
Machine learning-based intrusion detection: feature selection
versus feature extraction

Vu-Duc Ngo1,2 • Tuan-Cuong Vuong3 • Thien Van Luong3 • Hung Tran3

Received: 2 December 2022 / Revised: 5 June 2023 / Accepted: 11 June 2023 / Published online: 5 July 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Internet of Things (IoTs) has been playing an important role in many sectors, such as smart cities, smart agriculture, smart

healthcare, and smart manufacturing. However, IoT devices are highly vulnerable to cyber-attacks, which may result in

security breaches and data leakages. To effectively prevent these attacks, a variety of machine learning-based network

intrusion detection methods for IoT networks have been developed, which often rely on either feature extraction or feature

selection techniques for reducing the dimension of input data before being fed into machine learning models. This aims to

make the detection complexity low enough for real-time operations, which is particularly vital in any intrusion detection

systems. This paper provides a comprehensive comparison between these two feature reduction methods of intrusion

detection in terms of various performance metrics, namely, precision rate, recall rate, detection accuracy, as well as runtime

complexity, in the presence of the modern UNSW-NB15 dataset as well as both binary and multiclass classification. For

example, in general, the feature selection method not only provides better detection performance but also lower training

and inference time compared to its feature extraction counterpart, especially when the number of reduced features K

increases. However, the feature extraction method is much more reliable than its selection counterpart, particularly when K

is very small, such as K ¼ 4. Additionally, feature extraction is less sensitive to changing the number of reduced features

K than feature selection, and this holds true for both binary and multiclass classifications. Based on this comparison, we

provide a useful guideline for selecting a suitable intrusion detection type for each specific scenario, as detailed in Table 14

at the end of Sect. 4. Note that such the comparison between feature selection and feature extraction over UNSW-NB15 as

well as theoretical guideline have been overlooked in the literature.

Keywords Intrusion detection � UNSW-NB15 � Feature selection � Feature extraction � PCA � Machine learning �
Internet of Things � Runtime � Binary/multiclass classification � NIDS � IoT

1 Introduction

Internet of Things (IoTs) has recently witnessed an

explosive expansion in a broad range of daily life and

industrial applications [1–3], such as healthcare, smart

homes, smart cities, smart energy, smart agriculture, and

intelligent transportation. The IoT networks aim to provide

internet connections for transferring data among massive

IoT devices, such as interconnected sensors, drones, actu-

ators, smart vehicles and smart home appliances [2], using

& Hung Tran

hung.tran@phenikaa-uni.edu.vn

Vu-Duc Ngo

duc.ngo@mobifone.vn

Tuan-Cuong Vuong

cngvng123@gmail.com

Thien Van Luong

thien.luongvan@phenikaa-uni.edu.vn

1 Research and Development Center, MobiFone Corporation,

Hanoi 11312, Vietnam

2 School of Electronics and Electrical Engineering, Hanoi

University of Science and Technology, Hanoi 11657,

Vietnam

3 Faculty of Computer Science, Phenikaa University,

Hanoi 12116, Vietnam

123

Cluster Computing (2024) 27:2365–2379
https://doi.org/10.1007/s10586-023-04089-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04089-5&domain=pdf
https://doi.org/10.1007/s10586-023-04089-5

either wired or wireless communications. However, most

of these IoT devices are low-cost, low-power and limited-

resource, making them highly vulnerable to cyber attacks

as well as intrusive activities. Therefore, it is vital to

develop network intrusion detection systems (NIDS) that

can promptly and reliably identify and prevent malicious

attacks to IoT networks. For this, a wide range of machine

learning-based intrusion detection techniques have been

designed for IoT, along with a number of public network

traffic datasets [2, 4]. These datasets often contain a large

number of features, in which many are irrelevant or

redundant, which adversely affect both the complexity and

accuracy of machine learning algorithms. Thus, many

feature reduction methods have been developed for NIDS,

in which feature selection and feature extraction are two of

the most popular ones [2, 4], as discussed next.1

In NIDS, feature selection has been widely used for

reducing the dimensionality of original traffic data. For

example, in [8], a mutual information (MI)-based feature

selection algorithm was proposed in combination with a

classifier called least square support vector machine, which

achieves higher accuracy and lower runtime complexity

than the existing schemes, over three datasets, namely,

KDD99 [9], NSLKDD [10] and Kyoto 2006? [11]. Before

that a MI-based scheme was also proposed for NIDS in

[12], which however suffers from higher computational

complexity than the approach in [8]. Additionally, several

approaches that rely on genetic algorithm (GA) as a search

strategy to select the best subset of features can be found in

[13, 14]. These methods provide lower false alarm rates

than the baselines, where UNSW-NB15 [15] and KDD99

[9] datasets are used. In [16], a hybrid feature selection

approach, which relies on the association rule mining and

the central points of attribute values, was developed,

showing that UNSW-NB15 dataset achieves a better

evaluation than NSLKDD. In [17], another hybrid feature

selection method that comprises particle swarm optimiza-

tion (PSO), ant colony algorithm, and GA was proposed,

learning to better detection performance than the baselines

such as GA [13], in the presence of both NSLKDD and

UNSW-NB15 datasets. In [18], a Pigeon inspired optimizer

was used for selecting features of NIDS, which achieves

higher accuracy than the PSO [13] and hybrid association

rules methods [16]. Note that the aforementioned feature

selection schemes often suffer from high computational

cost, especially for those relying on GA, PSO or machine

learning-based classifiers. For this, a correlation-based

feature selection method that offers low computational cost

was investigated for NIDS over KDD99 and UNSW-NB15

datasets in [19], taking the correlation level among features

into account. Recently, this correlation-based method was

combined with ensemble-based machine learning classi-

fiers to significantly improve the accuracy of NIDS [20], at

the cost of higher complexity. Hence, aiming at a real-time

and low-latency attack detection solutions, this work will

more focus on the correlation-based feature selection

method.2

Unlike feature selection, which retains a subset of the

original features in NIDS, feature extraction attempts to

compress a large amount of original features into a low-

dimensional vector so that most of information is retained.

There are a number of feature extraction techniques that

have been applied for reducing data dimension in NIDS,

such as principal component analysis (PCA), linear dis-

criminant analysis (LDA), and neural network-based

autoencoder (AE). For instance, in [23], PCA was applied

to significantly reduce the dimension of KDD99 dataset,

improving both accuracy and speed of NIDS, where sup-

port vector machine was used for attack classification.

