing (2024) 27:2845–2874

123

• To improve user satisfaction, personalized services are

ranked using a scoring formula that incorporates two

criteria: the pricing and the credibility of the services.

• Our approach is built on diversity and generates a

diverse list of cloud services, offering a list of

suggestions without redundancy.

• Troubleshooting: Cold Start, Data sparsity, and Mali-

cious attack.

The remainder of this paper is constructed as follows. In

Sect. 2, we present the related work on cloud service rec-

ommendation. Section 3 presents the proposed Hybrid

Recommendation of Personalized Cloud Services

approach. A discussion of the results are presented in

Sect. 4. Finally, Sect. 5 concludes our paper and gives an

outlook on possible future research directions.

2 Related works

In this section, we present and discuss some related work

on cloud service recommendation.

2.1 Cloud service recommendation approaches

Soltani et al. [23] presented a platform for IaaS service

selection named QuARAM Service Recommender. This

platform adopts case-based reasoning to choose the cloud

infrastructure service that best matches the requirements of

the user’s application. The recommendation process begins

when the user submits their cloud application specification

to the platform. From this specification, a set of informa-

tion will be extracted, namely, application requirements,

user preferences, and application deployment entities.

Then, the system searches for similar cases using three

knowledge bases (Application Case Base, Adaptation Case

Base, and Vendor Knowledge Base) and returns a list of

recommended deployment configurations to the user.

However, there are drawbacks in this solution that can be

summarized in five points: (1) Among the three types of

IaaS, SaaS, and PaaS services, this system supports only

the IaaS services, (2) It may not be suitable for non-expert

users as the service model must be built using the TOSCA

specification, (3) The QoS parameters are not specified in

this work, (4) This system does not use the clustering

model to handle the large search space problem, and (5)

This work does not solve the diversity problem.

Afify et al. [24] proposed, SaaS Recommender (SaaS-

Rec), a personalized recommendation system for SaaS

services that is based on reputation. In SaaSRec, user

feedback is used to calculate service reputation values. In

addition, users are grouped into communities using the

Hierarchical Agglomerative Clustering algorithm (HAC)

which is associated with a similarity measure based on the

location, interests, and feedback of the users. Indeed, the

recommendation process goes through several phases to

find the optimal set of recommended services. In the first

phase, SaaSRec recovers the SaaS services that meet the

functional needs of the user. In the second phase, the

system filters the recovered services according to the

requirements of QoS and service characteristics specified

by the user. Then, the collaborative filtering approach uses

user communities to retrieve local reputation values from

the recommended list of services. The content-based fil-

tering approach considers the metadata of the services to

calculate the similarity between the recommended list of

services and the user’s profile (location, interests, prefer-

ences, and previous selections of services). Finally, similar

services with profile, reputation values, and prices are

combined to rank the list of recommended services.

However, this measure has shortcomings that can be

summarized in three points: (1) The recommended services

are limited to SaaS services, (2) The cloud characteristics

covered are limited to common characteristics (such as

license type, payment system, formal agreement), where

the specific characteristics of SaaS services are ignored,

and (3) The problems of new service’s cold start, data

sparsity and diversity are not solved in this work.

Balaji and Rajkumar [25] proposed a cloud service

recommendation system based on hybrid collaborative fil-

tering. In this work, the K-means clustering method of

users is associated with the similarity calculation (using

Cosine similarity) before evaluating the prediction of rat-

ings (feedback) and finally, producing the recommenda-

tion. However, this system presents some drawbacks that

can be summarized in the four following points: (1) Only

the user feedback are used as service recommendation

criteria (lack of cloud characteristics and QoS parameters),

(2) The authors assume that all the services have the same

functionality, (3) The services recommended for the user

are not ranked, and (4) The system does not provide

solutions for a new user’s cold start, malicious attack and

diversity.

Ding et al. [26] presented a method based on collabo-

rative filtering for predicting historical data (eg. QoS val-

ues) and recommending cloud services with better user

satisfaction. First, similar users are identified using an

enhanced similarity measure (eKRCC) which is based on

Kendall Rank Correlation Coefficient (KRCC) and Jac-

card’s coefficient. Next, the authors proposed a satisfaction

function to determine user expectations regarding the

quality of cloud services. Finally, the top-k similar users

with their satisfaction values are used to make predictions

of missing QoS values and subsequently select the appro-

priate cloud services. However, this approach has some

drawbacks that we summarize in the following four points:

Cluster Computing (2024) 27:2845–2874 2847

123

(1) There is a lack of information about the cloud charac-

teristics, (2) This work does not address the problem of

large search space, (3) The services recommended to the

active user are not ranked, and (4) The cold start, data

sparsity, malicious attack, and diversity problems are not

solved in this work.

Ma et al. [27] proposed a cloud service recommendation

system sensitive to QoS variations. The service recom-

mendation process begins when an active user submits

their request, which includes their functional and non-

functional requirements, to the system. First, the candidate

services, which meet the user’s functional requirements,

are returned. Next, a method of identifying user neighbors

is presented to support QoS prediction through collabora-

tive filtering. In this work, QoS parameters are monitored,

collected periodically, and stored in four QoS models

(central tendency, variation range, frequency of variation,

and period). The Mahalanobis distance is used to measure

the similarity of the QoS patterns. Finally, the proposed

method is formulated as a multi-criteria decision-making

problem, and an improved TOPSIS method is exploited to

solve it, taking into account both the variation of the QoS

and the preferences of the active user during different

periods. Nevertheless, this solution has some shortcomings

that can be summarized as follows: (1) This work does not

cover other important criteria, such as cloud characteristics,

(2) The large amount of data collected is not properly

addressed in this work, (3) Services are ranked according to

the users’ QoS while other criteria, such as service price

and provider credibility, had better be considered, and

finally, (4) The data sparsity, malicious attack, and diver-

sity problems are not solved in this work.

Mezni et al. [28] proposed a recommendation system

based on collaborative filtering for cloud services using

Fuzzy Formal Concept Analysis (CR-FFCA) to generate

reliable recommendations using fuzzy lattices. This method

transformed the cloud service repository into a set of small

clusters, in which the relationships between high-quality

services and users with the highest ratings (feedback) are

organized using formal concepts. The fuzzy lattices rep-

resentation helps to exclude unnecessary data related to the

cloud. This involves excluding poorly rated cloud services

from the candidate service set and eliminating less similar

users who share a few common services with the active

user. However, this method has some drawbacks that we

summarize in the five following points: (1) Cloud charac-

teristics are not considered in the recommendation process,

(2) The computation of similar users depends only on the

number of services in common while ignoring other

important criteria, such as the users’ location and the QoS

preferences, which can improve the cluster’s quality. In

other words, this solution is unable to identify users similar

to a new user who has no usage history (due to lack of

neighbors), therefore, it will be unable to offer recom-

mendations to this user, (3) In this work, the cold start

problem for new services is solved by eliminating them

from the recommendation process although they may be

relevant services for the active user, (4) The missing data

are considered to be useless and therefore are excluded,

and (5) Feedback from malicious users are not processed.

Wang et al. [29] proposed a cloud service recommen-

dation approach based on collaborative filtering by

exploring user history. This approach first calculates user

similarity using an improved cosine similarity method,

which is adjusted based on the popularity of the cloud

service. Then, several similar users are selected as neigh-

bors of the active user. Finally, this system predicts the

possibility that the active user invokes new (non-invoked)

services based on neighboring users. However, this system

has some deficiencies that can be summarized in the fol-

lowing four points: (1) The proposed solution neglects

several other criteria that can improve the accuracy of the

service recommendation, such as the cloud characteristics

and the QoS, (2) This work has not solved the problem of

large search space, (3) The proposed method is not efficient

for new users besides, newly released cloud services that

do not have usage records are unlikely to be recommended,

and (4) The issues of data sparsity, malicious attack and

diversity are not addressed in this work.

Djiroun et al. [30] proposed an approach to recommend

cloud services using clustering methods to give better

visibility to users and services. The proposed solution is

based on two aspects: the analysis of the content and

description of the services, and the analysis of user

behavior, that is to say, the interactions and previous

actions with the services. In this context, two types of

recommendation approaches are combined. A content-

based recommendation and a collaborative-based recom-

mendation, which aims to predict the interests of the active

user on services not previously consulted or not used, based

on the analysis of similar users’ traces (i.e. their feedback

and behavior on the services). Finally, a pruning process is

applied to the recommended services resulting from the

two recommendation approaches to eliminate the services

that are not suitable for the active user. However, this

approach has some drawbacks which can be summarized in

the following three points: (1) Cloud services are QoS

sensitive due to the dynamic cloud environment while the

proposed solution neglects the impact of the QoS on the

service recommendation, (2) Other important criteria are

ignored in the computation of the clusters (users and ser-

vices), such as their location, their usage history (for users

and services) and the users’ QoS preferences, which can

improve the quality of the clusters, and (3) The problems of

cold start, malicious attack and diversity are not addressed

in this work.

2848 Cluster Computing (2024) 27:2845–2874

123

Zheng et al. [31] proposed an approach based on col-

laborative filtering to recommend cloud services. This

system has three steps and works as follows. In the first

step, the Spearman coefficient is adopted to calculate the

similarity between the active user and the other users. In

the second step, the k-nearest neighbors’ technique is used

to find a set of neighbors that are similar to the active user.

Finally, a user-based collaborative filtering approach is

adopted to predict active user’s QoS feedback for unrated

services and determine a set of recommended services for

the active user. However, this technique has some limita-

tions that we summarize in the following five points: (1)

Cloud characteristics are not taken into account in this

solution, (2) The recommendation is based on a single QoS

criterion, (3) This system does not provide a solution to

reduce the search space, such as clustering, (4) The prob-

lems of cold start, data sparsity, malicious attack and

diversity are not solved, and (5) The authors assume that all

the available services have the same functionality.

Nagarajan et al. [32] presented a broker-based context-

aware recommendation system with QoS factors for IaaS

type of cloud services. The proposed broker extracts the

service details based on their contextual data. PMF model

and matrix factorization methods are improved to increase

the performance of broker in QoS prediction. Nevertheless,

this solution has some shortcomings that can be summa-

rized as follows: (1) The recommended services are limited

to IaaS services, (2) This work does not cover other

important criteria, such as cloud characteristics, neighbors

of the user and the service, usage history. (3) This work

does not provide a solution to reduce the search space, such

as clustering, (4) Services are ranked according to the

highest QoS values while other criteria, such as service

price and provider credibility, should be taken into account

as well, and (5) The new user’s cold start, data sparsity,

malicious attack, and diversity issues are not solved in this

work.

Ngaffo et al. [33] proposed a data sparsity service rec-

ommendation approach that aims to predict relevant cloud

services for end-users. First, the QoS prediction of the

current time is performed using a factorization matrix

technique. Thereafter, the QoS prediction of the future time

interval is performed using a time series forecasting

method based on an AutoRegressive Integrated Moving

Average (ARIMA) model. However, this system has some

drawbacks that we summarize in the following points; (1)

The cloud characteristics, user’s and service’s neighbors,

user’s QoS preferences, and usage history are not defined,

(2) The proposed method cannot provide a solution to

reduce the search space, such as clustering, (3) The ser-

vices recommended to the active user are not ranked, and

(4) The cold start, malicious attack, and diversity issues are

not addressed in this work.

2.2 Discussion

Nowadays, cloud services are characterized by their

increasing volume, variety, and heterogeneity, which

makes finding relevant cloud services tailored to user needs

a real challenge. In this regard, cloud users must have a

system to find and recommend services that best meet their

preferences, among a large number of existing choices.

