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Abstract
Cognitive radio (CR) technology is crucial for enabling dynamic spectrum management. CR allows opportunistic spectrum

sharing with licensed primary radio (PR) users by allowing the so-called secondary users to dynamically access the under-

utilized parts of the frequency bands that are allocated/licensed to the PR networks (PRNs). The CR system pays a

utilization-dependent price to PRNs for utilizing the unused spectrum. An essential challenge in this domain is how to

characterize the economic implications of spectrum sharing between the CR system and PRNs. Specifically, we consider a

CR system with two competing CR service providers. This market model is known as the ‘‘duopoly model,’’ a market

structure premise that consists of two companies providing the same type of service. For such a model, we investigate the

problem of maximizing the overall achieved profit in the CR system. Specifically, we mathematically formulate the profit-

maximization spectrum assignment problem for the two CR providers subject to spectrum sharing, power distribution,

spectrum pricing, and quality of service constraints. We demonstrate that this optimization problem is an NP-hard binary

nonlinear programming problem. Therefore, we adopt a meta-heuristic optimization method based on Antlion Opti-

mization to solve the problem suboptimally. Simulation results revealed that our proposed profit-aware optimization

significantly outperforms traditional CR-based spectrum access mechanisms.
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1 Introduction

The proliferation of wireless mobile applications and ser-

vices has substantially increased the need for additional

radio spectrum. Future wireless networks (e.g., fifth gen-

eration (5 G) and beyond 5 G) will require massive spec-

trum opportunities, yet there are limited spectrum

resources. Consequently, innovative, dynamic spectrum

access solutions are needed. Cognitive radio (CR) tech-

nology was developed to facilitate such a dynamic spec-

trum access paradigm [1, 2]. CR technology provides

opportunistic spectrum access to the underutilized portion

of the licensed frequency bands allocated to the legacy

primary radio networks (PRNs). In such an operating

environment, the coexistence of unlicensed CR networks

(CRNs) and licensed PRNs should be regulated [3–5].

Specifically, the CR system should encourage the PRNs to

cooperate by paying utilization-dependent spectrum rent

and serving the unlicensed CR users (secondary users) at a

higher price than the primary radio (PR) users [6–8]. From
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a business perspective, telecommunications markets follow

the so-called ‘‘oligopoly’’ market structure, in which a few

firms compete in the market to provide similar services

(typically, the licensed telecommunications service provi-

ders (PRNs) are few because of the limited resources of the

spectrum). The phrase ‘‘oligopoly’’ stems from the Latin

‘‘olgoi,’’ meaning ‘‘few,’’ and ’pole-o,’’ meaning ‘‘to sell.’’

Thus, it translates as ‘‘few sellers’’ [9–11].

Accordingly, three main market structures can be

defined for the coexistence between the CRNs and PRNs: a

few PRNs with one CRN, a few PRNs with two CRNs, and

a few PRNs with a few CRNs. It is important to highlight

the fact that the market model of a few PRNs with two

CRNs is known as a ‘‘duopoly model,’’ which is a partic-

ular scenario of the oligopoly model when there are only

two CR service providers [12–15]. This paper investigates

the profit-maximization problem in CR systems regarding

spectrum allocation under the duopoly market model.

Figure 1a illustrates the PR oligopoly market model (stage

1) and the CR duopoly market model as the competition in

the CR market between only two firms (stage 2). The

underutilized PR channels in the PRN market are available

for the CRN market (CRN1 and CRN2). The CR users in

each CRN compete to access the spectrum available to

each CR firm. When allocating channels to the two oper-

ating CRNs, the following factors should be considered: (1)

The price paid by the CR system to the PRNs for access to

their idle channels increases as the PR activity (channel

utilization) increases; and (2) The price charged by the CR

system for each CR user, known as secondary users (SU),

by the CR system should be greater than the price charged

to each PR user by the PR systems to get the same service.

