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Abstract
The advent of the cloud computing paradigm allowed multiple organizations to move, compute, and host their applications

in the cloud environment, enabling seamless access to a wide range of services with minimal effort. An efficient and

dynamic task scheduler is required to handle concurrent user requests for cloud services using various heterogeneous and

diversified resources. Improper scheduling can lead to challenges with under or over-utilization of resources, which could

waste cloud resources or degrade service performance. Nature-inspired optimization techniques have been proven effective

at solving scheduling problems. This paper accomplishes a review of nature-inspired optimization techniques for

scheduling tasks in cloud computing. A novel classification taxonomy and comparative review of these techniques in cloud

computing are presented in this research. The taxonomy of nature-inspired scheduling techniques is categorized as per the

scheduling algorithms, nature of the scheduling problem, type of tasks, the primary objective of scheduling, task-resource

mapping scheme, scheduling constraint, and testing environment. Additionally, guidelines for future research issues are

also provided, which should undoubtedly benefit researchers and practitioners as well as open the door for newcomers

eager to pursue their glory in the field of cloud task scheduling.
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1 Introduction

The ever-expanding scope of the transnational corporate

atmosphere has prompted the establishment of sophisti-

cated technology to handle it [1]. One such innovation that

can expedite software deployment processes and save time

and effort is cloud computing [2]. Cloud computing is the

practice of accessing and conserving information and

applications via the internet rather than locally stored

systems at the consumer’s disposal [3, 4]. It uses distant

servers connected to the internet to store, administer, and

provide online access to information. Organizations must

establish sophisticated cloud management to manage and

govern the utilization of cloud resources while assuring

appropriate, reliable, and adaptable hardware and software

that optimizes costs. The early phases of preparing should

include developing the cloud deployment approach to the

management of clouds [5, 6]. Due to the low probability of

infrastructure breakdowns in the cloud, servers are con-

sistently and widely accessible. Cloud computing allows

numerous individuals to utilize various applications effi-

ciently and at a lower cost due to the collaboration of

shared infrastructures [7].

In cloud computing, a scheduler (broker) is designed to

identify possible approaches for allocating a collection of

readily accessible scarce resources to new applications to

maximize scheduling targets such as makespan, computa-

tional cost, monetary cost, reliability, availability, resource

utilization, response time, energy consumption, etc. [8, 9].

The scheduler devises strategies for allocating the proper

assignments to constrained resources to maximize

scheduling outcomes [10]. The scheduling algorithm aims

to decide which task will be carried out based on which

resource [11]. This approach encourages accessibility to
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the collaborative resource stream while providing the

appropriate consumers with a QOS assurance. The primary

objective of a novel scheduling approach is to determine

the best combination of resources that can be employed to

accomplish an incoming task so that a scheduling algo-

rithm can be used to maximize a variety of QOS factors,

including expenses, makespan, flexibility, trustworthiness,

task disapproval proportion, the efficiency of resources,

utilization of energy, etc., and meet restrictions, such as the

deadline and budgetary constraints, etc., to prevent the

issue of load imbalance. The solution to user satisfaction is

achieving the intended efficiency, which may be accom-

plished by rendering the primary objective of cloud com-

puting services [12]. Today, a wide range of applications

have been developed that employ the scheduling principle,

including power system management, scheduling of multi-

modal contents on the global web, and electronic circuit

board production [13].

Task scheduling in cloud computing is a complicated

topic that necessitates tackling a number of effectiveness,

resource utilization, and workload administration obstacles

while additionally considering diverse assets, task depen-

dencies, QoS specifications, assurances, and confidentiality

issues. The majority of task scheduling challenges are

either NP-complete or NP-hard. As a result, it takes a very

long time to develop an optimal solution compared to other

alternatives [14]. There are no particular techniques for

obtaining polynomial-time responses to these issues. Tail-

lard suggested a scenario in which 0.02 to 1.01 percent of

candidate solutions require the total amount of time nec-

essary to reach the best solution [15]. This illustration

demonstrates how challenging it can be to identify the

optimum solution to a complex situation. Most researchers

have therefore been motivated to pursue an appropriate

scheduling algorithm to identify a quick yet effective

solution to this scheduling challenge. The cloud service

provider must offer an effective and optimal scheduling

procedure that considers a number of factors, including

cost, time, and SLA standards that must be followed as

established by the users.

1.1 Motivation of the research

The two primary scheduling techniques modern computer

systems use are exhaustive algorithms and Deterministic

Algorithms (DAs) [16]. In terms of efficiency, DAs are

substantially better than both conventional (exhaustive)

and heuristic methods for scheduling problems. However,

DAs have two key drawbacks: first, they were designed to

handle some data distributions, and second, only some DAs

can handle complex scheduling issues. Meta-heuristic

algorithms, also known as approximation algorithms, use

iterative techniques to obtain optimal solutions faster than

7DAs and exhaustive algorithms [16–19]. Meta-heuristic

algorithms are classified into nature-inspired and non-na-

ture-inspired [20]. Numerous study findings show that

nature-inspired optimization algorithms produce superior

scheduling outcomes than conventional and heuristic ones

[21, 22]. While numerous nature-inspired optimization

scheduling techniques have been successfully used in

various computing contexts, including grid and clustering

computing, they have yet to be specifically designed for the

cloud. As a result, nature optimization algorithms may

initially appear inappropriate as a scheduling option for

cloud tasks to the general public. Encouraged by this

misunderstanding, this study not only offers a systematic

overview of scheduling methods used in the cloud envi-

ronment from a nature-inspired perspective but also

establishes a connection between conventional/heuristic

scheduling methods and nature-inspired meta-heuristic

ones so that cloud researchers who are still enthusiastic

about conventional/heuristic scheduling can transit to

scheduling based on nature-inspired optimization swiftly.

The purpose of discussing both conventional and heuristic

algorithms before discussing nature-inspired optimization

algorithms is to clarify the differentiation between them

easier.

We are also inspired by ideas from peer surveys in

earlier works of literature. Task scheduling is a crucial

component of cloud computing, which aims to increase

VM utilization while lowering data center operating costs,

leading to appreciable advancements in QoS metrics and

overall performance. With an effective task scheduling

technique, a high number of user requests may be pro-

cessed appropriately and assigned to suitable VMs, which

helps to meet the needs of cloud users and service provi-

ders more effectively. We carefully reviewed numerous

nature-inspired scheduling approaches in the literature, and

we discovered that most of the studies of literature do not

cover all the aspects such as QoS-based comparative

analysis, state-of-the-art, taxonomy, graphical representa-

tions, open issues and comparison of simulation tools of

task scheduling as shown in Table 1. Because of this,

conducting a thorough assessment of task scheduling uti-

lizing nature-inspired optimization is vitally necessary to

keep up with the field’s continuing, expanding research.

1.2 Contributions of the present study

Although nature-inspired scheduling methods considerably

impact cloud services, essential methodologies and back-

grounds of this sector still need to be thoroughly and

methodically evaluated. As a result, this study aims to

compare the prior strategies and assess and critique current

cloud scheduling systems in light of nature-inspired algo-

rithms. A unique classification scheme (taxonomy) and a
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thorough analysis of contemporary nature-inspired

scheduling approaches in cloud computing are provided.

The effectiveness of existing techniques is evaluated based

on qualitative QoS parameter-based criteria. The compar-

ison of numerous simulation tools frequently used in the

cloud is also presented. Through extensive investigation

and discussion, results related to the pertinent aspects are

validated. Finally, research issues are compiled to create a

research roadmap that could include potential future study

areas and existing trends.

2 Categorization of cloud task scheduling
schemes

Cloud task scheduling scheme has been divided into three

groups: traditional scheduling, heuristics scheduling, and

meta-heuristics scheduling. This section has compared the

traditional and heuristics strategies and evaluates and

assesses the cloud computing system in light of nature-

inspired optimization algorithms.

2.1 Traditional scheduling

Scheduling can be defined as assigning tasks to a set of

provided machines under the constraints of objective

function optimization. The scheduling challenge is called a

single-processor scheduling issue when only one machine

exists. The scheduling issue is seen as a multiprocessor

scheduling when more than one machine is involved.

Based on resource consumption costs, makespan, load

balancing, and QoS and its variants, scheduling algorithm

performance can be measured. In the context of traditional

scheduling, a hierarchy of difficulties was established

through numerous investigations [28, 29] concerning the

characteristics of tasks (i.e., weight, due date, release date,

and processing time), machines (i.e., single or multiple), as

well as many other details, such as online vs. offline, batch

vs. non-batch, precedence vs. non-precedence, sequence-

dependent vs. sequence-independent. Scheduling problems

are typically distinguished from one another and described

using these limitations. All scheduling issues discussed in

[28] have been explained using a three-fold notation. In

this approach, a single or parallel machine designates the

machine type, sequence-dependent or sequence-indepen-

dent specifies the processing features and limitations, and

makespan indicates the measure’s value. According to the

length of the scheduling time, the schedule was divided

into four categories [29]: short-range, middle-range, long-

range, and reactive control/scheduling.