There are several works in the literature that deals with this

subject. Their objectives are to filter the services for each

active user to meet their needs (functional and non-func-

tional) and their QoS preferences. The comparison between

the different proposed approaches is established according

to the following challenges (See Table 1).

• Cold Start: indicates whether the approach addresses

the cold start problem for a new user and a new service.

• Data Sparsity: indicates whether the approach was able

to reduce the data sparsity problem.

• Malicious Attack: indicates whether the approach is

immune to untrusted users.

• Diversity: indicates whether the approach offers diver-

sified recommendations to users.

Table 1 presents the comparative analysis of recom-

mendation approaches according to the different challenges

mentioned above. We note that only some approaches

[23, 27, 28] managed to solve the cold start problem. This

problem affects both new users and new services that are

introduced into the system. Besides, recommendation sys-

tems suffer from the data sparsity problem when the

number of services evaluated by users is too low compared

to the total number present in the system. This problem

affects the ability of the system to recommend all available

services and the accuracy of the recommendations gener-

ated. Only [25, 28, 30, 33] who solved the problem of data

sparsity either by reducing the search space using the

clustering method [25, 28, 30] or by applying a flexible

matrix factorization technique [33]. In addition, recom-

mendation systems are vulnerable to malicious attack.

These attacks are caused by malicious users who want to

manipulate and redirect the recommendation to their needs

by providing misleading feedback, high or low. Approa-

ches based on collaborative filtering are vulnerable to

attacks because they allow their users to participate in the

recommendation calculation of their neighbors, without

their explicit permission. Only the solution of [24] solved

the problem of malicious attack by introducing a user score

incremented by 0.1 for each objective feedback. On the

other hand, none of the approaches proposed in the liter-

ature offers a diversified recommendation although this

criterion is highly requested and appreciated by users since

it makes it possible to solve the problem of over-

Cluster Computing (2024) 27:2845–2874 2849

123

specialization and also improve the quality of the user

history with the recommendation system.

To highlight the added value of our approach compared

to its predecessors, we indicate in Table 2 the different

properties that a recommendation system must verify. The

comparison is made according to the following properties:

• Service Type: This property describes the service types

covered by the proposed approach (IaaS, PaaS, SaaS,

XaaS).

• Recommendation Technique: This property defines the

technique used to recommend cloud services. The

filtering techniques generally used for calculating the

recommendation are either content-based filtering,

collaborative filtering, or hybrid filtering.

• Recommendation Criteria: This property describes the

set of criteria covered by the proposed approach. These

criteria are fundamental in recommending the best

cloud services.

• Clustering: This property indicates whether the pro-

posed solution relies on clustering methods to reduce

search space for users and services.

• Ranking: This property indicates whether the proposed

solution returns a ranked list of services by specifying

the method and the criteria used.

By studying the literature, we notice that most of the

approaches offer recommendations for the three types of

cloud services, namely IaaS, PaaS and SaaS [25–31, 33]. In

addition, we note that QoS plays an important role to

perform a personalized recommendation [24, 26–28,

31–33]. These approaches, on the other hand, merely rec-

ommend cloud services with the best feedback or values

for a specific QoS parameter, without taking into account

the user’s QoS preferences, which is required to satisfy the

user and provide a personalized recommendation.

Besides, to reduce the search space, narrow the data

sparsity problem and accelerate the process of finding

services, it is necessary to have powerful tools allowing the

processing of data collections that are available in

increasing quantity. Unsupervised Data Mining methods

such as clustering methods are a response to this need.

Indeed, clustering aims to partition large volumes of data

into a set of data groups (clusters) with regard to their

similarities. We note that the work [30] used clustering

algorithms to group not only users into clusters, but also

services in order to improve the recommendation process.

While other approaches are based only on users clustering

[24, 25, 28]. However, the clustering criteria used in these

approaches which define similarity between users or ser-

vices are imperfect. Thus, important criteria are ignored,

such as location, usage history for both users (services

previously used by users) and services (users who have

used the service) and user’s QoS preferences, which can

improve the quality of clusters.

In addition, ranking is one of the fundamental problems

in the field of research on cloud services. The problem is to

sort the services retrieved by relevance. As a result, most of

the studied approaches [23, 24, 27–32] recommended

ranked services according to several criteria. In general, the

vast majority of users tend to look for cloud services that

guarantee both the best price and the best service credi-

bility. Only the work of [24] which takes into account the

price to classify the services recovered. On the other hand,

in order to improve user satisfaction, it is essential to take

into account the periodic variation of QoS. However, it is

important to note that none of the existing approaches have

addressed the calculation of the service’s credibility

according to the variation of the QoS.

Table 1 Challenges of

recommendation systems
Approach Cold start Data sparsity Malicious attack Diversity

User Service

[23] U U U N/A 7

[24] U 7 7 U 7

[25] 7 U U 7 7

[26] 7 7 7 7 7

[27] U U 7 7 7

[28] U U U 7 7

[29] 7 7 7 7 7

[30] 7 7 U 7 7

[31] 7 7 7 7 7

[32] 7 U 7 7 7

[33] 7 7 U 7 7

2850 Cluster Computing (2024) 27:2845–2874

123

3 Proposed approach

The purpose of our personalized recommendation approach

is to improve user satisfaction by recommending ranked

and diversified cloud services that match their preferences

and are likely to be of interest to them. To achieve this

goal, we propose the architecture described in Fig. 1. In

addition to the user interface, the proposed architecture is

made up of three modules, namely, ‘‘Clustering Module’’,

‘‘Hybrid Recommendation Module’’, and ‘‘Ranking and

Diversification Module’’. It also includes three databases,

namely ‘‘Historical Data’’, ‘‘Cloud Service Registry’’, and

‘‘Monitoring Data’’.

Initially, the user initiates his request by specifying a set

of data via a graphical interface, namely his functional

requirements (service type and category), his non-func-

tional requirements (cloud characteristics and payment

mode), his QoS preferences as well as his priorities for the

ranking criteria �. In fact, two interfaces are used to

recommend personalized cloud services. We provide the

user with a first interface that lists the various cloud service

types along with the categories that they fall under. The

user merely needs to choose the service’s type and cate-

gory. In the instance shown in Fig. 2, the user is looking for

an IaaS cloud service that falls under the compute category.

The user then confirms his decision. Following the user’s

entry of his functional requirements, a second interface

prompts him to indicate his non-functional requirements

(such as cloud characteristics and payment mode), QoS

preferences, and the ranking criteria’s order of importance.

Figure 3 illustrates an example of parameters specified

according to the user’s choice.

The ‘‘Hybrid Recommendation Module’’ starts as soon

as it receives the request from the user `. In fact, This

module is made up of three phases. First, the ‘‘Recovery of

used services’’ phase makes it possible to query the

‘‘Clustering Module’’ in order to return the first list of

recommendations 2a . This list is used for the activation of

Table 2 Comparison of cloud service recommendation approaches

Approach Service

type

Recommendation

technique

Recommendation

criteria

Clustering Ranking

Users Services Method Criteria

[23] IaaS Case-based

reasoning

Configuration

parameters

7 7 Score –

[24] SaaS Hybrid filtering QoS ? Cloud

characteristics ?

Reputation ? User

profile

HAC (Location ?

interests ?

Feedbacks)

7 Fuzzy ranking User profile ?

Reputation

? Price

[25] XaaS Collaborative

filtering

Feedbacks K-means

(Feedbacks)

7 7 7

[26] XaaS Collaborative

filtering

QoS 7 7 7 7

[27] XaaS Collaborative

filtering ?

TOPSIS

QoS 7 7 TOPSIS ?

Mahalanobis

distance

QoS

[28] XaaS Collaborative

filtering

QoS ? Feedbacks Fuzzy lattice

(Number of

common

services)

7 Service score Feedbacks

[29] XaaS Collaborative

filtering

Usage history 7 7 – Predicted

possibility

[30] XaaS Hybrid filtering User interests

(Feedbacks ?

Behavior)

K-Medoids (User

profile)

K-Medoids

(Cloud

characteristics)

– User interests

[31] XaaS Collaborative

filtering

QoS ? Feedbacks 7 7 Prediction

function

Feedbacks

[32] IaaS Matrix

factorization

Service context ? QoS 7 7 Highest QoS

values

QoS

[33] XaaS Flexible matrix

factorization ?

ARIMA model

QoS 7 7 7 7

Cluster Computing (2024) 27:2845–2874 2851

123

the ‘‘Functional and non-functional filtering’’ phase in

order to refine the first list and only return the cloud ser-

vices that meet the user’s functional and non-functional

needs 2b . Finally, the ‘‘Filtering based on QoS prefer-

ences’’ phase is used to recommend to the active user a list

of services compatible with his QoS preferences 2c . The

‘‘Clustering Module’’ ´ is based on the application of a

hierarchical clustering technique in order to group users

and services into clusters according to their proposed

similarity measures (we come back to these similarity

measures in more detail in Sect. 3.1). The clusters are

calculated offline to be used by the ‘‘Hybrid Recommen-

dation Module’’ in order to deduce the cluster to which a

user or a service belongs as needed. Finally, the journey

ends by querying the ‘‘Ranking and Diversification

Module’’ which takes as input the results from the ‘‘Hybrid

Recommendation Module’’ ˆ. Two phases are proposed in

this module, namely ‘‘Ranking of services’’ 4a and

‘‘Diversification of services’’ 4b in order to output a final

list of cloud services which are ranked and diversified ˜. In

the following, we detail the different modules presented in

the proposed architecture.

As a motivating example, think about a situation where

a user wishes to hunt for cloud services utilizing our

‘‘HRPCS’’ approach. The user is prompted to enter his non-

functional needs after entering his functional requirements

(type and category). These non-functional requirements

include cloud characteristics, payment mode, QoS prefer-

ences, and the priorities of the ranking criteria. The user

Fig. 1 Architecture of ‘‘HRPCS’’ approach

Fig. 2 Selection of the service’s

type and category

2852 Cluster Computing (2024) 27:2845–2874

123

requirements that are both functional and non-functional

are shown in Table 3.

3.1 Clustering module

This work proposes a hybrid recommendation approach

that joins the user clustering technology and the service

clustering technology. The ‘‘Clustering Module’’ consists

of calculating the similarities between the objects (users or

services), then the objects are grouped into clusters so that

the objects of the same cluster are more similar to each

other than to those of other clusters. This module is used in

order to deal with the problem of sensitivity to missing data

(data sparsity) and the problem of scaling up by reducing

the neighbor search space and consequently improving the

calculation time of recommendations as well as their

accuracy. As illustrated in Fig. 4, the ‘‘Clustering Module’’

is composed of two phases, namely ‘‘Calculation of simi-

larity measures’’ and ‘‘Generation of clusters’’. In fact, the

phase of ‘‘Calculation of similarity measures’’ consists of

two steps. The ‘‘Similarity between users’’ is the initial step

that establishes a new similarity measure for users based on

QoS preferences, location, and user usage traces (services

previously used). As well as the second step ‘‘Similarity

between services’’, which aids in providing a similarity

measure for services based on location and service usage

traces (users who have used the service). In addition, we

will need the ‘‘Historical Data’’ database and the ‘‘Cloud

Service Registry’’ to calculate these similarities correctly.

The Agglomerative Hierarchical Clustering (AHC)

approach is then utilized to build user and service clusters

in the ‘‘Generation of clusters’’ phase.

The similarity measures proposed for identifying similar

users and similar services, as well as the clustering algo-

rithm, are described in detail in the following sections.

