
Cybersecurity for autonomous vehicles against malware attacks
in smart-cities

Sana Aurangzeb1,2 • Muhammad Aleem2
• Muhammad Taimoor Khan3 • Haris Anwar2 •

Muhammad Shaoor Siddique2

Received: 21 November 2022 / Revised: 19 July 2023 / Accepted: 27 July 2023 / Published online: 3 October 2023
� The Author(s) 2023

Abstract
Smart Autonomous Vehicles (AVSs) are networks of Cyber-Physical Systems (CPSs) in which they wirelessly commu-

nicate with other CPSs sub-systems (e.g., smart -vehicles and smart-devices) to efficiently and securely plan safe travel.

Due to unreliable wireless communication among them, such vehicles are an easy target of malware attacks that may

compromise vehicles’ autonomy, increase inter-vehicle communication latency, and drain vehicles’ power. Such com-

promises may result in traffic congestion, threaten the safety of passengers, and can result in financial loss. Therefore, real-

time detection of such attacks is key to the safe smart transportation and Intelligent Transport Systems (ITSs). Current

approaches either employ static analysis or dynamic analysis techniques to detect such attacks. However, these approaches

may not detect malware in real-time because of zero-day attacks and huge computational resources. Therefore, we

introduce a hybrid approach that combines the strength of both analyses to efficiently detect malware for the privacy of

smart-cities.

Keywords Malware detection � Security � Smart cities � Autonomous systems

1 Introduction

Recently Autonomous Vehicular Systems (AVSs) have

seen a gigantic growth in a wide variety of aspects with the

development of smart cities to build the Intelligent

Transport Systems (ITSs). For instance, the dramatic use of

embedded systems and wireless communication (e.g., 4 G

LTE and 5 G) in modern internet of vehicles which ulti-

mately improve users safety and comfort. However,

growing interest in the development of Connected Auton-

omous Vehicles (CAVs) and ITSs has introduced new

security challenges and vulnerabilities in AVSs that has a

great impact on the smart environments for smart-cities.

However, classical computer security solutions are not

applicable in automotive industry standards for in-vehicle,

vehicle-to-vehicle (V2V) communication and vehicle to

everything (V2X) communications mainly because of real-

time performance requirements, constrained computational

resources, and differences among heterogeneous networks

and their configurations [1].

Various recent reports have sketched attempts where

cybercriminals have successfully demonstrated practical

but remote attacks to key functions of automotive vehicles

(as depicted in Fig. 1) either through V2V or V2X that

include disconnecting the engine and the brakes [2–5].

CryptoLocker, WannaCry, and Petya attacks are

prominent one of the most widely used attacks against

& Muhammad Aleem

m.aleem@nu.edu.pk

& Muhammad Taimoor Khan

m.khan@greenwich.ac.uk

Sana Aurangzeb

sanaaurangzeb@numl.edu.pk

Haris Anwar

harisanwar64@gmail.com

Muhammad Shaoor Siddique

i212806@nu.edu.pk

1 Department of Computer Science, National University of

Modern Languages, Islamabad, Pakistan

2 National University of Computer and Emerging Sciences,

Islamabad, Pakistan

3 School of Computing and Mathematical Sciences, University

of Greenwich, London, UK

123

Cluster Computing (2024) 27:3363–3378
https://doi.org/10.1007/s10586-023-04114-7(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04114-7&domain=pdf
https://doi.org/10.1007/s10586-023-04114-7

sensitive IT systems [6]. In the past, ransomware attacks

used to affect various entities such as personal computers,

public or private organizations, health sectors, mobile

phones, and other similar devices. However, the focus of

ransomware attacks has now shifted towards smart vehicles

and smart cities, posing a significant threat to both human

lives and financial stability [7, 8]. Moreover, there have

been attempts where researchers have shown that malware

is one of the keys and emerging security threats that can be

launched by exploiting the wireless communication system

of AVSs [9, 10]. For instance, by exploiting known vul-

nerabilities in the design and implementation of onboard

communication systems, embedded software, and applica-

tion software [11–13] as depicted in Table 1. Moreover, a

report in [2, 14, 15] has shown that an AVSs is not just a

simple machine by hijacking the steering and brakes of a

Ford Escape and a Toyota Prius. However, on the other

hand, it is of utmost critical to understand that AVSs are

now a network of computers that can be hacked by prac-

ticing classical cyber threat mechanisms. For instance,

during the year 2015, approx. 1.5 million vehicles were

subject to a recall by Daimler Chrysler mainly because

cybercriminals could remotely take the control of a jeep’s

digital system over the Internet [3]. In another report [4], a

team of cybercriminals remotely hijacked a Tesla Model S

from a distance of approx. a dozen miles. In a more recent

attempt [5], authors have identified 14 vulnerabilities in the

infotainment system in several of BMW’s series. More-

over, another Tesla S and Tesla X was targeted by cyber-

criminals in November 2019 via the Wi-Fi attack vector

[6]. All of the above-mentioned incidents show that the

security of AVSs is integral to their core functions in order

to make smart transportation secure, therefore, it must be

handled to protect the vehicles enabling them to operate

safely.

The key to the afore-mentioned success of remote

attacks on AVSs is information sharing by the vehicles

over a wireless medium which increases the susceptibility

of the vehicles to different security and malware attacks.

Consequently, data exchange including input and output

data as well as protecting Electronic Control Unit (ECUs)

inside the AVSs are among the most significant security

issues for the intelligent vehicles [10, 19]. Specifically, the

most damaging cyber threats, are emerging as the vehicles

connect to the Internet, provide onboard Wi-Fi hotspot

services, communicate with other vehicles and ITSs

infrastructures, and support advanced applications such as

over-the-air (OTA) ECU firmware update [9]. As discussed

above, many modern attacks do not require physical access

to a vehicle instead can now be carried out remotely over

wireless by exploiting communication vulnerabilities

among vehicles and other connected network services. This

allows attackers to compromise more vehicles with relative

ease whereas later a compromised vehicle can also be used

to attack other vehicles.

Considering the performance requirements of AVSs, it

is important to detect a malware in real-time to timely

protect any physical and financial damage and loss of

human lives [20, 21]. Current approaches to detect such

malware either employ static analysis or dynamic analysis

techniques [22, 23]. Static analysis technique include:

Fig. 1 Typical V2V, V2X cyber threat scenario in smart autonomous

vehicles

Table 1 Various attacks to CAVs

Attack target Attack description

Vehicle’s actual behavioral

disruption

Locking the in-vehicle radio so that the users cannot turn it on [16]

Driver distraction Misusing vehicle features to distract the driver by arbitrarily turning on the in-vehicle audio and tuning its

volume [14, 16]

Locking vehicle Locking vehicle features resulting in jackware [17]

Externally connected devices Modifying files on the vehicle and on users brought-in devices connected to the vehicle [14]

Computational resources of the

vehicle

Consuming computational resources (such as memory space and CPU cycles) to disrupt vehicle actual

operations [15]

Sensitive and private data Stealing private and sensitive data [18]

Passengers safety Threatening passengers lives by disabling vehicle safety functions

CAVs Using the compromised vehicle to send misleading, false, and bogus data to CAVs

