
InPlaceKV: in-place update scheme for SSD-based KV storage systems
under update-intensive Worklaods

Jianing Zhao1 • Yubiao Pan1 • Huizhen Zhang1 • Mingwei Lin2 • Xin Luo3 • Zeshui Xu4

Received: 28 November 2022 / Revised: 28 April 2023 / Accepted: 13 May 2023 / Published online: 28 May 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Modern key-value (KV) storage systems adopt append-only writes to update KV pairs with the out-of-place manner,

because the performance of sequential accesses is much better than that of random accesses for HDDs. Compaction or GC

operations will be deployed by traditional KVs or KV separation schemes due to updating KV pairs via append-only writes.

Unfortunately, the system performance will be hurt because extra reads and writes are triggered during those operations,

especially under update-intensive workloads.We find that the performance gap for SSDs between sequential and random

accesses will get close when the request size becomes large in our experiments. Motivated by this, we propose InPlaceKV

built atop SSDs, which adopts an in-place large-update scheme with a hotness-aware method to update KV pairs rather than

use append-only writes with the LSM-tree. We further design the working flow of system operations with appropriate data

structures. Finally, we compare InPlaceKV with state-of-the-art KV storage systems via extensive experiments under

update-intensive workloads, and results validate the effectiveness of our design in improving the system throughput.

Keywords Big Data � KV Storage System � SSDs � Append-only Write � Update In-place � Throughput

1 Introduction

Key-value (KV) storage systems, which store massive data

as KV pairs, are an emerging storage engine and widely

used to support various big data applications and high

performance distributed computing environments, such as

LevelDB [1] for Chrome, RocksDB [2] for Facebook,

Redis [3] for Twitter, HTAP database [4], graph stores

[5, 6], search engine [7], and so on.

In order to fully utilize the performance of sequential

writes, modern KV storage systems [1, 2, 8–13] usually

adopt the Log-Structure Merge tree (LSM-tree) [14] as

their fundamental structure. The main idea is to buffer

random writes and turn them into a large sequential request

by an append-only write, while keeping KV pairs fully

sorted in this sequential request for efficient query opera-

tions. In particular, LSM-tree-based KV storage systems

need compaction operations to move KV pairs from higher

level of LSM tree to lower level and reclaim those invalid

KV pairs. Readers can refer to Sect. 2 for the detailed

description of LSM-tree-based KV storage systems. Due to

tremendous extra I/Os caused by compaction, we empha-

size that LSM-tree-based KV storage systems will suffer

& Yubiao Pan

panyubiao@hqu.edu.cn

& Mingwei Lin

linmwcs@163.com

Jianing Zhao

zhaojianing@stu.hqu.edu.cn

Huizhen Zhang

zhanghz@hqu.edu.cn

Xin Luo

luoxin@swu.edu.cn

Zeshui Xu

xuzeshui@263.com

1 The School of Computer Science and Technology, Huaqiao

University, Xiamen 361000, Fujian, China

2 The College of Mathematics and Informatics, Fujian Normal

University, Fuzhou 350000, Fujian, China

3 The College of Computer and Information Science,

Southwest University, Chongqing 400000, Chongqing, China

4 The Business School, Sichuan University,

Chengdu 610000, Sichuan, China

123

Cluster Computing (2024) 27:1527–1540
https://doi.org/10.1007/s10586-023-04031-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04031-9&domain=pdf
https://doi.org/10.1007/s10586-023-04031-9

from read and write amplification, thus reducing

throughput.

Though relaxing the degree of fully-sorted ordering

(e.g., PebblesDB [8] and Dostoevsky [9]) for each level of

an LSM-tree can alleviate read and write amplification, it

can not completely eliminate the compaction overheads

because KV storage systems still need compaction opera-

tions to move KV pairs from higher levels to lower levels.

KV separation (e.g., WiscKey [10], DiffKV [11], HashKV

[12] and FenceKV [13]) is a direction to reduce the com-

paction overheads, whose main idea is to keep keys and

metadata information in the LSM-tree while storing values

separately in a value log (short for vLog) via append-only

writes. Because the size of keys is much smaller than that

of values, the compaction overheads caused by the LSM-

tree is negligible. Unfortunately, KV separation suffers

from severe garbage collection (GC) overheads because it

needs extra I/Os to reclaim space occupied by invalid

values in the vLog. Additionally, KV separation may need

more I/Os when responding query operations due to the

segregated storage of keys and values, thus also degrading

the system throughput.

In short, append-only writes make LSM-tree-based KVs

(KV pairs are fully-sorted or partially-sorted) and KV

separations deploy compaction operation and GC opera-

tion, respectively, thus causing these two kinds of KV

storage systems to face the challenge of throughput

degradation, especially when the amount of updated KV

pairs becomes tremendous. In fact, update intensive

workloads are common in many storage scenarios, such as

online transaction processing [15] and enterprise servers

[16].

There is an interesting question that whether it is still

necessary to adopt append-only writes for KV storage

systems. The reason why adopting append-only write is

that the performance gap bweteen sequential and random

operations is quite large for traditional hard disk drives

(HDDs). However, this performance gap for modern SSDs

is not as large as that for HDDs [10, 17, 18]. In order to

exploit the performance of SSDs, we have conducted IOPS

evaluations with an NVMe SSD by varying the request size

from 4KB to 512KB. Figure 1 shows the performance

comparison between sequential and random accesses with

different request size. As shown in this figure, the perfor-

mance gap between sequential and random access is get-

ting smaller and smaller when the request size ranges from

4KB to 512KB. Furthermore, the IOPS of random write is

almost same as that of sequential write when the request

size is larger than 128KB.

How to make the best of the large random access per-

formance in SSDs to perform in-place-update, rather than

append-only writes, in KV storage systems for less read/

write amplification still remains as an interesting research

problem. In this paper, we propose a novel KV design, built

atop modern SSDs, with hotness-aware in-place updates to

overwrite invalid data, called InPlaceKV. Based on this

design, InPlaceKV adopts a log structure with in-place

updates instead of the LSM-tree structure to eliminate the

read/write amplification caused by compaction, so as to

improve the system throughput. In particular, we make the

following contributions in this paper.

• We first propose an in-place large-update scheme for

SSD-based KV storage systems while traditional KVs

adopt out-of-place update via append-only writes. The

key idea of this scheme is to take advantage of the large

random access performance of SSDs to update KV pairs

with a large unit in place rather than use append-only

writes with the LSM-tree. Therefore, SSD-based KV

storage systems with this scheme will alleviate the read

and write amplification caused by compaction or GC

compared to those KV storage systems using append-

only writes to update KV pairs in an out-of-place

manner.

• In order to trigger in-place large-updates, we adopt a

hotness-aware method to group KV pairs according to

their hotness. Specifically, we first calculate the hotness

of each KV pair as the number of times that a KV pair

has been accessed. Then, KV pairs are sorted by

hotness, and those KV pairs with similar hotness are

grouped and stored in the same data block. There is a

high probability to update together for those KV pairs

with similar hotness. Thus, we can conduct the in-place

update in a large unit because the cost of large random

access is similar to that of large sequential access in

modern SSDs. Additionally, grouping KV pairs with

similar hotness will help prolong the lifetime of SSDs.

• Based on the design above, we deploy the working flow

of system operations with appropriate data structures in

main memory and SSDs. Finally, we provide the system

robustness and implement the InPlaceKV prototype on

LevelDB. We validate the effectiveness of InPlaceKV

Fig. 1 Performance comparison between sequential and random

access with different request size for SSDs

1528 Cluster Computing (2024) 27:1527–1540

123

in improving system throughput with update-intensive

workloads. Results show that compared to LevelDB,

RocksDB and DiffKV, InPlaceKV achieves 1.2�14.6�
throughput over those KV storage systems under

generated and YCSB core workloads.