Previous studies have addressed the spectrum pricing

problem in CR systems to offer the best pricing plans for

using the available spectrum. However, none of them

investigated the impact of CR channel assignment on the

overall achieved CR profit [4]. On the other hand, several

CR-based channel assignment solutions have been pro-

posed for enabling efficient CR systems, but without con-

sidering the achieved CR profit (i.e., the impact of the

utilization-dependent price was not considered in the

developed channel assignment solutions) [4]. Only some

studies have looked into the profit-maximization channel

assignment problem in a single CRN while accounting for

the time-varying characteristics of PR channel quality and

the utilization-dependent fees of utilizing the idle portions

of the licensed spectrum. Therefore, this article investigates

the channel assignment problem in a duopoly CR market to

maximize the achieved CR profit by the two competing

CRNs while meeting a set of quality of service (QoS) and

design constraints. The constraints include the incurred

utilization-dependent fees of utilizing the PR spectrum by

the CR system, the admitted SUs’ subscription fees, the

time-variant channel gain between the communicating SUs

across the idle PR channels, the minimum rate demand

requirement, and the exclusive channel occupancy. This

problem is mathematically formulated, which turned out to

constitute a non-linear binary programming problem, an

NP-hard problem. Thus, we adopt the Antlion meta-

heuristic optimization (ALO) algorithm to solve the chan-

nel assignment problem suboptimally. The effectiveness of

the proposed profit-maximization channel assignment

scheme is demonstrated using extensive simulation exper-

iments. Compared to reference channel assignment algo-

rithms, our proposed scheme significantly enhances the

overall profit achieved by the CR system.

The rest of this paper is structured as follows. The

network model is explained in Sect. 2. The channel

assignment problem in a duopoly CR market model, with

the goal of maximizing the CR system profit, is stated and

formulated in Sect. 3. Section 4 proposes an ALO-based

algorithm to solve the formulated profit-maximization

problem. In Sect. 5, the performance evaluation and results

are provided. The conclusion of the paper is provided in

Sect. 6.

2 Network and market model

We consider a CR system with two unlicensed service

providers (CRN1 and CRN2). The competition between the

two CRNs can be represented as a duopoly market. The

two CRNs geographically coexist with a few licensed

PRNs. Let N denote the set of all PRNs. The PRNs are

authorized to utilize a specific set of frequency channels C.

The CR system can opportunistically utilize the idle por-

tions of the PR spectrum. The status of a PR channel (idle

or busy) and the level of PR activity over that channel can

be determined by employing spectrum sensing or by con-

tinuously examining spectrum-data platforms (e.g.,

[16, 17]). This allows for real-time updates on the status of

each PR channel at various locations within the service

area of the CR system. The price paid by the CR system to

the PRNs to utilize the channels depends on the level of PR

activities. Let fn 2 ½0; 1� represent the activity level of PR

users in PRN n. Higher PRN utilization results in a higher

price for the idle spectrum. Specifically, the price that the

CR system pays for utilizing an idle channel belonging to

the PRN n is fi ¼ ð1þ fnÞ � Z, where Z is the price paid by

the CR system when fn ¼ 0 The PRN system sets the value

of Z to ensure that the SU subscription fee per requested

service (P) is greater than the PR user subscription fee (this

is because the PRNs are the owners of the channels). Each

CRN includes a base station that can serve a number of SU

subscribers. Let U1 and U2 represent SU customers from
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CRN 1 and CRN 2, respectively. Figure 1b depicts a net-

work with two CRNs that coexist with a few PRNs. The

market structure that represents our network model is the

duopoly market structure. In this context, the important

problem is how to allocate channels to different SUs in the

two CRNs such that the overall CR system profit is max-

imized. The CR profit is defined as the difference between

the total CR revenue and the paid expenses to the PRNs

(the total cost of utilizing the licensed spectrum) [18]. The

(a) PR and CR market models.

(b) CRN architecture.