3364 Cluster Computing (2024) 27:3363–3378

123

signature-based detection techniques that uses predefined

patterns or signatures to identify known malware based on

specific characteristics or sequences of code [24–28],

heuristic analysis involves using predefined rules or algo-

rithms to identify potentially malicious code by analyzing

its structure, behavior, or attributes [26, 29–31]. Code

structure analysis focuses on analyzing the structure and

syntax of the code to identify suspicious or malicious

patterns that may indicate the presence of malware

[32–35], String analysis involves analyzing the strings or

text within the code to detect hardcoded URLs, IP

addresses, encryption keys, or other indicators of malicious

behavior [36–40], Metadata analysis involves examining

the file’s metadata, such as file size, creation date, or digital

signatures, to identify anomalies or signs of tampering

[40–43], Control flow analysis technique analyzes the flow

of instructions within the code to detect any unusual or

malicious behavior, such as code obfuscation, anti-analysis

techniques, or hidden functionality [44–47] whereas

Sandbox analysis involves running the code or file in a

controlled environment (sandbox) to observe its behavior,

monitor system interactions, and detect any malicious

activities or suspicious network communications

[39, 41, 48, 49]. Just like static analysis, the most common

dynamic analysis technique includes: Behavior analysis

that involves monitoring the runtime behavior of the code

or file to identify any suspicious or malicious activities,

such as unauthorized system modifications, file system

changes, or network communications [41, 44, 50], API

monitoring technique focuses on monitoring the interac-

tions between the code and Application Programming

Interfaces (APIs) to detect any abnormal or malicious API

calls that may indicate malicious intent[48, 51, 52]. Net-

work traffic analysis involves capturing and analyzing the

network traffic generated by the code or file during exe-

cution, looking for communication with known malicious

servers, unusual data transfers, or suspicious network

behavior [53–57]. Dynamic code analysis involves ana-

lyzing the code’s behavior during runtime, including

function calls, memory operations, and system calls, to

identify any malicious or suspicious activities [41], System

call monitoring focuses on monitoring the system calls

made by the code or file to the operating system, detecting

any unusual or unauthorized system calls that may indicate

malicious behavior [58–60], Sandboxing involves execut-

ing the code or file in a controlled virtual environment

(sandbox) to observe its behavior while isolating it from

the host system, thus preventing potential harm to the

system [39, 41, 48, 49], Emulation and virtualization

emulates or virtualizes the target system environment to

execute the code or file, allowing for the analysis of its

behavior and interactions without directly affecting the

host system [61–64]. These techniques, often used in

combination, help in identifying and classifying malware,

enhancing the security of systems and networks. The for-

mer techniques are good at detecting active malware, i.e.,

the malware that is directly targeting some unauthorized

resource or feature of the vehicle, however, such tech-

niques fail to detect any passive malware that exploits

some system vulnerability through monitoring run-time

data of the vehicle. The latter techniques are more robust

and rigorous as they can detect any variant of malware

through observing run-time behavior of systems [65] but

such approaches typically require more computational

resources which is not the case in autonomous vehicles. As

autonomous vehicles may require less computational

resources compared to other applications in a way that they

have specialized hardware such as Application-Specific

Integrated Circuits (ASICs) or Graphics Processing Units

(GPUs), designed to efficiently handle the specific com-

putations required for autonomous tasks. Furthermore, with

the development of advanced algorithms and machine

learning techniques specific to autonomous vehicle have

enabled more efficient processing of data. Lastly, many

autonomous vehicle systems leverage cloud computing

capabilities to offload intensive computational tasks. By

utilizing remote servers with powerful computing resour-

ces, the computational load on the vehicle itself can be

reduced. This approach enables the vehicle to rely on the

cloud for resource-demanding tasks like high-definition

mapping, complex route planning, or deep learning-based

processing such as malware detection [66–68]. Therefore,

the proposed hybrid approach (utilizing both static and

dynamic techniques) can help in detecting malware by

leveraging the advantages of both approaches in a single

model. Alternatively, some approaches attempted to install

vehicle gateways that allow only authorised communica-

tion to the vehicles and introduced vehicle Intrusion

Detection Systems (IDSs) to detect abnormal behaviors in

the Controller Area Network (CAN) [69]. However, it is

difficult for a gateway or IDS to block these actions in

advance, as most malware and adware are behavior-based.

Therefore, to detect unknown malware threats, it is vital to

introduce a methodology that can detect suspicious

behaviors and analyze anomalous indicators rigorously

(i.e., negligible false alarms) and efficiently (i.e., in real-

time).

The rest of the paper is structured as follows: Sect. 2

provides background of autonomous vehicles, while

Sect. 3 sketches state of the art about rigorous malware

detection techniques. Section 4 explains our malware

detection methodology, while Sect. 5 presents experimen-

tal setup, experiment results and critical discussion.

Finally, we conclude in Sect. 6.

Cluster Computing (2024) 27:3363–3378 3365

123

2 Background and motivation

Modern smart AVSs will strikingly change the worldwide

transport industry and smart environments. AVSs where

improving the standard of smart living and road safety also

require to wirelessly communicate with other vehicles and

devices to efficiently and securely plan safe travel. The

number of traffic accidents are reducing day by day. In

Addition, people with disabilities can significantly taking

advantage from smart cities and ITSs technology prevent-

ing injuries and deaths in combat [70]. However, due to

unreliable wireless communication among them, such

vehicles are an easy target of malware attacks that may

compromise vehicles’ autonomy, increase inter-vehicle

communication latency, and drain vehicles’ power. Such

compromises may result in traffic congestion, threaten the

safety of passengers, and can result in financial loss.

Therefore, real-time detection of such attacks is key to the

safe smart transportation and ITSs. With the increasing

trend of Internet of Things (IoT), ITSs aims to improve the

efficiency and safety of AVSsnetwork [71]. ITSs in soci-

eties that are converting into smart cities becomes more

vulnerable to cyber-threat and cyber-terrorism [72]. Dif-

ferent types of ITSs are vulnerable to attacks. The success

of remote attacks on autonomous vehicles is information

sharing by the vehicles over a wireless medium which

increases the susceptibility of the vehicles to different

security and malicious attacks. Consequently, data

exchange including input and output data as well as pro-

tecting ECUs inside the AVSs are among the most sig-

nificant security issues for the intelligent vehicles. ECUs

are the embedded system that monitors electrical systems

or subsystems in a conventional vehicle for instance the

energy conversion, the air conditioner, vehicle speed and

the warnings on the instrument panel [73].

An AV is not just a massive car with four wheel but is

made up of networked embedded computers that are

responsible for performing different tasks in a smart and

timely manner. Therefore, an AV is a diverse and complex

environment that comprises of several types of Operating

System (OS) installed among different vehicles as shown in

Fig. 2. Although ECU act as a brain for AVSs and is

considered as minicomputers yet they vary in size, purpose

and the OS they run. Thus, we can divide ECUs into two

categories: managed by realtime operating systems

(RTOS) and general purpose operating system (GPOS).

Other than that, Robotic operating system (ROS) is also

used. ROS is not an operating system but is an open-source

robotics framework having collection of software for robot

software development. Tesla, a leading automotive car

vehicle is a new energy innovation owns a self-developed

OS [74] is now testing Windows OS [75] and Tesla patent

seems to be working on windows operating system [76]

Numerous research endeavors focus on utilizing

Machine Learning (ML) techniques to identify malware

that exploits the dynamic or runtime aspects of running

applications. These efforts employ classification methods,

considering diverse features like Windows API calls,

Registry Key Operations, File System Operations, File

Extension-based operations, Directory Operations, Drop-

ped Files, and Strings to classify malware. In addition to

static and dynamic approaches, contemporary practices

involve utilizing Hardware Performance Counters, which

accurately reflect the execution behavior of the application,

to measure the performance of the software under inves-

tigation. [77]. However, none of the existing dynamic and

ML malware detection techniques use hardware perfor-

mance counter for malware classification specifically in

autonomous vehicles. Although, however, [78] employs a

dynamic approach to classify malware based on their

hardware performance counters and [79] have used hard-

ware performance counter for ransomware classification on

Windows platform. There exists no such work that con-

siders all these important aspects in a single methodology.

We believe that collective consideration of all of the above

stated aspects can significantly improve malware detection

rates in AVSs. Therefore, this study encompasses efficient

malware detection mechanisms in terms of a hybrid

approach that utilizes static as well as dynamic analysis

focuses on the use of hardware performance counters to

analyze the runtime behavior to detect malware. Moreover,

this work shows how accurately hardware performance

counters are able to classify malware in AVSs.

3 Related work

Numerous static and dynamic analysis techniques have

been presented by the scholarly community to detect and

classify malware. Both of the techniques, static and

dynamic have their own benefits and limitations. This

section depicts state-of-the-art techniques that pertain to

malware analysis.

In [80] authors have proposed the analysis of malware

on X86-based IoT devices in an autonomous driving
Fig. 2 Types of operating systems (OS) used in smart autonomous

vehicles

3366 Cluster Computing (2024) 27:3363–3378

123

approach features based on static analysis and using

machine learning to solve problems of resource overhead

for dynamic analysis. Paper [81], authors have used

Bayesian Network (BN) model to analyse cyber risk in

AVSs by introducing the variables and causal relationships

derived from the Common Vulnerability Scoring

Scheme (CVSS). The model is then applied on the GPS

system of the connected AVSs without cyptographic

authentication.

Beside other malware attacks, ransomware attacks are

emerging and their analysis are used widely by the schol-

arly community now-a-days. In [82], the authors presented

a case study of CryptoLuck Ransomware to highlight the

importance of behavioral-based Ransomware detection. In

[83], authors statically analyzed process monitoring on file

events, processor usage, and I/O rates. In [84], authors

suggested that static detection technique as used by [85],

can help in evading anti-virus (AV). In [86], authors per-

formed ransomware behavioral analysis on windows plat-

form of 14 strains of ransomware. They observed the

individual behavioral pattern of ransomware. In [87],

authors presented an automated detection and analysis of

ransomware to monitor dynamic behavior by generating

API calls and Control Flow Graph (CFG). Authors in [88],

developed a dynamic analysis system (UNVEIL), designed

specifically for the detection of ransomware by automati-

cally generating an artificial user environment.

There are several other research efforts which follow

Machine Learning (ML) based approaches to detect mal-

ware exploiting the dynamic or runtime features of exe-

cuting applications. Another proposed study of dynamic

analysis using machine learning through monitoring file

system activity of windows platform was conducted by

[84]. They used classification technique by considering a

wide range of features such as Windows API calls, Reg-

istry Key Operations, File System Operations, file opera-

tions performed per File Extension, Directory Operations,

Dropped Files, and Strings to classify malware.