The rest of this paper is organized as follows. Section 2

introduces the necessary background on LSM-tree-based

KV storage systems, and gives the motivation of our

design. Section 3 describes the detailed design of our

InPlaceKV. Sect. 4 presents an in-depth evaluation to

validate the effectiveness of our design. Section 5 presents

related work and Sect. 6 concludes the paper and shows the

future work.

2 Background

In this section, we first review the background on LSM-

tree-based KV storage systems, then discuss the overheads

caused by append-only writes, and finally motivate the

design of our InPlaceKV.

2.1 Background on LSM-tree-based KV Systems

We use LevelDB [1] as a representative example to

introduce the background of LSM-tree-based KV systems.

Figure 2 shows the architecture of LevelDB. Similar to

most KV storage systems, LevelDB supports read, write,

update, delete and range scan operations. Among them,

write, update and delete operations are implemented using

append-only writes. When a key-value pair is written, it is

appended to a MemTable, an in-memory data structure.

When the size of the MemTable reaches its limitation, it is

converted to an Immutable MemTable, with all key-value

pairs sorted. The Immutable MemTable is read-only and

flushed to an external storage device (e.g., SSD). The same

process is applied to update operations which use a global

sequence number to ensure that the latest version of KV

pairs can be requested. Differently, delete operations will

adopt an append write to add a deletion mark for a certain

KV pair. For read operations, LevelDB firstly searches the

MemTable and Immutable MemTable, then looks up from

Level 0, and goes through each level until the target KV

pair is found or the lowest level is reached.

When KV pairs are flushed to the external storage

device, they are formed as an SST file and written in Level

0 of the LSM-tree. The structure of an SST file is shown in

Fig. 2. All KV pairs in one SST are sorted and stored in

Data Blocks, each with a typical size of 4KB. Subse-

quently, KV pairs are merged and moved to a lower level

via compaction when the number of SST files in Level 0

reaches a certain limitation. Specifically, one compaction

operation firstly reads several SST files from Level 0 and

all the overlapped SST files from Level 1; Then, all valid

KV pairs are sorted by keys and formed as new SST files

while those invalid KV pairs (e.g., deleted or old version

KV pairs) are discarded; Finally, those new SST files are

flushed into Level 1. Similarly, if Level i (where i � 1) is

full, KV pairs are merged and moved to Level i?1 via

reading one SST file from level i and all the overlapped

SST files from Level i?1. Note that all KV pairs are

globally sorted by keys within each level, except Level 0,

in which KV pairs are only sorted in each SST file.

Compaction maintains the hierarchy of the LSM-tree and

allows to reclaim the storage space occupied by invalid or

old version KV pairs.

2.2 Overheads caused by append-only writes

As we stated in Sect. 1, both LSM-tree-based KVs and KV

separations suffer throughput degradation caused by read/

write amplification due to append-only writes. Figure 3

illustrates the read/write amplification problem of LSM-

tree-based KVs and KV separations. In this example, we

suppose that KV pairs, (K1,V1), (K2,V2), (K3,V3),

(K4,V4), (K7,V7), (K8,V8), (K9,V9), (K10,V10),

(K1,V1’), (K2,V2’), (K7,V7’), and (K9,V9’), are sequen-

tially written into a KV storage system. Among them,

(K1,V1’), (K2,V2’), (K7,V7’), and (K9,V9’) change V1 to

V1’, V2 to V2’, V7 to V7’, and V9 to V9’, respectively.

Due to append-only writes, LSM-tree-based KVs need

compaction to reclaim the space occupied by those invalid

or old version KV pairs. In Fig. 3(a), we assume that each

SST file contains 4 KV pairs. (K1,V1), (K2,V2), (K3,V3)

and (K4,V4) are stored in SST 2, (K7,V7), (K8,V8),

(K9,V9) and (K10,V10) are stored in SST 3, and (K1,V1’),

(K2,V2’), (K7,V7’), and (K9,V9’) are stored in SST 1. SST

2 and SST 3 are in Level i?1, while SST 1 is in Level i.

During compaction, the system needs to read SST 1, SST 2

and SST 3 into memory, discard old version values V1, V2,Fig. 2 The architecture of LevelDB

Cluster Computing (2024) 27:1527–1540 1529

123

V7 and V9, sort all valid KV pairs, regenerate new SST

files, flush SST 4 and SST 7 into Level i?1, and delete SST

1, SST2 and SST 3. In this example, additional 12 KV-pair

reads and 8 KV-pair writes are introduced.

As we described before, KV separations keep keys and

metadata information in the LSM-tree while storing values

separately in a vLog via append-only writes. In a system

with KV separation, compaction is needed to move keys

from higher levels to lower levels in the LSM-tree, but the

overheads is small. For vLog, the system still requires

additional operations, called GC, to reclaim those invalid

KV pairs. Figure 3(b) shows an example of GC triggered

on vLog. There are two pointers (head and tail) used for

vLog. New values are appended in the head pointer, while

the tail pointer tells us where to start freeing space when

GC is triggered. When triggering one GC, the system reads

several KV pairs from vLog, and checks whether those KV

pair are valid or not by querying keys in the LSM-tree.

Finally, valid KV pairs are appended back to the head of

vLog. For ease of illustration, we only show values in vLog

for Fig. 3(b). In this example, additional 7 KV-pair reads

and 3 KV-pair writes are needed during this GC operation.

Furthermore, some query and compaction overheads are

introduced for the LSM-tree.

2.3 Motivation

Append-only writes make traditional KV stores with LSM-

tree and KV separations generate compaction operations

and GC operations, respectively, thus leading them to face

the challenge of throughput degradation, especially when

the amount of updated KV pairs becomes tremendous.

The reason why adopting append-only writes in KV

storage systems is that the performance gap between

sequential access and random access is quite large for

HDDs. The throughput of sequential access can reach

several hundred MB per second for HDDs, while that of

random access is several MB per second. However, SSDs,

receiving lots of attention in research [19–22], are gradu-

ally replacing HDDs in storage systems and its perfor-

mance gap between sequential access and random access is

not as large as that of HDDs. Furthermore, the result of our

evaluations shown in Fig. 1 indicates that the performance

of sequential and random accesses are almost the same

when the request size is large.

From the above discussions, we find that how to make

the best of the SSD’s performance of large random access

to perform in-place updates rather than updating with

append-only writes in KV storage systems is an interesting

problem. On the one hand, in-place updates via large ran-

dom access will only lead to little performance degradation

compared to out-of-place update via append-only writes

according to the result shown in Fig. 1. On the other hand,

discarding append-only writes will improve system per-

formance because overheads caused by compaction or GC

can be avoided. In this paper, we address the problem

above by developing InPlaceKV, which performs in-place

updates with a hotness-aware scheme via large random

accesses, and we present the design details in the next

section.

3 Design

In this section, we first state our design objectives. Then,

we present the architecture, data structure and working

flow of InPlaceKV. Finally, we discuss several issues in

practical implementation.

3.1 Design objectives

InPlaceKV mainly aims for improving system performance

via performing in-place updates with large random acces-

ses. Thus, it focuses on the following three design

objectives.