Fig. 3 Selection of non-

functional requirements, QoS

preferences, and ranking

priorities

Table 3 User’s functional and

non-functional requirements
Functional Non-functional

Type Category Cloud Characteristics Payment Mode QoS Preferences Ranking Criteria

IaaS Compute LT: Proprietary OD RT: Moderate PR: 1

OS: Linux AV: High CRD: 2

RAM: 4GB to 32GB THP: Low

vCPU: 2 cores to 8 cores

DS: 50GB to 500GB

PN: 1Gbit/s to 100Gbit/s

LT license type, OS operating system, DS disque space, PN performance network, OD on demand, RT
response time, AV availability, THP throughput, PR price, CRD credibility

Cluster Computing (2024) 27:2845–2874 2853

123

3.1.1 Calculation of similarity measures

The correct assessment of similar users and similar services

is a significant aspect in accurate clustering. As a result, we

propose new user and service similarity measures.

3.1.1.1 Similarity between users To calculate the simi-

larity between two users, we define a similarity measure

that is a linear combination between three similarity

aspects, namely, QoS preference similarity, location simi-

larity, and trace similarity. As for QoS preferences, they

are entered by the user using a graphical interface. For the

user location, it is derived from their IP address. As for the

usage traces, they represent all the services previously used

by the active user and which are retrieved from the ‘‘His-

torical Data’’ database. This module uses SQL queries to

search for usage traces in the ‘‘Historical Data’’ database.

In the case of a new user (without usage traces), only the

QoS preferences and the location are used for users’ sim-

ilarity calculation. In this way, we can avoid the problem of

new user’s cold start. Therefore, the more the two users

tend to request the same QoS preferences, be in the same

place, and use the same services, the more similar they will

be. The proposed similarity between users u and v is cal-

culated as the sum of these three weighted similarities, as

shown in Eq. 1:

Simusersðu; vÞ ¼ wUpref � SimUpref ðu; vÞ

þ wUloc � SimUlocðu; vÞ

þ wUtrc � SimUtrcðu; vÞ

ð1Þ

where SimUpref , SimUloc and SimUtrc respectively represent

similarities in QoS preferences, location and usage traces,

and wUpref , wUloc and wUtrc represent their weights,

respectively. The weights are used to adjust the relevance

of the three aspects of similarities and they were assigned

based on their recommendation accuracy (the weight val-

ues are proven in Sect. 4). We present in what follows the

three aspects of similarity used in the measurement of

similarity between users.

QoS preference similarity. After accessing a graphical

interface, the user chooses their QoS preferences by

assigning a rating to each QoS parameter (exp, High,

Moderate, or Low). The QoS parameters reflect the cloud

service properties, including response time, availability,

reliability, security, throughput, and so on. The received

ratings are then normalized and transformed into real val-

ues between 0 and 1, whose sum is always equal to 1 (exp,

High = 0.6, Moderate = 0.3, and Low = 0.1). More for-

mally, QoS preferences are defined as a weight vector

Pu ¼ fwu;1;wu;2; . . .;wu;mg, where each weight wu;j � 0

denotes the importance of the QoS parameter of index j

with respect to user u and
Pm

j¼1 wu;j ¼ 1. Therefore, it

suffices to compare the weight vectors Pu and Pv to

determine the similarity of QoS preferences between two

users u and v. To do this, we use the Cosine similarity, as

shown in Eq. 2:

SimUpref ðu; vÞ ¼
Pm

j¼1 wu;j � wv;j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 w
2
u;j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 w

2
v;j

q ð2Þ

where wu;j and wv;j respectively represent the weights

assigned to the QoS parameter of index j by user u and user

v, and m is the number of QoS parameters.

Location similarity. Intuitively, two users are geo-

graphically similar if they are in the same geographic

location or nearby. In fact, the objective of our choice to

integrate location similarity is that the physical locations of

users have a significant effect on the variance of the QoS

[34–36]. In fact, location similarity is determined by first

determining the physical distance between users. In fact, to

translate his IP address into a geographic location (latitude

Fig. 4 Phases of ‘‘Clustering

Module’’

2854 Cluster Computing (2024) 27:2845–2874

123

and longitude), we made advantage of the free GeoLite

database provided by the MaxMind API.1 Then, the

Haversine formula (Eq. 3) is used to calculate the distance

between two locations l1 and l2 on the Earth surface

specified in latitude and longitude.

Distðl1; l2Þ ¼ 2 � R � arcsin
ffi

sin2 Dlat
2

� �

þ cosðlat1Þ � cosðlat2Þ � sin2 Dlng
2

� �s !

ð3Þ

Knowing that, Dlat ¼ lat2 � lat1 Dlng ¼ lng2 � lng1

where R is the radius of the Earth (R ¼ 6371km), lat1 and

lat2 are the latitudes of l1 and l2 in radians and lng1 and

lng2 are the longitudes of l1 and l2 in radians.

Since the similarity is inversely proportional to the

distance, in other words, a short distance indicates a high

similarity while a long-distance means a low similarity.

Then, the location similarity between users u and v is

calculated using Eq. 4:

SimUlocðu; vÞ ¼ 1 � Distðu; vÞ
arg max
i2Eðu�Þ

Distðu; iÞ ð4Þ

where Eðu�Þ is the set of users who have used services and

who are stored in the ‘‘Historical Data’’ database,

Dist(u, v) is the Haversine distance which is used to cal-

culate the geographic distance between two users u and

v whose locations are specified in latitude and longitude

(Eq. 3).

Trace similarity. Trace similarity represents the associ-

ation between two users regarding their use of the same

services. In other words, two users are considered similar if

they have previously invoked a number of common cloud

services. Our choice to integrate trace similarity ensures

that the set of similar users is more homogeneous because

they share the same interests and concerns [37]. The sim-

ilarity of traces is calculated using the following Jaccard

formula:

SimUtrcðu; vÞ ¼
jSu \ Svj

jSuj þ jSvj � jSu \ Svj
ð5Þ

where Su and Sv respectively represent the set of services

used by user u and the set of services used by user v,

Su \ Sv is the subset of services that user u and user v have

commonly used. The set of services used by a user is

retrieved from the ‘‘Historical Data’’ database.

3.1.1.2 Similarity between services The similarity

between two services is calculated using a similarity

measure that linearly combines two aspects of similarity,

namely, location similarity and trace similarity. Regarding

the location of services, it is obtained either from the

‘‘Cloud Service Registry’’ in the event of a new service, or

from the ‘‘Historical Data’’ database in the case of a service

already in use. For the usage traces, they represent all the

users who used the service and who are retrieved from the

‘‘Historical Data’’ database. In the case of a new service

(no information about the users who used this service is

available), only the location is used for the service simi-

larity calculation. In this way, we will be able to solve the

problem of new service’s cold start. In fact, the more the

two services tend to be in the same location and to be used

by the same users, the more similar they will be. As

illustrated in Eq. 6, the proposed similarity between the

services x and y is calculated as the sum of these two

weighted similarities:

Simservicesðx; yÞ ¼ wSloc � SimSlocðx; yÞ

þ wStrc � SimStrcðx; yÞ
ð6Þ

where SimSloc and SimStrc represent the similarities in

location and usage traces, respectively, and wSloc and wStrc

represent their weights, respectively. The weights are used

to adjust the relevance of the two aspects of similarity and

have been assigned based on their recommendation preci-

sion (more details in Sect. 4). In the following, we present

the two aspects of similarity used in the measure of simi-

larity between services.

Location similarity. To identify which services are

geographically similar, we must first find their locations.

Indeed, the services having the same location can have

similar performances [35, 36]. There are then two types of

services, those called new services (they are stored in the

‘‘Cloud Service Registry’’ and have never been used) and

those called used (they have traces of use in the ‘‘Historical

Data’’ database). In the case of a new service, its physical

address is retrieved from the ‘‘Cloud Service Registry’’.

Then, this address will be converted to a geographic

location (latitude and longitude) using Google’s Geocoding

API.2 Table 4 shows examples of address conversion. For

the used services, the location in latitude and longitude is

obtained from the ‘‘Historical Data’’ database. Therefore,

the location similarity between services x and y is calcu-

lated using Eq. 7:

SimSlocðx; yÞ ¼ 1 � Distðx; yÞ
arg max
i2Eðs�Þ

Distðx; iÞ ð7Þ

where Eðs�Þ is the set of services in the ‘‘Cloud Service

Registry’’, Dist(x, y) is the Haversine distance (Eq. 3)

which is used to calculate the geographic distance between

1 https://www.maxmind.com.

2 https://developers.google.com/maps/documentation/geocoding/

overview

Cluster Computing (2024) 27:2845–2874 2855

123

https://www.maxmind.com
https://developers.google.com/maps/documentation/geocoding/overview
https://developers.google.com/maps/documentation/geocoding/overview

two services x and y whose locations are specified in lati-

tude and longitude.

Trace similarity. Two services are considered similar if

they have previously been used by a number of common

cloud users. Therefore, to calculate the trace similarity

between two services, it is necessary to find the set of users

who used each service, then to associate them using Jac-

card’s formula. Indeed, we consider that the services hav-

ing users in common can have similar performances [37].

The trace similarity between services x and y is calculated

using Eq. 8:

SimStrcðx; yÞ ¼
jUx \ Uyj

jUxj þ jUyj � jUx \ Uyj
ð8Þ

where Ux and Uy respectively represent the set of users

who used the service x and the set of users who used the

service y, Ux \ Uy is the subset users who have used both

x and y services. This set of users is retrieved from the

‘‘Historical Data’’ database.

In the next section, we explain the clustering algorithm

used to group users and services into clusters, respectively,

using the proposed user similarity measure (Eq. 1) and

service similarity measure (Eq. 6).

3.1.2 Generation of clusters

Regarding user clustering and service clustering, we propose

to use the Agglomerative Hierarchical Clustering (AHC)

algorithm thanks to its hierarchical structure, flexibility in

cluster shape, and interpretability. AHC does not require a

predefined number of clusters, and its dendrogram visual-

ization allows users to explore relationships at different

levels of granularity. It is suitable for distance-based clus-

tering on various types of data, making it applicable to

numerical, categorical, and mixed datasets. Generally, an

agglomerative approach begins by assigning each item (user

or service) to a separate cluster or singleton. Then, it calcu-

lates the inter-cluster similarities (distance inter-clusters) for

each pair of clusters, thus building a similarity matrix. The

main step in the agglomerative algorithm lies in the choice of

the method that calculates the inter-cluster similarities. We

think that by including the similarity measures we provided

for users and services in the Average-Linkage method, we

are able to achieve this aim. The similarity between two

clusters in the Average-Linkage grouping process is the

average of the similarities between all pairs of elements

(users or services), such as the first element is in a cluster and

the other element is in another cluster. The two clusters with

the highest average similarity are merged to form a new

cluster. The Average-Linkage method defines the similarity

between two clusters Ck and Cl by Eq. 9:

SimALðCk;ClÞ ¼
1

jCkjjClj
X

ei2Ck

X

ej2Cl

Sim�ðei; ejÞ ð9Þ

where Sim�ðei; ejÞ is replaced by Simusersðu; vÞ (Eq. 1) in

case of user clustering and by Simservicesðx; yÞ (Eq. 6) in the

case of service clustering.

At the end of this module, users and services are

grouped into clusters according to their proposed similarity

measures. The clusters are computed offline for use by the

‘‘Hybrid Recommendation Module’’ to provide personal-

ized service recommendations for the active user.

3.2 Hybrid recommendation module

In this section, we propose a new hybrid recommendation

approach, named ‘‘HRPCS’’. Our work is globally different

from the approaches studied in the state-of-the-art mainly

on two aspects. First, the user feedback are often used in

recommendation systems, especially those using collabo-

rative filtering, to rank services or to find the closest

neighbors of the active user and predict missing ratings.