Other than static, dynamic and ML approaches, Hard-

ware performance counters (represent the true execution

behaviors of the application) are typically being employed

nowadays to measure the performance of the under

investigation software [77]. However, none of the existing

dynamic and ML malware detection techniques use hard-

ware performance counter for malware classification

specifically in autonomous vehicles. Although, however,

[78] employs a dynamic approach to classify malware

based on their hardware performance counters and [79]

have used hardware performance counter for ransomware

classification on Windows platform.

It has been observed from the literature work that most

of the techniques [84] can either only observe System/API

calls [86, 87, 89], file operations [88], processor usage [83],

or registry activities [90]. Some of the studies are based on

static analysis [82] whereas other proposed techniques

mainly focus on dynamic analysis for classification. A lot

of solutions have been developed against malware and

ransomware as well as ransomware classification among

families that significantly improve the user’s security. A

few researches [91–94] have shown that there is a lack of

behavioral analysis that use hybrid technique to classify

malware in AVSs using API Calls, File operations, Reg-

istry keys, and Hardware performance counter based fea-

tures (i.e., processor usage, cache-misses, memory usage,

page faults, instructions, branches, etc.). So far, hardware-

based features have been analyzed on malware and non-

malware apps, but have not been considered for AVSs.

There exists no such work that considers all these impor-

tant aspects in a single methodology. We believe that

collective consideration of all of the above-stated aspects

can significantly improve malware detection rates in AVSs.

Therefore, this study encompasses efficient malware

detection mechanisms in terms of a hybrid approach that

utilizes static as well as dynamic analysis focuses on the

use of hardware performance counters to analyze the run-

time behavior to detect malware. Moreover, this work

shows how accurately hardware performance counters are

able to classify malware in AVSs.

4 Methodology

Autonomous Vehicles (AVSs) have become a core con-

stituent of the smart transportation system [95]. The com-

putation power of AVSs gradually increasing and a large

amount of information exchange is required with smart

components of the transportation system. Information

exchange with malicious counterparts in the smart systems

could produce catastrophic results such as a change of

drive-plan, sudden halt, and ignore obstacles on the roads.

Generally, malware exploits different vulnerabilities of the

computer system (i.e., hardware platform, operating sys-

tem, and application software). However, considering the

drastic implications of the malicious activity in AVSs, we

should formulate a holistic approach considering handling

precision, vehicle efficiency, and digital security.

With the static-analysis, malware detection can take

place efficiently by merely matching the known application

features such as signatures (before application execution)

requiring few computational resources. Therefore, static

analysis provides early detection to mitigate malicious

activities during autonomous vehicle operation. However,

the static analysis does not encompass the zero-day attacks

and obfuscated (hidden or purposefully crafted features

such as like packed or compressed programs or indirect

addressing [96]) malicious applications. To address these

Cluster Computing (2024) 27:3363–3378 3367

123

issues, a dynamic analysis based mechanism can be

employed that exploits the run-time behavior (including

system hardware, operating systems interactions, etc.) of

the executing applications to classify and detect malicious

behavior. However, the proficient detection capabilities of

the dynamic analysis come along with the high-resource

consumption (CPU, memory, energy-cost, etc.). Addition-

ally, in the AVSs context, it would be too risky to rely

directly on the dynamic analysis because of potentially

high false-positive detection as compared to static analysis.

Therefore, this study encompasses efficient malware

detection mechanisms in terms of a hybrid approach that

utilizes static as well as dynamic analysis. Traditionally,

the proposed models can be built using basic hybrid

mechanisms, i.e., (i) a single hybrid approach where dis-

tinctive aspects related to both pre-/in-execution of the

applications are obtained for analysis and detection. For the

obligatory requirements such as efficient and thorough

detection of malware with reduced false-positive rate, the

hybrid-approach is appropriate and recommended.

The proposed security modules for AVSs i.e., the hybrid

mechanisms Combined Hybrid Analyzer (CHA) is shown

in Fig. 3. CHA adheres to a factual technical concept of

using a hybridization concept for bringing together

heterogeneous parameters (in terms of the execution

requirements i.e., pre-/in-execution based parameter

extraction). As discussed above, the utilization of this

model has certain operational consequences that hinder its

practical use.

Let’s discuss the architecture of these models in detail.

The proposed CHA model considers input applications and

data to employ both pre-/in-execution feature extraction

simultaneously. The specific features extracted can be

divided into two categories, i.e., static-analysis based fea-

tures (which can be extracted without application execu-

tion), and dynamic features are extracted during the

execution of the application within an operating system.

The static features include embedded command-strings and

the usage of operating system manipulating libraries. The

dynamic features (extracted during the execution) are the

activity logs related to system-wide low-level configuration

manipulations, invoking system call interface to gain

privileged access, and manipulation of the operating sys-

tem resources, file-system related activities, and hardware

execution profiles (i.e., low-level hardware performance

counters). After performing static and dynamic analysis of

malware, the information extracted is in the form of raw

data. This data can be converted into CSV (Comma-

Separated Values) format using appropriate data processing

techniques (such as parsing and extraction, data transfor-

mation, delimiter handling etc.,). We have extracted the

relevant information that involves identifying specific

patterns or structures within the data and extracting the

desired fields or attributes. This can be done using spe-

cialized parsing libraries that can assist in this process.

Furthermore, that data is normalized by handling missing

values. Later, the file was converted in CSV format. Var-

ious programming languages, libraries, or data processing

software like Python with pandas, R, or Excel can be uti-

lized to facilitate the conversion of raw data into CSV

format, where each attribute or feature corresponds to a

column, and each record represents a row in the CSV file.

These features are then combined in feature vectors to be

used for both training and validation purposes. The

Machine-Learning (ML) model training and validation

strategies along with feature selection mechanisms are

discussed in Sects. 4.2, 4.3 and 4.4. The machine learning

model i.e., J48, Naive Bayes (NB), Gradient Boosting,

XGBoost and Random Forest (RF) are used to classifying

the applications into malware and non-malware classes.

The reason of using these machine learning classifiers are

that their results depict are better and efficient in terms of

time and computational complexity. Moreover, classifiers

like J48, which are more suitable for categorical and mixed

data, Naı̈ve Bayes which is often considered one of the

fastest classifiers due to its simplicity and computational

efficiency. It typically has faster training and prediction

times compared to more complex models like random

forests or gradient boosting. However, classifiers like

Gradient Boosting and XGBoost are generally more com-

putationally intensive and can take more time to train and

make predictions, especially when dealing with AVSs

which require quick response. These algorithms involve

building an ensemble of weak models iteratively, which

can be time-consuming compared to simpler algorithms

like Naive Bayes, J48. Random Forest and Gradient

Boosting (including XGBoost) are often recognized for

their high accuracy in classification tasks like malware

classification. For IoT related malware detectionFig. 3 Combined hybrid analyzer (CHA)

3368 Cluster Computing (2024) 27:3363–3378

123

algorithms complexity should be lesser as IoTs have bat-

tery consumption problems.

For the initial investigation and proof of the concept, we

have used a dataset of executable applications MS win-

dows platform. We have chosen Windows based dataset for

several reasons, for instance, most of the major initiatives

in automotive vehicle industry use Windows based services

(see Table 2) for their live communication, which is cer-

tainly a key source of threat to such services and eventually

to the vehicles [106, 107]. Furthermore, as reported

in [108], Microsoft services and platforms are helping

automakers to create smart connected car solutions that

seamlessly address their customers’ unique needs, com-

petitively differentiate their products and generate new and

sustainable revenue streams. The Microsoft services do not

only offer the right tools, but also allows them to keep their

data, has a secure and compliant cloud platform, and

operates at a truly global scale (given that most automotive

brands operate in many countries). Importantly, 85% of

Fortune 500 companies already rely on Microsoft’s cloud

for the afore-mentioned reasons. In principle, using such

platforms, automakers and suppliers can benefit from the

billions of dollars that Microsoft has already invested in the

cloud services. For instance, Azure already offers more

than 200 services in 38 worldwide regions, with robust

measures for security and the global compliance and pri-

vacy regulations that are required to support connected

cars, letting automakers focus on innovation rather than

building out their own cloud-based infrastructure. Conse-

quently, Microsoft aspires to empower automakers in their

goals for fully autonomous driving, with elegant machine

learning and artificial intelligence capabilities, as well as

advanced mapping services. For instance, more recently

Microsoft has partnered with TomTom, HERE and Esri, to

create more intelligent location-based services across

Microsoft [101].

Furthermore, pseudo-code for the proposed security

modules for AVSs i.e., the hybrid mechanisms CHA is

shown in Algorithm 1. Table 3 represents the notations

used in pseudo-code for CHA.