Then, several variants of PCA were adopted to intrusion

detection, such hierarchical PCA neural networks [24] and

kernel PCA with GA [25], which can enhance the detection

precision for low-frequent attacks. Some of applications of

PCA to recent network traffic datasets such as UNSW-

NB15 and CICIDS2017 [26] can be found in [27, 28]. In

addition to PCA, LDA was also employed as a feature

reduction method for NIDS in [29], which remarkably

reduces the computational complexity of NIDS. Then, in

[30, 31], both PCA and LDA were combined into a two-

layer dimension reduction, which is capable of reliably

detecting low-frequency malicious activities, such as User

to Root and Remote to Local, over NSLKDD dataset. To

further improve the efficiency of feature extraction in

NIDS, a AE-based neural network was used in a range of

research works [32–37]. In particular, a stacked sparse AE

approach was developed in [32] to conduct a non-linear

mapping between high-dimensional data and low-dimen-

sional data over NSLKDD dataset. In [33], a deep stacked

AE was used to noticeably reduce the number of features to

5 and 10 for binary and multiclass classification, respec-

tively, leading to better accuracy than the previous meth-

ods. Additionally, a number of AE architectures based on

long short-term memory (LSTM) were developed for

dimensionality reduction of NIDS, such as variational

LSTM [35] and bidirectional LSTM [34], which can effi-

ciently address imbalance and high-dimensional problems.

Note that these AE-based methods suffer from a high

computational cost compared to PCA and LDA, both in

training and testing phases. To address this issue, a network

1 Note that several recent works that apply deep learning and

blockchain to secure IoT networks can be found in [5–7], in the fields

of healthcare system, unmanned aerial vehicle and Android malware.

2 Note that several matrix factorization-based dimensionality reduc-

tion methods were developed for gene expression analysis in [21, 22].

2366 Cluster Computing (2024) 27:2365–2379

123

pruning algorithm has been recently proposed in [36] to

considerably lower complexity of AE structures in

extracting features of NIDS. In [37], a network architecture

uses an AE based on convolutional and recurrent neural

networks to extract spatial and temporal features without

human engineering.

It is worth noting that most of the aforementioned papers

have focused on either improving the detection accuracy or

reducing the computational complexity of NIDS, by using

machine learning-based classifications in combination with

feature engineering methods such as feature selection and

feature extraction for reducing data dimensionality. How-

ever, a comprehensive comparison between these two

feature reduction methods has been overlooked in the lit-

erature. Our paper appears to address this gap. In particular,

we first provide an overview of NIDS, with a focus on the

phase of feature reduction, where feature extraction with

PCA and feature selection with correlation matrix are the

two promising candidates for realistic low-latency opera-

tions of NIDS. Then, using the modern UNSW-NB15

dataset, we thoroughly compare the detection performance

(precision, recall, F1-score) as well as runtime complexity

(training time and inference time) of these two methods,

taking into account both binary and multiclass classifica-

tions as well as the same number of selected/extracted

features denoted as K. Based on our extensive experiments,

we found that feature selection generally achieves higher

detection accuracy and requires less training and inference

times when the number of reduced features K is large

enough, while feature extraction outperforms feature

selection when K gets smaller, such as K ¼ 4 or less.

Furthermore, in order to gain a deeper insight into detec-

tion behaviors of both methods, we investigate and com-

pare their accuracy for each attack class when varying K,

based on their best machine learning classifiers, which

revealed that feature extraction is not only less sensitive to

varying the number of reduced features but also capable of

detecting more diverse attack types than feature selection.

Additionally, both tend to be able to detect more attacks,

i.e., Abnormal classes, when having more features selected

or extracted. Relying on such comprehensive observations,

we provide a theoretical guideline for selecting an appro-

priate intrusion detection type for each specific scenario, as

detailed in Table 14 at the end of Sect. 4, which is, to the

best of our knowledge, not available in the literature.

The rest of this paper is organized as follows. Section 2

discusses machine learning-based network intrusion

detection methods for IoT networks. The overview of

UNSW-NB15 dataset and data pre-processing are

explained in Sect. 3. Section 4 provides the experimental

results and discussion. Finally, Sect. 5 concludes this paper.

2 Machine learning-based network
intrusion detection methods

In this section, we describe an overview of a NIDS based

on machine learning, followed by details on the two major

feature reduction methods, namely, feature selection and

feature extraction.

2.1 Overview of NIDS

A NIDS consists of three major components, namely,

data pre-processing, feature reduction, and attack classifi-

cation, as illustrated in Fig. 1. In particular, in the first

phase, the raw data is denoted as the dataframe Z, whose

features may include unexpected or non-numeric values,

such as null or nominal. Z is pre-processed in order to

either replace these unexpected values with valid ones or

transform them to the numeric format using one-hot

encoding. Several features that do not affect detection

performance, such as the source IP address and the source

port number, are dropped out. Furthermore, depending on

the classifier we use for identifying attacks, we may use the

normalization technique, for example, to constrain the

values of all features, i.e., the elements of the output vector

of the first phase X in Fig. 1, to range from 0 to 1. We will

discuss this in detail in Sect. 3 when presenting UNSW-

NB15 dataset.

As such, after the first phase, the pre-processed data

X 2 RD�N is likely to have much more features than the

original data Z, particularly due to the use of one-hot

encoding, where D is the number of dimensions, or

equivalently, the number of features of X, and N is the

number of data samples. For example, when UNSW-NB15

dataset is used, the dimension of data increases from 45 to

nearly 200, which is too large for classification techniques

to quickly recognize the attack type. In order to address this

fundamental issue, in the second phase, we need to reduce

the number of features that will be used for the attack

classification phase (the last phase in Fig. 1). For this, two

feature reduction methods called feature selection and

feature extraction are widely used to either select or extract

a small number of most important features from pre-pro-

cessed traffic data. This procedure also helps to remove a

large amount of unnecessary features, which not also

increase the complexity of NIDS, but also degrade its

detection performance, as will be illustrated in experi-

mental results in Sect. 4. Herein, the output data of the

feature reduction block is denoted as vector U 2 RK�N in

Fig. 1, which is expected to have a much lower dimension

than X, i.e., K � D, while retaining its most important

information.

Finally, in the third phase of NIDS, a number of binary

and multiclass classification approaches based on machine

Cluster Computing (2024) 27:2365–2379 2367

123

learning, such as decision tree, random forest and multilayer

perception neural networks, are employed to detect the

attack type. Relying on attack detection results, the system

administrators can promptly make a decision to prevent

malicious activities, ensuring the security of IoT networks.

Here, note that the detection performance and latency of a

NIDS strongly depend on which classifier and which feature

reductionmethod it employs. Therefore, in this contribution,

we comprehensively investigate detection performance (in

terms of recall, precision, F1-score) and latency (in terms of

training time and inference time) of different detection

methods in presence of both feature selection and feature

extraction as well as different machine learning classifiers.

We also focus more on the comparison between these two

feature reduction methods, which will be described in detail

in the following subsections.