• Eliminating write/read amplification caused by append-

only writes. As we discussed above, append-only writes

Fig. 3 Overheads caused by append writes

1530 Cluster Computing (2024) 27:1527–1540

123

in KV storage systems will lead to write/read amplifi-

cation, thus degrading system performance. Therefore,

our first objective is to use in-place updates with large

random accesses to replace append-only writes in KV

storage system which is built atop modern SSDs.

• Proposing appropriate design for better performance.

A KV storage system adopting in-place updates with

large random accesses is quite different from traditional

one. Therefore, we must propose appropriate data

structures and working flows for better performance.

• Improving system robustness. Though we propose to

use in-place updates with large random accesses, there

are still a few KV pairs staying in valid state within a

large unit of in-place update. Because it is not possible

that all KV pairs are invalid when each large unit of in-

place update is created. Thus, we must design carefully

to improve system robustness.

3.2 InPlaceKV overview

The main idea of our InPlaceKV is to update KV pairs in

place with a large unit rather than using append-only

writes. To reduce the overheads of in-place large updates,

KV pairs, via a hotness-aware method, are grouped into a

large unit (e.g., 128KB) which is called Data Block. Pre-

cisely, KV pairs are sorted by hotness, and those with

similar hotness are stored in the same Data Block. Figure 4

shows our InPlaceKV architecture. The main data struc-

tures and working flows in InPlaceKV will be introduced in

the next two subsections.

3.3 Data structure

3.3.1 In-memory data structures

Write_MemTable and Update_MemTable play a role as

cache for newly written and updated KV pairs, respec-

tively. In these two structures, a skiplist [23] is used to

record inserted KV pairs. When the size of

Write_MemTable or Update_MemTable reaches a prede-

fined threshold (e.g., 4MB in a default configuration), the

KV pairs within Write_MemTable or

Update_MemTable will be sorted according to their hot-

ness with the help of a Frequency_Table and flushed to the

SSD.

A Frequency_Table will be created as soon as a new

Write_MemTable or Update_MemTable is generated, and

deleted after the corresponding KV pairs are stored on the

SSD. In our hotness-aware design, the hotness of a KV pair

is easily defined as the number of times that the KV pair

has been accessed. Therefore, Frequency_Table records the

access number for each KV pairs in a certain

Write_MemTable or Update_MemTable.

A globally ordered B-tree [24] in memory is used as the

index. Note that the address of each KV pair is stored in the

B-tree after KV pairs are flushed to the SSD, so that a

certain Data Block storing the target KV pair can be read

directly. Also, range query operations can be performed via

this B-tree.

FreeList records the space occupied by a certain KV pair

which has been deleted or its new version data has been

grouped with other KV pairs and overwritten to another

Data Block due to change of its hotness. For example, we

suppose that KV pairs A, B, C and D are stored in Data

Block 1 at first. Then, the new version of KV pair A is

grouped with E, F and G, and written to Data Block 2.

Thus, A’ old version address is recorded in FreeList, which

means that those space in FreeList can be reused in the near

future.

3.3.2 KVLog for external storage

Different from LSM-tree-based KVs, InPlaceKV adopts

KVLog to store KV pairs. Each KVLog consists of several

Data Blocks. KV pairs are stored in Data Blocks in a fully

sorted order according their hotness as we described above.

The format of Data Block is setting as

ðks; k; vs; vÞ1; ðks; k; vs; vÞ2; :::; ðks; k; vs; vÞn, where k and

v represent the key and value, ks and vs mean the size of the

key and value, respectively.

3.4 Working flows

In this subsection, we present the working flows of system

operations in InPlaceKV, including write, update, read,

scan and delete.

Fig. 4 Architecture of InPlaceKV

Cluster Computing (2024) 27:1527–1540 1531

123

3.4.1 Write operation

When handling a write operation for one new KV pair,

InPlaceKV will first check B-tree in memory via the cor-

responding key. B-tree will return NULL and inform

InPlaceKV to buffer this new KV pair in the Write_-

MemTable. At the same time, the corresponding Fre-

quency_Table will be updated. If the Write_MemTable is

full, all KV pairs in this Write_MemTable will be merged

because there may be several versions of one KV pairs

(Please refer to Update Operation), then sorted according to

their hotness recorded in the Frequency_Table, and finally

flushed to the SSD as a KVLog.

3.4.2 Update operation

When handling an update operation for one KV pair,

InPlaceKV will also check the B-tree first. If the B-tree

returns a key without its corresponding address, it means an

old version of this KV pair has been written and buffered in

the Write_MemTable. Otherwise, an old version of this KV

pair has been flushed to the SSD. For the former situation,

InPlaceKV buffers this updated KV pair in the

Write_MemTable as handling a new write operation. For

the latter one, this updated KV pair is buffered in the

Update_MemTable. If the Update_MemTable is full, KV

pairs will be merged, sorted, and flushed to the SSD

according to the Flush-from-Update_MemTable flow

shown in Algorithm 1, which presents the in-place large-

update scheme for InPlaceKV.

In particular, an iterator is first created for all hotness-

sorted KV pairs. Those KV pairs are divided into several

logical Data_Blocks (abbreviated for LDB) which will be

flushed as a large unit. When the size of a logical Data_-

Block reaches the Update_Unit which is a configurable

threshold (typically 4KB in our evaluations), we will cal-

culate how many updated KV pairs belong to one certain

physical Data_Block (short for PDB) stored on the SSD.

After that, InPlaceKV will choose a PDB in which there are

the most updated KV pairs, and get the Update_Rate which

is defined as
NPDB
KVs

NKVs
, where NPDB

KVs means the number of

updated KV pairs whose old versions belong to one certain

PDB and NKVs is the total number of updated KV pairs in

this LDB. For different Update_Rates, InPlaceKV will

perform different operations:

• If the Update_Rate is equal to 1, which means all KV

pairs in the PDB are updated simultaneously, InPla-

ceKV will trigger an in-place large-update for this PDB.

• If the Update_Rate is larger than TH (short for

threshold, e.g., 0.8 as we configure) and less than 1,

which indicates that most of KV pairs in the PDB

needed to be updated in concurrently, InPlaceKV will

migrate those valid KV pairs into a Write_MemTable,

add old addresses of KV pairs whose old versions do

not belong to the PDB to FreeList, and perform an in-

place large-update for this PDB.

• Otherwise, InPlaceKV will flush KV pairs into a new

empty PDB and add all old addresses to FreeList. Note

that, a new empty PDB can be allocated from free space

of InPlaceKV or from one PDB whose proportion of

invalid KV pairs recorded in FreeList is larger than TH

(e.g., 0.8 as we configure). For the latter situation,

InPlaceKV will trigger a few migrations.

Finally, the B-tree must be modified after KV pairs in a

LDB are flushed into one PDB.

3.4.3 Read operation

When a query request for a KV pair comes, InPlaceKV will

first check the Write_MemTable and Update_MemTable.

If this KV pair does not exist in the Write_MemTable and

Update_MemTable, InPlaceKV will search the B-tree to

confirm whether the KV pair is stored in a certain Data_-

Block or not. As we described above, the address of each

pair is stored in the B-tree. Note that the structure of one

1532 Cluster Computing (2024) 27:1527–1540

123

leaf node to record the address of one KV pair is (KVLog#,

DB_Size, DB_Offset, Start_Point), where KVLog# is the

number of KVLog, DB_Size means the size of a certain

Data_Block in which the KV pair is stored, DB_Offset is

the offset of the Data_Block, and Start_Point is the offset

of the KV pair in this Data_Block. It should be noted that

the DB_Size here is not equal to the update unit size set by

the system, but a specific value, which may be slightly

larger or smaller than the update unit. This setting is used

to handle the cases of different DB_Sizes due to variable

length key-value pairs. Therefore, InPlaceKV will directly

get the address of the required KV pair from the B-tree or

be informed from the B-tree that this KV pair does not exist

in this system. Finally, InPlaceKV will read a certain PDB,

and send the result to users.