However, this kind of approach is normally fragile to

malicious attack [22]. These attacks are generated by users

who introduce malicious profiles consisting of biased

feedback to affect the recommendations ranking and

manipulate the active user decision. In this regard, we will

eliminate the utilization of user feedback and instead

concentrate on predicting unavailable QoS values. This

consideration takes into account the possibility that ser-

vices with the same location and accessed by the same

users could showcase analogous performance [35–37]. By

adopting this strategy, we aim to minimize the potential for

malicious attacks. Second, most of the approaches studied

in the state-of-the-art recommend services with the best

values of a certain QoS parameter without exploiting the

QoS preferences of the active user. Indeed, a user’s QoS

preferences are certainly important for a personalized

recommendation of cloud services.

Table 4 Address conversion
Services Physical address Geographical location

Amazon EC2 US West (Los Angeles) lat:34.0522342, lng:�118.2436849

Oracle Cloud Platform Canada Southeast (Toronto) lat:43.653226, lng:�79.3831843

Overleaf Service UK lat:55.378051, lng:�3.435973

2856 Cluster Computing (2024) 27:2845–2874

123

The ‘‘Hybrid Recommendation Module’’ is divided into

three phases, as shown in Fig. 5, which are ‘‘Recovery of

used services’’, ‘‘Functional and non-functional filtering’’,

and ‘‘Filtering based on QoS preferences’’. This module is

triggered by a user’s request in which he specifies his

functional and non-functional requirements as well as his

QoS preferences via a graphical interface. The user and

service clusters, the ‘‘Historical Data’’ database, and the

‘‘Cloud Service Registry’’ are all required to complete the

process of this module. The ‘‘Recovery of used services’’

phase is the first that is executed. It will cover services

utilized by users who are similar to the active user. Based

on the user’s request, his explicit, implicit, and historical

data are obtained in order to create the user’s profile. After

that, we computed the similarities between the user’s

profile and the previously created user clusters to decide

which cluster he belongs to. The services utilized by sim-

ilar users are then extracted. This is the first list of cloud

services in our hybrid recommendation process. The

‘‘Functional and non-functional filtering’’ phase is used to

reduce the number of services received from the first list by

considering the user’s functional needs, which are repre-

sented by the cloud service type and category. The services

are then filtered according to the user’s non-functional

requirements, such as cloud characteristics and payment

mode. Finally, this phase delivers a second list of services

that satisfy the active user’s functional and non-functional

needs. At last, during the ‘‘Filtering based on QoS prefer-

ences’’ phase, a list of services suitable with the user’s QoS

preferences is recommended.

The different phases of the ‘‘Hybrid Recommendation

Module’’ are detailed in the following sections.

3.2.1 Recovery of used services

This phase allows the recovery of services used by the

user’s neighbors. It is based on the Demographic filtering

technique that is an alternative to overcome the problem of

new user’s cold start. This phase is done in three steps:

Data retrieval, Similarity computation, and Services

extraction, as shown in Fig. 6.

3.2.1.1 Data retrieval This step consists of collecting the

relevant data to build the user’s profile. The data entered

directly by the user via a graphical interface (called

explicit) partly contributes to the construction of the user

profile. Implicit data (implicitly retrieved during user

authentication such as location) and historical data (usage

traces or services previously consumed by the user) are

also retrieved to complete the user’s profile. Then, the

information in the user’s profile, and more precisely the

user’s QoS preferences, location, and usage traces (services

previously used), is used to calculate the similarities to the

user clusters (already built) using the Average-Linkage

method (Eq. 9) to determine the cluster to which the active

user belongs.

Explicit data. The explicit data represents the informa-

tion directly provided by the user. These data involve

demographic data if it is a new user, the type and category

of the sought cloud service, cloud characteristics, payment

mode, QoS preferences, and the priority of ranking criteria

(service price and credibility).

Implicit data. The implicit information is obtained

automatically from the environment in which the user is

located. In our work, we are interested in knowing the

user’s location during the recommendation request. This is

Fig. 5 Phases of ‘‘Hybrid Recommendation Module’’

Cluster Computing (2024) 27:2845–2874 2857

123

done by capturing the user’s IP address and convert it into a

geographic location (latitude and longitude).

Historical data. Historical information is obtained using

a historical data database. Indeed, to allow the storage of

usage traces, we have developed and maintained an SQL

database. This database contains users’ demographic data,

users and services locations, and the users’ QoS prefer-

ences requested previously. The ‘‘Historical Data’’ data-

base is queried to insert (if a new user) or recover (if a user

has usage traces) data that can be used by our approach.

Such data can be represented by the list of services used

previously or the list of users who have used a given ser-

vice. The class diagram, represented by Fig. 7, contains the

list of classes that constitute the database of ‘‘Historical

Data’’.

• User: This class represents a user. In particular, it

contains the user’s personal information, such as name,

address, e-mail, and others.

• Service: This class contains the identifier of the cloud

service used by a user.

• Consumption: This class represents an n-ary associa-

tion between a user and a service. It stores the QoS

preferences required by a user for a cloud service and

the user’s location when using the service. We can have

several instances of the Consumption association-class

linking the same user to the same service.

• Location: This class describes information relating to

the geographic location of users and services (latitude

and longitude).

Fig. 6 Steps of the ‘‘Recovery of used services’’ phase

Fig. 7 Schema of the

‘‘Historical Data’’ database

2858 Cluster Computing (2024) 27:2845–2874

123

• Preference: This class represents the QoS preferences

claimed by users. Its properties are the QoS parameter

name and the rating assigned to this parameter.

Going back to the earlier example, the user’s profile is

created using the logged-in user’s explicit, implicit, and

historical data (See Fig. 8).

3.2.1.2 Similarity computation Once the data constituting

the user’s profile is identified, certain data is analyzed (QoS

preferences, location, and usage traces) to determine the

cluster to which the active user belongs. The objective is to

identify users who have the same data as the active user.

There are two types of users: those called new users and

those considered as existing users (they have usage traces

in the ‘‘Historical Data’’ database).

In the case of a new user without history, his QoS

preferences and his location are only used for the similarity

calculation (Eq. 1). This solves the new users’ cold start

problem. Thus, his similarities with user clusters built

previously (by querying the ‘‘Clustering Module’’) are

Fig. 8 An XML file describing the user’s profile

Cluster Computing (2024) 27:2845–2874 2859

123

calculated based on the Average-Linkage method (Eq. 9).

Then, the active user is assigned to the cluster with the

highest similarity. Finally, the step of ‘‘Services extrac-

tion’’ is triggered immediately after sending the concerned

cluster.

For existing users where all data is available, we check

if the active user still belongs to the same cluster. This can

be explained by changes that the user can make to their

QoS preferences and location. So, two cases arise. Either

the user has kept the same QoS preferences and the same

location and in this case, we directly find the cluster to

which he belongs. Either the user has made some changes

and in this case, he is considered a new user and we redo

the calculation of similarities with the user clusters.

Afterward, the user must be assigned to the nearest cluster.

As with a new user, the mission of the ‘‘Similarity com-

putation’’ step ends when it sends the cluster to which the

active user belongs to the next step ‘‘Services extraction’’.

3.2.1.3 Services extraction It is the last step of the

‘‘Recovery of used services’’ phase. Indeed, once we found

the user cluster to which the active user belongs, we can

extract the services used by these nearby users. The

extracted services represent the first list of cloud services in

our hybrid recommendation approach.

Table 5 displays the list of services that have been

checked out, using the prior scenario as an example. These

offerings are regarded as ‘‘Functional and non-functional

filtering’’ phase input data.

Algorithm 1 illustrates the steps for recovering the used

services. We note the set of cloud services issued from the

‘‘Recovery of used services’’ phase by

US ¼ fs1; s2; . . .; spg. This set is used to activate the second

phase of our hybrid recommendation process, namely

‘‘Functional and non-functional filtering’’ which we detail

in the next section.

3.2.2 Functional and non-functional filtering

The ‘‘Functional and non-functional filtering’’ phase is

triggered when the first list of cloud services (US) is

obtained. The second phase applies the knowledge-based

filtering technique to obtain a more concise set of services,

taking into account the requirements entered by the active

user via a graphical interface. Indeed, the user defines a set

of functional and non-functional constraints. These con-

straints are the type and category of cloud service to

indicate the functional needs of the user. Moreover, the

user defines the cloud characteristics (for example, Oper-

ating system, License type, Network performance, and

others) and payment mode (for example, On-demand,

Reserved, Spot, and others) to indicate their non-functional

needs. The ‘‘Functional and non-functional filtering’’ phase

is divided into two steps: ‘‘Functional filtering’’ and ‘‘Non-

functional filtering’’ (See Fig. 9). Therefore, this phase

completes the ‘‘Functional filtering’’ step by returning

services that satisfy the user’s functional requirements. The

services found are then filtered based on the user’s non-

Algorithm 1 Recovery of used services phase
Require: requestu : The request of the active user u, Cusers = {C1, C2, · · · , CNC

} :
The user clusters

Ensure: US : The first list of cloud services
1: US = ∅ // Initialize US to the empty set
2: u profile = getUserData(requestu) // Retrieve user data (explicit, implicit, and

historical if possible
3: if newUser(u) ‖ modifiedProfile(u,u profile) then // If user u is a new user or

he is an existing user who has changed their QoS preferences or location
4: Cu = {u} // Create a cluster for user u
5: Ck = argmax

Ci∈Cusers

SimAL(Cu, Ci) // Using Equation 9 that does call to

Equation 1, we identify the closest cluster Ck to the active user u
6: Ck = Ck ∪ Cu // Assign user u to the closest cluster Ck

7: else
8: Ck = getUserCluster(u) // Find the cluster to which the user u belongs
9: end if

// Retrieve the services that are used by the neighbors of the user u
10: for each user ui ∈ Ck do
11: L = getUsedServices(ui)
12: US = US ∪ L
13: end for
14: Return US

2860 Cluster Computing (2024) 27:2845–2874

123

functional demands in the ‘‘Non-functional filtering’’ step.

Finally, the second list of services can be obtained by

searching the ‘‘Cloud Service Registry’’ using SPARQL

queries. The ‘‘Cloud Service Registry’’ allows the storage

of the cloud service description model developed in

[38, 39]. As shown in Fig. 9, not only the services from the

first phase (‘‘Recovery of used services’’) are filtered, but

also the new services that are stored in the ‘‘Cloud Service

Registry’’ and which are never used. This essentially aims

at solving the new service’s cold start problem that is still

in a situation of neglect by the majority of works studied in

the literature.

In keeping with our example, Table 6 lists the services

that satisfy the functional (IaaS services that offer com-

puting power) and non-functional requirements of the

active user (Table 3). Although the Linode service hasn’t

been used, we see that it has been added to the list.

Algorithm 2 describes the principle of the ‘‘Functional

and non-functional filtering’’ phase. At this level, we have

a second, more precise list of cloud services (CS). This list

is used as input for the ‘‘Filtering based on QoS prefer-

ences’’ phase.

3.2.3 Filtering based on QoS preferences

The ‘‘Filtering based on QoS preferences’’ phase is acti-

vated when the second list of cloud services, CS, is

obtained. The steps of this phase is illustrated in Fig. 10.

This phase aims to recommend services based on the QoS

values and not on the user feedback. While user feedback is

valuable for improving the accuracy and relevance of

recommendations, it can also be exploited by malicious

actors to manipulate the system or deceive other users.