2.2 Feature selection

There are a number of feature selection techniques used in

intrusion detection, namely, information gain, IG [8] and

feature correlation [19, 20, 38]. In this work, we focus on

using feature correlation for selecting important features,

since this method has been shown to achieve competitive

detection accuracy and complexity compared to other

selection counterparts. Using this correlation-based

method, we aim to select features that are most correlated

to other features based on the correlation matrix calculated

from the training dataset. More specifically, the correlation

coefficient between feature X1 and feature X2 is calculated

based on the numeric pre-processed training dataset X as

follows [38]:

CX1;X2
¼

PN
i¼1 ai � EX1

ð Þ bi � EX2
ð Þ

ffiPN
i¼1 ai � EX1

ð Þ2
q

:
ffiPN

i¼1 bi � EX2
ð Þ2

q ; ð1Þ

where ai and bi are the values of these two features, EX1
¼

PN
i¼1 ai=N and EX2

¼
PN

i¼1 bi=N are their means over N

training data samples. Note that after preprocessing the raw

data Z to obtain X, all features of X are now numeric, i.e.,

ai and bi are numeric, making (1) applicable to process. By

doing this, we obtain a D� D correlation matrix C, whose

elements are given by cij ¼ CXi;Xj
for i; j ¼ 1; 2; . . .;D. The

average correlation of feature Xi to other features is com-

puted as follows:

Ci ¼
PD

j¼1 cij

D
; ð2Þ

where cii ¼ 1 for j ¼ i and cij 2 ½�1; 1� for j 6¼ i. Note that

the self-correlation coefficient cii does not affect selection

results, since it contributes the same amount to all Ci for

i ¼ 1; 2; . . .;D. Then, using a suitable threshold, as will be

detailed in Sect. 4, we are able to select K most important

features corresponding to K largest elements Ci.

It is worth noting that we only need to calculate such

feature correlation in the training phase, while in the testing

phase, we simply pick up K features from the high-di-

mensional data X to form the reduced-dimensional data U

in Fig. 1. This does not require much computational

resource when compared with the feature extraction

method, which is presented next.

2.3 Feature extraction

PCA [23] and AE [36] are the two major feature extraction

methods used in the NIDS. Different from feature selec-

tion, whose selected features are identical to those

appearing in the original data, these feature extraction

techniques compress the high-dimensional data X into the

low-dimensional data U using either a projection matrix or

an AE-based neural network learned from training dataset.

Note that the AE approach usually suffers from high

computational complexity of a deep neural network

(DNN), leading to higher latency than the PCA. Thus, in

this work, we concentrate on the PCA-based feature

UNSW-NB15
dataset

Pre-
prosessing Training setFeature

reduc�on

Tes�ng set

A�ack
classifica�on

A�ack type

• Replacing nulls
• Normaliza�on
• One-hot encoding

Phase 1 Phase 2 Phase 3

• Feature selec�on
• Feature extrac�on

• Machine learning
• Deep learning

Z X U

Fig. 1 Block diagram of a network intrusion detection system

2368 Cluster Computing (2024) 27:2365–2379

123

extraction approach in order to fulfill a strict requirement

on the latency of the NIDS for promptly preventing severe

cyber attacks.

In what follows, we introduce the procedure of pro-

ducing the D� K projection matrix W in the training

phase, and how to utilize this matrix in the testing phase. In

particular, based on the pre-processed training data X of N

samples, we normalize it by subtracting all samples of X by

its mean over all training samples, i.e., the normalized data

is given as follows: X̂ ¼ X� �X, where �X is the mean

vector. Then, we compute the D� D covariance matrix of

training data as follows: R ¼ 1
N X̂X̂

T . Based on this, we

determine its eigenvalues and eigenvectors, from which,

we select K eigenvectors corresponding to K largest

eigenvalues for constructing the D� K projection matrix

W. Herein, these K eigenvectors are regarded as the prin-

cipal components that create a subspace, which is expected

to be significantly close to the normalized high-dimen-

sional data X̂. Finally, the compressed data is determined

by U ¼ WT X̂, which now has the size of K � N instead of

D� N of the original data.

In the testing phase, for each new data point xi 2 RD, its

dimension is reduced using PCA according to

ui ¼ WT xi � �Xð Þ. This indicates that the output of the

training phase of PCA includes both the projection matrix

W and the mean vector of all training samples �X. It should
be noted that such projection matrix calculation would be

computationally expensive, particularly when D and K are

large.

3 Overview of UNSW-NB15 dataset

We now present some key information about UNSW-NB15

dataset, which will be used in our experiments in Sect. 4 to

compare between feature selection and feature extraction.

Then, the data pre-processing for this dataset is also

discussed.

3.1 Key information of UNSW-NB15 dataset

UNSW-NB15 dataset was first introduced in [15], which

offers better real modern normal and abnormal synthetical

network traffic compared with the previous NIDS datasets

such as KDD99 [9] and NSLKDD [10]. A total of 2.5

million records of data are included in the UNSW-NB15

dataset, in which there are one normal class and nine attack

classes: Analysis, Backdoor, DoS, Exploits, Fuzzers,

Generic, Reconnaissance, Shellcode, and Worms. Flow

features, basic features, content features, time features,

additional generated features, and labeled features are 6

feature groups, which consist of a total of 49 features in the

original data [15]. However, in this work, we use a 10%

cleaned dataset of UNSW-NB15, which includes a training

set of 175,341 records and a test set of 82,332 records.

There are a few minority classes with proportions of less

than 2%, including Analysis, Backdoor, Shellcode, and

Worms (see Figs. 2, 3). In the 10% dataset, some unrel-

evant features were removed, such as scrip (source IP

address), sport (source port number), dstip (destination IP

address), and dsport (destination port number). Therefore,

the number of features was reduced to 45, including 41

numerical features and 4 nominal features.

3.2 Pre-processing dataset

As mentioned above, the 10% dataset of UNSW-NB15 has

45 features, including 41 numerical features and 4 nominal

features. We remove the id feature in numerical features,

since it does not affect the detection performance. The

attack_cat nominal feature that contains the names of

attack categories is also removed. Thus, there are three

remaining helpful nominal features, namely, proto, service,

state. In addition, null values appearing in the service

feature are treated as ‘other’ type of service.

One-hot encoding is used for transforming nominal

features, i.e., proto, service, state, to numerical values. For

example, assume that the proto feature has a total of three

different values, namely, A, B, C, then its one-encoding

will result in three numerical features, namely, proto_A,

proto_C, proto_C, whose values are 0 or 1, as illustrated in

Table 1. As a result, after pre-processing data, the number

of features will increase from 45 features in Z to approx-

imately 200 features in U (see Fig. 1), where many of them

are not really helpful in classifying attacks. Therefore, it is

necessary to reduce such a large number of features to a

few of the most important features, which allows to reduce

the complexity of machine learning models in the classi-

fication phase. Finally, we note that when feature extrac-

tion is used, we normalize the input feature with the min-

max normalization method [39] to improve the classifica-

tion accuracy, while we do not use that data normalization

for feature selection, since it does not improve the

performance.

4 Experimental results and discussion

We now present extensive experimental results for inves-

tigating the performance of the NIDS using both feature

selection and feature extraction methods described in

Sect. 2, in combination with a range of machine learning-

based classification models. More particularly, the perfor-

mance metrics used for comparison include recall (R),

precision (P), F1-score, training time and inference time,

Cluster Computing (2024) 27:2365–2379 2369

123

31.94%

22.81%

19.04%

10.37%

6.99%

5.98%

1.14%1.00%
0.65%0.07%

Fig. 2 Proportions of 10 classes

in training dataset of UNSW-

NB15

44.94%

22.92%

13.52% 7.36%

4.97%

4.25%

0.82% 0.71%0.46%0.05%

Fig. 3 Proportions of 10 classes

in testing dataset of UNSW-

NB15

2370 Cluster Computing (2024) 27:2365–2379

123

which will be explained in detail in Sect. 4.1. Both binary

and multiclass classifications are considered. We also

investigate the accuracy for each attack class to provide an

insight into the behaviors of different detection methods.