2.2 Heuristics scheduling

Heuristic algorithms vary in performance depending on the

problem they are used for; although they work well for

some situations, they struggle with others. Heuristics typ-

ically deliver a precise response in a reasonable amount of

time for a particular type of problem, but they need to

improve when it comes to challenging optimization prob-

lems. Numerous heuristic techniques have been developed,

such as Min-Min [30], Max–Min [30], First Come First

Serve (FCFS) [31], Shortest Job First (SJF) [32], Round

Robin (RR) [33], Heterogeneous Earliest Finish Time

(HEFT) [34], Minimum Completion Time (MCT) [35], and

Sufferage [36] in cloud environments to address the

scheduling issues relating to workflow and independent

tasks/applications.

In the Min-Min heuristics algorithm, the shortest task

that can be completed in the shortest amount of time is

chosen from among all tasks provided, and it is mapped to

a virtual machine that will take the shortest amount of time

to complete. When all tasks are successfully scheduled, the

procedure is repeated, lengthening the overall makespan as

each task’s completion time lengthens. Large jobs must

wait until smaller ones are completed before being handled

by this method, which handles minor chores efficiently.

This approach dramatically increases system throughput

overall; however, heavy workloads may cause a starvation

Table 1 Comparison between existing works and the present study

Publication Taxonomy State-of-the-

art

QoS-based comparative

analysis

Graphical

representations

Open

issues

Comparison of simulation

tools

[23] No No No No No No

[24] Yes Yes No No Yes No

[25] No Yes No No Yes No

[26] Yes Yes No No Yes No

[27] Yes No Yes No No Yes

Present

Study

Yes Yes Yes Yes Yes Yes
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problem. Chen et al. [37] and Amalarethinam and Kavitha

[38] used Min-Min in their proposed work. A set of issues,

such as slow task execution, difficulties in the deadline, and

priority problems, arise during the execution of the Min-

Min algorithm. The max–Min algorithm created the prob-

lem of potential resource over-utilization and under-uti-

lization in [39] and [40]. Non-continuous monitoring of

nodes, load imbalance, cost, and time overheads due to

unmanaged communication and storage, and static task

scheduling problems are introduced while implementing

Heterogeneous Earliest Finish Time (HEFT) algorithms

[41, 42]. SJF can not solve the problem of starvation and

load imbalance [43–45]. Round Robin needs to improve its

ability to balance the load [46, 47]. Sufferage performs

flawlessly in many situations; however, this technique has

drawbacks if numerous tasks have identical suffrage values

[48]. In this scenario, the first arriving task is chosen and

run without considering other tasks, which may lead to a

starving problem.

2.3 Meta-heuristic scheduling

Due to their efficiency in resolving complex and extensive

computational challenges, meta-heuristic algorithms have

significantly increased in popularity. Task scheduling is

explained by applying heuristic and meta-heuristic meth-

ods to obtain optimal or nearly optimal solutions because

traditional methods frequently fail to comprehend situa-

tions to their optimality. Heuristic solutions frequently

become caught in a local minima dilemma, and meta-

heuristic algorithms are the most effective way to escape

this condition, as mentioned in [24, 26]. Meta-heuristic

algorithms efficiently explore the search space to find a

sub- or near-optimal solution to NP-complete problems. It

also doesn’t depend on the problem being solved; it typi-

cally uses approximation rather than determinism. Because

of their intuitive independence from the problem to be

addressed, meta-heuristic algorithms are valuable for

tackling problems in various domains with highly accept-

able performance. Researchers have systematically evalu-

ated the application of meta-heuristic algorithms on

scheduling features in cloud and grid settings [49–52].

Meta-heuristic techniques are frequently employed as very

efficient solutions to NP-hard optimization issues. Meta-

heuristic algorithms are classified into two types [53]:

• Nature-inspired

• Non-nature-inspired.

3 Nature-inspired meta-heuristics
scheduling

Nature-inspired algorithms are optimization methods that

handle challenging optimization issues by emulating the

behavior of natural systems [54]. These algorithms effec-

tively locate optimal solutions for multi-dimensional and

multi-modal issues. This paper conducts a schematic

review of the nature-inspired optimization techniques of

task scheduling in the cloud computing application.

4 Taxonomy of nature-inspired task
scheduling optimization algorithm
in cloud computing

A novel, rigorous taxonomy is presented in Fig. 1 using a

number of principal methodologies used in the literature to

more thoroughly and clearly comprehend the nature-in-

spired task scheduling approaches in cloud computing.

This taxonomy divides the methods into seven main divi-

sions based on the type of scheduling algorithm (sched-

uler), nature of the scheduling problem, nature of the task,

primary objectives of scheduling, task-resource mapping

schemes, scheduling constraints, and testing environment.

4.1 Scheduling algorithm

Nature-inspired scheduling algorithms can be divided into

four major categories [55] such as:

• Evolutionary-based

• Swarm-based

• Physics-based

• Hybrid approaches

This study has discussed various algorithms of these

four categories of nature-inspired optimization algorithms

for task scheduling in cloud computing. Figure 2 illustrates

the overall summary of all the nature-inspired optimization

algorithms discussed in this section.

4.1.1 Evolutionary-based algorithm

The principles of natural evolution serve as the foundation

for evolutionary approaches [56]. An initially produced

population that evolved over several generations serves as

the basis for the search procedure. The best individuals are

constantly brought together to create the next generation,

one of these approaches’ most vital points. As a result, the

population can be improved over several generations.

Genetic Algorithm (GA) [57], Memetic Algorithm (MA)

[58], Evolution Strategy (ES) [59], Probability-Based

3040 Cluster Computing (2023) 26:3037–3067

123



Incremental Learning (PBIL) [60], Genetic Programming

(GP) [61], Lion Optimization Algorithm (LOA) [62],

Imperialist Competitive Algorithm (ICA) [63], Sun Flower

Optimization Alg (SFO) [64], and Biogeography-Based

Optimizer (BBO) [65] are some of the well-known algo-

rithms. In this section, some evolutionary nature-inspired

algorithms that are used in task scheduling of cloud com-

puting are briefly summarized.

4.1.1.1 Genetic algorithm The Darwinian notion of

‘‘survival of the fittest’’ served as the foundation for the

development of the genetic algorithm (GA), which is bio-

inspired in that fitness is increased through the process of

evolution through reproduction [66]. A Genetic Algorithm

analyzes new regions of the solution space while utilizing

the best solutions from completed searches. Chromosomes,

composed of a collection of components called genes, can

represent any solution to a particular problem. Crossover or

Evolutionary

Swarm-based

Physics-based

Hybrid

Single objective

Multi objective

Independent

Workflow

Security

Reliability

Cost

Makespan

Load balancing

Resource 

Energy 

Rescheduling

Prediction

Static

Dynamic

AI-based

Deadline

Priority

Budget

Fault tolerance

Type of task

Nature of 
scheduling problem

Scheduling 
algorithm

Nature-inspired 
task scheduling

Scheduling 
constraints

Task resource 
mapping scheme

Primary objective 
of scheduling

Testing environment

Fig. 1 Taxonomy of nature-

inspired task scheduling

approaches
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mutation operators produce new offspring chromosomes

once the population has been initialized with randomly

produced solutions [67]. The generation of the children is

repeated until enough of the best offspring are produced to

find the best outcome. The scheduling problem response

can be expressed using a variety of representation strate-

gies. Some researchers [68] have encoded the solutions

using fixed-length binary strings. A chromosomal matrix is

utilized to depict the mapping of tasks on resources in

direct representation [69–73]. Paper [74] employed the

min-min heuristic and minimum execution time to create

the initial population. When populating the population, the

order of the tasks was also considered [74–76], and genetic

operations were then used to solve the workflow scheduling

issue. In [76], Round Robin and best-fit techniques identify

potential solutions for allocating jobs to resources.

According to [77], crossover and mutation operations are

carried out based on the level-wise representation after

tasks have been organized according to the order of their

workflow level. In reference [78], the authors used cross-

over and mutation operators. The chromosomes are

depicted as 2D strings in [79] based on the timeframe and

financial constraints. HEFT is paired with a genetic algo-

rithm [80] to create a scheduling plan. Authors [81] have

suggested two chromosomes: an ordering chromosome that

specifies the execution order following the scientific

workflow representation and an allocation chromosome

that contains the assignment of tasks to nodes. A task

scheduling technique based on the Shadow Price-guided

Genetic Algorithm (SGA) was presented by [82]. The

DVFS technique is applied to the grid environment to

reduce energy consumption and maximize makespan [83].