3.4.4 Scan and delete

For a scan operation, InPlaceKV first checks the B-tree to

obtain leaf nodes in the range of this operation. Then,

InPlaceKV will read KV pairs from the SSD if the obtained

leaf nodes contain keys and addresses, simultaneously;

Otherwise, InPlaceKV will read KV pairs from the

Write_MemTable and Update_MemTable.

For a delete operation, InPlaceKV will add the address

of this KV pair to FreeList, and modify the B-tree to log-

ically delete the KV pair. Note that the space occupied by

the content of this KV pair will be overwritten during an

update operation in the near future.

3.5 Implementation issues

In this subsection, we present two implementation issues of

our InPlaceKV design. At first, we discuss the system

robustness, and then analyze the storage overheads of

InPlaceKV.

3.5.1 System robustness

Even though we adopt a hotness-aware method to group

KV pairs to trigger in-place large-updates, there still exist a

few valid KV pairs in a chosen PDB. For example, KV

pairs A, B, C and D are stored in PDB 1, E, F, G and H are

stored in PDB 2, respectively. We suppose that A, B and C

are updated to A’, B’ and C’, and are grouped with an

updated E’ to perform an in-place update in PDB 1. There

are three kinds of KV pairs needed to be processed. (1) KV

pair D, which is still a valid KV pair in PDB, must be

migrated to memory and its index must be modified in the

B-tree. (2) KV pairs A’, B’ and C’ are directly flushed in

place. (3) KV pair E’, whose old version is stored in PDB

2, is flushed with A’, B’ and C’ to overwrite PDB 1; Then,

the address of E must be added to FreeList; Finally, its

index must be modified in the B-tree. After updating PDB

1, we support that KV pair F’, G’, H’ and I will be updated

for PDB 2. Therefore, InPlaceKV will find that KV pair E

stored in PDB 2 is invalid by checking FreeList. In our

implementation, KV pairs in an Update_MemTable can be

grouped into several LDBs. To maintain data consistency

and reduce the costs of checking FreeList, a temporary

variable smallFreeList is set during the process of turning

those LDBs to corresponding PDBs, instead of directly

operating on FreeList. After one Update_MemTable is

fully flushed, the final smallFreeList is then merged into

FreeList.

3.5.2 Storage overheads

As we described in Fig. 4, the Frequency_Table, FreeList

and B-tree are additional data structures compared to tra-

ditional KV storage systems. One Frequency_Table is

created for a certain Write_MemTable or Update_Mem-

Table, and will be deleted when one Write_MemTable or

Update_MemTable has been flushed to the SSD. FreeList

records those invalid addresses for update and delete

operations, and an address will be removed from FreeList

when its physical space is used to be overwritten. There-

fore, the Frequency_Table and FreeList cost a few space in

main memory. As we present in Read Operation, the

structure of one leaf node in B-tree is (KVLog#, DB_Size,

DB_Offset, Start_Point). In our configuration, DB_Size

uses 3 Bytes (24 bits) to represent the size of a certain

Data_Block, which means the largest Data_Block we can

configure will reach 224B ¼ 16MB. Besides, we also use 3

Bytes to represent DB_Offset, as well as Start_Point and

KVLog#. Therefore, one leaf node in the B-tree as least

consumes 20B in main memory. If the average size of one

KV pair is 1KB, the storage overheads are less than 2% of

the size of total KVLogs. If the size of KV pair increases,

the overheads will be reduced. Additionally, we can flush

some cold indexes from the B-tree to the SSD to further

reduce the amount of memory consumption.

4 Evaluation

In this section, we evaluate and compare InPlaceKV with

LevelDB [1], RocksDB [2] and DiffKV [11]. LevelDB and

RocksDB are two well-known traditional KV storage sys-

tems, while DiffKV is the state-of-the-art KV separation

scheme.

Cluster Computing (2024) 27:1527–1540 1533

123

4.1 Setup

4.1.1 Testbed

Our experiments are conducted on an HP Z2 Tower G4

Workstation with an Inter(R) Core(TM) 3.20 GHz pro-

cessor, 8GB RAM, and a 512 G Intel 660P series SSD. The

machine runs Ubuntu 20.04 LTS with the Linux 5.11

kernel and ext4 file system.

4.1.2 Workload

The system performance was tested mainly using YCSB

[25] to generate workloads and YCSB core workloads. We

compare the system performance under update-intensive

workloads, thus our generated workloads include five

stages with a fixed KV size of 1KB. At first, 10 million KV

pairs are loaded randomly (denoted as Load stage). Then,

10 million read requests come into the systems (Read-1

stage). After that, we trigger two 10-million updates suc-

cessively (Update-1 and Update-2, respectively). Finally,

10 million reads are issued again (Read-2 stage). Each

stage in the above workloads are generated by YCSB with

Zipfian distribution, except the Load stage. Furthermore,

we also consider the YCSB core workloads, referred to

Table 1, to validate the effectiveness of InPlaceKV in

improving the system performance.

4.1.3 System configuration

For each KV storage system in our experiments, we set

MemTable size as 4MB, which is the same size as that of

the Write_MemTable and Update_MemTable in InPla-

ceKV. It should be noted that the InPlaceKV consumes

8MB because it has two caches for updates and writes

respectively. All systems are configured with a table cache

(1000 in a default configuration), and none has Bloom

filters turned on. We configure a large block cache of

500MB for LevelDB, RocksDB and DiffKV, while we run

InPlaceKV without block cache for fair comparison. The

reason is that the B-tree in InPlaceKV will consume

additional memory which is different to other three KV

storage systems.

4.2 Performance comparison

In this subsection, we compare the throughput of different

KV storage systems under our generated workloads. Fig-

ure 5 shows that InPlaceKV achieves a higher throughput

than LevelDB and RocksDB for each stage. Compared

with DiffKV, the throughput of InPlaceKV is better in the

Load, Update-1 and Update-2 stages.

Specifically, InPlaceKV achieves 5.1X, 4.9X and 4.8X

throughput in Load stage than LevelDB, RocksDB and

DiffKV, respectively. For Update-1 and Update-2 stages,

InPlaceKV achieves 1.2-1.4X throughput compared to

other three KV storage systems. The results validate that

InPlaceKV indeed improves the throughput under update-

intensive workloads because it adopts the in-place update

scheme rather than append-only writes, thus eliminating

the costs caused by compaction in traditional LSM-tree

KVs or GC in KV separations. For Read-1 and Read-2

stages, DiffKV and InPlaceKV achieve higher throughput

than LevelDB and RocksDB because InPlaceKV has a

globally indexed B-tree, while DiffKV applies a key-value

separation design. However, DiffKV manages values with

partially-sorted ordering while InPlaceKV just groups

values according to their hotness. Therefore, DiffKV

achieves better spatial locality, thus leading to better read

performance compared to InPlaceKV.

4.3 Throughput analysis

In this subsection, we analyze the throughput of InPla-

ceKV, LevelDB and RocksDB for each 0.2 million

requests during 5 stages in generated workloads. Each

subfigure in Fig. 6 shows the result for each stage.