Last but not least, based on our extensive comparison

between feature selection and feature extraction, we pro-

vide a helpful guideline on how to choose an appropriate

detection technique for each specific scenario.

4.1 Implementation setting

4.1.1 Computer configuration

The configuration of our computer, its operation system as

well as a range of Python packages used for implementing

intrusion detection algorithms in this work are detailed in

Table 2.

4.1.2 Evaluation metrics

We consider the following performance metrics: precision,

recall, F1-score, as well as training time and inference

time. In particularly, F1-score is calculated based on pre-

cision and recall as follows:

F1-score ¼ 2� precision � recall

precisionþ recall
; ð3Þ

which is regarded as a harmonic mean of precision and

recall.

As shown in Fig. 1, the two feature reduction methods

considered in this work go through the same pre-processing

data step, so we do not take the time required for this step

into account when estimating their training and inference

time. Particularly, the training time consists of the training

time of classification models and the time duration con-

sumed by feature reduction in training (FR_train), as

follows:

Training time ¼ timetrain þ timeFR train: ð4Þ

Meanwhile, the inference time consists of the prediction

time of machine learning classifiers and the time duration

required for feature reduction in the testing phase, given by

Inference time ¼ timepredict þ timeFR test: ð5Þ

4.1.3 Classification models

We use five machine learning models to do both binary

and multiclass classification tasks, which are available in

Python Scikit-learn library, namely, Decision Tree, Ran-

dom Forest (max_depth = 5), K-nearest Neighbors

(n_neighbors = 5), Multi-layer Perceptron (MLP)

(max_{i}ter = 100, hidden_layer_sizes = 200), and Ber-

noulli Naive Bayes. Additionally, for a better insight of

feature selection, we provide lists of 4, 8 and 16 selected

features in Table 3, as well as the corresponding thresholds

of the average correlation used to achieve those numbers of

selected features.

4.2 Binary classification

We first investigate the detection performance and runtime

of feature selection and feature extraction methods when

using binary classification in Tables 4, 5 and 6 for 4, 8, 16

selected/extracted features, respectively. In these tables,

the best values (i.e. the maximum values of precision,

recall, and F1-score, and the minimum values of training

and inference times at each column of the tables) are

highlighted in bold, especially the best values for both

feature selection and feature extraction are highlighted in

italics. The training time is measured in second (s), while

the inference time for each data sample is measured in

millisecond (ls).
In terms of detection performance, it is shown from

Tables 4, 5 and 6 that when the number of reduced

Table 1 An example of one-hot encoding for a nominal feature

Proto Proto_A Proto_B Proto_C

A 1 0 0

B 0 1 0

C 0 0 1

Table 2 Hardware and

environment specification
Unit Description

Processor Intel Core i5-10400F (2.66 Hz, 6 cores 12 threats, 12 MB Cache, 65 W)

RAM 16 GB

GPU Nvidia GTX 1650 OC-4G

Operating system Ubuntu 20.04.4 LTS

Packages Numpy, Matplotlib, Pandas, Scipy, Scikit-learn, Scikit-plot and Time

Cluster Computing (2024) 27:2365–2379 2371

123

features (i.e. extracted or selected) K increases, the detec-

tion performance of feature extraction generally improves,

while that of feature selection does not improve when we

increase K from 8 to 16. In fact, the precision, recall and

F1-score of feature selection even slightly degrade from

Tables 5 and 6. This phenomenon is understandable due to

the fact that if the number of selected features gets larger, it

is likely to have more noisy or unimportant features

appearing in the selected ones, which are expected to

deteriorate the detection performance. Moreover,

Table 3 Threshold setting and features selected

Threshold Number Features selected

0.011 4 ‘spkts’, ‘dpkts’, ‘dbytes’, ‘dloss’

0.0137 8 ‘dur’, ‘spkts’, ‘dpkts’, ‘sbytes’, ‘dbytes’, ‘sloss’, ‘dloss’, ‘ct_state_ttl’

0.011 16 ‘dur’, ‘spkts’, ‘dpkts’, ‘sbytes’, ‘dbytes’, ‘sloss’, ‘dloss’, ‘dinpkt’, ‘sjit’, ‘djit’, ‘tcprtt’, ‘synack’, ‘ackdat’,

‘response_body_len’, ‘ct_state_ttl’, ‘proto_{i}cmp’

Table 4 Feature Selection versus Feature Extraction: 4 selected/extracted features and binary classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 85.33 84.35 84.84 22.73 3.73 84.09 79.89 81.94 14.53 0.07

Random Forest 85.76 81.22 83.42 32.32 18.12 77.86 75.11 76.46 17.13 3.29

KNeighbors 86.19 84.67 85.42 23.04 38.47 52.38 47.98 50.08 14.75 259.03

MLP 85.91 81.75 83.78 1011.31 39.37 75.76 74.75 75.25 1278.61 37.08

Naive Bayes 72.62 71.95 72.28 20.37 3.62 75.47 73.63 74.54 14.3 0.24

Table 5 Feature Selection versus Feature Extraction: 8 selected/extracted features and binary classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 85.98 84.98 85.48 26.94 3.95 87.87 87.07 87.47 14.57 0.11

Random Forest 85.23 80.03 82.55 33.89 18.32 85.74 80.95 83.27 18.08 3.34

KNeighbors 86.39 84.99 85.69 23.41 44.02 87.08 85.98 86.53 14.99 51.16

MLP 86.14 82.42 84.24 1252.49 39.82 84.42 79.95 82.12 607.66 33.06

Naive Bayes 72.14 70.01 71.06 21.76 4.11 75.56 73.85 74.69 14.33 0.35

Table 6 Feature Selection versus Feature Extraction: 16 selected/extracted features and binary classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 86.43 85.47 85.95 37.38 5.38 87.41 86.61 87.01 15.18 0.17

Random Forest 85.85 81.08 83.4 58.07 19.26 85.85 81.08 83.39 52.92 19.01

KNeighbors 86.09 84.5 85.29 38.74 1421.15 86.09 84.5 85.29 37.68 1426.22

MLP 86.36 84.67 83.04 1344.91 31.59 81.75 74.27 77.83 661.67 40.64

Naive Bayes 78.2 75.59 76.87 36.64 5.82 75.66 73.88 74.76 14.46 0.55

2372 Cluster Computing (2024) 27:2365–2379

123

comparing the two feature reduction methods, we find that

when the number of reduced features is small, i.e., K ¼ 4,

the detection performance of feature extraction is much

better than that of feature selection. For instance, in

Table 4, the highest F1-score of feature extraction is

85.42% when the KNeighbors classifier is used, while that

of feature selection is lower with 81.94% when the Deci-

sion Tree classifier is used. However, for larger K such as 8

and 16 in Tables 5 and 6, the feature selection method

achieves better accuracy than its extraction counterpart,

especially when using Decision Tree for classification. For

example, when Decision Tree is employed in Table 5 to

achieve the lowest inference time, the F1-score of feature

selection is 87.47%, which is higher than that of feature

extraction with 85.69%. It is also shown from Tables 4, 5

and 6 that when using feature selection, the Decision Tree

classification method always provides the best precision,

recall as well as F1-score. By contrast, the feature extrac-

tion method would enjoy the KNeighbors classifier when K

are small, i.e., 4 or 8, while Decision Tree is only its best

classifier when K becomes larger, such as K ¼ 16.