That is why, we have purposefully chosen to ignore user

feedback and instead focus on QoS values. This approach

offers several advantages, particularly in mitigating the risk

of misleading feedback and potential malicious attacks. By

eliminating user feedback, we reduce the possibility of

Algorithm 2 Functional and non-functional filtering phase
Require: US : The list of services issued from the first phase, u profile : The profile

of active user u
Ensure: CS : The second list of cloud services
1: CS = ∅ // initialize CS to the empty set
2: Connection to the ”Cloud Service Registry”
3: L1 = getServices(US,u profile morf,eveirteR//) US,

the services that meet functional (type and category) and non-functional (cloud
characteristics and payment mode) requirements of the user u

4: L2 = getUnusedServices(u profile) // Retrieve, from ”Cloud
Service Registry”, the services that are never used and which meet the functional
and non-functional requirements of the user u

5: CS = L1 ∪ L2
6: Return CS

Table 5 First list of cloud services

URL Type Category

https://www.rackspace.com/ IaaS Compute

https://www.dropbox.com/ SaaS Storage

https://www.redhat.com/en/technologies/cloud-computing/openshift PaaS Develop, deploy, and manage container-based applications

https://aws.amazon.com/ec2/ IaaS Compute

https://www.office.com/ SaaS Office apps

https://azure.microsoft.com/services/virtual-machines/ IaaS Compute

https://aws.amazon.com/dynamodb PaaS DataBase

https://aws.amazon.com/fr/elasticbeanstalk/ PaaS Deploying and scaling web applications

https://cloud.google.com/sql PaaS Database

Cluster Computing (2024) 27:2845–2874 2861

123

https://www.rackspace.com/
https://www.dropbox.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://aws.amazon.com/ec2/
https://www.office.com/
https://azure.microsoft.com/services/virtual-machines/
https://aws.amazon.com/dynamodb
https://aws.amazon.com/fr/elasticbeanstalk/
https://cloud.google.com/sql

Fig. 10 Steps of the ‘‘Filtering based on QoS preferences’’ phase

Table 6 Second list of cloud

services
Service URL Instances name

cs1 https://www.rackspace.com/ General1-8

cs2 https://www.linode.com/ Dedicated 4GB

cs3 https://azure.microsoft.com/services/virtual-machines/ D2 v3

cs4 https://aws.amazon.com/ec2/ m5ad.large

cs5 https://aws.amazon.com/ec2/ r5d.large

cs6 https://www.linode.com/ Shared 4GB

cs7 https://www.linode.com/ Dedicated 8GB

cs8 https://azure.microsoft.com/services/virtual-machines/ D2d v4

cs9 https://aws.amazon.com/ec2/ m5d.large

Fig. 9 Steps of the ‘‘Functional and non-functional filtering’’ phase

2862 Cluster Computing (2024) 27:2845–2874

123

https://www.rackspace.com/
https://www.linode.com/
https://azure.microsoft.com/services/virtual-machines/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.linode.com/
https://www.linode.com/
https://azure.microsoft.com/services/virtual-machines/
https://aws.amazon.com/ec2/

intentionally or unintentionally biased or false information

that could impact the accuracy of the recommendation

system. This proactive measure safeguards the integrity

and reliability of the system’s performance. Moreover, in

this phase, we use collaborative filtering techniques to infer

and estimate missing QoS values from the available data,

leading to more robust and accurate recommendations.

This research direction aligns with the goal of enhancing

the trustworthiness and security of recommendation sys-

tems, ensuring that users receive reliable and valuable

suggestions without compromising their privacy or falling

victim to potential attacks.

As a result, instead of preserving a user-service feedback

matrix, a new service-quality matrix is formed in the

‘‘Construction of the service-quality matrix’’ step (See

Fig. 10).

3.2.3.1 Construction of the service-quality matrix More

formally, given, CS ¼ fs1; s2; . . .; sng, the set of n cloud

services from the second phase (‘‘Functional and non-

functional filtering’’). Each service si is associated with a

line SQi ¼ fqi;1; qi;2; . . .; qi;mg in the service-quality matrix,

representing its QoS vector where m QoS parameters are

used. qi;j represents the jth QoS parameter value. Thus, the

service-quality matrix, associating QoS values to the ser-

vices, is in the following form:

Qn;m ¼

q1;1 q1;2 � � � q1;m

q2;1 q2;2 � � � q2;m

..

. ..
. . .

. ..
.

qn;1 qn;2 � � � qn;m

0

B
B
B
B
@

1

C
C
C
C
A

In our work, we focus our attention on response time (RT),

throughput (THP), and availability (AV) as QoS parameters.

In this case, we present below a numerical example of the

service-quality matrix that contains the eight cloud services

(cs1 to cs8) returned by the previous phase (Table 6).

This matrix, on the other hand, may be devoid of many

QoS values, resulting in a sparse service-quality matrix.

This is why The ‘‘Prediction of missing QoS values’’ is an

important step in the service recommendation process. This

step starts by looking for similar services using the service

clusters that have already been calculated. The set of

similar services is then utilized to predict the missing QoS

value. Finally, we used the ‘‘Assessment of the global

QoS’’ step to determine whether or not a cloud service

should be recommended. This step consists of calculating

the global QoS based on service QoS values and the user’s

QoS preferences by aggregating these two sets of infor-

mation. The result of this aggregation provides an overall

QoS score for each service. This score represents the global

QoS of the service from the perspective of a specific user,

considering both the technical performance of the service

and the user’s QoS preferences. To do that, first, all the

QoS parameters’ values must be normalized to the same

range. Then, the global QoS of the services is calculated.

Only the services that are compatible with the user’s QoS

preferences are kept and considered personalized services.

Consequently, in the cloud service recommendation

process, two key difficulties remain to be resolved: the

prediction of missing QoS values and the assessment of the

global QoS.

3.2.3.2 Prediction of missing QoS values A common

hypothesis of existing research is that information from dif-

ferent QoS parameters are assumed to be known and precise.

However, in reality, they lack many QoS values, thus forming

a sparse service-quality matrix. That is why the prediction of

QoS values is a significant step in recommending services.

Therefore, if a service has no value for a QoS parameter, we

will use similar services to predict the missing value. In this

way, we can solve the data sparsity problem.

Looking for similar services. We assume that we are

trying to predict the missing QoS value qi;j for the service

si. So, we start by determining the cluster to which the

service si belongs using the ‘‘Clustering Module’’. For a

good reason, the services that belong to the same location

and are used by the same users can have similar perfor-

mances [35–37]. In addition, our hybrid recommendation

process takes into account the independent services that do

not belong to any cluster. In this case, the similarities with

the service clusters built previously are calculated based on

the Average-Linkage method (Eq. 9). Then, the new ser-

vice is assigned to the cluster with the greatest similarity.

Let Ck be the selected cluster to which the service si
belongs, and CS is the set of n cloud services, then the list

of similar services used for predicting the missing QoS

value is the set SSðsiÞ ¼ Ck \ CS. However, if

Ck \ CS ¼ ;, in this case, we use all the services of the

cluster Ck (SSðsiÞ ¼ Ck).

Prediction score calculation. Now that we have the list

of similar services (SSðsiÞ), we can estimate the missing

Q9,3 =

RT THP AV⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

cs1 0.1 0.51 ?
cs2 0.18 ? 0.97
cs3 0.24 ? 0.99
cs4 ? 0.46 0.99
cs5 0.22 0.61 ?
cs6 ? 0.45 0.95
cs7 ? 0.17 0.85
cs8 0.34 ? 0.99
cs9 ? 0.62 0.98

Cluster Computing (2024) 27:2845–2874 2863

123

QoS value qi;j for the service si. The following formula

calculates the prediction score:

Predðsi; qi;jÞ ¼
P

sr2SSðsiÞ qr;j � Simservicesðsi; srÞ
P

sr2SSðsiÞ Simservicesðsi; srÞ
ð10Þ

where SSðsiÞ represents the set of similar services, sr is a

service that belongs to the same cluster as si, and qr;j rep-

resents the jth QoS value that corresponds to the service sr.

Based on the example of the service-quality matrix,

Q9;3, presented earlier, we calculate the missing QoS

parameter values using the Eq. 10, and the result is shown

in the matrix below.

Q9,3 =

RT THP AV⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

cs1 0.1 0.51 0.9
cs2 0.18 0.65 0.97
cs3 0.24 0.54 0.99
cs4 0.2 0.46 0.99
cs5 0.22 0.61 0.99
cs6 0.27 0.45 0.95
cs7 0.3 0.17 0.85
cs8 0.34 0.32 0.99
cs9 0.19 0.62 0.98

Another challenge arises that requires a global QoS

assessment to take into account the user’s QoS preferences.

3.2.3.3 Assessment of the global QoS A user’s QoS

preferences are certainly important to real service recom-

mendation scenarios, as they can be used to calculate the

global QoS of a cloud service in a more precise and per-

sonalized way. Thus, we used the global QoS as a basis to

judge whether a cloud service can be recommended to a

user. From the user point of view, the QoS parameters are

generally classified into two categories: Positive parame-

ters and Negative parameters. A QoS parameter is con-

sidered positive (respectively, negative) if the higher

(respectively, the lower) its value, the keener a user would

choose it such as Availability, Throughput (respectively,

Response time). After the normalization process, the QoS

values will be normalized on the same scale.

Normalization. The normalization step transforms each

value of the QoS parameter into a real number between 0

and 1. After the normalization process, a higher value for

any QoS parameter means the best quality. Calculating

normalization of QoS is given below:

Normalization for Positive QoS parameter

q0i;j ¼
qi;j � Qmin

j

Qmax
j � Qmin

j

if Qmax
j 6¼ Qmin

j

1 if Qmax
j ¼ Qmin

j ou qi;j ¼ Qmax
j

8
><

>:

ð11Þ

Normalization for Negative QoS parameter

q0i;j ¼
Qmax

j � qi;j

Qmax
j � Qmin

j

if Qmax
j 6¼ Qmin

j

1 if Qmax
j ¼ Qmin

j ou qi;j ¼ Qmin
j

8
><

>:

ð12Þ

where the maximum value Qmax
j and the minimum value

Qmin
j of the jth QoS parameter are defined respectively by:

Qmax
j ¼ maxðqi;jÞ

Qmin
j ¼ minðqi;jÞ

�

We note that Q0
n;m is the service-quality matrix after the

normalization process. It should also be noted that SQ0
i ¼

fq0i;1; q0i;2; . . .; q0i;mg is the QoS vector of the service si after

the normalization process, in which the QoS parameters

values, q0i;j, are in the interval [0,1].

Q0
n;m ¼

q01;1 q01;2 � � � q01;m
q02;1 q02;2 � � � q02;m

..

. ..
. . .

. ..
.

q0n;1 q0n;2 � � � q0n;m

0

B
B
B
B
B
@

1

C
C
C
C
C
A

Returning to our example, we present the service-quality

matrix after normalization, Q0
9;3, as follows.

Table 7 Calculation of the glo-

bal QoS for each cloud service

csi

Service Global QoS GQðcsiÞ

cs1 0.59

cs2 0.82

cs3 0.80

cs4 0.83

cs5 0.84

cs6 0.57

cs7 0.051

cs8 0.631

cs9 0.84

2864 Cluster Computing (2024) 27:2845–2874

123

Q′
9,3 =

RT THP AV⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

cs1 1 0.71 0.36
cs2 0.67 1 0.86
cs3 0.42 0.77 1
cs4 0.58 0.6 1
cs5 0.5 0.92 1
cs6 0.29 0.58 0.71
cs7 0.17 0 0
cs8 0 0.31 1
cs9 0.63 0.94 0.93

Calculation of the global QoS. The global QoS of ser-

vice is calculated with the same method used in [40, 41] in

order to retrieve a list of cloud services filtered according to

the user’s QoS preferences. As explained previously, QoS

preferences are entered by the user as ratings (for example,

High, Moderate, or Low), which are then normalized and

transformed into real values between 0 and 1. Thus, the

global QoS GQðsiÞ of the service si with m QoS parameters

can be calculated by Eq. 13:

GQðsiÞ ¼ SQ0
i � PT

u ¼
Xm

j¼1

wu;j � q0i;j ð13Þ

where SQ0
i ¼ fq0i;1; q0i;2; . . .; q0i;mg is the QoS vector of the

service si after normalization, Pu ¼ fwu;1;wu;2; . . .;wu;mg

represents the user’s QoS preferences knowing that wu;j � 0

denotes the importance of the jth QoS parameter regarding

the user u.