Figure 6(a) shows that the throughput of InPlaceKV in

Load stage is significantly better than others. Because the

compaction operation has a very obvious impact on the

throughput of LevelDB and RocksDB, while InPlaceKV

Table 1 YCSB core workloads

Workload Features

Load 100% random inserts

A 50% reads and 50% updates

B 95% reads and 5% updates

C 100% reads

D 95% reads and 5% writes

F 50% reads and 50% read-modify-write

Fig. 5 Throughput of generated workloads

1534 Cluster Computing (2024) 27:1527–1540

123

always writes all new KV pairs to the SSD using append-

ing. Though the throughput of InPlaceKV will decrease as

the scale of B-tree increase, the overall throughput is still

much better than LevelDB and RocksDB.

InPlaceKV achieves a better throughput in two read

stages in Fig. 6(b, e). The main reason is that InPlaceKV

uses the address in the B-tree to read the target KV pair

directly with a small read amplification, while LevelDB

and RocksDB will cost more I/Os to respond a read

request. For Read-2 stage shown in Fig. 6(e) after two

update stages, the throughput of all KVs will get some

improvements, because updates will gather hot KV pairs in

the high level of LSM-tree for LevelDB and RocksDB, and

group KV pairs together with similar hotness in a PDB for

InPlaceKV. In addition, DiffKV has a superior read per-

formance with the application of key-value separation

technique, which has performance advantage for key

lookup of a smaller LSM tree. However, For Read-2 stage

shown in Fig. 6(e), it can be found that the read perfor-

mance of InPlaceKV is improved with the help of hot

aggregation and the system cache. The main reason is that

those data, in InPlaceKV, with the similar hotness are

grouped and stored in the same data block, thus leading to a

more efficient cache.

For Update-1 stage, Fig. 6(c) shows that InPlaceKV

achieves a little throughput improvement even though it

eliminates the overheads caused by append-only writes via

the in-place large-update scheme. The reason is that update

process of InPlaceKV is more complex, including B-tree

insertion, FreeList checking, valid data migration, B-tree

updating, and so on. In the consecutive update, Update-2

stage, Fig. 6 shows that InPlaceKV performs better. This is

(a) Load (b) Read-1

(c) Update-1 (d) Update-2

(e) Read-2

Fig. 6 Trends of throughput

Cluster Computing (2024) 27:1527–1540 1535

123

because the hotness-aware scheme works well to reduce

the overheads of update process in InPlaceKV after exe-

cution of Update-1 stage. For example, much more KV

pairs in one PDB will be updated locally in Update-2 stage.

4.4 Tunable parameter

We further study the impact of block size on the write/

update performance of InPlaceKV. In this subsection, we

vary the block size from 4KB to 256KB, and show the

throughput of InPlaceKV for Load stage, Update-1 stage,

and Update-2 stage in Fig. 7.

As we analyze and state in Sect. 1, the random perfor-

mance of SSD gradually increases as the request size

increases. With the increase of the update unit, block size,

the KOPS in Load, Update-1 and Update-2 stages,

increases gradually. For Load stage, because InPlaceKV

write new KV pairs via append writes, so block size does

not affect on the performance. For update stages, with the

increase of block size, InPlaceKV can obtain fewer random

writes and better random performance.

4.5 YCSB evaluation

The YCSB benchmark is widely used to evaluate NoSQL

databases with six different load settings. Among them,

Load workload contains 100% random inserts; A includes

50% reads and 50% updates; B consists of 95% reads and

5% updates; C contains 100% reads; D contains 95% reads

and 5% writes; F includes 50% reads and 50% read-mod-

ify-writes. We run LevelDB, RocksDB, DiffKV and

InPlaceKV under those workloads, and experimental

results are shown in Fig. 8.

For Load, the throughput of InPlaceKV is much higher

than other KV storage systems, e.g., 5.9X, 5.4X, and 3.7X

over LevelDB, RocksDB and DiffKV. For B, C and D,

which are read-intensive workloads, InPlaceKV outper-

forms 2-2.5X over LevelDB and RocksDB, while DiffKV

is better than InPlaceKV. As we mentioned above, the read

performance of DiffKV is better than that of InPlaceKV, so

DiffKV shows better throughput than InPlaceKV in read-

intensive workloads. For A and F with balanced read and

update operations, InPlaceKV outperforms 1.5-2.5X over

LevelDB, RocksDB. And due to the existence of garbage

collection mechanism in DiffKV, the performance of

DiffKV decreases in the case of an increased proportion of

update and write operations.

The experimental results show that InPlaceKV performs

better than LevelDB and RocksDB in read-intensive

workloads, because the indexes in the B-tree are used to

locate directly into the target data block, making the read

operations more efficient. However, DiffKV is better than

InPlaceKV under above workloads. InPlaceKV performs

better in workloads where write/update operations are more

intensive. The reason for this situation is that intensive

appending of KV pair will cause other three KVs to fre-

quently trigger compaction or GC that affects system per-

formance, while InPlaceKV can eliminate the overheads

caused by append-only writes. Furthermore, the update

performance for InPlaceKV is lower compared to the write

performance because the update process in InPlaceKV is

more complex.

5 Related work

Many research works focus on optimizing the write per-

formance for KV storage systems. LevelDB [1] and

RocksDB [2] adopt the traditional LSM-tree via append-

only writes and compaction operations to make KV pairs

fully-sorted in each level of LSM-tree. To reduce the

overheads caused by compactions, several works

[8, 9, 26–29] try to relax the degree of fully-sorted order-

ing. PebblesDB [8] proposes a Fragmented Log-Structure

Tree, which divides KV pairs into several segments for

each level, allows KV pairs in each segment to keep

unsorted, and ensures segments are not overlapped in each

level. Dostoevsky [9] proposes a lazy leveling scheme by

adopting tiering policy for all levels of LSM-tree except the

lowest level which is implemented leveling policy. The

idea of partially-sorted for the LSM-tree can also be found

in SlimDB [26], dCompaction [27], VT-tree [28], and

SifrDB [29]. Differently, InPlaceKV bulit atop on the SSD
Fig. 7 Throughput under different block sizes

Fig. 8 Throughput under YCSB benchmarks

1536 Cluster Computing (2024) 27:1527–1540

123

proposes an in-place large-update scheme instead of

updating via the LSM-tree for eliminating the overheads

caused by append-only writes, while maintaining similar

performance compared to sequential writes.

KV separation is a direction to reduce the compaction

overheads. WiscKey [10] is the first work of proposing the

idea which is to store values in the vLog via append-only

writes while keeping keys and metadata in the LSM-tree.

DiffKV [11] follows the idea of KV separation and intro-

duces a vTree for maintaining the values with partially-

sorted ordering. The ideas of KV separation are also found

in HashKV [12] and FenceKV [13]. As we discussed in

Sect. 2, KV separations will suffer overheads caused by

append-only writes because GC needs to be trigger to

reclaim the space occupied by those invalid values.

Because InPlaceKV updates KV pairs in an in-place

manner with large units rather than append-only writes, it

will eliminate the costs due to additional GC operations.

Besides, many works [30–37] focus on improving the

read and scan performance. bLSM [30] is the first work to

use Bloom Filter to boost read operations via eliminating

unnecessary read operations. Monkey [31] adopts differ-

entiated Bloom Filters in different levels in the LSM-tree,

and ElasticBF [32] proposes a fine-grained elastic Bloom

Filter method to improve read performance. Learning

models have also been applied to the optimal use of Bloom

Filters, such as L-FBF [33]. AC-Key [34] designs an

adaptive cache mechanism to accelerate read performance.

TridentKV [35] designs an adaptive learning index struc-

ture to speed up file indexing to improve read performance.