4.1 Dataset

We have used a dataset of 1000 malware applications of

different families (e.g., crypto, petya, locker) downloaded

from Virusshare.com repository [109]. Similarly, 1000

non-malware applications (freely available apps) are

included resulting in a dataset of 2000 applications. We use

a three-step ML-based mechanism: (i) feature extraction,

(ii) feature selection, and (ii) application classification

4.2 Feature extraction

The choice of a good feature set is the initial phase of any

data mining approach. A few of the extracted features are

inspired by previous work [79, 84], however, more features

have also been added in this research i.e., hardware per-

formance counters [78, 79], DLLs [110], and strings

[18, 84, 111]. We have extracted a total of 1713 features

and 10,985 features during static and dynamic analysis,

respectively. Cuckoo Sandbox is selected in a Linux plat-

form for automated dynamic analysis of Windows

Table 2 Microsoft windows based services for automotive vehicles

Automotive

brand

Goal Windows based services

Porsche

Holding

Mobile-first and Virtual Workplace Office 365 [97, 98] Teams [99] Microsoft’s Cloud

Services [100]

Brimborg Online Stream-based Services for Rentals Microsoft Dynamic 365

Mercedes-

Benz

Connected Cars Platform Microsoft’s Cloud-based containerized platform [100]

Azure Monitor [101]

Moovit Real-time in-city and out-city transits Mobility-as-a-service Azure Maps [102]

Daimler Detroit Connect platform Virtual Technician Remote Updates

Remote Analytics

Azure [103–105] Microsoft’s cloud computing service

[104]

Cluster Computing (2024) 27:3363–3378 3369

123

executable malware. It automatically runs and analyzes

files and collect comprehensive analysis results that outline

what the malware does while running inside an isolated

operating system. All processes and file changes are

tracked and logged. Generated logs and behavioral analysis

reports are recorded by Cuckoo. For validation, we have

used the K-fold (k=10) cross-validation mechanism and

compare the malware detection accuracy of different

classifiers to make sure that the dataset is used uniformly

without any biasness. This results in unbiased training and

testing cycles producing the results on which we could

conclude with confidence. For each cycle of the training/

testing and validation, a 70% training and 20% testing and

10% validation partition was employed. A list of features

extracted are shown in Tables 6 and 7 as sketched in

‘‘Appendix’’.

4.3 Feature selection

The reduced number of features increases ML model per-

formance with minor or negligible effects on classification

decisions. Moreover, feature selection minimizes the over-

fitting factors and the time required for training/testing

increases the accuracy to generate simple interpreted

models. For this, we employ the information gain criterion

[112]. A specific method called infogainAttributeEval from

Weka is applied for attribute selection. The value of

information gain determines how important a given attri-

bute of the feature vectors is by assigning weights to

emphasise the effectiveness of the features. Therefore, the

top 25 features out of 1713 selected after applying the

feature selection infogain algorithm for static analysis, and

top 47 features out of 10,985 were selected for dynamic

analysis. Figure 4 depicts the top 10 static features for-

mulated using the Info-gain method where X-Axis shows

the rank of the feature.

4.4 Model selection and training

Considering the nature of the employed dataset (i.e., cat-

egorical and mixed data), this study has been conducted

using the three well-known ML classifiers: Naive Bayes

(NB) [113] which is often considered one of the fastest

classifiers due to its simplicity and computational effi-

ciency. It typically has faster training and prediction times

compared to other complex models, Random Forest (RF)

[114, 115], Decision Tree (J48) [116, 117] which are more

suitable for categorical and mixed data Gradient Boosting

and XGBoost. The area under the ROC Curve [118] is a

common mechanism to calculate the performance of a

certain ML classifier. A higher value (i.e., near to 1)

reflects the better classification capability of the ML clas-

sifier. Table 4 shows the ROC values for the CHA. As

shown in Table 4, the RF and XGBoost stands prominent

as compared to other ML classifiers that have attained area

under the ROC curve up to 0.9816 for both classes (i.e.,

malware and non-malware). This indicates that the RF and

XGBoost are the best performing classification model as

compared to the other two models.

4.5 Zero-day attack detection

Zero-day attacks refer to vulnerabilities or exploits that are

unknown or not yet discovered by security researchers.

Table 3 Abbreviations used in

pseudo-code for CHA
i Application

f1 Feature set 1 against static analysis

f2 Feature set 2 against dynamic analysis

m Machine learning algorithms (RF, J48, Naı̈ve Bayes, Gradient Boosting, XGBoost)

Fig. 4 Top-10 ranked static features

Table 4 Combined hierarchy analyzer (CHA) values of class 1 and

class 0 for Area under ROC

Classifiers Class 1 Class 0

Naive Bayes 0.7801 0.782

J48 0.934 0.934

Random Forest 0.9873 0.9873

Gradient Boosting 0.951 0.951

XGBoost 0.9812 0.9812

3370 Cluster Computing (2024) 27:3363–3378

123

Hybrid methods for detecting zero-day attacks typically

combine multiple techniques and approaches to enhance

detection capabilities. While these methods cannot directly

detect zero-day attacks that are unknown to the model, our

proposed model can still provide some level of protection

through the following mechanisms:

• Behavior-based Detection: The proposed hybrid

method employ behavior-based detection techniques.

This method focus on monitoring the behavior of

software or systems to identify anomalies or suspicious

activities by establishing a baseline of normal behavior,

any deviations from the expected patterns can trigger

alerts or raise suspicions, even for zero-day attacks.

Behavioral analysis can help detect novel attack

patterns or malicious activities that were not explicitly

known to the model.

• Anomaly Detection: The proposed hybrid approach can

incorporate anomaly detection techniques to identify

deviations from normal behavior or expected patterns.

By modeling the normal behavior of the system or

application, any unusual activities can be flagged as

potential threats. Anomaly detection can be effective in

detecting previously unseen attack vectors or exploits,

including zero-day attacks.

It’s important to note that while hybrid methods provide

enhanced detection capabilities, they cannot guarantee

complete protection against all zero-day attacks. Zero-day

attacks, by nature, exploit unknown vulnerabilities, and it

takes time for security solutions to catch up. Nevertheless,

employing a hybrid approach with multiple detection

techniques significantly improves the overall security

posture and helps mitigate the risks associated with zero-

day attacks.

5 Experimental setup, results and discussion

We have performed experiments on a stand-alone machine

having specifications shown in Table 5.

For performance evaluation of selected classifiers, we

employed the following metrics.

5.1 Accuracy

We have used accuracy to evaluate the results. The accu-

racy is the fraction of the total number of correctly clas-

sified applications as malware or non-malware. Where TP,

TN, FP, and FN stands for True Positive, True Negative,

False Positive, and False Negative respectively.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð1Þ

5.2 Precision

Precision denotes the proportion of the predicted correctly

classified applications to the total of all applications that

are correctly real positives.

Precision ¼ TP

TPþ FP
ð2Þ

5.3 Recall

Recall is the fraction of the actual apps that are correctly

classifies to the total number of the apps that are classified

correctly or incorrectly.

Recall ¼ TP

TPþ FN
ð3Þ

5.4 F-measure

F-measure is the harmonic mean of precision and recall. F

measure represents the value that tells how much the model

is capable of making fine distinctions.

FMeasure ¼ 2� Precision � Recall
Precisionþ Recall

ð4Þ

Table 5 System configuration

CPU Intel core 2 duo 2.13GHz

System Type 32 bit

OS Ubuntu 14.04 LTS

Data Mining Tool WEKA 3.8

Platform Windows XP and Windows 7

RAM 3GB

Sandbox Cuckoo sandbox

Virtual Machine VMWare

Precision Recall F-Measure
RF 0.96 0.96 0.96
NB 0.734 0.686 0.669
J48 0.909 0.908 0.908
Gradient Bo 0.87 0.867 0.86
XGBoost 0.967 0.967 0.967

RF NB J48 Gradient BoXGBoost
Precision 0.96 0.734 0.909 0.87 0.967
Recall 0.96 0.686 0.908 0.867 0.967

RF NB J48 Gradient
Boos�ng XGBoost

Precision 0.96 0.734 0.909 0.87 0.967
Recall 0.96 0.686 0.908 0.867 0.967
F-Measure 0.96 0.669 0.908 0.86 0.967

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
s

Classifiers

Precision Recall F-Measure

Fig. 5 Precision, recall and F-measure of CHA

Cluster Computing (2024) 27:3363–3378 3371

123

Table 6 List of extracted features (1)

Features Parameters Classes Description

Windows API

Calls

API:VirtualProtectEx

API:GetVolumeNameForVolumeMountPointW

API:HttpOpenRequestA

API:HttpSendRequestA

API:timeGetTime

API:DeleteUrlCacheEntryW

API:GetDiskFreeSpaceExW

API:MessageBoxTimeoutA

API:CreateDirectoryW

API:InternetConnectW

API:listen

API:RegDeleteValueW

API:gethostbyname

API:CryptDecodeObjectEx

API:GetCursorPos

API:GetFileSize

API:FindWindowA

API:socket

API:LdrGetProcedureAddress

API:CryptGenKey

API:__anomaly

API:NtQueryDirectoryFile

API:InternetCloseHandle

API:WSASend

API:GetFileType

API:SearchPathW

API:RegQueryValueExW

API:SendNotifyMessageA

API:RegOpenKeyExA

API:CryptHashData

API:GetSystemMetrics

API:GetDiskFreeSpaceW

API:NtClose

API:FindWindowW

. . .