After calculating the global QoS for each cloud service

si 2 CS, some cloud services will be excluded due to their

inconsistency with the user’s QoS preferences. In other

words, only the services whose global QoS values are

greater than a defined threshold,�, are kept. Let S� ¼
fsijsi 2 CS and GQðsiÞ� �g is the set of candidate services

retrieved and sent to the ‘‘Ranking and Diversification

Module’’ that we detail in the next section.

Referring back to our example, Table 7 calculates the

global QoS of each cloud service csi; i 2 ½1; 9� based on the

QoS preferences specified by the active user, which are:

availability = high, response time = moderate, and

throughput = low (See Fig. 8).

Currently, we select a threshold � of 0.8 (the choice is

verified in Sect. 4.4). According to Table 7, the ‘‘Filtering

based on QoS preferences’’ phase returns five personalized

cloud services that meet the user’s needs.

3.3 Ranking and diversification module

Most of the studied approaches focus on recommending a

ranked list of cloud services to the user [23, 24, 27–32]. Our

objective in this work is not only the recommendation of a list

of ranked services but also diversified services. As shown in

Fig. 11 Phases of the ‘‘Ranking and Diversification Module’’

Cluster Computing (2024) 27:2845–2874 2865

123

Fig. 11, two phases are proposed in this module: ‘‘Ranking

of services’’ and ‘‘Diversification of services’’. The first

phase aims to return a list of services sorted in descending

order using a score function that considers both the service’s

price and credibility. The second phase returns a list of

diversified services. Finally, a final list of ranked and

diversified services is recommended to the active user.

3.3.1 Ranking of services

In this phase, we used the Weighted Sum Ranking Algo-

rithm [42]. This algorithm calculates an overall score for

each service si in the list of candidate services, S�, by

combining two criteria: service price and service credi-

bility, since they have a significant effect on the users’

satisfaction. Each is weighted according to its relative

importance. The service with the highest overall score is

ranked first, and so on.

3.3.1.1 Price normalization The first criterion is the

Price, it is the amount that a user must pay to perform the

service. We note the price of a service si by priceðsiÞ.
However, if the price of the service si is not between 0 and

1, the expected score may be outside the range of autho-

rized values. Therefore, we must first normalize the price

by transforming it into a value varying between 0 and 1.

Formally, the normalization of the price of a service si is

defined by Eq. 14.

PrcðsiÞ ¼ 1 � priceðsiÞ
arg max

sl2S�
priceðslÞ ð14Þ

where S� is the set of candidate services. The higher the

value PrcðsiÞ, the less the service is cheap. On the other

hand, the lower the value PrcðsiÞ, the more the service is

expensive.

3.3.1.2 Calculation of credibility The second criterion is

service Credibility, which uses QoS parameter monitoring

data to assess the service’s reliability. Indeed, the differ-

ence that may exist between the expected QoS and that

observable is an important factor for user satisfaction. In

this context, we propose an automatic calculation of the

credibility of each service si based on the expected values

of QoS parameters and the observable values of QoS

parameters. Equation 15 illustrates the formula used to

calculate the credibility of the service si.

CrdðsiÞ ¼
P

ur2SUðuÞ
Pm

j¼1 Tjður; siÞ
m � jSUðuÞj

ð15Þ

where SU(u) represents the set of users similar to the active

user u, m is the number of QoS parameters, and Tjður; siÞ is

the error rate of the jth QoS parameter of the service si

when it is used by the user ur. Since the QoS parameters

are divided into two categories (positive and negative), so

Tjður; siÞ is calculated using the following equation:

Tjður; siÞ ¼
1 �

qi;j � qobsi;j

qi;j

 !

if qi;j is Positive

1 �
qobsi;j � qi;j

qobsi;j

 !

if qi;j is Negative

8
>>>>><

>>>>>:

ð16Þ

where qi;j is the expected value of the jth QoS parameter of

the service si (SQi ¼ fqi;1; qi;2; . . .; qi;mg is the vector of

expected QoS of the service si) and qobsi;j is the observable

value of the jth QoS parameter of the service si
(SQobs

i ¼ fqobsi;1 ; q
obs
i;2 ; . . .; q

obs
i;mg is the vector of observable

QoS of the service si), knowing that qobsi;j ¼
P

ncq
qci;j

ncq
is the

average of the collected values qci;j of the jth QoS parameter

when using the service si by the user ur and ncq is the

number of collected values for each QoS parameter. The

collected QoS values, qci;j, are obtained from the ‘‘Moni-

toring Data’’ database.

After having defined the criteria contributing to the

calculation of the score function, we can compute the score

of each service. For a user u, the score of the service si is

defined as follows:

ScoreuðsiÞ ¼ wp � PrcðsiÞ þ wc � CrdðsiÞ ð17Þ

where PrcðsiÞ represents the formula that normalizes the

price of the service si and CrdðsiÞ represents the formula

that calculates the credibility of the service si. wp and wc

are the weights used to balance the results of these two

formulas. These weights are obtained according to the

ranking priority entered by the active user. The candidate

services are then ranked in descending order according to

their scores. We note the list of ranked services by Rs that

is used as input for the second phase of this module.

Continuing with the same example, we initially display

a list of cloud services with their scores ScoreuðcsiÞ listed

in descending order. The rankings are based on price

(with priority 1 given by the active user) and credibility

(with priority 2 given by the active user) of candidate

services (See Table 8).

3.3.2 Diversification of services

The objective of existing cloud service recommendation

approaches is to recommend the most relevant services to

the active user based on their requirements and ranked in

order of relevance. However, these approaches assume that

all returned services are independent that can lead to many

2866 Cluster Computing (2024) 27:2845–2874

123

similar cloud services provided by the same vendor

appearing in the list of recommendations. Therefore, the

user’s satisfaction level may decrease due to the redun-

dancy in the recommendations list. For example, if there

are a certain number of cloud services provided by the

same provider, functionally similar, match the user’s

requirements, and have a comparatively higher QoS than

services from other providers. These services are likely to

be at the top of the recommendation list. However, from

the user’s point of view, the recommended services are

redundant and the services of other providers should also

be included as much as possible in the list of recommen-

dations. To remove redundancy in the cloud service rec-

ommendation list and at the same time improve user

satisfaction, diversity should be considered in the recom-

mendation. Thus, diversification in recommendation sys-

tems has become one of the main research topics, not only

as a way to solve the over-specialization problem but also

as an approach to improve the quality of the user experi-

ence [43].

Indeed, recommending a set of services that are similar

is not as useful for the user, who prefers diversified rec-

ommendations [44]. The diversity of the recommendation

results makes it possible to best cover the user’s interests

and allows the discovery of new services. In this context,

our proposal takes the form of a service recommendation

approach based on diversity. This diversity improves user

satisfaction by offering him services in line with his

preferences, sufficiently diverse to arouse new interests in

him while limiting the excessive redundancy of

recommendations.

To better comprehend the diversification phase, let’s

assume that we will only return to the user the first two

services (See Table 9). We see that the cloud services

returned are offered by just one provider, Amazon EC2. On

the other hand, Table 10 shows that another provider

(Linode) has been added to the list due to the inclusion of

diversity.

In order to solve the problem of diversification of

results, we use the greedy algorithm [45]. As described in

Algorithm 3, the greedy algorithm takes as input the list of

ranked services Rs and the diversification threshold j. On

output, the algorithm produces a list of diversified services

Ds � Rs, with jDsj ¼ j. Such a list is initialized as an

empty set on line 2 and iteratively constructed on lines 3 to

7 of the Algorithm 3. In line 4, dðs;DsÞ measures the

distance between each service s 2 RsnDs not yet selected

and the services already in Ds, which are selected in the

previous iterations of the algorithm. The service with the

highest distance, s�, will be selected, then removed from Rs

and added to Ds on lines 5 and 6, respectively. Finally, on

line 8, the list of j diversified services, Ds, produced from

the initial list of ranked services, Rs, is returned.

The distance dðs;DsÞ between a service s 2 Rs n Ds and

the list of services Ds is calculated using the distance

metric presented in [46].

Table 8 List of ranked cloud

services
Service URL Instances name GQðcsiÞ ScoreuðcsiÞ

cs4 https://aws.amazon.com/ec2/ m5ad.large 0.83 0.48

cs9 https://aws.amazon.com/ec2/ m5d.large 0.84 0.41

cs2 https://www.linode.com/ Dedicated 4GB 0.82 0.36

cs5 https://aws.amazon.com/ec2/ r5d.large 0.84 0.29

cs3 https://azure.microsoft.com/services/virtual-machines/ D2 v3 0.80 0.21

Table 9 First two services

returned to the user
Service URL Instances name GQðcsiÞ ScoreuðcsiÞ

cs4 https://aws.amazon.com/ec2/ m5ad.large 0.83 0.48

cs9 https://aws.amazon.com/ec2/ m5d.large 0.84 0.41

Table 10 Diversified cloud

services returned to the user
Service URL Instances name GQðcsiÞ ScoreuðcsiÞ

cs4 https://aws.amazon.com/ec2/ m5ad.large 0.83 0.48

cs2 https://www.linode.com/ Dedicated 4GB 0.82 0.36

Cluster Computing (2024) 27:2845–2874 2867

123

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.linode.com/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/services/virtual-machines/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.linode.com/

dðs;DsÞ ¼
1 þ nmaxf � nf ðsÞ

1 þ nmaxf

ð18Þ

where nmaxf represents the maximum number of services

offered by the same provider in Ds and nf ðsÞ represents the

number of services offered by the service provider s in Ds.

Thus, the ‘‘Ranking and Diversification Module’’ offers

a final list of recommendations that is ranked and

diversified.

4 Evaluation

We describe in this section the results obtained to evaluate

our hybrid recommendation approach ‘‘HRPCS’’. This

evaluation aims to assess the relevance of the cloud ser-

vices recommended by our approach and their diversity. To

validate our approach, we collected information (type,

category, cloud characteristics, price, QoS, and others)

from real cloud services from the Internet and published it

in the ‘‘Cloud Service Registry’’. The services are used by

339 users whose information, such as the location, has been

collected from WS-DREAM,3 and we have saved them in

the ‘‘Historical Data’’ database.

4.1 Evaluation metric

We analyze the experimental data using Precision, Recall,

F-measure, and MAE in order to confirm the efficacy of our

proposal.

Let’s consider the following definitions: TP (True Pos-

itives) refers to the number of relevant items that are cor-

rectly recommended to the user. FP (False Positives) refers

to the number of irrelevant items that are mistakenly rec-

ommended to the user. FN (False Negatives) indicates the

number of relevant items that are not recommended to the

user.

4.1.1 Precision

Precision is a metric that measures the proportion of rele-

vant items (correct recommendations) among all the items

recommended to a user. Precision evaluates how many of

the recommended items are actually relevant to the user’s

preferences and is calculated as:

Precision ¼ TP

TPþ FP
ð19Þ

High precision indicates that the system is making accurate

and relevant recommendations.