Rosetta [36] introduces a probabilistic range filter to bring

benefits for range queries without hurting point queries,

and REMIX [37] designs a compact multi-table index data

structure for fast range queries in LSM-trees. Compared to

those works, InPlaceKV focus on eliminating the over-

heads caused by append-only writes.

Unlike those works on performance improvement above

via data structure optimization, many researchers build

their KV storage systems on emerging hardware, such as

persistent memory (PM). The work [38] optimizes the

system performance via PMs. SLM-DB [39] designs a

Single-Level Merge DB which takes advantage of both the

B?-tree index and the LSM-tree by leveraging the fast PM.

FlatStore [40] is a PM-based KV storage system which

combines a persistent log structure and a volatile index for

efficient storing and fast indexing, respectively. HiLSM

[41] proposes a hybrid KV storage system with non-vola-

tile memory and SSD to provides a cost-efficient solution

for WAL synchronization, while SpanDB [42] uses SSDs

and a NVMe SSD to build a KV storage system which

provides high-speed parallel WAL. The idea of making use

of emerging hardware to build KV storage systems can also

be found in GearDB [43], SplinterDB [44], FlashKey [45],

LogStore [46]. Another research works, e.g., PLSC-tree

[47] and KVSSD [48], design a friendly key-value man-

agement for SSDs. Differently, InPlaceKV is just built atop

SSDs and make the best use of the performance of random

access with a large unit.

Actually, there are some works [17, 18] discussing the

issue of the performance gap of random accesses and

sequential accesses on SSDs and designed KV stores with

in-place update. However, their schemes of data aggrega-

tion for in-place update are different from InPlaceKV.

KVell [17] groups KV pairs with similar size, and stores

them in the same file according to writing order, while

TreeLine [18] captures the read benefits of a classical disk-

bsed B? tree and writes KV pairs by grouping logically

adjacent data together. Differently, InPlaceKV stores KV

pairs with similar hotness in the same data block in order to

make full use of the performance of large random access in

SSDs.

6 Conclusion and future work

Append-only writes make KV storage systems generate

compaction or GC operations during which the system

performance will be degraded due to extra reads and

writes, especially under update-intensive workloads. Our

experiments indicate that the SSD’s performance gap of

sequential and random accesses gets close when the request

size is large. Motivated by this, we propose InPlaceKV,

which is built atop SSDs, to improve system performance

via an in-place large-update scheme with a hotness-aware

method to update KV pairs. Its novelty lies in leveraging

the performance of random access with a large unit in

SSDs so as to group and flush updated KV pairs with an in-

place manner rather than using append-only write with the

LSM-tree. Our evaluations validate the effectiveness of

InPlaceKV in improving the system throughput with

update-intensive workloads.

In future work, we will limit the size of B-tree via

storing partial nodes of B-tree in the persistent memory

with hot-cold separation to reduce the memory consump-

tion and ensure data consistency when system crush hap-

pens. Furthermore, we plan to implement Parallel Scan

with multi-threading for InPlaceKV via making use of the

large degree of internal parallelism in SSDs. All those

efforts will further improve the performance of our

InPlaceKV.

Author contributions Conceptualization: JZ, YP, HZ; Methodology:

JZ, YP, HZ; Investigation: JZ, YP, HZ; Formal analysis: JZ; Soft-

ware: JZ; Validation: JZ; Writing - original draft: JZ; Supervision:

YP, ML; Writing - review and editing: YP, ML, XL, ZX; Resources:

ML, XL, ZX.

Cluster Computing (2024) 27:1527–1540 1537

123

Funding This research work was supported by the National Natural

Science Foundation of China under Grants No. 61802133 and No.

61872086, the Young Top Talent of Young Eagle Program of Fujian

Province, China under Grant No. F21E0011202B01, the Natural

Science Foundation of Fujian Province under Grants No. 2021J01319

and No. 2022J06020, and the Fundamental Research Founds for the

Central Universities of Huaqiao University under Grant No. ZQN-

910.

Data availability The datasets generated during and/or analysed dur-

ing the current study are available from the corresponding author on

reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

References

1. Chemawat S, Dean J.:Leveldb. https://github.com/google/

leveldb, (2022)

2. Facebook. Rocksdb. http://rocksdb.org/, (2022)

3. Redis, Sanfilippo S.: https://redis.io, (2022)

4. Huang, Dongxu, Liu, Qi., Cui, Qiu, Fang, Zhuhe, Ma, Xiaoyu,

Fei, Xu., Shen, Li., Tang, Liu, Zhou, Yuxing, Huang, Menglong,

Wei, Wan, Liu, Cong, Zhang, Jian, Li, Jianjun, Xuelian, Wu.,

Song, Lingyu, Sun, Ruoxi, Shuaipeng, Yu., Zhao, Lei, Cameron,

Nicholas, Pei, Liquan, Tang, Xin: Tidb: a raft-based htap data-

base. Proc. VLDB Endow 13(12), 3072–3084 (2020)

5. Elyasi, N., Choi, C., Sivasubramaniam, A.: Large-scale graph

processing on emerging storage devices. In Proceedings of the

17th USENIX Conference on File and Storage Technologies,

pages 309–316. USENIX Association, (2019)

6. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Venkatara-

mani, V.: Tao: Facebook’s distributed data store for the social

graph. In Proceedings of the 2013 USENIX Conference on

Annual Technical Conference, pages 49–60. USENIX Associa-

tion, (2013)

7. Chang, Fay, Dean, Jeffrey, Ghemawat, Sanjay, Hsieh, Wilson C.,

Wallach, Deborah A., Burrows, Mike, Chandra, Tushar, Fikes,

Andrew, Gruber, Robert E.: Bigtable: a distributed storage sys-

tem for structured data. Acm Trans. Comput. Syst. 26(2), 1–26
(2008)

8. Raju, Pandian., Kadekodi, Rohan., Chidambaram, Vijay., Abra-

ham, Ittai.: Pebblesdb: Building key-value stores using frag-

mented log-structured merge trees. In Proceedings of the 26th

Symposium on Operating Systems Principles, pages 497–514.

Association for Computing Machinery, (2017)

9. Dayan, Niv., Idreos, Stratos.: Dostoevsky: Better space-time

trade-offs for lsm-tree based key-value stores via adaptive

removal of superfluous merging. In Proceedings of the 2018

International Conference on Management of Data, pages

505–520. Association for Computing Machinery, (2018)

10. Lu, Lanyue., Pillai, Thanumalayan Sankaranarayana., Arpaci-

Dusseau, Andrea C., Arpaci-Dusseau, Remzi H.: Wisckey:

Separating keys from values in ssd-conscious storage. In Pro-

ceedings of the 14th USENIX Conference on File and Storage

Technologies, pages 133–148. USENIX Association, (2016)

11. li, Yongkun., Liu, Zhen., Lee, Patrick P.C., Wu, Jiayu., Xu,

Yinlong., Wu, Yi., Tang, Liu., Liu, Qi., Cui, Qiu.: Differentiated

key-value storage management for balanced i/o performance. In

Proceedings of the 2021 USENIX Annual Technical Conference,

pages 673–687. USENIX Association, (2021)

12. Chan, Helen H. W., Li, Yongkun., Lee, Patrick P. C., Xu, Yin-

long.: Hashkv: Enabling efficient updates in KV storage via

hashing. In Proceedings of the 2018 USENIX Annual Technical

Conference, pages 1007–1019. USENIX Association, (2018)

13. Tang, Chenlei, Wan, Jiguang, Changsheng, Xie: Fencekv:

enabling efficient range query for key-value separation. IEEE

Trans. Parallel Distrib Syst. 33(12), 3375–3386 (2022)

14. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured

merge-tree (lsm-tree). Acta Informatica 33(4), 351–385 (1996)

15. TPC. Tpc-c is an on-line transaction processing. http://www.tpc.

org/tpcc/, (2022)

16. Kavalanekar, S., Worthington, B., Zhang, Q., Sharda, V.: Char-

acterization of storage workload traces from production windows

servers. In 2008 IEEE International Symposium on Workload

Characterization, pp. 119–128. IEEE, Piscataway (2008)

17. Lepers, Baptiste., Balmau, Oana., Gupta, Karan., Zwaenepoel,

Willy.: Kvell: The design and implementation of a fast persistent

key-value store. page 447-461, (2019)

18. Yu, Geoffrey X., Markakis, Markos, Kipf, Andreas, Larson, Per-

Åke, Minhas, Umar Farooq, Kraska, Tim: Treeline: an update-in-

place key-value store for modern storage. Proc. VLDB Endow.