In terms of the runtime performance, Tables 4, 5 and 6

demonstrate that both the training time and the inference

time of feature selection is lower than that of feature

extraction. This is because of the fact that the feature

extraction method requires additional computational

resources when compressing the high-dimensional data

into low-dimensional data, as explained in Sect. 2, while

the feature selection almost do not require any computing

resources when just picking up K out of D features. More

particularly, in Table 5, the best inference time of feature

selection is 0.11 ls, which is 36 times lower than that of

feature extraction being 3.95 ls, where the Decision Tree

classifier is the best choice for both feature reduction

methods for minimizing the inference time. Again, Deci-

sion Tree is one of the best classifiers for minimizing both

training and inference times, in addition to the Naive Bayes

classifier, which however does not achieve a good

accuracy.

Finally, in order to better understand the attack detection

performance of feature selection and feature extraction, in

Table 7, we provide the accuracy comparison for each

class in binary classification, namely, Normal and Abnor-

mal. Similar to Tables 4, 5 And 6, we consider the number

of reduced features K being 4, 8 and 16. Besides, based on

the results obtained from these three tables, we only

include the classifiers that offer the highest F1-scores for

accuracy comparison for each class in Table 7, namely,

MLP and KNeighbors for feature extraction and Decision

Tree for feature selection. Herein, the highest accuracy for

each class with respect to K is highlighted in bold, while

the highest values in both feature selection and feature

extraction are highlighted in italics. It is worth noting from

this table that in both feature reduction methods, while the

accuracy of detecting Normal class steadily improves when

increasing K, that of detecting Abnormal class gradually

degrades. This interestingly indicates that in order to detect

more attacks, we should select small K rather than large

K. In addition, Table 7 shows that for both feature reduc-

tion methods, the accuracy of Abnormal class is much

higher than that of Normal class. Observe the average

accuracy from this table, we find that the accuracy of

feature extraction is less sensitive to varying K that that of

feature selection, which varies significantly with respect to

K.

4.3 Multiclass classification

We compare both the detection performance and runtime

of feature selection and feature extraction in Tables 8, 9,

and 10 for 4, 8, and 16 selected/extracted features,

respectively, when multiclass classification is considered.

Here, we still employ five machine learning models as in

binary classification. As shown via these three tables,

similar to the binary case, the precision, recall and F1-score

of both methods generally improve when increasing the

number of reduced features K. For example, the highest F1-

scores of feature extraction are 74.11%, 75.39%, and

75.52%, while that of feature selection are 65.43%, 78.36%

and 77.64%, when K = 4, 8, and 16 reduced features,

respectively. As such, feature extraction outperforms its

counterpart when K is small such as K ¼ 4, however, this

is no longer true when K gets larger such as K ¼ 8 and 16,

where feature selection performs much better than feature

extraction. Again, akin to the binary classification, it is

shown from Tables 9 and 10 that the detection perfor-

mance of feature selection degrades when K increases from

8 to 16, mostly due to the impact of noisy or irrelevant

features when having more features selected.

Table 7 Accuracy comparison

for each class between feature

selection and feature extraction

using binary classification

Class Feature Extraction (MLP/KNeighbors) Feature Selection (Decision Tree)

K ¼ 4 K ¼ 8 K ¼ 16 K ¼ 4 K ¼ 8 K ¼ 16

Normal 70.64 71.55 73.79 57.21 76.67 76.09

Abnormal 96.14 96.02 94.99 98.4 95.55 95.21

Average 84.68 85.02 85.47 79.89 87.07 86.61

Cluster Computing (2024) 27:2365–2379 2373

123

Besides, unlike the binary case, where KNeighbors is

the best classifier for feature extraction when K is small

such as 4 and 8, with multiclass classification, MLP now

provides the best detection performance of feature extrac-

tion for any values of K, as shown via Tables 8, 9, and 10.

Meanwhile, feature selection still enjoys the Decision Tree

classifier to achieve the highest detection performance,

similar to the binary classification analyzed in the previous

subsection, while MLP does not offer a good detection

performance for feature selection. Additionally, the Naive

Bayes classifier achieves the worst accuracy for both fea-

ture reduction methods.

With regard to the runtime comparison, again,

Tables 8, 9, and 10 demonstrate that the training and

inference times of feature selection are significantly lower

than that of feature extraction. For example, using the same

Decision Tree model for achieving the lowest runtime, in

Table 9 when K ¼ 8, the inference time of feature selec-

tion is 0.19 ls, which is 26 times lower than that of feature

extraction with 5.04 ls. Similarly, it is shown from this

table that the training time of feature selection is also 2

times lower than that of its extraction counterpart. In

addition, the Decision Tree model provides the lowest

inference time for both feature reduction methods, while

the neural network-based MLP classifier exhibits both the

highest inference and training times for them.

Finally, we compare the accuracy for detecting each

attack type (including 9 attack classes and 1 normal class,

as described in Sect. 3) between feature selection and

feature extraction in Table 11, where the values of K are 4,

Table 8 Feature Selection versus Feature Extraction: 4 selected/extracted features and multiclass classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 75.54 67.56 71.33 21.76 4.47 69.71 61.65 65.43 14.45 0.09

Random Forest 77.6 64.35 70.36 30.52 20.69 55.73 58.76 57.21 17.55 5.55

KNeighbors 76.98 70.87 73.8 20.49 38.57 50.28 45.87 47.97 14.67 258.84

MLP 80.1 68.96 74.11 1085.63 42.89 63.42 55.41 59.15 1519.35 43.67

Naive Bayes 62.82 50.81 56.18 19.9 3.83 41.55 59.68 48.99 12.29 0.59

Table 9 Feature Selection versus Feature Extraction: 8 selected/extracted features and multiclass classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 76.43 69.36 72.72 27.49 4.42 80.18 76.62 78.36 14.65 0.13

Random Forest 78.32 66.74 72.07 34.13 20.66 78.82 68.65 73.38 18.38 5.48

KNeighbors 77.95 72.86 75.32 23.5 41.78 80.27 73.9 76.96 14.8 50.15

MLP 79.90 71.36 75.39 1180.75 47.77 65.14 68.96 66.99 591.4 42.79

Naive Bayes 65.73 51.77 57.92 22.77 4.52 43.47 59.67 50.3 14.57 1.08

Table 10 Feature Selection versus Feature Extraction: 16 selected/extracted features and multiclass classification

Models Feature Extraction Feature Selection

P R F1 Training (s) Inference (ls) P R F1 Training (s) Inference (ls)

Decision Tree 77.33 70.11 73.55 37.68 5.04 79.59 75.78 77.64 15.17 0.19

Random Forest 78.36 66.71 72.07 53.12 21.27 80.03 68.02 73.54 22.17 5.69

KNeighbors 77.56 72.03 74.69 34.94 1405.43 78.79 63.91 70.58 14.72 1396.85

MLP 79.44 71.97 75.52 1428.97 47.51 64.42 69.01 66.63 895.37 49.51

Naive Bayes 74.57 60.59 66.87 34.75 6.34 47.28 59.75 52.79 14.47 1.09

2374 Cluster Computing (2024) 27:2365–2379

123

8, and 16 reduced features. Herein, we employ MLP and

Decision Tree classifiers for feature extraction and feature

selection, respectively, in order to achieve the best detec-

tion performance, as analyzed in the previous discussions.