The authors of [84] describe a multi-agent evolutionary

method for distributing load among virtual computers.

Fig. 2 Nature-inspired

optimization algorithms

discussed in the proposed study
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A VM allocation methodology with appropriate load bal-

ancing and system resource utilization is provided by the

method utilized by [85]. The migration cost is optimized

through elitism selection and tree structure encoding.

4.1.1.2 Memetic algorithm Dawkins’ Memetic Algo-

rithm (MA) [86] is based on the term meme. Memes are

concepts like rumors and stories that spread across the

community of meme carriers. MAs use a specific local

search procedure to enhance or improve individual fitness.

Many issues in the real world have been addressed using

MA. In [87], the authors used a memetic method to solve a

hybrid flow shop scheduling problem involving multipro-

cessor activities. Researchers have employed MA to

address the traveling salesperson problem and quadratic

assignment [88]. The memetic has been used with hill

climbing, tabu search, and simulated annealing for task

scheduling [89, 90]. The best schedule for a workflow

application running on a multiprocessor system uses MA

for multiprocessor scheduling [91]. The authors of [92]

used this algorithm to shorten the schedule. A global search

optimization based on the Particle Swarm Optimization

(PSO) technique produces candidate solutions.

4.1.1.3 Imperialist competitive algorithm The mathe-

matical description of the imperialist competition, which

improves optimization outcomes, inspired the Imperialist

Competitive Algorithm (ICA) [93]. Imperialism refers to

using and controlling another nation’s economic, political,

and human resources by direct legislation. Numerous

academics have used ICA-based optimization techniques to

address the scheduling issue. An ICA-based technique is

used for the flow shop scheduling problem [94]. By

reducing waiting time in [95], identical work is extended to

reduce maximum completion time. In [96], a bi-objective

parallel machine scheduling problem with an emphasis on

minimizing mean task completion time was addressed. A

power-aware load balancing technique reduces energy

consumption in cloud computing data centers based on

ICA [97]. A cost-effective resource provisioning mecha-

nism is provided in [98] to assign virtual machines with

reservations on an on-demand basis. Makespan is opti-

mized for independent tasks in grid computing [99] uti-

lizing the imperialist competition method. A hybrid

technique is used for job shop scheduling in [100] to

reduce the makespan. A Gravitational Attraction Search

(GAS) technique was introduced in [101] and was inte-

grated with ICS in a different study to optimize the service

composition problem in cloud computing more quickly.

The authors have expanded their work by combining a

PROCLUS classifier with an ICA algorithm to choose the

best service provider for particular services [102]. In [103],

authors developed an ICA-based scheduling method that

takes execution time and execution cost parameters into

account for activities that depend on scheduling. In [104],

the authors offered an online scheduler based on the ICA

and established a dependability model for cloud systems.

4.1.1.4 Lion optimization algorithm The Lion Optimiza-

tion Algorithm (LOA) is a meta-heuristic optimization

algorithm inspired by the social behavior of lions. The

social structure of lions, in which young are born from

resident males and females, is called pride. The lion’s

territorial defense and territorial takeover behavior have

been used to solve optimization problems [105]. The lion’s

behaviors of hunting, going toward a safe area, wandering,

and migration were included by the authors in [106]. The

proposed work has been contrasted with algorithms for

Invasive Weed Optimization (IWO), Biogeography-based

Optimization (BBO), Gravitational Search (GSA), Hunting

Search (HuS), Bat Algorithm (BA), and Water Wave

Optimization (WWO). The simulation outcomes show how

effective the LOA algorithm is in solving many other

optimization issues.

4.1.1.5 Sunflower optimization algorithm The Sunflower

Optimization Algorithm (SFO) is a population-based

algorithm modeled after a natural process that moves

sunflowers toward the sun. The SFO is a new meta-

heuristic algorithm motivated by sunflowers traveling

toward the sun while considering neighboring sunflower

pollination. The performance of the current task scheduling

is improved by the Enhanced Sunflower Optimization

(ESFO) algorithm introduced in the paper [107]. It dis-

covers the best scheduling strategy in polynomial time. An

effective hybrid optimization algorithm named Sunflower

Whale Optimization Algorithm (SFWOA) is proposed in

[108]. The authors of the paper [109] suggest an Opposi-

tion-based Sunflower Optimization (OSFO) algorithm

improve the efficiency of the task schedulers that are

already in use in terms of cost, energy, and makespan.

Paper [110] suggests a sunflower optimization algorithm

with a sine–cosine algorithm (SFOA-SCA) for enhancing

the effectiveness of load balancing in cloud networks.

4.1.2 Swarm-based algorithm

Swarm Intelligence (SI) is a relatively recent method of

problem-solving that draws its inspiration from the social

behavior of insects and other animals and the collective

intelligence of swarms of biological populations [111]. A

computational and behavioral paradigm called SI uses the

interplay of small information processing units to address a

dispersed problem. The most widely used algorithms are

Particle Swarm Optimization (PSO) [112], Marriage in

Honey Bees Optimization Algorithm (MBO) [113], Whale
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Optimization [114], Firefly Optimization [115], Artificial

Bee Colony (ABC) [116], Ant Colony Optimization (ACO)

[117], Artificial Fish-Swarm Algorithm (AFSA) [118], Bat

algorithm (BA) [119], Cat Swarm Optimization [120],

Termite Algorithm [121], Wasp Swarm Algorithm [122],

Monkey Search [123], Wolf Pack Search Algorithm [124],

Bee Collecting Pollen Algorithm (BCPA) [125], Symbiotic

organism search optimization algorithm [126], Crow

Search, Cuckoo Search [127], Dolphin Partner Optimiza-

tion (DPO) [128], Grey Wolf Search Algorithm [129],

Glow worm optimization [130], etc. In this section, some

swarm intelligence nature-inspired algorithms that are used

in task scheduling of cloud computing are briefly

summarized.

4.1.2.1 Ant colony optimization Marco Dorigo created

the ant colony optimization (ACO). The foraging behavior

of several ant species inspired it. The pheromone that the

ants deposit on the ground instructs the other ants to follow

the path. Pheromone values are employed to seek solution

space, and the ants record their positions and the caliber of

their solutions to identify an optimum solution [131]. Paper

[132] suggests using the ACO technique to specify the task

and resource selection criteria in clusters. The user speci-

fies QoS limitations in [133] to get the appropriate quality

for the scheduling workflow. The paper [134] presents an

Ant Colony System (ACS)-based workflow scheduling

algorithm that has been enhanced with several additional

features. The ACO algorithm and the knowledge matrix

notion are combined in [135]. The researchers adopted the

ACO approach [136] to track the historical desirability of

putting them in the same physical machine. The paper

[137] has developed an ant colony-based energy-efficient

scheduling algorithm. The updated pheromone schemes are

presented in [138, 139]. The population is created using the

concept of biased starting ants from [140], where the

expected time to complete a task and the standard devia-

tions of tasks are considered. An infinite number of ants are

employed in [141] for the grid or cloud-based scheduling

of interdependent jobs or workflows. Researchers in [142]

suggest independent work scheduling based on the ACO

approach for cloud computing systems. Based on ACO,

workflow scheduling for grid systems is suggested in [143].

The length of the schedule is kept to a minimum, and tests

with time-varying workflow are run in a grid setting. When

scheduling workflows in hybrid clouds, reference [144]

considers deadline and cost.

4.1.2.2 Particle swarm optimization Particle swarm opti-

mization (PSO) was created by Eberhart and Kennedy

[145] and is based on the social behavior of particles like

flocking birds. The particles adjust their path based on their

optimal position and the optimal position of the best

particle across the board for each generation. The position

and speed of the particles are initialized before the popu-

lation of the particles is created at random [146–150].

Discrete PSO is paired with the Min-Min approach [151] to

decrease the execution time of scheduling activities on

computational grids. A combination of PSO and Gravita-

tional Emulation Local Search (GELS) will improve the

utilization of searching space [152]. Tasks are scheduled

using a Hybrid Particle Swarm Optimization (HPSO) to

reduce turnaround time and increase resource effectiveness

[153]. In paper [154], Tabu Search (TS) and PSO are

combined to use TS to create a local search mechanism.