Fig. 1 Coexistence between

Duopoly CR and Oligopoly PR

markets in the

telecommunication sector:

market models and network

architecture
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total profit made by the CR system with two CRN firms can

be written as follows:

PCR ¼PCR;1 þPCR;2

¼ðTR1 þ TR2Þ � ðTC1 þ TC2Þ
ð1Þ

where PCR;1 and PCR;2 are the total profit made by CRN 1

and CRN 2, TR1 and TR2 are CRN 1 and CRN 2’s total

revenues, and TC1 and TC2 are CRN 1 and CRN 2’s total

prices (costs) paid to the PRNs.

3 Profit maximization problem
under duopoly CR market model

3.1 Problem statement and design constraints

Given the set of available idle PR channels, the set of

contending users in CRN1 (U1), the set of contending users

in CRN2 (U2), the set of achieved data rates between CR

Base-station 1 (2) and the contending users U1 (U2) over

each idle channel i (i.e., r
ðiÞ
j;1 ; 8j 2 U1; i 2 C,

r
ðiÞ
j;2 ; 8j 2 U2; i 2 C), the highest price a CR firm can pay to

the PRN system to serve one SU, and the CR subscription

fee P; our goal is to determine the appropriate channel

assignment that can result in serving the greatest number of

SUs in the two CRNs at the lowest overall cost (highest CR

system profit), subject to:

1. Rate demand constraint A SU j can be served only if

its total transmission rate over the assigned channels

exceeds the rate demand requirement (RD).

2. Cost constraint The highest price a CR firm can pay to

the PR system to provide a service for a SU j should

not exceed a predefined profit margin c,
3. Exclusive channel occupancy constraint An avail-

able PR channel can be assigned to only a single SU at

a given time.

4. Hardware constraint Because each SU device con-

tains Lx transceivers, the largest number of channels

that can be provided to a single SU is limited to Lx.

5. SNR constraint If the received SNR over channel i for

SU j is greater than a predefined threshold (SNRth), the

ith channel can be utilized by the SU j.

3.2 Problem formulation

To proceed in our formulation, we introduce the binary

decision variables aðiÞj;k

n o
; k ¼ 1; 2 as follows:

aðiÞj;k ¼
1; if ch. i is assigned to SU j in CRN k

0; Otherwise.

�

ð2Þ

By using the defined variables, our objective function

(PCR) can be expressed in terms of aðiÞj;k as:

PCR ¼
X2
k¼1

X
j2Uk

P� 1
X
i2C

aðiÞj;k

" #
�
X2
k¼1

X
j2Uk

X
i2C

fia
ðiÞ
j;k ð3Þ

where 1½:� stands for the indicator function, P is the price

charged by the CRN k to serve the SU j and fi is the

activity-dependent price paid by the CR system to the

PRNs to access channel i. Setting the decision variable aðiÞj;k
to 0 ensures the SNR constraint for every SU j with SNR

� SNRth over channel i. Using the expression in (3) and

defining the design constraints in terms of aðiÞj;k , we can

represent our optimization problem mathematically as

follows:

max
aðiÞ
j;k

X2
k¼1

X
j2Uk

P� 1
X
i2C

aðiÞj;k

" #
�
X2
k¼1

X
j2Uk

X
i2C

fia
ðiÞ
j;k

s.t.
X
i2C

R
ðiÞ
j;ka

ðiÞ
j;k �fRD or 0g; 8j 2 Uk; k ¼ 1; 2

X
i2C

fia
ðiÞ
j;k � c; 8j 2 Uk; k ¼ 1; 2

X2
k¼1

X
j2Uk

aðiÞj;k � 1; 8i 2 C

X
i2C

aðiÞj;k � Lx; 8j 2 Uk; k ¼ 1; 2:

ð4Þ

The maximization problem in (4) is a binary non-linear

programming problem because of the non-linearity of the

indicator function and the either/or data rate constraint. To

make the problem more tractable, the indicator function

and the and/or constraint can be expressed in linear forms.