16(1), 99–112 (2022)

19. Zhang, Jianpeng, Lin, Mingwei, Pan, Yubiao, Xu, Zeshui: Crftl:

cache reallocation-based page-level flash translation layer for

smartphones, pp. 1–9. Piscataway, IEEE Transactions on Con-

sumer Electronics (2023)

20. Luo, Yuhan, Lin, Mingwei, Pan, Yubiao, Zeshui, Xu.: Dual

locality-based flash translation layer for nand flash-based con-

sumer electronics. IEEE Trans. Consumer Electron. 68(3),
281–290 (2022)

21. Pan, Yubiao, Lin, Mingwei, Zhixiong, Wu., Zhang, Huizhen,

Zeshui, Xu.: Caching-aware garbage collection to improve per-

formance and lifetime for nand flash ssds. IEEE Trans. Consumer

Electron. 67(2), 141–148 (2021)

22. Pan, Yubiao, Li, Yongkun, Zhang, Huizhen, Chen, Hao, Lin,

Mingwei: Gftl: Group-level mapping in flash translation layer to

provide efficient address translation for nand flash-based ssds.

IEEE Trans. Consumer Electron. 66(3), 242–250 (2020)

23. Pugh, William W.: Skip lists: a probabilistic alternative to bal-

anced trees. Commun. ACM 33(6), 668–676 (1990)

24. Bayer, R., Mccreight, E.M.: Organization and maintenance of

large ordered indexes. Acta Informatica 1(3), 173–189 (1972)

25. Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,

R.: Benchmarking cloud serving systems with ycsb. In Proceed-

ings of the 1st ACM Symposium on Cloud Computing. Indi-

anapolis, pages 143–154. Association for Computing Machinery,

(2010)

26. Ren, Kai, Zheng, Qing, Arulraj, Joy, Gibson, Garth: Slimdb: a

space-efficient key-value storage engine for semi-sorted data.

Proc. VLDB Endow. 10(13), 2037–2048 (2017)

27. Pan, F., Yue, Y., Xiong, J.: dcompaction: delayed compaction for

the lsm-tree. Int. J. Parallel Program. 45(6), 1310–1325 (2017)

28. Shetty, P., Spillane, R., Malpani, R., Andrews, B., Zadok, E.:

Building workload-independent storage with vt-trees. In Pro-

ceedings of the 11th USENIX conference on File and Storage

Technologies, pages 17–30. USENIX Association, (2013)

29. Mei, F., Cao, Q., Jiang, H., Li, J.: Sifrdb: A unified solution for

write-optimized key-value stores in large datacenter. In Pro-

ceedings of the 2018 ACM Symposium on Cloud Computing,

page 477-489. Association for Computing Machinery, (2018)

30. Sears, Russell., Ramakrishnan, Raghu.: Blsm: A general purpose

log structured merge tree. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data,

pages 217–228. Association for Computing Machinery, (2012)

1538 Cluster Computing (2024) 27:1527–1540

123

https://github.com/google/leveldb
https://github.com/google/leveldb
http://rocksdb.org/
https://redis.io
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

31. Dayan, Niv., Athanassoulis, Manos., Idreos, Stratos.: Monkey:

Optimal navigable key-value store. In Proceedings of the 2017

ACM International Conference on Management of Data, pages

79–94. Association for Computing Machinery, (2017)

32. Li Yongkun, Tian, Chengjin., Guo, Fan., Li, Cheng., Xu, Yin-

long.: Elasticbf: Elastic bloom filter with hotness awareness for

boosting read performance in large key-value stores. In Pro-

ceedings of the 2019 USENIX Annual Technical Conference,

pages 739–752. USENIX Association, (2019)

33. Byun, Hayoung, Lim, Hyesook: Learned fbf: Learning-based

functional bloom filter for key-value storage. IEEE Trans.

Comput. 71(8), 1928–1938 (2022)

34. Wu, Fenggang., Yang, Ming-Hong., Zhang, Baoquan., Du, David

H. C.: Ac-key: Adaptive caching for lsm-based key-value stores.

In Proceedings of the 2020 USENIX Annual Technical Confer-

ence, pages 603–615. USENIX Association, (2020)

35. Kai, Lu., Zhao, Nannan, Wan, Jiguang, Fei, Changhong, Zhao,

Wei, Deng, Tongliang: Tridentkv: a read-optimized lsm-tree

based kv store via adaptive indexing and space-efficient parti-

tioning. IEEE Trans. Parallel Distrib. Syst. 33(8), 1953–1966

(2022)

36. Luo, Siqiang., Chatterjee, Subarna., Ketsetsidis, Rafael., Dayan,

Niv., Qin, Wilson., Idreos, Stratos.: Rosetta: A robust space-time

optimized range filter for key-value stores. In Proceedings of the

2020 ACM SIGMOD International Conference on Management

of Data, pages 2071–2086. Association for Computing Machin-

ery, (2020)

37. Zhong, W., Chen, C., Wu, X., Jiang, S.: Remix: Efficient range

query for lsm-trees. In Proceedings of the 19th USENIX Con-

ference on File and Storage Technologies, pages 51–64. USENIX

Association, (2021)

38. Ge, Xuran., Liu, Yang., Wu, Lizhou., Ou, Yang., Chen, Zhi-

guang., Xiao, Nong.: Pm-based persistent key value stores: a

survey. pages 1–7, (2022)

39. Kaiyrakhmet, O., Lee, S., Nam, B., Noh, S. H., Choi, Y.: Slm-db:

single-level key-value store with persistent memory. In Pro-

ceedings of the 17th USENIX Conference on File and Storage

Technologies, pages 191–205. USENIX Association, (2019)

40. Chen, Youmin., Lu, Youyou., Yang, Fan., Wang, Qing., Wang,

Yang., Shu, Jiwu.: Flatstore: An efficient log-structured key-

value storage engine for persistent memory. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages

1077–1091. Association for Computing Machinery, (2020)

41. Li, Wen-Jie., Jiang, Dejun., Xiong, Jin., Bao, Yungang.: Hilsm:

an lsm-based key-value store for hybrid NVM-SSD storage sys-

tems. In Proceedings of the 17th ACM International Conference

on Computing Frontiers, pages 208–216. Association for Com-

puting Machinery, (2020)

42. Chen, Hao., Ruan, Chaoyi., Li, Cheng., Ma, Xiaosong., Xu,

Yinlong.: Spandb: A fast, cost-effective lsm-tree based KV store

on hybrid storage. In Proceedings of the 19th USENIX Confer-

ence on File and Storage Technologies, pages 17–32. USENIX

Association, (2021)