Memory usage

System services

HTTP information

Internet handle

Process Handling

disk R/W information

System configuration settings

Registry Key information and

security

Sending messages to windows

File Path/File size information

Socket Connection information

Anomaly Detector API

Cryptography API: Next Generation

Folder Paths

Thread execution

Certificate store, e.g.,

file-based or memory-based stores

Addresses of exported functions

Virtual addresses

Pointer resources

System time information

To analyze the traces

of invocations of native

functions

File operations FILES:DELETED:C:\WINDOWS\

FILES:DELETED:C:\� \Temp\is-B4RA1.tmp\

FILES:DELETED:C:\WINDOWS\system32\

FILES:OPENED:C:\WINDOWS\AppPatch\

FILES:OPENED:C:\SwSetup\SP63752\

FILES:READ:C:\� \Start Menu\

FILES:READ:?\PIPE\

FILES:READ:C:\� \Application Data\

FILES:WRITTEN:C:\Program

Files\� \plugins\

FILES:WRITTEN:C:\� \Application Data\

FILES:WRITTEN:C:\

. . .

File Read Operations

File Write Operations

File Delete Operations

To analyze read, write, open

and delete operations

3372 Cluster Computing (2024) 27:3363–3378

123

Table 7 List of extracted features (2)

Features Parameters Classes Description

Registry Operations REG:DELETED:HKEY_CLASSES_ROOT\

REG:DELETED:HKEY_CURRENT_USER\� \–

O &O DiskImage Professional\

REG:DELETED:HKEY_LOCAL_MACHINE SOFTWARE\–

Classes\.tar\

REG:OPENED:HKEY_LOCAL_MACHINE\� Installations\

REG:OPENED:HKEY_CURRENT_USER\� \Disketch\

REG:OPENED:HKEY_LOCAL_MACHINE\� \–

Products 669F5A8189FAB114E826BA92DFB67647\

REG:READ:HKEY_LOCAL_MACHINE\� \Abiosdsk\

REG:READ:HKEY_LOCAL_MACHINE\� \–

Installed Components\-

{630b1da0-b465-11d1-9948-00c04f98bbc9}\

REG:READ:HKEY_LOCAL_MACHINE\� \ql1080\

REG:WRITTEN:HKEY_LOCAL_MACHINE\� \–

CLSID {4C6EEFFD-CFF7-4D35-A8F5-52BAA2CC07FF}\

REG:WRITTEN:HKEY_LOCAL_MACHINE\� \Boot file system\

REG:WRITTEN:HKEY_LOCAL_MACHINE\� \–

{B3D7DD5D-510B-477C-9521-2BCBCC91762C} \ProxyStubClsid\

REG:WRITTEN:HKEY_LOCAL_MACHINE\� \–

{58DA8D8F-9D6A-101B-AFC0-4210102A8DA7} \ProgID\

REG:WRITTEN:HKEY_LOCAL_MACHINE\� \–

shellex PropertySheetHandlers\–

{B41DB860-8EE4-11D2-9906-E49FADC173CA}\

. . .

Registry Read Operations

Registry Write

Operations

Registry Delete

Operations

To analyze read,

write, open

and delete

operations

Embedded Strings STR:setp32se.dll

STR:SRP-3DES-EDE-CBC-SHA

STR:No action was taken as BitLocker Drive Encryption is in raw access

mode

STR:Warning: Deleting a key that isn’t empty: ‘‘%\s’’

STR:Click Uninstall to remove TrueCrypt from this system.

STR:2http:

crt.comodoca.com/COMODORSACodeSigningCA.crt0$

STR:CRYPTO: PrivateKey: Failed to import key

. . .

Crypto functions

Imported libraries

Network Information

Strings

To analyze files

having ASCII and

Unicode strings

in binary data

for quick

overview of

malware capacity

and ability

Dynamic Link Libraries Kernel32.dll

Advapi32.dll

mscoree.dll

ADVAPI32.dll

WSock32.dll

. . .

Network communication

Operating system or

execution environment

To analyze

required library

functions

Hardware Performance

Counters

Clock cycles

Cache hits

Cache misses

Branch instructions

Branch misses

Retired instructions

CPUs utilized

Task clock

Context switching

CPU migrations

Page faults

. . .

To analyze

the true execution

behaviours of

applications

Cluster Computing (2024) 27:3363–3378 3373

123

For evaluation, accuracy-related results are reported which

can be defined as the fraction of the total number of cor-

rectly classified applications as malware or non-malware

[119]. Figure 5 shows the accuracy results for the proposed

model CHA for all three ML classifiers. It is evident from

the results that the CHA have shown excellent accuracy

indicating that a good-percentage of known malware can

be identified using time-/cost-efficient and safer mecha-

nism as compared to risking autonomous vehicle opera-

tions with dynamic analysis for all the potential

applications.

Based on the values of the True Positive and True

Negative, we have calculated precision, recall, and

F-measure for CHA approach. The results of the precision

and recall of classification using all the five classifiers of

the CHA approach are explained in Fig. 5. Results depict

that RF and XGBoost generated 32.7% and 5.5%

improvement in precision as compared to NB and J48. The

values of precision for RF, NB, Gradient Boosting,

XGBoost and J48 are 0.96, 0.723, 0.87, 0.96 and 0.91,

respectively. RF and XGBoost attained the highest values

of precision and recall.

6 Conclusion and future directions

With the advancement in technology and use of smart

connected vehicles, we can find examples where cyber-

criminals have already proven their intent by exploiting

several vulnerabilities in the smart transportation systems

of automotive ecosystem. we expect to see dramatic

increase of cyber attacks against them. The vulnerabilities

in the software of AVSs may prove far more dangerous

than malware that may appear in personal computers and

mobile devices. Malicious applications harm the lives of

drivers, passengers as people who are not using AVSs. In

this paper, we performed a comprehensive analysis of

cybersecurity threat of malware targeting smart trans-

portation systems of connected and autonomous vehicles

by proposing hybrid model CHA. The experimentation

discussed in the article provides a proof of concept for

securing AVSs in general and automotive CPSs in partic-

ular, that is adaptive, lightweight, and promises accurate

results.

For the future work, we plan to develop future of

intelligent transportation system in smart cities that can

efficiently detect high priority attacks based on IDS and

evaluate their effectiveness using simulations. In addition,

network feature analysis can be considered in future along

with the communication protocols, such as encryption and

authentication mechanisms that ensures that the vehicle’s

communication channels are protected from unauthorized

access or tampering. Moreover, Implementing intrusion

detection systems (IDS) within the vehicle’s network

infrastructure can help identify any unauthorized or mali-

cious attempts to access or manipulate the vehicle’s sys-

tems. IDS can detect patterns of known attacks or

suspicious network traffic. Lastly, for future work, our

proposed hybrid method can incorporate machine learning

algorithms that adapt and learn from new data and

emerging threats. By continuously updating the model with

new information and training data, the system can improve

its detection capabilities over time and become more adept

at identifying previously unknown attack patterns, includ-

ing zero-day attacks.

Appendix

List of extracted features

In this section we provide two tables that sketch the list of

extracted features used in our malware analysis/experiment.

Author contributions SA, HA and MSS conducted experiments, SA,

MTK and MA wrote the main manuscript text, SA and MA prepared

Figs. 1, 2 and 3. All authors reviewed the manuscript

Funding This research was partially supported by the Higher Edu-

cation Commission of Pakistan under the NRPU-2021 project"Cy-

berMuhafiz" grant no. 15279.