It is observed from Table 11 that feature selection performs

better than feature extraction in most of classes, except for

Exploits and Fuzzers classes. This table also shows that

both methods are capable of achieving higher accuracy for

Exploits, Generic, Normal and Reconnaissance classes than

the remaining ones. Additionally, similar to the binary

classification discussed in Table 7, the multiclass classifi-

cation accuracy of feature extraction is less sensitive to the

number of reduced features K than that of its selection

counterpart. More importantly, feature selection with MLP

is unable to correctly detect any samples of Analysis and

Backdoor, even for all three values of K. By contrast,

feature selection with Decision Tree classifier is capable of

correctly detecting samples from all classes. We found that

this is mainly due to the machine learning classifier rather

than the feature reduction method we choose. In order to

clarify this issue, we compare the accuracy for each class

between the two feature reduction methods using the same

Decision Tree and MLP classifiers in Tables 12 and 13,

respectively. It is shown via Table 13 that using the same

MLP, similar to feature extraction, feature selection is

unable to detect any samples of Analysis and Backdoor

correctly. Observe these two tables, we found that if the

same classifier is employed, feature extraction tends to be

able to detect more diverse attack types than feature

selection. This is due to the fact that feature extraction can

extract key information from all available features, leading

to more diverse attack types, instead of relying solely on a

subset of selected features as in the feature selection

approach. In other words, feature selection tends to detect

only attack types, which are highly correlated to the fea-

tures it selects.

In summary, considering both binary and multiclass

classification for the NIDS, the feature selection method

not only provides better detection performance but also

lower training and inference time compared to its feature

extraction counterpart, especially when the number of

reduced features K increases. However, the feature

extraction method is much more reliable than its selection

counterpart, particularly when K is very small, such as

K ¼ 4. Additionally, among five considered classifiers,

while Decision Tree is the best classifier for improving the

accuracy of feature selection, a neural network-based MLP

is the best one for feature extraction. Last but not least,

feature extraction is less sensitive to changing the number

of reduced features K than feature selection, and this holds

true for both binary and multiclass classifications. For more

details, we provide a comprehensive comparison between

feature selection and feature extraction in intrusion detec-

tion systems in Table 14.

5 Conclusions

We have compared two typical machine learning-based

intrusion detection methods, namely, feature selection and

feature extraction, in the presence of the modern UNSW-

NB15 dataset, where both binary and multiclass classifi-

cations were considered. Our extensive comparison

showed that when the number of reduced features is large

enough, such as 8 or 16, feature selection not only achieves

higher detection accuracy, but also requires less training

and inference times than feature extraction. However,

when the number of reduced features is very small, such as

4 or less, feature extraction notably outperforms its selec-

tion counterpart. Besides, the detection performance of

feature selection tends to degrade when the number of

selected features becomes too large, while that of feature

Table 11 Accuracy comparison

for each class between feature

selection and feature extraction

using multiclass classification

Class Feature Extraction (MLP) Feature Selection (Decision Tree)

K ¼ 4 K ¼ 8 K ¼ 16 K ¼ 4 K ¼ 8 K ¼ 16

Analysis 0 0 0 1.03 1.62 0

Backdoor 0 0 0 6 7.2 6.17

DoS 0.81 10.61 11.2 8.12 14.18 12.96

Exploits 86.79 85.92 85.59 53.33 84.65 82.79

Fuzzers 67.6 66.46 58 43.1 50.46 49.64

Generic 96.22 96.24 96.3 98.17 98.04 97.38

Normal 62.47 62.5 68.79 59.19 77.06 76.51

Reconnaissance 50.69 60.55 66.5 39.99 78.58 78.4

Shellcode 0 7.67 15.08 0 47.62 42.86

Worms 0 2.27 9.09 11.36 61.36 34.09

Average 69.03 69.79 72.29 61.65 76.62 75.78

Cluster Computing (2024) 27:2365–2379 2375

123

Table 12 Accuracy comparison

for each class between feature

selection and feature extraction

using multiclass classification

and the same Decision Tree

classifier

Class Feature Extraction (Decision Tree) Feature Selection (Decision Tree)

K ¼ 4 K ¼ 8 K ¼ 16 K ¼ 4 K ¼ 8 K ¼ 16

Analysis 10.78 11.82 11.52 1.03 1.62 0

Backdoor 2.92 2.74 5.83 6 7.2 6.17

DoS 19.93 19.81 24.75 8.12 14.18 12.96

Exploits 59.07 61.77 63.94 53.33 84.65 82.79

Fuzzers 38.16 42.08 44.46 43.1 50.46 49.64

Generic 93.58 96.22 95.82 98.17 98.04 97.38

Normal 72.48 73.13 72.92 59.19 77.06 76.51

Reconnaissance 36.87 42.68 45.68 39.99 78.58 78.4

Shellcode 23.54 28.04 32.8 0 47.62 42.86

Worms 15.91 13.64 11.36 11.36 61.36 34.09

Average 67.6 69.42 70.11 61.65 76.62 75.78

Table 13 Accuracy comparison

for each class between feature

selection and feature extraction

using multiclass classification

and the same MLP classifier

Class Feature Extraction (MLP) Feature Selection (MLP)

K ¼ 4 K ¼ 8 K ¼ 16 K ¼ 4 K ¼ 8 K ¼ 16

Analysis 0 0 0 0 0 0

Backdoor 0 0 0 0 0 0

DoS 0.81 10.61 11.2 6.6 0.83 0.42

Exploits 86.79 85.92 85.59 19.16 25 26.23

Fuzzers 67.6 66.46 58 30.86 18.51 11.86

Generic 96.22 96.24 96.3 96.96 96.2 96.21

Normal 62.47 62.5 68.79 68.66 75.5 93.08

Reconnaissance 50.69 60.55 66.5 0.11 73.31 36.61

Shellcode 0 7.67 15.08 0 1.06 0

Worms 0 2.27 9.09 0 0 0

Average 69.03 69.79 72.29 58.38 63.88 69.88

Table 14 A summary of comparison between feature extraction and feature selection