PSO reduces the completion time and improves resource

utilization when paired with another local search approach

called Cuckoo Search [155]. Task scheduling in grid con-

texts has been done via particle swarm optimization

[156, 157]. A PSO-based hyper-heuristic for resource

scheduling in the grid context was presented by R. Aron

et al. [158]. In [159], a load rebalancing algorithm utilizing

PSO and the least position value technique is used for task

scheduling. PSO suggests a Task-based System Load

Balancing method (TBSLB-PSO) in [160]. The method

reduces transfer and task execution times. Improved

makespan and resource utilization are found in [161].

Energy consumption is decreased to 67.5% using the par-

ticle swarm optimized Tabu search mechanism (PSOTBM)

[162].

4.1.2.3 Artificial bee colony optimization The Artificial

Bee Colony (ABC) algorithm is based on how honey bees

intelligently forage for food. Dervis Karaboga created this

strategy in 2005 to address real-world issues [163]. Every

bee in a colony cooperates to find food sources, and this

knowledge is used to guide decision-making regarding the

search for space exploration. Numerous combinatorial

problems, including flow shop scheduling [164], on-shop

scheduling [165], project scheduling [166], and traveling

salesman [167], have been solved using this technique.

[168, 169] provide examples of how bee colony opti-

mization is used for task scheduling in distributed grid

systems. For task mapping on the resources, authors have

used bees’ foraging behavior as a model. The strategy is

described in [170], which also distributes the workload of

parallel programs across the resources available in grid

computing systems. Load balancing [171, 172] presents

non-preemptive independent task scheduling based on

ABC optimization. Compared to the Min-Min algorithm,

resource utilization is enhanced by an average of 5.0383%

when bee colony and PSO are combined [173]. ABC is

integrated with a Memetic method to reduce the makespan

and balance the load [174]. Many writers have used the

ABC algorithm to schedule different tasks in cloud com-

puting [175, 176]. The ABC algorithm was made possible
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for scheduling dependent tasks in a cloud context by sev-

eral distinctive characteristics, such as modularity and

parallelism [177, 178]. Energy-aware scheduling is sug-

gested by [179] to effectively manage the resources and

improve their usage in the cloud.

4.1.2.4 Bat algorithm A swarm-based method called the

Bat Algorithm (BA) imitates bats’ echolocation activity

[180]. Bats emit a sound pulse, and an echo is created when

nearby objects reflect that sound pulse. Bats use the lag

time between the signal’s emission and return to determine

the prey’s precise location, distance, and speed. Paper

[181] uses the BA algorithm in a cloud context for resource

scheduling, which optimizes the makespan more effec-

tively than the GA method. In [182], a hybrid technique for

BA-Harmony search is suggested for cloud computing

work scheduling. The Gravitational Scheduling Algorithm

(GSA) [183] is a further extension of BA that considers

time restrictions and a trust model. This approach chooses

resources for task mapping based on their trust value. To

reduce execution costs, the Authors used BA to resolve the

workflow scheduling issue in the cloud [184]. The

approach performs better in terms of processing costs

comparing the algorithm to the best resource selection

algorithm. PSO and the bat algorithm are combined in the

paper [185] for cloud profit maximization.

4.1.2.5 Cat swarm optimization The author [186] intro-

duced the Cat Swarm Optimization (CSO) algorithm for

continuous optimization issues. Based on the social

behavior of cats, a heuristic algorithm for optimization is

proposed. It is based on the seeking and tracking behavior

modes of cats. CSO is used in the paper [187]. Researchers

in [188, 189] provide many modified versions of CSO for

resolving discrete optimization issues in various fields. For

the zero–one knapsack issue and the traveling salesperson’s

problem, DBCSO [190] is a binary variant of CSO. In

cloud computing, CSO has been utilized to address the

scheduling of workflows while considering single and

multiple objectives [191]. Makespan, computation

expense, and CPU idle time were considered optimization

criteria for mapping the dependent tasks. The traditional

genetic algorithm is supplemented with CSO and DBCSO

to initialize the population [192].

4.1.2.6 Whale optimization algorithm An innovative

method for handling optimization issues is the Whale

Optimization Algorithm (WOA). Three operators are used

in this algorithm to replicate how humpback whales hunt

by searching for prey, circling prey, and using bubble nets.

The bubble-net feeding method is the name of this foraging

technique [193]. By optimizing the allocation of tasks to

resources, the WOA algorithm can reduce the makespan

and improve the overall performance of the cloud com-

puting system. Mangalampalli et al. created a Multi-ob-

jective Trust-Aware Scheduler with Whale Optimization

(MOTSWO) that prioritizes jobs and virtual machines and

schedules them to the best virtual resources while con-

suming the least amount of time and energy possible [194].

The task scheduling technique presented by [195] allocates

tasks to the appropriate VMS based on determining task

and VM priorities. It is modeled using the WOA to reduce

data center energy use and electricity costs. The multi-

objective model and WOA are the foundation for the task

scheduling algorithm proposed in this research, known as

W-Scheduler [196]. To further expand the WOA-based

method’s capacity to find the best solutions, the authors

offer Improved WOA for Cloud Task Scheduling (IWC)

[197]. The suggested IWC offers superior convergence

speed and accuracy in searching for the optimal task

scheduling plans than the present meta-heuristic algo-

rithms, according to simulation-based studies and com-

prehensive IWC implementation. Another IWC has been

presented in [198]. The Vocalization of the Humpback

Whale Optimization Algorithm (VWOA) is used to opti-

mize task scheduling in a cloud computing environment

[199]. It reduces time, cost, and energy consumption while

maximizing resource use in terms of makespan, cost,

degree of imbalance, resource utilization, and energy

consumption.

4.1.2.7 Firefly algorithm The flashing behavior of fireflies

inspired the nature-inspired optimization method known as

the Firefly Algorithm (FA) [200]. A population-based

algorithm mimics the flashing behavior of fireflies to

choose the best answer. An efficient Trust-Aware Task

Scheduling algorithm using Firefly optimization has been

presented in [201], which has shown a significant impact

over the conventional approaches by minimizing the

makespan, availability, success rate, and turnaround effi-

ciency. An acceptable improvement for makespan and

resource utilization using the FA has been presented in

[202]. The Crow Search algorithm and FA are integrated to

enhance global search capability [203]. A hybrid Firefly-

Genetic combination is propounded for scheduling tasks in

[204]. An intelligent meta-heuristic algorithm based on the

combination of ICA and FA has been presented in [205] to

show dramatic improvements in makespan, CPU time, load

balancing, stability, and planning speed. Another hybrid

method using Firefly and SA algorithms has been proposed

in [206]. The Cat Swarm Optimization and the FA were

combined into a hybrid multi-objective scheduling algo-

rithm [207]. An original modified Firefly Algorithm (mFA)

is used to construct and successfully optimize the opera-

tional cost minimization problem for DGDCs [208].
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4.1.2.8 Crow search algorithm A novel kind of swarm

intelligence optimization algorithm known as the ‘‘Crow

Search Algorithm’’ was developed by imitating the intel-

ligent behavior of crows in hiding and finding food [209].

The Crow Search method has been applied to optimization

problems. The Crow Search is proposed in [210] for task

scheduling in the cloud. Enhanced Crow Search Algorithm

(ECSA) is proposed in [211] to improve the random

selection of tasks. A technique called the Crow-Penguin

Optimizer for Multi-objective Task Scheduling Strategy in

Cloud Computing (CPO-MTS) is suggested in [212]. The

suggested algorithm quickly determines how to best use the

given tasks and cloud resources to complete them. In a

multi-objective task scheduling environment, Singh et al.

propose the Crow Search-based Load Balancing Algorithm

(CSLBA), which focuses on allocating the best resources

for the task to be implemented while considering different

factors like the Average Makespan Time (AMT), Average

Waiting Time (AWT), and Average Data Center Process-

ing Time (ADCPT) [213]. The task resource mapping

problem is addressed using a Crow Search-based load

balancing method for enhanced optimization [214]. To fix

the issue with the resource allocation model, a new opti-

mization technique known as Grey Wolf Optimization and

Crow Search Algorithm (GWO-CSA) is created [215]. The

Crow Search algorithm and the Sparrow Search Algorithm

(SSA) are combined to minimize energy in the cloud

computing environment [216]. Mangalampalli et al. pro-

posed a multi-objective task scheduling method using the

Crow Search Algorithm to schedule tasks to the appropri-

ate virtual machines while considering the cost per energy

unit in data centers [217].

4.1.2.9 Cuckoo search algorithm Cuckoo Search is one of

the most recent algorithms to draw inspiration from nature.