Data availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Cheah, M., Shaikh, S.A., Bryans, J., Wooderson, P.: Building an

automotive security assurance case using systematic security

evaluations. Comput. Secur. 77, 360–379 (2018)

3374 Cluster Computing (2024) 27:3363–3378

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2. Luo, Q., Liu, J.: Wireless telematics systems in emerging

intelligent and connected vehicles: threats and solutions. IEEE

Wirel. Commun. 25(6), 113–119 (2018)

3. Canis, B.: Issues in autonomous vehicle testing and deployment.

Tech. Rep, Congressional Research Service (2019)

4. Solon, O.: Team of hackers take remote control of Tesla Model

S from 12 miles away. The Guardian 20 (2016)

5. Miller, C., Valasek, C.: Remote exploitation of an unaltered

passenger vehicle. Black Hat USA 2015(S91), 1–91 (2015)

6. Malik, S., Sun, W.: Analysis and simulation of cyber attacks

against connected and autonomous vehicles. In: 2020 interna-

tional conference on connected and autonomous driving

(MetroCAD), pp. 62–70. IEEE (2020)

7. Al-Hawawreh,M., Sitnikova, E.,Aboutorab,N.:Asynchronous peer-

to-peer federated capability-based targeted ransomware detection

model for industrial iot. IEEE Access 9, 148738–148755 (2021)
8. Al-Hawawreh, M., Sitnikova, E.: Industrial internet of things

based ransomware detection using stacked variational neural

network. In: Proceedings of the 3rd international conference on

big data and internet of things, pp. 126–130. (2019)

9. Kukkala, V.K., Pasricha, S., Bradley, T.: Sedan: security-aware

design of time-critical automotive networks. IEEE Trans Veh.

Technol. 69(8), 9017–9030 (2020)

10. Skatkov, A., Bryukhovetskiy, A., Moiseev, D., Shevchenko, V.:

Detecting vulnerabilities of information resources of unmanned

vehicles method based on dynamic evaluation of Markov

sequences properties. J. Phys.: Conf. Ser. 1515(2), 022033 (2020)
11. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,

H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.

et al.: Comprehensive experimental analyses of automotive

attack surfaces. In: USENIX security symposium, vol. 4. San

Francisco, pp. 447–462 (2011)

12. Hamad, M., Prevelakis, V.: Savta: a hybrid vehicular threat

model: overview and case study. Information 11(5), 273 (2020)

13. Dunn, M.: Toyota’s killer firmware: bad design and its conse-

quences, EDN Netw. 28 (2013)

14. Ornes, S.: How to hack a self-driving car. Phys. World 33(8), 37
(2020)

15. Dibaei, M., Zheng, X., Jiang, K., Abbas, R., Liu, S., Zhang, Y.,

Xiang, Y., Yu, S.: Attacks and defences on intelligent connected

vehicles: a survey. Digit. Commun. Netw. 6, 399–421 (2020)

16. Olufowobi, H., Bloom, G.: Connected cars: automotive cyber-

security and privacy for smart cities. In: Smart cities cyberse-

curity and privacy, pp. 227–240. Elsevier, Amsterdam (2019)

17. Cobb, S.: Rot: ransomware of things. ESET (2017)

18. Zhang, Z., Qi, P., Wang, W.: Dynamic malware analysis with

feature engineering and feature learning. In: Proceedings of the

AAAI conference on artificial intelligence, vol. 34, no. 01,

pp. 1210–1217. (2020)

19. David, C., Fry, S.: Automotive security best practices. In:

Recommendations for security and privacy in the era of the

next-generation car. https://www.mcafee.com/enterprise/enus/

assets/white-papers/wp-automotive-security.pdf (2016). Acces-

sed July 2021

20. Bhamare, D., Zolanvari, M., Erbad, A., Jain, R., Khan, K.,

Meskin, N.: Cybersecurity for industrial control systems: a

survey. Comput. Secur. 89, 101677 (2020)

21. Yaacoub, J.-P.A., Noura, H.N., Salman, O., Chehab, A.:

Robotics cyber security: vulnerabilities, attacks, countermea-

sures, and recommendations. Int. J. Inf. Secur. 21, 115–158

(2022)

22. da Costa, F.H., Medeiros, I., Menezes, T., da Silva, J.V., da

Silva, I.L., Bonifácio, R., Narasimhan, K., Ribeiro, M.:

Exploring the use of static and dynamic analysis to improve the

performance of the mining sandbox approach for android mal-

ware identification. J. Syst. Softw. 183, 111092 (2022)

23. Al Alsadi, A.A., Sameshima, K., Bleier, J., Yoshioka, K., Lin-

dorfer, M., Van Eeten, M., Gañán, C.H.: No spring chicken:

quantifying the lifespan of exploits in iot malware using static

and dynamic analysis. In: Proceedings of the 2022 ACM on Asia

conference on computer and communications security,

pp. 309–321. (2022)

24. Ghillani, D., Gillani, D.H.: A perspective study on malware

detection and protection, a review. Authorea Preprints, Authorea

(2022)

25. Mohamed, K.F., Azer, M.A.: Malware detection techniques. In:

4th novel intelligent and leading emerging sciences conference

(NILES), vol. 2022, pp. 349–353. IEEE (2022)

26. Kalyan, E.V.P., Adarsh, A.P., Reddy, S.S.L., Renjith, P.:

Detection of malware using cnn. In: 2022 second international

conference on computer science, engineering and applications

(ICCSEA), pp. 1–6. IEEE (2022)

27. Bansal, V., Ghosh, M., Baliyan, N.: Efficient and effective static

android malware detection using machine learning. In: Inter-

national conference on information systems security,

pp. 103–118. Springer (2022)

28. Muzaffar, A., Hassen, H.R., Lones, M.A., Zantout, H.: An in-

depth review of machine learning based android malware

detection. Comput. Secur. 121, 102833 (2022)

29. Gopinath, M., Sethuraman, S.C.: A comprehensive survey on

deep learning based malware detection techniques. Comput. Sci.

Rev. 47, 100529 (2023)

30. Bhagwat, S., Gupta, G.P.: Android malware detection using

hybrid meta-heuristic feature selection and ensemble learning

techniques. In: International conference on advances in com-

puting and data sciences, pp. 145–156. Springer (2022)

31. Shah, I.A., Mehmood, A., Khan, A.N., Elhadef, M., Khan, A.R.:

Heucrip: a malware detection approach for internet of battlefield

things. Clust. Comput. 26(2), 977–992 (2023)

32. Tang, J., Li, R., Jiang, Y., Gu, X., Li, Y.: Android malware

obfuscation variants detection method based on multi-granu-

larity opcode features. Future Gener. Comput. Syst. 129,
141–151 (2022)

33. Kara, I., Aydos, M.: The rise of ransomware: forensic analysis

for windows based ransomware attacks. Expert Syst. Appl. 190,
116198 (2022)

34. Kok, S., Abdullah, A., Jhanjhi, N.: Early detection of crypto-

ransomware using pre-encryption detection algorithm. J. King

Saud Univ.-Comput. Inf. Sci. 34(5), 1984–1999 (2022)

35. Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., Pham, T.D.:

A two-stage deep learning framework for image-based android

malware detection and variant classification. Comput. Intell.

38(5), 1748–1771 (2022)

36. Mimura, M., Ito, R.: Applying nlp techniques to malware

detection in a practical environment. Int. J. Inf. Secur. 21(2),
279–291 (2022)

37. Yamany, B., Elsayed, M.S., Jurcut, A.D., Abdelbaki, N., Azer,

M.A.: A new scheme for ransomware classification and clus-

tering using static features. Electronics 11(20), 3307 (2022)

38. Mimura, M.: Evaluation of printable character-based malicious

pe file-detection method. Internet Things 19, 100521 (2022)

39. Elsersy, W.F., Feizollah, A., Anuar, N.B.: The rise of obfuscated

android malware and impacts on detection methods. PeerJ

Comput. Sci. 8, e907 (2022)

40. Muralidharan, T., Cohen, A., Gerson, N., Nissim, N.: File

packing from the malware perspective: techniques, analysis

approaches, and directions for enhancements. ACM Comput.

Surv. 55(5), 1–45 (2022)

41. Alhaidari, F., Shaib, N.A., Alsafi, M., Alharbi, H., Alawami, M.,

Aljindan, R., Rahman, A., Zagrouba, R., et al.: Zevigilante:

detecting zero-day malware using machine learning and

Cluster Computing (2024) 27:3363–3378 3375

123

https://www.mcafee.com/enterprise/enus/assets/white-papers/wp-automotive-security.pdf
https://www.mcafee.com/enterprise/enus/assets/white-papers/wp-automotive-security.pdf

sandboxing analysis techniques. Comput. Intell. Neurosci.

(2022). https://doi.org/10.1155/2022/1615528

42. Gera, T., Singh, J., Faruki, P., Thakur, D.: Efficacy of android

securitymechanisms on ransomware analysis and detection. In:AIP

conference proceedings, vol. 2357, no. 1. AIP Publishing (2022)

43. Wang, L., Wang, H., He, R., Tao, R., Meng, G., Luo, X., Liu,

X.: Malradar: demystifying android malware in the new era.