No. Content Extraction Selection

1 Higher accuracy when K is very small, such as K ¼ 4 U

2 Higher accuracy when K gets large, such as K ¼ 8 or 16 U

3 Lower training time U

4 Lower inference time U

5 Detect more diverse attack types when using the same classifier U

6 Less sensitive to the number of selected/extracted features K U

7 MLP is the best classifier U

8 Decision Tree is the best classifier U

9 Detection performance degrades when K is too large U

10 Detection performance steadily improves when K increases U

12 Higher accuracy in detecting Exploits and Fuzzers classes U

13 Higher accuracy in detecting 8 remaining classes, except for Exploits and Fuzzers U

14 Accuracy of Abnormal class is much higher than that of Normal class (Binary) U U

15 Accuracy of detecting Abnormal class degrades when K increases (Binary) U U

16 Higher accuracy for Exploits, Generic, Normal, Reconnaissance than remaining classes U U

2376 Cluster Computing (2024) 27:2365–2379

123

extraction steadily improves. We also found that while

MLP is the best classifier for feature extraction, Decision

Tree is the best one for feature selection for achieving the

highest attack detection accuracy. Finally, our accuracy

analysis for each attack class demonstrated that feature

extraction is not only less sensitive to varying the number

of reduced features but also capable of detecting more

diverse attack types than feature selection. Both tend to be

able to detect more attacks, i.e., Abnormal classes, when

having more features selected or extracted. We believe that

such insightful observations about the performance com-

parison between two feature reduction methods give us a

helpful guideline on choosing a suitable intrusion detection

method for each specific scenario. Finally, note that our

study evaluated the effectiveness of feature reduction

methods only on the UNSW-NB15 dataset. In the future,

we intend to explore whether our observations with

UNSW-NB15 are applicable to other intrusion detection

datasets, such as, NSL-KDD, KDD99, CICIDS2017, and

DARPA1998. We also plan to thoroughly investigate the

performance of various deep learning classification models

for NIDS, and compare with existing machine learning

models.

Acknowledgements This work was supported in part by the SSF

Framework Grant Serendipity and R &D Project of Brighter Gates

AB, Sweden.

Author contributions V-DN and T-CV wrote the main manuscript.

T VL and HT reviewed and corrected the manuscript.

Funding Not applicable.

Data availability The paper does not include any supporting data.

Declarations

Conflict of interest All authors declare that they do not have any

conflict of interest.

Ethical Approval Not applicable.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M.,

Ayyash, M.: Internet of Things: a survey on enabling technolo-

gies, protocols, and applications. IEEE Commun. Surv. Tutor.

17(4), 2347–2376 (2015)

2. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki,

P.: Network intrusion detection for IoT security based on learning

techniques. IEEE Commun. Surv. Tutor. 21(3), 2671–2701

(2019)

3. Kumar, P., Kumar, R., Garg, S., Kaur, K., Zhang, Y., Guizani,

M.: A secure data dissemination scheme for IoT-based e-health

systems using AI and blockchain. In: GLOBECOM 2022—2022

IEEE Global Communications Conference, 2022, pp. 1397–1403.

IEEE (2022)

4. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed

investigation and analysis of using machine learning techniques

for intrusion detection. IEEE Commun. Surv. Tutor. 21(1),
686–728 (2019)

5. Kumar, R., Kumar, P., Aloqaily, M., Aljuhani, A.: Deep learning-

based blockchain for secure zero touch networks. IEEE Commun.

Mag. 61(2), 96–102 (2022)

6. Kumar, P., Kumar, R., Gupta, G.P., Tripathi, R., Jolfaei, A.,

Islam, A.N.: A blockchain-orchestrated deep learning approach

for secure data transmission in IoT-enabled healthcare system.

J. Parallel Distrib. Comput. 172, 69–83 (2023)

7. D’Angelo, G., Palmieri, F., Robustelli, A., Castiglione, A.:

Effective classification of Android Malware families through

dynamic features and neural networks. Connect. Sci. 33(3),
786–801 (2021)

8. Ambusaidi, M.A., He, X., Nanda, P., Tan, Z.: Building an

intrusion detection system using a filter-based feature selection

algorithm. IEEE Trans. Comput. 65(10), 2986–2998 (2016)

9. KDD Cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html. Accessed 10 Oct 2022

10. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed

analysis of the KDD CUP 99 data set. In: IEEE Symposium on

Computational Intelligence for Security and Defense Applica-

tions, 2009, pp. 1–6 (2009)

11. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.:

Statistical Analysis of Honeypot Data and Building of Kyoto

2006? Dataset for NIDS Evaluation, pp. 29–36. Association for

Computing Machinery, New York (2011)

12. Amiri, F., Yousefi, M.R., Lucas, C., Shakery, A., Yazdani, N.:

Mutual information-based feature selection for intrusion detec-

tion systems. J. Netw. Comput. Appl. 34(4), 1184–1199 (2011)

13. Khammassi, C., Krichen, S.: A GA-LR wrapper approach for

feature selection in network intrusion detection. Comput. Secur.

70, 255–277 (2017)

14. Aslahi-Shahri, B.M., Rahmani, R., Chizari, M., Maralani, A.,

Eslami, M., Golkar, M.J., Ebrahimi, A.: A hybrid method con-

sisting of GA and SVM for intrusion detection system. Neural

Comput. Appl. 27(6), 1669–1676 (2016)

15. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set

for network intrusion detection systems (UNSW-NB15 network

data set). In: Military Communications and Information Systems

Conference (MilCIS), 2015, pp. 1–6 (2015)

16. Moustafa, N., Slay, J.: A hybrid feature selection for network

intrusion detection systems: central points. arXiv e-prints (2017).

arXiv:1707.05505

17. Tama, B.A., Comuzzi, M., Rhee, K.-H.: TSE-IDS: a two-stage

classifier ensemble for intelligent anomaly-based intrusion

detection system. IEEE Access 7, 94497–94507 (2019)

18. Alazzam, H., Sharieh, A., Sabri, K.E.: A feature selection algo-

rithm for intrusion detection system based on Pigeon inspired

optimizer. Expert Syst. Appl. 148, 113249 (2020)

19. Moustafa, N., Slay, J.: The evaluation of network anomaly

detection systems: statistical analysis of the UNSW-NB15 data

set and the comparison with the KDD99 data set. Inf. Sec.

J. Glob. Perspect. 25(1–3), 18–31 (2016)

20. Moustafa, N., Turnbull, B., Choo, K.-K.R.: An ensemble intru-

sion detection technique based on proposed statistical flow fea-

tures for protecting network traffic of Internet of Things. IEEE

Internet Things J. 6(3), 4815–4830 (2019)

21. Saberi-Movahed, F., Rostami, M., Berahmand, K., Karami, S.,

Tiwari, P., Oussalah, M., Band, S.S.: Dual regularized unsuper-

vised feature selection based on matrix factorization and mini-

mum redundancy with application in gene selection. Knowl.