Cuckoo Search is based on some cuckoo species’ brood

parasitism [218]. Additionally, the so-called Lévy flights

improve this technique. The Cuckoo Search algorithm is

proposed in [219, 220] to optimize task scheduling in cloud

computing. A combination of two optimization algorithms,

Cuckoo Search and PSO (CPSO), has been proposed in

[221] paper to reduce the makespan, cost, and deadline

violation rate. The Cuckoo Crow Search Algorithm

(CCSA) is an effective hybridized scheduling method

developed in [222] to find an appropriate VM for task

scheduling. The cuckoo search-based task scheduling

method suggested in [223] assists in efficiently allocating

tasks among the available virtual machines and maintains a

low overall response time (QoS). For better resource

management in the Smart Grid, a load-balancing strategy

based on the Cuckoo Search is suggested in [224].

A Standard Deviation-based Modified Cuckoo Optimiza-

tion Algorithm (SDMCOA) is described to schedule tasks

and manage resources [225] efficiently. The Multi-objec-

tive Cuckoo Search Optimization (MOCSO) algorithm is

suggested to resolve multi-objective resource scheduling

issues in an IaaS cloud computing context [226]. A com-

bination of Cuckoo Search and oppositional-based learning

(OBL) has created a new hybrid algorithm called the

Oppositional Cuckoo Search Algorithm (OCSA) [227].

Madni et al. developed the Hybrid Gradient Descent

Cuckoo Search (HGDCS) algorithm based on the Gradient

Descent (GD) approach and Cuckoo Search algorithm to

optimize and address issues with resource scheduling in

IaaS cloud computing [228]. The CHSA algorithm, a mix

of the Cuckoo Search and Harmony Search (HS) algo-

rithms, is used to optimize the scheduling process [229]. A

group technology-based model and Cuckoo Search algo-

rithm are proposed for resource allocation [230].

A Hybridized Optimization algorithm that is the combi-

nation of the ’Shuffled Frog Leaping Algorithm’ (SFLA)

and ’Cuckoo Search’ (CS) Algorithm for resource alloca-

tion is proposed in [231].

4.1.2.10 Grey wolf search optimization algorithm A

meta-heuristic optimization algorithm called grey wolf

optimization (GWO) was developed after studying the

social interactions of grey wolves [232]. The GWO algo-

rithm is modeled on how grey wolves hunt, which involves

working together as a pack to catch prey. Natesan et al.

propose simulating the performance cost grey wolf opti-

mization (PCGWO) algorithm to optimize allocating

resources and tasks in cloud computing [233]. The publi-

cation [234] offers the modified fractional grey wolf opti-

mizer for multi-objective task scheduling (MFGMTS), a

multi-objective optimization technique. Grey wolf opti-

mizer is also proposed in [235]. A hybrid algorithm

Genetic Gray Wolf optimization algorithm (GGWO), is

proposed by combining gray wolf optimizer (GWO) and

genetic algorithm [236]. In the study [237], a mean GWO

algorithm has been developed to enhance the system per-

formance of task scheduling in the heterogeneous cloud

environment. A multi-objective GWO technique has been

developed in [238] for task scheduling to achieve the best

possible use of cloud resources while minimizing the data

center’s energy consumption and the scheduler’s overall

makespan for the given list of tasks. Using the hill-

climbing approach and chaos theory, Mohammadzadeh

et al. [239] devised IGWO, an enhanced version of the

GWO algorithm that speeds up convergence and avoids

getting caught in the local optimum. Particle Swarm

Optimization and Grey Wolf Optimization, two well-

known meta-heuristic algorithms, have been combined to

form the PSO-GWO algorithm, which has been proposed

in [240]. The experiment’s findings indicate that, compared

to the traditional Particle Swarm Optimization and Grey
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Wolf Optimization techniques, the PSO-GWO methodol-

ogy reduces the average total execution cost and time.

4.1.2.11 Glowworm swarm optimization The glowworm

swarm optimization (GSO) method simulates the move-

ment of the glowworms in a swarm depending on the

distance between them and on a luminous substance called

luciferin [241]. It is a relatively recent swarm intelligence

system. The article [242] proposes a hybrid glowworm

swarm optimization (HGSO) based on GSO to achieve

more effective scheduling with affordable costs. The sug-

gested HGSO speeds up convergence and makes it easier to

escape from local optima by reducing unnecessary com-

putation and dependence on GSO initialization. GSO is

used in paper [243] to address the task scheduling issue in

cloud computing in order to reduce the overall cost of job

execution while maintaining on-time task completion.

4.1.2.12 Symbiotic organism search optimization algo-
rithm The symbiotic organism search (SOS) optimiza-

tion technique is a nature-inspired optimization technique

that can be used for cloud computing task schedules. The

algorithm is founded on the idea that organisms can coexist

harmoniously and use one another’s advantages to survive.

The discrete symbiotic organism search (DSOS) technique

is presented in the publication [244] for optimal task

scheduling on cloud resources. The discrete symbiotic

organism search (DSOS) method has improved, but

because the makespan and response time parameters are so

significant, it still gets stuck in local optima. As a result, a

quicker convergent technique for enhanced Discrete Sym-

biotic Organism Search (eDSOS) is suggested in [245]

when the search space is more extensive or more prominent

due to diversification. The chaotic symbiotic organisms

search (CMSOS) technique is developed to resolve the

multi-objective large-scale task scheduling optimization

problem in the IaaS cloud computing environment [246].

The Adaptive Benefit Factors-based Symbiotic Organisms

Search (ABFSOS) method is presented to balance local and

global search techniques for a faster convergence speed

[247]. An energy–aware Discrete Symbiotic Organism

Search (E-DSOS) Optimization algorithm has been pro-

posed in [248] for task scheduling in a cloud environment.

A modified Symbiotic Organisms Search Algorithm

(G_SOS) is suggested to reduce task execution time

(makespan), cost, reaction time, and degree of imbalance

and speed up convergence for an ideal solution in an IaaS

cloud [249].

4.1.3 Physics-based algorithm

Methods based on physics mimic the laws of physics that

govern the cosmos [250]. The most widely used algorithms

are Henry Gas Solubility Optimization [251], Simulated

Annealing (SA) [252], Gravitational Local Search (GLSA)

[253], Big-Bang Big-Crunch (BBBC) [254], Gravitational

Search Algorithm (GSA) [255], Charged System Search

(CSS) [256], Central Force Optimization (CFO) [257],

Artificial Chemical Reaction Optimization Algorithm

(ACROA) [258], Black Hole (BH) [259], Ray Optimiza-

tion (RO) [260]. In this section, some physics-based nature-

inspired algorithms that are used in task scheduling of

cloud computing are briefly summarized.

4.1.3.1 Henry gas solubility optimization Henry’s law is a

fundamental gas law that describes how much of a given

gas dissolves in a specific kind and amount of liquid at a

specific temperature. The Henry Gas Solubility Optimiza-

tion (HGSO) algorithm mimics the huddling behavior of

gas to balance exploitation and exploration in the search

space and prevent local optima. A modified Henry gas

solubility optimization for the best task scheduling is pro-

vided in the paper [261] and is based on the WOA and

Complete Opposition-Based Learning (COBL). Henry Gas

Solubility Whale Cloud (HGSWC) is the name of the

proposed technique. A set of 36 optimization benchmark

functions is used to validate HGSWC, compared to tradi-

tional HGSO and WOA.

4.1.3.2 Simulated annealing Simulated Annealing (SA)

is a technique for resolving bound- and unconstrained

optimization issues. The technique simulates the physical

procedure of raising a material’s temperature and gradually

decreasing it to reduce flaws while conserving system

energy. A combination of Firefly and SA has been pre-

sented in [206].

4.1.4 Hybrid algorithm

In hybrid scheduling algorithms, two or more scheduling

algorithms are merged to address the task scheduling issue

in a cloud context. The fundamental concept behind hybrid

algorithms is to combine the benefits of various methods

into a single algorithm to improve performance in terms of

computation time, result in quality, or both. [262] discusses

combining ACO and PSO techniques to improve resource

scheduling. The performance and quality of the solution are

optimized using a similar hybrid technique by the authors

in [263] employing ACO and Intelligent Water Drop

algorithm. ACO with Particle Swarm (ACOPS) [264] is

presented to schedule VMs more efficiently. In this

method, the burden of user requests is dynamically fore-

casted and mapped onto the available VMs. In [265],

authors introduced an algorithm that optimizes work

scheduling in cloud environments using fundamental

notions from ACO and ABC. A hybrid Gravitational
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Emulation Local Search approach and PSO is used in [152]

to enhance the results. In [148], the hill climbing local

search heuristic is integrated with PSO, and in [266], fuzzy

logic and GSO are described.