Proc. ACM Meas. Anal. Comput. Syst. 6(2), 1–27 (2022)

44. Qiang, W., Yang, L., Jin, H.: Efficient and robust malware

detection based on control flow traces using deep neural net-

works. Comput. Secur. 122, 102871 (2022)

45. Falana, O.J., Sodiya, A.S., Onashoga, S.A., Badmus, B.S.: Mal-

detect: an intelligent visualization approach for malware

detection. J. King Saud Univ.-Comput. Inf. Sci. 34(5),
1968–1983 (2022)

46. Obaidat, I., Sridhar, M., Pham, K.M., Phung, P.H.: Jadeite: a

novel image-behavior-based approach for java malware detec-

tion using deep learning. Comput. Secur. 113, 102547 (2022)

47. Romano, A., Lehmann, D., Pradel, M., Wang, W.: Wobfuscator:

obfuscating javascript malware via opportunistic translation to

webassembly. In: IEEE symposium on security and Privacy

(SP), vol. 2022, pp. 1574–1589. IEEE (2022)

48. Kim, M., Cho, H., Yi, J.H.: Large-scale analysis on anti-analysis

techniques in real-world malware. IEEE Access 10,
75802–75815 (2022)

49. Liu, S., Feng, P., Wang, S., Sun, K., Cao, J.: Enhancing malware

analysis sandboxes with emulated user behavior. Comput. Secur.

115, 102613 (2022)

50. Maniriho, P., Mahmood, A.N., Chowdhury, M.J.M.: A study on

malicious software behaviour analysis and detection techniques:

taxonomy, current trends and challenges. Future Gener. Comput.

Syst. 130, 1–18 (2022)

51. Amer, E., Mohamed, A., Mohamed, S.E., Ashaf, M., Ehab, A.,

Shereef, O., Metwaie, H.: Using machine learning to identify

android malware relying on api calling sequences and permis-

sions. J. Comput. Commun. 1(1), 38–47 (2022)

52. Yang, Y., Lin, Y., Li, Z., Zhao, L., Yao, M., Lai, Y., Li, P.:

Goosebt: a programmable malware detection framework based

on process, file, registry, and com monitoring. Comput. Com-

mun. 204, 24–32 (2023)

53. Malik, J., Kaushal, R.: Credroid: android malware detection by

network traffic analysis. In: Proceedings of the 1st ACM

workshop on privacy-aware mobile computing, pp. 28–36.

(2016)

54. Zaman, M., Siddiqui, T., Amin, M.R., Hossain, M.S.: Malware

detection in android by network traffic analysis. In: International

conference on networking systems and security (NSysS), vol.

2015, pp. 1–5. IEEE (2015)

55. Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., Jia, Z.: A

mobile malware detection method using behavior features in

network traffic. J. Netw. Comput. Appl. 133, 15–25 (2019)

56. Prasse, P., Machlica, L., Pevnỳ, T., Havelka, J., Scheffer, T.:

Malware detection by analysing network traffic with neural

networks. In: IEEE security and privacy workshops (SPW), vol.

2017, pp. 205–210. IEEE (2017)

57. Wang, S., Chen, Z., Zhang, L., Yan, Q., Yang, B., Peng, L., Jia,

Z.: Trafficav: an effective and explainable detection of mobile

malware behavior using network traffic. In: IEEE/ACM 24th

international symposium on quality of service (IWQoS), vol.

2016, pp. 1–6. IEEE (2016)

58. Malik, S., Khatter, K.: System call analysis of android malware

families. Indian J. Sci. Technol. 9(21), 1–13 (2016)

59. Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C.A.: Detect-

ing android malware using sequences of system calls. In: Pro-

ceedings of the 3rd international workshop on software

development lifecycle for mobile, pp. 13–20 (2015)

60. Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q., Javaid,

A., Yang, X.: An early detection of android malware using

system calls based machine learning model. In: Proceedings of

the 17th international conference on availability, reliability and

security, pp. 1–9 (2022)

61. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware

analysis via hardware virtualization extensions. In: Proceedings

of the 15th ACM conference on Computer and communications

security, pp. 51–62 (2008)

62. Kirat, D., Vigna, G., Kruegel, C.: Barebox: efficient malware

analysis on bare-metal. In: Proceedings of the 27th annual

computer security applications conference, pp. 403–412 (2011)

63. Yan, L.-K., Jayachandra, M., Zhang, M., Yin, H.: V2e: com-

bining hardware virtualization and softwareemulation for

transparent and extensible malware analysis. In: Proceedings of

the 8th ACM SIGPLAN/SIGOPS conference on virtual execu-

tion environments, pp. 227–238 (2012)

64. Pék, G., Bencsáth, B., Buttyán, L.: Nether: in-guest detection of

out-of-the-guest malware analyzers. In: Proceedings of the

fourth European workshop on system security, pp. 1–6 (2011)

65. Khan, M.T., Serpanos, D., Shrobe, H.: Armet: behavior-based

secure and resilient industrial control systems. Proc. IEEE

106(1), 129–143 (2017)

66. Scotece, D.: Edge computing for extreme reliability and scala-

bility. Alma (2020)

67. Vuong, T.P.: Cyber-physical intrusion detection for robotic

vehicles. Ph.D. dissertation, University of Greenwich (2017)

68. Vuong, T.P., Loukas, G., Gan, D.: Performance evaluation of

cyber-physical intrusion detection on a robotic vehicle. In: 2015

IEEE international conference on computer and information

technology; ubiquitous computing and communications;

dependable, autonomic and secure computing; pervasive intel-

ligence and computing, pp. 2106–2113. IEEE (2015)

69. Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection

to automotive it-early insights and remaining challenges. J. Inf.

Assur. Secur. (JIAS) 4(6), 226–235 (2009)

70. Wiseman, Y.: Autonomous vehicles. In: Encyclopedia of

information science and technology, 5th edn., pp. 1–11. IGI

Global, Hershey (2021)

71. Zhou, F., Yang, Q., Zhong, T., Chen, D., Zhang, N.: Variational

graph neural networks for road traffic prediction in intelligent

transportation systems. IEEE Trans. Ind. Inform. 17, 2802–2812
(2020)

72. Han, B., Wu, B., Nguyen, Q., Camargo, R., Arancibia, I.: The

threat of cyber-terrorism & security in intelligent transportation

systems architecture

73. Bayindir, K.Ç., Gözüküçük, M.A., Teke, A.: A comprehensive

overview of hybrid electric vehicle: powertrain configurations,

powertrain control techniques and electronic control units.

Energy Convers. Manage. 52(2), 1305–1313 (2011)

74. Liu, P., Dong, L., Shao, X., Lin, M., Gu, Y., Hou, X.: Research

on the development trend of vehicle operating system in china.

In: The 2nd international conference on computing and data

science, pp. 1–6 (2021)

75. Gittins, Z., Soltys, M.: Malware persistence mechanisms. Pro-

cedia Comput. Sci. 176, 88–97 (2020)

76. Patent shows new tesla windows operating systesm. https://

www.greencarreports.com/news/1120662_patent-shows-new-

tesla-windows-operating-system. Accessed Aug 2021

77. Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Contin-

uous learning of hpc infrastructure models using big data ana-

lytics and in-memory processing tools. In: Proceedings of the

conference on design, automation & test in Europe. European

Design and Automation Association, pp. 1038–1043 (2017)

78. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A.,

Sethumadhavan, S., Stolfo, S.: On the feasibility of online

3376 Cluster Computing (2024) 27:3363–3378

123

https://doi.org/10.1155/2022/1615528
https://www.greencarreports.com/news/1120662_patent-shows-new-tesla-windows-operating-system
https://www.greencarreports.com/news/1120662_patent-shows-new-tesla-windows-operating-system
https://www.greencarreports.com/news/1120662_patent-shows-new-tesla-windows-operating-system

malware detection with performance counters. In: ACM

SIGARCH computer architecture news, vol. 41, no. 3. ACM,

pp. 559–570 (2013)

79. Aurangzeb, S., Rais, R.N.B., Aleem, M., Islam, M.A., Iqbal,

M.A.: On the classification of microsoft-windows ransomware

using hardware profile. PeerJ Comput. Sci. 7, e361 (2021)

80. Niu, W., Zhang, X., Du, X., Hu, T., Xie, X., Guizani, N.:

Detecting malware on x86-based iot devices in autonomous

driving. IEEE Wirel. Commun. 26(4), 80–87 (2019)

81. Sheehan, B., Murphy, F., Mullins, M., Ryan, C.: Connected and

autonomous vehicles: a cyber-risk classification framework.

Transp. Res. A 124, 523–536 (2019)

82. Nieuwenhuizen, D.: A behavioural-based approach to ran-

somware detection. Whitepaper, MWR Labs Whitepaper, p. 20

(2017)

83. Song, S., Kim, B., Lee, S.: The effective ransomware prevention

technique using process monitoring on android platform. Mob.

Inf. Syst. (2016). https://doi.org/10.1155/2016/2946735

84. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.:

Automated dynamic analysis of ransomware: benefits, limita-

tions and use for detection. (2016). arXiv preprint arXiv:1609.