Based Syst. 256, 109884 (2022)

Cluster Computing (2024) 27:2365–2379 2377

123

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://arxiv.org/abs/1707.05505

22. Azadifar, S., Rostami, M., Berahmand, K., Moradi, P., Oussalah,

M.: Graph-based relevancy–redundancy gene selection method

for cancer diagnosis. Comput. Biol. Med. 147, 105766 (2022)

23. Xu, X., Wang, X.: An adaptive network intrusion detection

method based on PCA and support vector machines. In: Pro-

ceedings of the First International Conference on Advanced Data

Mining and Applications, 2005, pp. 696–703 (2005)

24. Liu, G., Yi, Z., Yang, S.: A hierarchical intrusion detection model

based on the PCA neural networks. Neurocomputing 70(7–9),
1561–1568 (2007)

25. Kuang, F., Xu, W., Zhang, S.: A novel hybrid KPCA and SVM

with GA model for intrusion detection. Appl. Soft Comput. 18,
178–184 (2014)

26. Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.A.: Toward

generating a new intrusion detection dataset and intrusion traffic

characterization. In: Proceedings of the 4th International Con-

ference on Information Systems Security and Privacy—ICISSP,

2018, pp. 108–116 (2018)

27. Abdulhammed, R., Faezipour, M., Musafer, H., Abuzneid, A.:

Efficient network intrusion detection using PCA-based dimen-

sionality reduction of features. In: International Symposium on

Networks, Computers and Communications (ISNCC), 2019,

pp. 1–6 (2019)

28. Qi, L., Yang, Y., Zhou, X., Rafique, W., Ma, J.: Fast anomaly

identification based on multiaspect data streams for intelligent

intrusion detection toward secure Industry 4.0. IEEE Trans. Ind.

Inform. 18(9), 6503–6511 (2022)

29. Tan, Z., Jamdagni, A., He, X., Nanda, P.: Network intrusion

detection based on LDA for payload feature selection. In: IEEE

GLOBECOM Workshops, 2010, pp. 1545–1549 (2010)

30. Pajouh, H.H., Javidan, R., Khayami, R., Dehghantanha, A., Choo,

K.-K.R.: A two-layer dimension reduction and two-tier classifi-

cation model for anomaly-based intrusion detection in IoT

backbone networks. IEEE Trans. Emerg. Top. Comput. 7(2),
314–323 (2019)

31. Pajouh, H.H., Dastghaibyfard, G., Hashemi, S.: Two-tier network

anomaly detection model: a machine learning approach. J. Intell.

Inf. Syst. 48(1), 61–74 (2017)

32. Yan, B., Han, G.: Effective feature extraction via stacked sparse

autoencoder to improve intrusion detection system. IEEE Access

6, 41238–41248 (2018)

33. Khan, F.A., Gumaei, A., Derhab, A., Hussain, A.: A novel two-

stage deep learning model for efficient network intrusion detec-

tion. IEEE Access 7, 30373–30385 (2019)

34. Popoola, S.I., Adebisi, B., Hammoudeh, M., Gui, G., Gacanin,

H.: Hybrid deep learning for botnet attack detection in the

Internet-of-Things networks. IEEE Internet Things J. 8(6),
4944–4956 (2021)

35. Zhou, X., Hu, Y., Liang, W., Ma, J., Jin, Q.: Variational LSTM

enhanced anomaly detection for industrial big data. IEEE Trans.

Ind. Inform. 17(5), 3469–3477 (2021)

36. Dao, T.-N., Lee, H.: Stacked autoencoder-based probabilistic

feature extraction for on-device network intrusion detection.

IEEE Internet Things J. 9(16), 14438–14451 (2022)

37. D’Angelo, G., Palmieri, F.: Network traffic classification using

deep convolutional recurrent autoencoder neural networks for

spatial–temporal features extraction. J. Netw. Comput. Appl. 173,
102890 (2021)

38. Hall, M.A.: Correlation-based feature selection for machine

learning. PhD Dissertation, The University of Waikato (1999)

39. Kotsiantis, S.B., et al.: Data preprocessing for supervised learn-

ing. Int. J. Comput. Electr. Autom. Control Inf. Eng (2006).

https://doi.org/10.5281/zenodo.1082415

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Vu-Duc Ngo Vu-Duc Ngo

received the Ph.D. Degree from

the Korea Advanced Institute of

Science and Technology in

2011. From 2007 to 2009, he

was a Co-founder and the CTO

of Wichip Technologies, Inc.,

USA. Since 2009, he has been a

Co-founder and the Director of

uVision Jsc, Vietnam. Since

2012, he has been serving as a

BoM Member of the National

Program on Research, Training,

and Construction, High-Tech

Engineering Infrastructure of

Vietnam. He is currently a Researcher with the MobiFone Research

and Development Center, MobiFone Corporation, and also a Lecturer

with the School of Electrical and Electronics Engineering, Hanoi

University of Science and Technology, Hanoi, Vietnam. His research

interests are in the fields of SoC, NoC design and verification, VLSI

design for multimedia codecs, and wireless communications PHY

layer. He was a Recipient of the IEEE 2006 ICCES, the IEEE 2012

ATC and the NICS 2021 Best Paper Awards.

Tuan-Cuong Vuong Tuan-Cuong

Vuong is currently a second

year Bachelor Student, working

at AIoT Lab, Faculty of Com-

puter Science, Phenikaa

University, Hanoi, Vietnam. His

research interests include

applied machine learning and

deep learning in cyber security

and computer vision.

Thien Van Luong Thien Van

Luong is currently a Lecturer

with the Faculty of Computer

Science, and a Leader of AIoT

Lab (https://aiot.phenikaa-uni.

edu.vn/), Phenikaa University,

Vietnam. He was a Research

Fellow with University of

Southampton, UK Prior to that

he obtained the Ph.D. Degree at

Queen’s University Belfast, UK,

and the B.S. Degree at Hanoi

University of Science and

Technology, Vietnam. His

research interests include

2378 Cluster Computing (2024) 27:2365–2379

123

https://doi.org/10.5281/zenodo.1082415
https://aiot.phenikaa-uni.edu.vn/
https://aiot.phenikaa-uni.edu.vn/

applied machine learning in signal processing and wireless

communications.

Hung Tran Hung Tran received

the B.S. and M.S. Degrees in

Information Technology from

Vietnam National University,

Hanoi, Vietnam, in 2002 and

2006, respectively, and the

Ph.D. Degree from the Blekinge

Institute of Technology, Swe-

den, in March 2013. In 2014, he

was with the Electrical Engi-

neering Department, ETS,

Montreal, Canada. From 2015

to 2020, he was a Researcher at

Malardalen University, Sweden.

He is currently working as a

Lecturer at the Computer Science Department, Phenikaa University,

Vietnam. Besides doing research in the areas of wireless communi-

cation, he is also interested in topics of natural language processing

and artificial intelligence, which have been applied to develop core

engines for the academic gates platform (https://www.academicgates.

com).

Cluster Computing (2024) 27:2365–2379 2379

123

https://www.academicgates.com
https://www.academicgates.com

	Machine learning-based intrusion detection: feature selection versus feature extraction
	Abstract
	Introduction
	Machine learning-based network intrusion detection methods
	Overview of NIDS
	Feature selection
	Feature extraction

	Overview of UNSW-NB15 dataset
	Key information of UNSW-NB15 dataset
	Pre-processing dataset

	Experimental results and discussion
	Implementation setting
	Computer configuration
	Evaluation metrics
	Classification models

	Binary classification
	Multiclass classification

	Conclusions
	Author contributions
	Data availability
	References