4.2 Nature of scheduling problem

Developing an optimization model that satisfies the

objectives by locating the best optimal solution is neces-

sary because there is always an agreement between opti-

mization objectives. Therefore, two types of scheduling

objectives are considered for nature-inspired task

scheduling. Table 2 represents the categorization of tech-

niques reviewed based on the nature of the scheduling

problem.

4.2.1 Single objective

It is feasible to evaluate the optimality of a specific solution

in contrast to another one already existing in a single

objective optimization. For predetermined objectives, a

single best solution is chosen. Regarding task scheduling in

cloud computing, most approaches only consider the CPU

and memory requirements.

4.2.2 Multi-objective

It is possible to characterize task scheduling in a distributed

heterogeneous computing system as a non-linear, multi-

objective, and NP-hard optimization problem that aims to

maximize cloud resource consumption while meeting QoS

standards. It is impossible to directly compare one solu-

tion’s optimality to another already existing in multi-ob-

jective optimization. Multi-objective scheduling often uses

a Pareto dominance relation technique to replace a single

optimal solution with various possibilities and provide

numerous, varied trade-offs between the objectives.

4.3 Nature of task

There are two scheduling techniques: independent and

dependent scheduling (workflow scheduling). When

dependent scheduling is used, a workflow connects the

tasks to one another. The tasks are autonomous in inde-

pendent scheduling because they are not dependent on one

another. Several authors used both scheduling in their

proposed system. Table 3 depicts the categorization of

techniques reviewed based on the nature of task.

4.4 Primary objectives of scheduling

Based on specific scheduling criteria, the scheduling pro-

cess distributes the tasks inside the workflow onto the

appropriate resources. The scheduling criteria, such as

execution time, cost, reliability, and load balancing influ-

ence the success of the scheduling challenge. Tables 4, 5, 6,

and 7 illustrate the categorization of techniques based on

primary objectives of scheduling using the evolutionary

algorithm, swarm intelligence-based algorithm, physics-

base algorithm, and hybrid algorithm, respectively.

4.4.1 Makespan

Makespan is described as the overall time required to

execute the whole workflow by considering the time when

the tasks finished their execution and the time when it has

been submitted [290]. In the literature, most of the

scheduling algorithms have focused on optimizing make-

span [79, 291]. However, minimizing the total execution

time reduces the execution cost while mapping the tasks to

the resources.

4.4.2 Security

Due to the heterogeneous and scattered nature of cloud

computing resources, security is a significant concern.

Because of virtualization and multi-tenancy capabilities,

providing data security and privacy in a cloud environment

is more challenging than in traditional systems.

4.4.3 Reliability

Failures during the execution of a workflow can occur for

various reasons, including resource unavailability, resource

failure, and network infrastructure. As a result, the

scheduling mechanism should consider resource failure and

ensure reliable executions even when there is concurrency

and failure. The likelihood that the tasks will be carried out

successfully and the workflow will be completed is known

as reliability. For an application to run smoothly, all

Table 2 Nature of scheduling problem

References Nature-inspired algorithm

Single objective [267] FA, CSA, and SA

Multi-objective [268] PSO

[269] PSO

[270] ACO

[271] PSO

[226] CSA
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resources must be reliable. It is possible to calculate the

failure rate; thus, the mapping should be carried out to

increase reliability and lower failure rates. Task-level, VM-

level, and workflow-level failures are the three levels of

failure in a workflow application.

4.4.4 Cost

The cost of an application is determined by two factors

depending on two fundamental cloud resources: the cost of

computing and the cost of data transit and storage. By

supplying a lot of resources, the overall execution time can

be reduced, but execution costs, scheduling overheads, and

resource underutilization may all rise as a result.

4.4.5 Load balancing

In cloud computing settings, virtual computers predomi-

nate as the processing components. There may be instances

during scheduling where multiple tasks are allocated to

virtual machines (VMs) for simultaneous execution. The

loads on the VMs become imbalanced as a result. The

scheduler should be able to spread the burden to the

available ones to prevent overloading resources. Load

balancing over the resource enhances resource consump-

tion and the efficiency of the scheduling process.

4.4.6 Resource utilization

The service provider benefits from higher resource uti-

lization to maximize profit by renting out scarce resources

to users to ensure full utilization.

4.4.7 Rescheduling

Because rescheduling necessitates re-evaluating the plan

and the cost of data transportation among the dependent

activities over the multiple machines, it is generally con-

sidered an overhead to the scheduling process [292]. A

heavy load on the server can need rescheduling.

Rescheduling the jobs is also necessary in the event of

failures such as VM shutdowns or system faults [293].

Only some tasks are chosen for rescheduling because it

lengthens execution time overall and causes performance

to suffer.

Table 3 Nature of task
Reference Algorithm

Independent [267] FA, CSA, and SA

[268] PSO

[269] PSO

[271] PSO

[226] CSA

[272] Hybrid (ACO and CSA)

[273] PSO

[274] CSO

[275] GA

[276] chaotic ACO and GA

[277] GA

[278] FA

[279] ABC and PSO

Workflow [280] GA

[281] ACO

[282] ACO, PSO, and GA

[283] Hybrid (SA with CSO)

[284] PSO

[285] PSO

[286] GA

Independent and workflow scheduling [270] ACO

[287] GA

[288] IE-ABC

[289] PSO and CSO
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4.4.8 Energy efficiency

The amount of CPU and resources used directly influences

how much energy a task uses. When CPUs are not

appropriately utilized, idle power is not utilized effectively,

resulting in significant energy consumption. Due to the

high resource demand, it might occasionally consume

much energy, reducing performance [294]. Scheduling

decisions are crucial, to limit the energy consumption of

the allocated resource. They help determine the best order

in which tasks should be completed. An energy-efficient

storage service is one of the strategies for reducing power

usage addressed in [295]. This service may create a pre-

dictive model to forecast how users will use the files and

data stored there. A few scheduling algorithms might even

be created to lower energy usage [296].

4.5 Scheduling constraints

The possibility of the SLA being negatively impacted if

many applications cannot meet the deadline, priority,

budget, and fault tolerance limits are essential concerns in

cloud scheduling. The suggested mechanisms in this

respect are detailed in the subsections that follow. Table 8

illustrates the categorization of techniques based on

scheduling constraints.

4.5.1 Budget

Budget is a limitation the user imposes on using the cloud

service provider’s resources. Scheduling decisions are

made utilizing the budget constraint to minimize the

workflow’s overall execution time and guarantee that it is

completed within the budget.

4.5.2 Deadline

Applications that depend on timing must finish running in a

specific amount of time. These applications are made to

give results before the deadline using deadline-constrained

scheduling. When scheduling jobs, deadline-constrained

scheduling must also consider the associated costs. In time-

sensitive applications, robust scheduling with deadlines is

essential since it increases the dependability of the

program.

4.5.3 Fault tolerant

A cost-effective fault tolerant (CEFT) scheduling strategy

that should adhere to a predetermined deadline in cloud

systems was discussed in the paper [257]. This method of

handling jobs, known as the primary/backup (P/B) strategy,

contains two duplicate copies of each task and offers

Table 4 Primary objectives of scheduling for the evolutionary algorithm

Algorithm Reference Reliability Makespan Cost Security Load Balance Energy Efficient Rescheduling Resource Utilization

GA [297] Yes Yes Yes – – – – –

[79] – Yes Yes Yes – – – –

[298] – Yes – – – – – –

[75] – Yes – – Yes – – –

[76] – Yes - Yes – – – –

[294] – – – – – Yes – Yes

[68] – Yes – – – – – Yes

[69] – – - – Yes – – –

[70] – – – – – – – Yes

[71] – Yes – – – – – -

[72] – – – – – – – Yes

MA [88] Yes Yes – – – – –

[90] Yes Yes – – – – –

[91] – Yes – – – – – –

ICA [99] Yes – – – – – – –

[103] – Yes – – – – – –

[104] Yes – – – – Yes – –

LOA [299] – Yes Yes – Yes – – Yes

SFO [107] – Yes – – – Yes –

[108] – – – – – – – Yes
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Table 5 Primary objectives of scheduling for swarm intelligence-based algorithm