4.1.2 Recall

Recall is another metric that measures the proportion of

relevant items that have been successfully recommended to

the user. It evaluates how well the system captures all

relevant items that a user might be interested and is cal-

culated as:

Recall ¼ TP

TPþ FN
ð20Þ

High recall indicates that the system is effective in rec-

ommending a large portion of relevant items.

4.1.3 F-measure

The F-measure is the harmonic mean of Precision and

Recall. It is used to provide a balanced evaluation of both

metrics. The F-measure is calculated as:

F � measure ¼ 2 � Precision � Recall
Precisionþ Recall

ð21Þ

In recommendation systems, the F-measure can be used to

assess the trade-off between making accurate and relevant

recommendations (precision) and capturing a large number

Algorithm 3 Diversification of recommendations using the greedy algorithm
Require: Rs : The list of ranked services, κ : The diversification threshold
Ensure: Ds : The list of diversified recommendations
1: Ds = ∅
2: while |Ds| < κ do
3: s∗ = argmax

s∈Rs\Ds

d(s, Ds) // Select the service with the highest distance

4: Rs = Rs \ {s∗} // Remove the selected service from the set Rs

5: Ds = Ds ∪ {s∗} // Add the selected service to the set Ds

6: end while
7: Return Ds

3 https://wsdream.github.io/

2868 Cluster Computing (2024) 27:2845–2874

123

https://wsdream.github.io/

Fig. 12 Values of F-Measure
with the variation of wUpref ,

wUloc and wUtrc

Fig. 13 Values of F-Measure
with the variation of wSloc and

wStrc

Fig. 14 ‘‘HRPCS’’ with and

without clustering

Cluster Computing (2024) 27:2845–2874 2869

123

of relevant items (recall). The F-measure ranges from 0 to

1, with higher values indicating better overall performance.

4.1.4 Mean absolute error (MAE)

MAE is used in recommendation systems to assess the

accuracy of rating predictions. It measures the average

absolute difference between the predicted QoS values and

the actual QoS values offered by providers. MAE is cal-

culated as:

MAE ¼
Pn

i¼1 j ^ys;i � ys;ij
n

ð22Þ

where ^ys;i is the predicted value by the recommendation

system for service s and ith QoS parameter, ys;i designates

the actual value of the ith QoS parameter given by serviec

s, and n is the total number of service-quality pairs (s, i) in

the test dataset.

A lower MAE indicates that the recommendations are

closer to the actual QoS values, representing a higher

accuracy in rating predictions.

4.2 Choice of weight values

The aim of this experiment is to determine the weights

values used in Eqs. 1 and 6. Indeed, the similarity between

users (Eq. 1) is calculated according to three similarity

aspects, namely the QoS preference similarity weighted

with wUpref , the Location similarity weighted with wUloc

and the Trace similarity weighted with wUtrc. In order to

choose the weights that give the best result, we use the

variation of wUpref , wUloc and wUtrc to determine the best

value of F-Measure. Figure 12 shows that the best value of

F-Measure is obtained with wUpref ¼ 0:5, wUloc ¼ 0:3 and

wUtrc ¼ 0:2.

Similarly, service similarity linearly combines two

aspects of similarity, namely Location similarity weighted

with wSloc and Trace similarity weighted with wStrc (Eq. 6).

From Fig. 13, we get the best result from F-Measure when

wSloc ¼ 0:7 and wStrc ¼ 0:3. This confirms the hypothesis

that services in the same location can have similar

performance.

4.3 Impact of clustering

To analyze the impact of clustering (Sect. 3.1) on the

performance of our ‘‘HRPCS’’ approach, we compare, in

this experiment, the recommendation time of ‘‘HRPCS’’

with and without clustering. We calculate the recommen-

dation time of our HRPCS approach based on the number

of users. The results show that when the number of users

decreases, the recommendation time of ‘‘HRPCS’’ with or

without clustering is negligible, but the time of recom-

mendation without clustering increases from 100 users (See

Fig. 14). Indeed, the similarities between users are calcu-

lated between all users and not within clusters. Therefore,

we note that the recommendation-based on clustering is

better than the recommendation without clustering, espe-

cially when the number of users increases.

4.4 Choice of global QoS threshold �

After calculating the global QoS for each cloud service

using Eq. 13, some services, whose global QoS is less than

�, will be excluded due to their inconsistency with the QoS

preferences requested by the user. In this experiment, we

study the impact of the threshold value, �, on the perfor-

mance of our hybrid recommendation approach,

‘‘HRPCS’’. To do this we use the Precision, the Recall and

the F-Measure under different threshold values to

Fig. 15 Determination of the

optimal value of the global QoS

threshold

2870 Cluster Computing (2024) 27:2845–2874

123

determine the optimal value. Indeed, based on Fig. 15, we

notice that when the threshold value is low

(0:5� �� 0:75), we get high Recall values and low Pre-

cision values, which means many returned services, but

most of these services are irrelevant. Likewise, when we

use a high threshold value (0:85� �� 0:95), we get low

Recall values and high Precision values, which means that

the number of returned services is small and most of these

services are relevant. Since we plan to recover as many

cloud services as possible, the optimal threshold � will be

selected as the value-maximizing both Precision and

Recall. Thus, according to Fig. 15, the optimal global QoS

threshold is � ¼ 0:8 when the Precision, the Recall and the

F- Measure are respectively equal to 77:8%, 93:3% and

84:8%.

4.5 Comparison with other recommendation
approaches

In these experiments, we compare our approach ‘‘HRPCS’’

to CR-FFCA [28], RecINF [47], CFR [29] and SaaSRec

[24, 34] in terms of MAE (Mean Absolute Error) values

and recommendation time. We believe that the recom-

mendation approaches employed in our evaluation repre-

sent the best choices for the comparison as they closely

align with our proposal. Moreover, the selected works

encompass a diverse range of methodologies and algo-

rithms for service recommendation, including fuzzy formal

concept analysis, interval numbers of four parameters,

collaborative filtering, and the AHC technique associated

with the user similarity measure. Comparing different

Fig. 16 Recommendation

quality evaluation

Fig. 17 Recommendation time

evaluation

Cluster Computing (2024) 27:2845–2874 2871

123

approaches allows us to identify strengths and weaknesses,

leading to a more comprehensive understanding of the

problem space. Finally, since the selected works have

publicly available results and datasets, it becomes easier to

compare them with our proposed approach.

Since the service-quality matrix is generally sparse, we

vary the density of the service-quality matrix from 10% to

40% with a step value of 10% to study the prediction

accuracy of our approach under different matrix density

conditions. According to the results shown in Fig. 16, the

MAE values of all approaches decrease with increasing

matrix density, indicating that the prediction accuracy can

be improved by providing more information on QoS. We

note that our approach achieves the smaller MAE values

indicating better prediction accuracy. This result occurs

because our approach is protected against malicious user

attack by neglecting user feedback and focusing on pre-

dicting missing QoS values taking into account information

from similar services to make the predictions. Concretely,

compared to the SaaSRec approach, our approach achieves

an average improvement of 14.2%. The MAE values of

CFR are the highest because this approach uses unreliable

data provided by untrusted users to make predictions. The

other approaches obtained better accuracy because they

reduced the impact of data provided by untrusted users.

The experimental results indicate that the treatment of

unreliable data is essential for a robust prediction approach.

The recommendation times for the different approaches

are shown in Fig. 17. We notice that the recommendation

time of all approaches increases when the users’ number

increases. The CR-FFCA approach requires considerable

recommendation time to recommend services. The CFR

approach takes less time than CR-FFCA. The recommen-

dation time spent by SaaSRec is close to that of our

approach. Indeed, SaaSRec groups similar users into

communities, and similarities are calculated only within

these communities. The recommendation time for RecINF

is acceptable when the users’ number is small. However, it

quickly becomes high when the users’ number exceeds

100. This is because the RecINF approach is not based on

clustering. In general, the recommendation time of our

approach is faster than that of the four recommendation

approaches. This observation indicates that by combining

user and service clustering with recommendation algo-

rithms, our approach can achieve better recommendation

time.

4.6 Complexity analysis

Computational complexity is a term used in computer

science to describe the amount of resources, specifically

time, required to run an algorithm. In ‘‘HRPCS’’, the

evolutionary search largely determines the computational

complexity. The ‘‘Clustering Module’’ is the first stage of

its evolutionary search. The AHC method, on which this

module is based, has an Oðn3Þ complexity. The three

phases of the ‘‘Hybrid Recommendation Module’’ are

mostly responsible for determining its complexity.

‘‘Recovery of used services’’, ‘‘Functional and non-func-

tional filtering’’, and ‘‘Filtering based on QoS preferences’’

have complexity factors of O(n), O(n), and Oðn2Þ,
respectively. Consequently, the overall computational

complexity of the ‘‘Hybrid Recommendation Module’’ is

Oðn2Þ. The third stage of the evolutionary search is the

‘‘Ranking and Diversification Module’’. The complexity of

the algorithms for service ranking and service diversifica-

tion is O(n) and O(n), respectively. As a result, the com-

plexity of the third stage is O(n).

5 Conclusion

In this paper, we have presented an approach to personal-

ized cloud service recommendation. This approach meets a

principal objective that is to improve user satisfaction by

offering cloud services in line with their requirements but

sufficiently diversified to arouse new interests in them. We

presented our hybrid recommendation architecture that

delivers a personalized list of services based on the user’s

needs (functional and non-functional) and the user’s QoS

preferences. Our hybrid approach consists of three rec-

ommendation techniques, namely demographic, knowl-

edge-based, and collaborative, each of these techniques is

activated at a specific recommendation phase. The results

of the hybrid recommendation are then ranked according to

a score function integrating two criteria, namely the price

and the credibility of the services. Finally, to offer to the

user a list of recommendations without redundancy, our

approach that is based on diversity builds a diversified list

of cloud services.

In the future, we plan to add a monitoring module to

provide the QoS parameters values in real-time. Indeed, by

using a monitoring module, the approach can detect vio-

lations and issue triggers to take the necessary measures to

execute the corresponding SLA compensation clauses.

Additionally, the suggested approach can be modified for

use at run-time, for instance, when a selected cloud service

needs to be changed because it is no longer functioning

properly or when a new, more effective service becomes

available.

2872 Cluster Computing (2024) 27:2845–2874

123

Author contributions All authors reviewed the manuscript.

Declarations

Competing interests The authors declare no competing interests.

References

1. Mell, P., Grance, T., et al.: The NIST Definition of Cloud

Computing. National Institute of Standards and Technology,

Gaithersburg (2011)

2. Nagarajan, R., Selvamuthukumaran, S., Thirunavukarasu, R.: A

fuzzy logic based trust evaluation model for the selection of cloud

services. In: International Conference on Computer Communi-

cation and Informatics (ICCCI), pp. 1–5 (2017). IEEE

3. Esposito, C., Ficco, M., Palmieri, F., Castiglione, A.: Smart cloud

storage service selection based on fuzzy logic, theory of evidence

and game theory. IEEE Trans. Comput. 65(8), 2348–2362 (2015)

4. Nabli, H., Ben Djemaa, R., Ben Amor, I.A.: Efficient cloud

service discovery approach based on lda topic modeling. J. Syst.

Softw. 146, 233–248 (2018)

5. Ben Djemaa, R., Nabli, H., Ben Amor, I.A.: Enhanced semantic

similarity measure based on two-level retrieval model. Concurr.

Comput. 31(15), 5135 (2019)

6. Abbas, G., Mehmood, A., Lloret, J., Raza, M.S., Ibrahim, M.:

Fipa-based reference architecture for efficient discovery and

selection of appropriate cloud service using cloud ontology. Int.