03020

85. Sternfeld, U.: Operation koffler: mutating ransomware enters the

fray (2015)

86. Hampton, N., Baig, Z., Zeadally, S.: Ransomware behavioural

analysis on windows platforms. J. Inf. Secur. Appl. 40, 44–51
(2018)

87. Chen, Z.-G., Kang, H.-S., Yin, S.-N., Kim, S.-R.: Automatic

ransomware detection and analysis based on dynamic api calls

flow graph. In: Proceedings of the international conference on

research in adaptive and convergent systems. ACM,

pp. 196–201 (2017)

88. Kharraz, A., Arshad, S., Mulliner, C., Robertson, W.K., Kirda,

E.: Unveil: a large-scale, automated approach to detecting ran-

somware. In: USENIX security symposium, pp. 757–772 (2016)

89. Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C.A., Mar-

tinelli, F.: R-packdroid: Api package-based characterization and

detection of mobile ransomware. In; Proceedings of the sym-

posium on applied computing. ACM, pp. 1718–1723 (2017)

90. Zavarsky, P., Lindskog, D., et al.: Experimental analysis of

ransomware on windows and android platforms: evolution and

characterization. Procedia Comput. Sci. 94, 465–472 (2016)

91. Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M.: A 0-day aware

crypto-ransomware early behavioral detection framework. In:

International conference of reliable information and communi-

cation technology, pp. 758–766. Springer (2017)

92. Andronio, N., Zanero, S., Maggi, F.: Heldroid: dissecting and

detecting mobile ransomware. In: International workshop on

recent advances in intrusion detection, pp. 382–404. Springer

(2015)

93. Aslan, Ö., Samet, R.: Investigation of possibilities to detect

malware using existing tools. In: 14th ACS/IEEE international

conference on computer systems and applications AICCSA

(2017)

94. Kaur, G., Dhir, R., Singh, M.: Anatomy of ransomware mal-

ware: detection, analysis and reporting. Int. J. Secur. Netw.

12(3), 188–197 (2017)

95. Ferdowsi, A., Challita, U., Saad, W.: Deep learning for reliable

mobile edge analytics in intelligent transportation systems: an

overview. IEEE Veh. Technol. Mag. 14(1), 62–70 (2019)

96. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning

techniques for malware analysis. Comput. Secur. 81, 123–147
(2019)

97. Simon, H., Simon, H.: Profit driver: price. In: True profit! no

company ever went broke turning a profit, pp. 123–150.

Springer (2021)

98. NESTLER, M.: Smart use of digital tools. Italy (2020)

99. Watters, Y., Northey, W.F., Jr.: Online telesupervision: com-

petence forged in a pandemic. J. Fam. Psychother. 31(3–4),
157–177 (2020)

100. Continental, D., Ford, G., Hyundai, M.: Tesla—mercedes-

benz—microsoft—autosar—vector consulting services| auto-

motive software: where to from here?

101. Mercedes-Benz enhances drivers’ experience with Azure

OpenAI Service. https://azure.microsoft.com/en-us/blog/mer

cedes-benz-enhances-drivers-experience-with-azure-openai-ser

vice/. Accessed Aug 2021

102. Ashuri, T.: Shadowy knowledge infrastructures. Inf. Commun.

Soc, pp. 1–17 (2023)

103. Cabigiosu, A.: Sustainable development and incumbents’ open

innovation strategies for a greener competence-destroying

technology: The case of electric vehicles. Bus. Strat. Environ.

31(5), 2315–2336 (2022)

104. Fehling, C., Leymann, F., Retter, R., Schumm, D., Schupeck,

W.: An architectural pattern language of cloud-based applica-
tions. In: Proceedings of the 18th conference on pattern lan-

guages of programs, pp. 1–11 (2011)

105. Yaqoob, I., Ahmed, E., Hashem, I.A.T., Ahmed, A.I.A., Gani,

A., Imran, M., Guizani, M.: Internet of things architecture:

recent advances, taxonomy, requirements, and open challenges.

IEEE Wirel. Commun. 24(3), 10–16 (2017)

106. Coppola, R., Morisio, M.: Connected car: technologies, issues,

future trends. ACM Comput. Surv. 49(3), 1–36 (2016)

107. Automotive Future. https://download.microsoft.com/download/

5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Micro

soft_FutureOfAutomotive.pdf. Accessed Oct 2021

108. Microsoft connected vehicle platform helps automakers trans-

form cars. https://blogs.microsoft.com/blog/2017/01/05/micro

soft-connected-vehicle-platform-helps-automakers-transform-

cars/. Accessed Sept 2021

109. VirusShare, V.: Virusshare. com–because sharing is caring

(2019)

110. Arabo, A., Dijoux, R., Poulain, T., Chevalier, G.: Detecting

ransomware using process behavior analysis. Procedia Comput.

Sci. 168, 289–296 (2020)

111. Hwang, J., Kim, J., Lee, S., Kim, K.: Two-stage ransomware

detection using dynamic analysis and machine learning tech-

niques. Wirel. Pers. Commun. 112(4), 2597–2609 (2020)

112. Shannon, C.E.: A mathematical theory of communication, part

ii. Bell Syst. Tech. J. 27, 623–656 (1948)

113. Jones, K.S.: Readings in information retrieval. Morgan Kauf-

mann, Burlington (1997)

114. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

115. Liaw, A., Wiener, M., et al.: Classification and regression by

randomforest. R news 2(3), 18–22 (2002)

116. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: a

decision-tree hybrid. In: KDD, vol. 96. Citeseer, pp. 202–207

(1996)

117. Salzberg, S.L.: C4. 5: Programs for machine learning by J. Ross

Quinlan. Morgan Kaufmann Publishers, Inc (1993)

118. Hand, D.J., Till, R.J.: A simple generalisation of the area under

the roc curve for multiple class classification problems. Mach.

Learn. 45(2), 171–186 (2001)

119. Sayadi, H., Patel, N., S. M. PD, Sasan, A., Rafatirad, S.,

Homayoun, H.: Ensemble learning for effective run-time hard-

ware-based malware detection: a comprehensive analysis and

classification. In: 55th ACM/ESDA/IEEE design automation

conference (DAC), vol. 2018, pp. 1–6. IEEE (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing (2024) 27:3363–3378 3377

123

https://doi.org/10.1155/2016/2946735
http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
https://azure.microsoft.com/en-us/blog/mercedes-benz-enhances-drivers-experience-with-azure-openai-service/
https://azure.microsoft.com/en-us/blog/mercedes-benz-enhances-drivers-experience-with-azure-openai-service/
https://azure.microsoft.com/en-us/blog/mercedes-benz-enhances-drivers-experience-with-azure-openai-service/
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://blogs.microsoft.com/blog/2017/01/05/microsoft-connected-vehicle-platform-helps-automakers-transform-cars/
https://blogs.microsoft.com/blog/2017/01/05/microsoft-connected-vehicle-platform-helps-automakers-transform-cars/
https://blogs.microsoft.com/blog/2017/01/05/microsoft-connected-vehicle-platform-helps-automakers-transform-cars/

Sana Aurangzeb received her

MS degree in Computer Science

from Capital University of Sci-

ence and Technology in 2018.

She is currently doing a Ph.D. at

the National University of

Computer and Emerging Sci-

ences, Islamabad, Pakistan, and

is currently a lecturer at the

National University of Modern

Languages, Islamabad. Her

research focus is malware anal-

ysis and security services.

Muhammad Aleem received a

Ph.D. degree in computer sci-

ence from the Leopold-Fran-

zens-University, Innsbruck,

Austria in 2012. His research

interests include parallel and

distributed computing compris-

ing programming environments,

multi-/many-core computing,

performance analysis, cloud

computing, and big-data pro-

cessing. He is currently working

as a Professor at National

University of Computer and

Emerging Sciences, Islamabad,

Pakistan.

Muhammad Taimoor Khan is an

Associate Professor (Reader) of

Computer Science at the

University of Greenwich, UK.

He is the Head of the Cyber

Assurance Lab and a Centre of

Sustainable Cyber Security

member. His current research

interests are the automatic

detection and recovery of vul-

nerabilities/threats/risks in soft-

ware through verification-based

design-time and run-time secu-

rity analysis of serious applica-

tion software.

Haris Anwar is a data scientist

with over seven years of

invaluable experience in the

industry with a Master’s of

Science in Data Science FAST-

NUCES. His expertise spans

diverse sectors, including med-

ical, oil and gas, and cyber

security.

Muhammad Shaoor Siddique is

currently pursuing a Ph.D. from

the National University of

Computer and Emerging Sci-

ences, Islamabad, Pakistan.

3378 Cluster Computing (2024) 27:3363–3378

123

	Cybersecurity for autonomous vehicles against malware attacks in smart-cities
	Abstract
	Introduction
	Background and motivation
	Related work
	Methodology
	Dataset
	Feature extraction
	Feature selection
	Model selection and training
	Zero-day attack detection

	Experimental setup, results and discussion
	Accuracy
	Precision
	Recall
	F-measure

	Conclusion and future directions
	Appendix
	List of extracted features

	Author contributions
	Open Access
	References