Reference Reliability Makespan Cost Security Load

Balance

Energy

Efficient

Rescheduling Resource

Utilization

ACO [300] – Yes – – Yes – – –

[301] – Yes – – – – – –

[133] – Yes Yes – – – – –

[134] – Yes Yes – – – – –

[138] – Yes – – – – – –

PSO [302] – Yes – Yes – – – –

[295] – Yes Yes Yes Yes – – –

[146] – Yes Yes – – – – –

[147] – – Yes – – – – –

ABC [168] – Yes – – – – – –

[169] – Yes – – – – – –

[170] – – – – Yes Yes – Yes

[171] – – – – Yes – – –

[172] – – – – Yes – – Yes

BA [181] – Yes Yes – – – – –

[182] – Yes - – – – – –

[184] – Yes Yes – – – – –

CSO [191] – – Yes – Yes – – –

[192] – – Yes – – – – –

WOA [198] – Yes Yes – – – – –

[196] – Yes Yes – – – – –

[199] – Yes Yes – – Yes – Yes

[195] – – Yes – – Yes – –

[194] – Yes Yes – – – – –

FA [201] – Yes Yes – – – – –

[207] – Yes Yes – Yes – – –

[204] – Yes – – – – – –

Crow Search [217] – Yes – – – Yes –

[212] – Yes Yes – Yes – – Yes

[214] – – Yes – – Yes – –

[210] – Yes – – – – – –

[213] – – – – – – – Yes

Cuckoo

Search

[223] – – – – Yes – – –

[224] – Yes – – – – – –

[225] – Yes Yes – Yes – – –

[226] – Yes Yes – – – – –

[227] – Yes – – – – – –

[228] – Yes Yes – – – – –

[229] – Yes – – Yes – – –

GWO [236] – Yes Yes – Yes Yes – –

[241] – Yes Yes – – – – –

[240] – Yes Yes – – – – –

[239] – Yes Yes – – Yes – –

GSO [242] – Yes Yes – – – – –

SOS [244] – Yes – – – – – –

[245] – Yes – – – – – –

[246] – – – – – Yes – –
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permanent or temporary fault tolerance in the event of

hardware failure. The tasks in this strategy are independent

and do not follow a hierarchy. The iterative method is used

to optimize the suggested resource allocation technique

more successfully. The PSO method chooses VM for the

next task in each iteration.

4.5.4 Priority

Verma and Kaushal suggested a Bi-Criteria priority-based

PSO (BPSO), lowering the makespan and execution costs

while scheduling cloud workflow activities [305]. This

PSO would take into consideration deadlines and financial

restrictions. Each workflow task is prioritized at the bottom

level specified by the HEFT algorithm so that the PSO can

carry out the tasks according to these priorities.

4.6 Task-resource mapping scheme

To effectively utilize the available resources based on the

cloud environment and the submitted workload, static,

dynamic, AI-based, and prediction-based mapping of cloud

resources to incoming tasks are carried out. Table 9 illus-

trates the categorization of techniques based on the task

resource mapping scheme.

4.6.1 Static

Static scheduling involves prior knowledge of the tasks to

decide on a schedule before a task begins to execute. By

enhancing load balancing among VMs and balancing the

priority of the activities on those VMs, the paper [171]

suggested a resource provisioning technique inspired by the

ABC algorithm’s behavior to boost resource utilization,

increase system throughput, and decrease queuing time.

Table 6 Primary objectives of scheduling for physics-based algorithm

Reference Reliability Makespan Cost Security Load Balance Energy Efficient Rescheduling Resource Utilization

HGSA [261] – Yes Yes – – – – –

SA [206] – Yes – – – – – –

Table 7 Primary objectives of scheduling for hybrid algorithm

Reliability Makespan Cost Security Load balance Energy efficient Rescheduling Resource utilization

ABC and PSO [279] – Yes – – – Yes – –

ACO with CRO [281] – Yes Yes – – – – –

ACO and CSO [282] – Yes – – – – –

ACO and GA [272] – Yes – – – – –

ACO with GSA [277] – Yes – Yes – - – Yes

CSA with HGSA [283] – Yes Yes – – Yes – –

GA with ANN [287] – Yes – – – Yes – –

GA with fuzzy [303] – Yes – – – – – –

Table 8 Scheduling constraints

References Nature-inspired algorithm

Deadline [304] PSO

[282] ACO

[289] PSO and CSO

Priority [305] PSO

[306] BFO

Budget [307] PSO

Fault tolerance [308] PSO

Table 9 Task resource mapping scheme

Reference Nature-inspired algorithm

Static [171] ABC

Dynamic [309] ACO and PSO

[312] GA

[313] PSO

[314] GA

AI [310] PSO

[315] PSO

Prediction [311] ACO

[285] GA

3052 Cluster Computing (2023) 26:3037–3067

123



4.6.2 Dynamic

Dynamic scheduling may occur while a task is being

executed and doesn’t need to be aware of every task

property. When maximizing resource use is more critical

than reducing execution time, this helps manage changing

requirements of cloud users [219]. All meta-heuristic

scheduling techniques are, in fact, dynamic [220]. How-

ever, some research is discussed in this subsection based on

the dynamic cloud environment and the dynamic schedul-

ing system specified in the primary keyword of the selected

articles. Islam and Habiba have proposed dynamic

scheduling methods based on ACO and Variable Neigh-

borhood PSO (VNPSO) [309].

4.6.3 Artificial intelligence (AI)-based

The creation of an intelligent method that works and

responds, like humans, to schedule and assign resources

with various aspects, such as intelligent and autonomous

systems, nature-inspired intelligent systems, operational

research systems, agent-based systems, neural networks,

machine learning, and expert systems, is supported by the

highly technical and specialized methodology known as

AI-based scheduling [226]. Greater accuracy and precision

are ensured for resource allocation and scheduling in the

cloud framework with AI, and failure and error rates are

nearly nonexistent. ML algorithms have been used in cloud

computing to forecast the status of the resources based on

their anticipated future load and security. Incoming

requests were mapped to resources using an ANN model by

paper [310]; to complete the task more quickly.

4.6.4 Prediction-based

Prediction-based scheduling relates to how various tech-

niques and measurements behave when allocating resour-

ces. When it comes to efficient task scheduling and

optimum resource allocation in the cloud environment, it

can be essential to estimate the critical resource require-

ments and users’ demand for the future using automatic

resource allocation or resource reservation approaches

[231, 232]. Paper [311] introduced a Prediction-based ACO

classification algorithm (PACO), which operates based on

task prioritization and considers various QoS criteria to

minimize the workflow’s overall execution time and

guarantee that it is completed within the budget.

4.7 Testing tools and their comparison

Testing new strategies in an authentic setting is almost

impossible because some trials could harm the end-user

QoS. There are numerous well-known simulation tools for

examining novel scheduling algorithms and judging their

efficiency in various cloud environments. The most well-

known tool for task scheduling is the CloudSim simulation

toolkit. Its existing programmatic classes can be expanded

by the algorithm needed to assess a variety of QoS

parameters, including makespan, financial cost, computa-

tional cost, reliability, availability, scalability, energy

consumption, security, and throughput, as well as includi-

ble constraints, such as deadline, priority, budget, and fault

tolerance. iCloud, GridSim, CloudSim, CloudAnalyst,

NetworkCloudSim, Work flowSim, GreenCloud, and more

well-known simulation tools are available on the cloud.

Table 10 illustrates the categorization of techniques based

on testing tools.

5 Analysis and discussions

This section comprehensively summarizes and examines

the nature-inspired meta-heuristics techniques for task

scheduling in cloud computing in terms of the scheduling

algorithm, type of tasks, the primary objective of

scheduling, task-resource mapping scheme, scheduling

constraint, and testing environment.

5.1 Scheduling algorithm

Figure 3 shows how various task scheduling methods for

clouds inspired by nature can be divided into swarm,

evolutionary, physics, and hybrid approaches, along with

the proportions of each most commonly used approach.

The majority of the algorithms used in the literature are

swarm-based optimization methods. The most active

algorithm among them is PSO, as seen in Fig. 4. Some-

times, those algorithms are used with additional meta-

heuristic or heuristic techniques. Because a hybrid version

of the system can further improve overall performance, the

search strategy and convergence speed of meta-heuristic

techniques vary. Therefore, the hybrid algorithm achieves

the second rank in the list. Most researchers used the GA in

evolutionary approaches, as seen in Fig. 5.

5.2 Scheduling objective

Multi-objective techniques have more scheduling strategies

than single-objective, as shown in Fig. 6. Consequently, it

encourages the ongoing incorporation of multi-objective

strategies for more dependable task scheduling in the cloud

environment.
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5.3 Type of task

The most used type of task scheduling is independent

rather than workflow scheduling. Some literature reviews

also use the combination of independent and workflow

scheduling. The usage measurement of the type of task

scheduling for nature-inspired algorithms is illustrated in

Fig. 7.