J. Commun Syst 33(14), 4504 (2020)

7. Hajlaoui, J.E., Omri, M.N., Benslimane, D.: A QoS-aware

approach for discovering and selecting configurable iaas cloud

services. Comput. Syst. Sci. Eng. 32(4), 460–467 (2017)

8. Eisa, M., Younas, M., Basu, K., Awan, I.: Modelling and simu-

lation of QoS-aware service selection in cloud computing. Simul.

Model. Pract. Theory 103, 102108 (2020)

9. Youssef, A.E.: An integrated mcdm approach for cloud service selec-

tion based on topsis and bwm. IEEE Access 8, 71851–71865 (2020)

10. Sindhu, K., Guruprasad, H.S.: Computational offloading frame-

work using caching and cloud service selection in mobile cloud

computing. Int. J. Adv. Intell. Paradig. 21(3–4), 189–210 (2022)

11. Tiwari, R.K., Kumar, R.: G-topsis: a cloud service selection

framework using gaussian topsis for rank reversal problem.

J. Supercomput. 77, 523–562 (2021)

12. Kumar, R.R., Mishra, S., Kumar, C.: Prioritizing the solution of

cloud service selection using integrated mcdm methods under

fuzzy environment. J. Supercomput. 73, 4652–4682 (2017)

13. Gabi, D., Ismail, A.S., Zainal, A., Zakaria, Z., Abraham, A.,

Dankolo, N.M.: Cloud customers service selection scheme based

on improved conventional cat swarm optimization. Neural

Comput. Appl. 32, 14817–14838 (2020)

14. Mohamed, A.M., Abdelsalam, H.M.: A multicriteria optimization

model for cloud service provider selection in multicloud envi-

ronments. Software 50(6), 925–947 (2020)

15. Nabli, H., Ben Djemaa, R., Ben Amor, I.A.: Description, dis-

covery, and recommendation of cloud services: a survey. SOCA

16(3), 147–166 (2022)

16. Lops, P., De Gemmis, M., Semeraro, G.: Content-Based Rec-

ommender Systems: State of the Art and Trends. Recommender

Systems Handbook, pp. 73–105 (2011)

17. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collabora-

tive filtering recommender systems. In: The Adaptive Web:

Methods and Strategies of Web Personalization, pp. 291–324

(2007). Springer

18. Yao, L., Sheng, Q.Z., Ngu, A.H., Yu, J., Segev, A.: Unified

collaborative and content-based web service recommendation.

IEEE Trans. Serv. Comput. 8(3), 453–466 (2014)

19. Gao, X., Yu, C.: A fuzzy-based recommendation system for cloud

accounting service. In: 13th International Conference on Service

Systems and Service Management (ICSSSM), pp. 1–6 (2016).

IEEE

20. Jain, G., Mahara, T., Sharma, S.C., Sangaiah, A.K.: A cognitive

similarity-based measure to enhance the performance of collab-

orative filtering-based recommendation system. IEEE Trans.

Comput. Soc. Syst. 9(6), 1785–1793 (2022)

21. Najafabadi, M.K., Mohamed, A., Onn, C.W.: An impact of time

and item influencer in collaborative filtering recommendations

using graph-based model. Inf. Process. Manag. 56(3), 526–540

(2019)

22. Burke, R., O’Mahony, M.P., Hurley, N.J.: Robust collaborative

recommendation. In: Recommender Systems Handbook,

pp. 961–995 (2015). Springer

23. Soltani, S., Elgazzar, K., Martin, P.: Quaram service recom-

mender: a platform for iaas service selection. In: 2016 IEEE/

ACM 9th International Conference on Utility and Cloud Com-

puting (UCC), pp. 422–425 (2016). IEEE

24. Afify, Y.M., Moawad, I.F., Badr, N.L., Tolba, M.F.: A person-

alized recommender system for saas services. Concurr. Comput.

29(4), 3877 (2017)

25. Balaji, S., Rajkumar, K.: A personalized cloud service recom-

mendation system using collaborative filtering. Int. J. Pure Appl.

Math. 119(12), 14173–14180 (2018)

26. Ding, S., Wang, Z., Wu, D., Olson, D.L.: Utilizing customer

satisfaction in ranking prediction for personalized cloud service

selection. Decis. Support Syst. 93, 1–10 (2017)

27. Ma, H., Hu, Z., Li, K., Zhu, H.: Variation-aware cloud service

selection via collaborative QoS prediction. IEEE Trans. Serv.

Comput. (2019). https://doi.org/10.1109/TSC.2019.2895784

28. Mezni, H., Abdeljaoued, T.: A cloud services recommendation

system based on fuzzy formal concept analysis. Data Knowl.

Eng. 116, 100–123 (2018)

29. Wang, F.F., Chen, F.Z., Li, M.Q.: A collaborative filtering

method for cloud service recommendation via exploring usage

history. In: Proceeding of the 24th International Conference on

Industrial Engineering and Engineering Management 2018,

pp. 716–725 (2019). Springer

30. Djiroun, R., Guessoum, M.A., Boukhalfa, K., Benkhelifa, E.: A

novel cloud services recommendation system based on automatic

learning techniques. In: International Conference on New Trends

in Computing Sciences (ICTCS), pp. 42–49 (2017). IEEE

31. Zheng, X., Da Xu, L., Chai, S.: QoS recommendation in cloud

services. IEEE Access 5, 5171–5177 (2017)

32. Nagarajan, R., Thirunavukarasu, R.: A service context-aware

QoS prediction and recommendation of cloud infrastructure ser-

vices. Arab. J. Sci. Eng. 45(4), 2929–2943 (2020)

33. Ngaffo, A.N., El Ayeb, W., Choukair, Z.: Service recommenda-

tion driven by a matrix factorization model and time series

forecasting. Appl. Intell. 1–16 (2021)

34. Afify, Y.M., Moawad, I.F., Badr, N.L., Tolba, M.F.: Enhanced

similarity measure for personalized cloud services recommen-

dation. Concurr. Comput 29(8), 4020 (2017)

35. Tang, M., Jiang, Y., Liu, J., Liu, X.: Location-aware collaborative

filtering for QoS-based service recommendation. In: 2012 IEEE

19th International Conference on Web Services, pp. 202–209

(2012). IEEE

36. Lo, W., Yin, J., Li, Y., Wu, Z.: Efficient web service QoS pre-

diction using local neighborhood matrix factorization. Eng. Appl.

Artif. Intell. 38, 14–23 (2015)

37. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: a collaborative

filtering based web service recommender system. In: 2009 IEEE

Cluster Computing (2024) 27:2845–2874 2873

123

https://doi.org/10.1109/TSC.2019.2895784

International Conference on Web Services, pp. 437–444 (2009).

IEEE

38. Nabli, H., Ben Djemaa, R., Ben Amor, I.A.: Linked usdl exten-

sion for cloud services description. In: International Conference

on Web Engineering, pp. 359–373 (2019). Springer

39. Nabli, H., Ben Djemaa, R., Ben Amor, I.A.: Cloud services

description ontology used for service selection. Service Oriented

Computing and Applications, 1–14 (2021)

40. Sha, L., Shaozhong, G., Xin, C., Mingjing, L.: A QoS based web

service selection model. In: 2009 International Forum on Infor-

mation Technology and Applications, vol. 3, pp. 353–356 (2009).

IEEE

41. Kang, G., Tang, M., Liu, J., Liu, X., Cao, B.: Diversifying web

service recommendation results via exploring service usage his-

tory. IEEE Trans. Serv. Comput. 9(4), 566–579 (2015)

42. Alves, M.J., Costa, J.P.: Graphical exploration of the weight

space in three-objective mixed integer linear programs. Eur.

J. Oper. Res. 248(1), 72–83 (2016)

43. Kunaver, M., Požrl, T.: Diversity in recommender systems-a

survey. Knowl.-Based Syst. 123, 154–162 (2017)

44. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.:

Improving recommendation lists through topic diversification. In:

Proceedings of the 14th International Conference on World Wide

Web, pp. 22–32 (2005)

45. Santos, R.L., Macdonald, C., Ounis, I.: Search result diversifi-

cation. Found. Trends Inf. Retr. 9(1), 1–90 (2015)

46. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender

Systems Handbook. Springer, Berlin (2010)

47. Ma, H., Hu, Z.: Recommend trustworthy services using interval

numbers of four parameters via cloud model for potential users.

Front. Comput. Sci. 9(6), 887–903 (2015)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Hajer Nabli proudly earned her

Master’s degree in Computer

Networks from the Higher

Institute of Computer Science

and Communication Technolo-

gies of Hammam Sousse, part of

Sousse University, Tunisia, in

2015. This educational mile-

stone laid the foundation for her

future pursuits and ignited her

fascination with cutting-edge

technologies. Building upon her

master’s studies, she embarked

on a remarkable journey that

culminated in the acquisition of

a Ph.D. in Computer Science from the esteemed Faculty of

Economics and Management of Sfax at Sfax University, Tunisia. In

2021, she successfully defended her doctoral thesis, a testament to

years of relentless research, innovation, and scholarly dedication.

Throughout her academic endeavors, she has had the privilege of

being an active member of the MIRACL laboratory at Sfax Univer-

sity. Her research areas span a diverse range of topics, including

Cloud Computing, Cloud Service Recommendation, the Internet of

Things (IoT), Artificial Intelligence (AI), Machine Learning, and

Blockchain.

Raoudha Ben Djemaa received

her Master degree in Informa-

tion system and New Technol-

ogy from Sfax University,

Tunisia, in 2002. She obtained

her PhD in computer science

from Sfax University, Tunisia,

in Avril 2009. She is actually an

Associate Professor in the

Higher Institute of Computer

Science and Communication

Technologies of Hammam

Sousse in Tunisia (ISITCom).

She is also a member of the

laboratory MIRACL (Multime-

dia, Information Systems and Advanced Computing) of Sfax

University, Tunisia. Her research interests include software engi-

neering, methodologies and approaches for adaptive web applications,

Development and approaches for adaptive web services and finally

IHM adaptation. She has participated in several National and Inter-

national conferences.

Ikram Amous Ben Amor re-

ceived her Master’s degree in

Data Processing from Paul

Sabatier University (Toulouse

III, France), France, in 1999.

She obtained her Ph.D. in com-

puter science from the Paul

Sabatier University, in Decem-

ber 2002. She is currently a

Professor at the National School

of Electronics and Telecommu-

nications of Sfax in Tunisia

(ENET’Com). She is also a

member of MIRACL laboratory

of Sfax University, Tunisia. Her

research interests include social network and user profile analysis,

adaptive semi-structured document, etc. She has participated in sev-

eral program committees of national and international conferences.

2874 Cluster Computing (2024) 27:2845–2874

123

	Improved clustering-based hybrid recommendation system to offer personalized cloud services
	Abstract
	Introduction
	Related works
	Cloud service recommendation approaches
	Discussion

	Proposed approach
	Clustering module
	Calculation of similarity measures
	Similarity between users
	Similarity between services

	Generation of clusters

	Hybrid recommendation module
	Recovery of used services
	Data retrieval
	Similarity computation
	Services extraction

	Functional and non-functional filtering
	Filtering based on QoS preferences
	Construction of the service-quality matrix
	Prediction of missing QoS values
	Assessment of the global QoS

	Ranking and diversification module
	Ranking of services
	Price normalization
	Calculation of credibility

	Diversification of services

	Evaluation
	Evaluation metric
	Precision
	Recall
	F-measure
	Mean absolute error (MAE)

	Choice of weight values
	Impact of clustering
	Choice of global QoS threshold \varvec\epsilon
	Comparison with other recommendation approaches
	Complexity analysis

	Conclusion
	Author contributions
	References