43. Yao, Ting., Wan, Jiguang., Huang, Ping., Zhang, Yiwen., Liu,

Zhiwen., Xie, Changsheng., He, Xubin.: Geardb: A gc-free key-

value store on HM-SMR drives with gear compaction. In Pro-

ceedings of the 17th USENIX Conference on File and Storage

Technologies, pages 159–171. USENIX Association, (2019)

44. Conway, Alexander., Gupta, Abhishek., Chidambaram, Vijay.,

Farach-Colton, Martin., Spillane, Richard P.: Amy Tai, and Rob

Johnson. Splinterdb: Closing the bandwidth gap for nvme key-

value stores. In Proceedings of the 2020 USENIX Annual

Technical Conference, pages 49–63. USENIX Association,

(2020)

45. Ray, Madhurima., Kant, Krishna., Li, Peng., Trika, Sanjeev.:

Flashkey: A high-performance flash friendly key-value store. In

Proceedings of the 2020 IEEE International Parallel and Dis-

tributed Processing Symposium, pages 976–985. IEEE, (2020)

46. Menon, Prashanth, Qadah, Thamir M., Rabl, Tilmann, Sadoghi,

Mohammad, Jacobsen, Hans-Arno.: Logstore: A workload-

aware, adaptable key-value store on hybrid storage systems. IEEE

Trans. Knowl. Data Eng. 34(8), 3867–3882 (2022)

47. Chen, Yen-Ting., Yang, Ming-Chang., Chang, Yuan-Hao., Shih,

Wei-Kuan.: Parallel-log-single-compaction-tree: Flash-friendly

two-level key-value management in kvssds. In Proceedings of the

25th Asia and South Pacific Design Automation Conference,

pages 277–282. IEEE, (2020)

48. Wu, Sung-Ming., Lin, Kai-Hsiang., Chang, Li-Pin.: KVSSD:

close integration of LSM trees and flash translation layer for

write-efficient KV store. In Proceedings of the 2018 Design,

Automation & Test in Europe Conference & Exhibition, pages

563–568. IEEE, (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Jianing Zhao was born in Jinz-

hong, China,in 1998. She

received her bachelor’s degree

in software engineering from

Huaqiao University in Xiamen,

China in 2016. She is currently

studying for a master’s degree

in the School of Computer Sci-

ence and Technology, Huaqiao

University. Her current research

interest is key-value storage.

Yubiao Pan was born in Long-

yan, Fujian province, China in

1987. He received the B.S. and

Ph.D. degree from the School of

Computer Science and Tech-

nology, University of Science

and Technology of China,

Hefei, China, in 2010 and 2015,

respectively. He is currently an

associate professor with the

School of Computer Science

and Technology, Huaqiao

University in Xiamen. He is also

a researcher with Xiamen Key

Laboratory of Data Security and

Blockchain Technology. He has published more than 10 research

papers in international journals and conference proceedings. His

current research interests include solid-state devices, distributed

storage system, and data deduplication.

Cluster Computing (2024) 27:1527–1540 1539

123

Huizhen Zhang was born in

Longyan, Fujian Province,

China in 1983. He received the

B.S. degree in Computer Sci-

ence from University of Science

and Technology of China in

2005, and the Ph.D. degree in

Computer Architecture from

University of Science and

Technology of China in 2010.

He is currently an associate

professor in School of Com-

puter Science and Technology,

Huaqiao University in Xiamen.

He has published more than 10

research papers in international journals and conference proceedings.

His research mainly focuses on reconfigurable computing, compiler,

performance evaluation and optimization of computer systems.

Mingwei Lin was born in Putian,

Fujian Province, China in 1985.

He received his B.S. degree in

software engineering in 2009

and Ph.D. degree in computer

science and technology in 2014

from Chongqing University,

Chongqing, China. Currently,

he is a professor with College of

Mathematics and Informatics,

Fujian Normal University,

China. He has published more

than 60 research papers in

international journals and con-

ference proceedings such as

Nonlinear Dynamics, Complexity, International Journal of Intelligent

Systems, IEEE Internet of Things Journal, IEEE Access, Sustainable

Cities and Society, Artificial Intelligence Review, IEEE Transactions

on Consumer Electronics, Journal of the Operational Research Soci-

ety. He has published three ESI highly cited papers. His research

interests include decision making and information fusion. He got the

CSC-IBM Chinese Excellent Student Scholarship in 2012.

Xin Luo received the B.S. degree

in computer science from the

University of Electronic Science

and Technology of China,

Chengdu, China, in 2005, and

the Ph.D. degree in computer

science from the Beihang

University, Beijing, China, in

2011. He is currently a Profes-

sor of Data Science and Com-

putational Intelligence with the

College of Computer and

Information Science, Southwest

University, Chongqing, China.

He has authored or coauthored

over 200 papers (including over 90 IEEE Transactions papers) in the

areas of his interests. His current research interests focus on Data

Science. Dr. Luo was the recipient of the Outstanding Associate

Editor Award from IEEE/CAA JOURNAL OF AUTOMATICA

SINICA in 2020. He is currently serving as an Associate Editor for

IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, and IEEE/CAA JOURNAL OF AUTO-

MATICA SINICA.

Zeshui Xu received the Ph.D.

degree in management science

and engineering from Southeast

University, China, in 2003.

From April 2003 to May 2005,

he was a Postdoctoral

Researcher with School of

Economics and Management,

Southeast University. From

October 2005 to December

2007, he was a Postdoctoral

Researcher with School of

Economics and Management,

Tsinghua University, Beijing,

China. He is currently a Pro-

fessor with the Business School, Sichuan University, Chengdu, and

also with the College of Sciences, PLA University of Science and

Technology, Nanjing, China. He is an IEEE Fellow, IFSA Fellow,

IET Fellow, BCS Fellow, RSA Fellow, Distinguished Young Scholar

of the National Natural Science Foundation of China, and the Chang

Jiang Scholars of the Ministry of Education of China. He has been

selected as a Thomson Reuters Highly Cited Researcher (in the fields

of Computer Science (2014-2018) and Engineering (2014, 2016,

2018), respectively), included in The World’s Most Influential Sci-

entific Minds 2014-2018, and also the Most Cited Chinese Researcher

(ranked first in Computer Science, 2014-2018, released by Elsevier).

His h-index is 114. He serves as currently the chief editor of Scholars

Journal of Economics, Business and Management, and also the

associate editors of IEEE Transactions on Fuzzy Systems, Informa-

tion Sciences, International Journal of Machine Learning and

Cybernetics, International Journal of Fuzzy Systems, a member of the

advisory boards of Information Fusion, Knowledge-Based Systems,

Granular Computing, and also a member of Editorial Boards of more

than thirty professional journals. He has contributed more than 550

journal articles to professional journals and Conferences. His current

research interests include information fusion, group decision making,

computing with words, and aggregation operators.

1540 Cluster Computing (2024) 27:1527–1540

123

	InPlaceKV: in-place update scheme for SSD-based KV storage systems under update-intensive Worklaods
	Abstract
	Introduction
	Background
	Background on LSM-tree-based KV Systems
	Overheads caused by append-only writes
	Motivation

	Design
	Design objectives
	InPlaceKV overview
	Data structure
	In-memory data structures
	KVLog for external storage

	Working flows
	Write operation
	Update operation
	Read operation
	Scan and delete

	Implementation issues
	System robustness
	Storage overheads

	Evaluation
	Setup
	Testbed
	Workload
	System configuration

	Performance comparison
	Throughput analysis
	Tunable parameter
	YCSB evaluation

	Related work
	Conclusion and future work
	Author contributions
	Data availability
	References