5.4 Primary objectives of scheduling

The algorithms are examined in light of the different

scheduling objectives in Fig. 8. The many QoS parameters

that different scheduling algorithms take into consideration

are shown in Fig. 8. The makespan is the most often

employed scheduling objective. The second most crucial

element is cost. Only a few studies, as shown in Fig. 8,

have utilized reliability into consideration while scheduling

tasks. Reliable scheduling can lessen the impact of resource

breakdowns. Making scheduling decisions using the

application’s failure probability as a minimum considera-

tion is recommended. The service providers must consider

resource consumption. Proper resource usage will be

achievable if the submitted applications have the necessary

resources. However, there are connections between the use

of resources and energy consumption. The fundamental

concept behind enhancing resource usage is to combine the

load on the virtual machines (VMs) such that the spare

VMs can be turned off or repurposed for new application

demands. In this situation, predicting future resource

demand can help cloud service providers turn a profit.

Table 10 Testing environment
Reference Nature-inspired algorithm

GCC compiler [267] FA, CSA, and SA

CloudSim [268] PSO

[269] PSO and GA

[270] PSO

[226] CSA

[273] PSO

[274] PSO

Real environment [272] ACO and CSA

[280] GA

CloudSim and real environment [270] ACO

[285] PSO

Matlab [288] PSO

[276] chaotic ACO and GA

[277] GA

CloudSim with MATLAB [287] GA

GridSim [312] GA

Java [282] ACO

[310] PSO

[307] PSO

Evolutionary Swarm Physics Hybrid

Fig. 3 Usage measurement of nature-inspired algorithm
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Reducing VM migrations might be made more accessible

with the estimation.

5.5 Scheduling constraints

Deadline is the constraint most emphasized by nature-in-

spired techniques. Fault tolerance is also a widely adopted

constraint. Most studies also concentrated on budget and

priority at the time of scheduling.

5.6 Task resource mapping scheme

Dynamic scheduling has the most excellent use in nature-

inspired optimization problems. AI and prediction-based

scheduling are also more widely used than static schedul-

ing, as depicted in Fig. 9.

5.7 Testing environment

CloudSim is the most popular and widely used testing tool

in implementing nature-inspired task scheduling
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algorithms, as depicted in Fig. 10. A few studies also used

GridSim, java, Matlab, etc. in some works.

5.8 Discussion

In this study, a novel taxonomy has been used to com-

prehensively and meticulously categorize different popular

nature-inspired scheduling approaches in the cloud in terms

of the scheduling algorithm, the nature of the scheduling

problem, the type of task, the main scheduling goal, the

task-resource mapping scheme, the scheduling constraint,

and the testing environment.

Swarm-based optimization techniques are used in most

of the scheduling algorithms used in the literature. The

most popular swarm-based technique for scheduling issues

in clouds is Particle Swarm Optimization. The majority of

researchers use Genetic Algorithms in evolutionary-based

techniques as well. These algorithms are occasionally

integrated with different heuristics or meta-heuristic

methods. Most of the studies are multi-objective and

independent. In maximal meta-heuristic algorithms,

makespan is employed as the scheduling objective. As

scheduling objectives, cost and energy efficiency are also

given preference. Security and reliability parameters

receive less focus. The deadline is the constraint that nat-

ure-inspired techniques highlight most. Additionally, fault

tolerance is a widely used restriction. Dynamic scheduling

achieves higher popularity than static, AI, and prediction-

based approaches. The most widely used task scheduling

tool is the CloudSim simulation toolkit, whose existing

programmatic classes can be expanded in accordance with

the algorithm requirements to evaluate a variety of QoS

parameters, including makespan, monetary cost, computa-

tional cost, reliability, availability, scalability, energy

consumption, security, and throughput.

6 Future research issues of nature-
optimization task scheduling algorithms

Although nature-inspired algorithms have been used in

many applications successfully, there is still plenty of space

for analysis and discussion regarding many current prob-

lems and topics. Several areas need to be addressed in this

field. Cloud task scheduling presents a variety of difficul-

ties, including heterogeneity, uncertainty, and resource

dispersion, which conventional resource management

techniques need to address. Therefore, to increase the

dependability of cloud applications and services, a lot of

attention and significance should be given to these cloud

qualities. The workload should occupy the fewest resources

that will be effectively employed to achieve the shortest

job duration (maximize system throughput) and maintain a

desired QoS level. Developing novel practical solutions in

this field still requires additional research effort. There

must be a minimum amount of contact between the com-

puting environment and the cloud consumer to fulfill the

QoS standards specified by users while maintaining the

SLA. Performance degradation could therefore be pre-

vented through research into an efficient autonomic

infrastructure-based technique that, in advance, detects

SLA violations.

Increasing energy efficiency in cloud computing is one

of the main issues. According to estimates, 53% of all

operational expenses go into cooling and powering data

centers. As a result, IaaS providers have been given the

urgent responsibility of reducing energy use. The goal of

data center design should not only be to save energy costs;

it also needs to comply with environmental regulations and

legal requirements. Energy-aware server consolidation and

energy-efficient task scheduling can be used to lower

power usage by turning off idle systems. Since cloud ser-

vice providers today seek to offer their services to end

customers with high performance, high quality, and mini-

mal processing time while making maximum profit, relia-

bility is one of the most demanding cloud computing

concerns. The scheduling strategy should be used to safe-

guard and protect the private and sensitive data contained

in the submitted applications.

As can be observed from the numerous state-of-the-art

scheduling methods chosen for this study, not all problems

(challenges) can be solved by a single algorithm. For

instance, while an algorithm considers different factors,

such as resource utilization, availability, response time,

scalability, etc., it may entirely neglect the energy, cost,

time, and quality of service (QoS) parameters that are the

emphasis of the other algorithm. Hybrid algorithms can be

more inventively modified to individually or collectively

maximize a variety of scheduling goals, such as energy

optimization, load balancing, scalable VM migration, etc.

7 Conclusion

Many scientific applications can now migrate to the cloud

because of the adoption of the new distributed computing

paradigm and cloud computing infrastructure. With the

advantages of cloud computing, including virtualization

and shared resource pools, it is possible to manage and run

large-scale workflow applications without maintaining

physical computing infrastructure. The use of numerous

resources accessible via the cloud needs to be optimized.

Nature-inspired scheduling algorithms give better opti-

mization results than traditional and heuristic. Over the

past few years, nature-inspired optimization has developed

rapidly, establishing a significant trend in cloud task
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scheduling. Several existing studies have employed nature-

inspired optimization algorithms to solve scheduling

problems. However, their studies do not concentrate on all

of the parameters required to analyze the importance of

nature-inspired optimization algorithms in task scheduling.

Most studies only considered a small number of parameters

(such as state-of-the-art, QoS parameters, etc.). Still, they

need to simultaneously assess taxonomy, graphical repre-

sentation, and research difficulties for a deeper under-

standing of task scheduling techniques based on nature-

inspired optimization. To the best of our knowledge, a

thorough, systematic, taxonomic assessment of nature-in-

spired optimization scheduling approaches in the cloud is

required to keep up with the ever-increasing growth of

nature-inspired algorithms. Therefore, a comprehensive

study of several nature-inspired meta-heuristics-based

strategies has been conducted in this paper. Conventional

and heuristic scheduling approaches were presented to

distinguish them from nature-inspired optimization algo-

rithms. A novel taxonomy has been demonstrated to

extensively and methodically classify various popular

nature-inspired scheduling approaches in the cloud

regarding the scheduling algorithm, the nature of the

scheduling problem, the type of task, the primary

scheduling goal, the task-resource mapping scheme, the

scheduling constraint, and the testing environment. The

results of each classification stage of taxonomy are ana-

lyzed and comprehensively examined to provide a roadmap

for researchers working in the area of scheduling for

enhancing cloud service.

In most literature, researchers have employed PSO and

GA algorithms to carry out most cloud computing tasks.

The most active study areas are makespan, cost, and

resource utilization which are concentrated by most stud-

ies. Single objective scheduling, reliability, rescheduling,

budget, priority, AI-based, and prediction-based mapping

schemes have attracted less attention from researchers; as a

result, they must be urgently included in ongoing research.

The solutions produced by many nature-inspired methods

that are already in use can be improved by considering the

hybrid approach. The advantages of existing nature-in-

spired algorithms can be combined in a hybrid manner to

address various issues brought on by workflow applications

that optimize across several criteria. At the end of the

discussion, a few simulation tools used in cloud computing

are briefly addressed and contrasted for implementing and

testing new algorithms. This study also presented some

outstanding research issues and upcoming modern trends.

This study primarily endeavored to strongly encourage the

depth of the fundamental ideas of nature-inspired task

scheduling techniques in the cloud computing area, which

should give investigators and users advice on how to

identify the nature of their scheduling problem, pinpoint

their primary QoS parameters, identify the best task-re-

source mapping scheme, and establish the scheduling

constraints that are most suitable for the challenge, without

violating the SLA.
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