Specifically, the indicator function can be linearized by

introducing auxiliary binary decision variables

(Xj;k ¼ 1
P

i2C a
ðiÞ
j;k

h i
) and introducing the two linear con-

straints below:

Xj;k �
X
i2C

aðiÞj;k

and

Xj;k �
P

i2C a
ðiÞ
j;k

jCj ; 8j 2 Uk; k ¼ 1; 2:

ð5Þ

The new constraints assure that Xj;k ¼ 1 if at least one

aðiÞj;k ¼ 1, ensuring that the SU j can be served (that is, the

SU j is allocated at least one channel when Xj;k ¼ 1).
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The either/or data rate constraint for each SU j

belonging to CRN k can be linearized by defining two new

0/1-auxiliary variables y1j;k and y
2
j;k and adding the following

constraints:
X
i2C

r
ðiÞ
j;ka

ðiÞ
j;k �Cy1j;k

�
X
i2C

rij;ka
ðiÞ
j;k � � RD þ Cy2j;k

y1j;k þ y2j;k ¼ 1:

ð6Þ

Substituting (5) and (6) into (4), the Duopoly-based CR

profit maximization problem can be written as a binary

linear programming (BLP) problem as follows:

max
X2
k¼1

X
j2Uk

P� Xj;k �
X2
k¼1

X
j2Uk

X
i2C

fia
ðiÞ
j;k

s.t.
X
i2C

r
ðiÞ
j;ka

ðiÞ
j;k �Cy1j;k; 8j 2 Uk; k ¼ 1; 2

�
X
i2C

rij;ka
ðiÞ
j;k � � RD þ Cy2j;k; 8j 2 Uk; k ¼ 1; 2

y1j;k þ y2j;k ¼ 1; 8j 2 Uk; k ¼ 1; 2

Xj;k �
X
i2C

aðiÞj;k � 0; 8j;k 2 Uk; k ¼ 1; 2

� Xj;k þ
P

i2C a
ðiÞ
j;k

C
� 0; 8j 2 Uk; k ¼ 1; 2

X
i2C

fia
ðiÞ
j;k � c; 8j 2 Uk; k ¼ 1; 2

X2
k¼1

X
j2Uk

aðiÞj;k � 1; 8i 2 C

X
i2C

aðiÞj;k � Lx; 8j 2 Uk; k ¼ 1; 2:

ð7Þ

4 The proposed Antlion (ALO)-based
solution

The optimization problem presented in (7) is a BLP that

has NP-hard complexity. Thus, meta-heuristic optimization

can be used to solve this type of problem. Metaheuristics

are algorithms that are driven by nature to discover

approximations of answers to specific computationally

challenging optimization problems. Metaheuristics are

developed using swarming behaviors such as those of the

Antlion, firefly, cuckoo, ant, fish, bee, and others [19–21].

Properties that support metaheuristic methods include

adaptability, homogeneity, illation-free resources, and the

capacity to avoid local optima [22]. One of the most col-

orblueeffective metaheuristic optimization algorithms is

ALO. According to the ALO algorithm, ants in the ground

are picked up and trapped by the antlion holes. In opti-

mization theory, ants represent the potential candidate

solutions to a specific optimization problem within the

search space. The ability to catch ants is coded with

information about how the objective function relates to the

ants and the antlion. The antlion-generated holes and the

ants’ random motion inside the search field are both rele-

vant to the implementation of the ALO. The ALO opti-

mization is executed in five steps to obtain approximate

sub-optimal solutions: (1) random ant march (walk of ants),

(2) antlion pit trapping, (3) ants moving toward the antlion

(taking down the prey), (4) shifting the pit, and (5) elitism.

4.1 ALO optimization algorithm

The discussion of dynamic random hill-climbing in this

paper focuses on problems where the ALO method can

easily find the local optimum. Using hill-climbing

methodologies, an ant lion’s ability to leap higher is

improved. The algorithm’s global search capabilities can

be enhanced by a dynamic hill-climbing mechanism that

balances exploration and development. For executing the

optimization, the following requirements are assumed:

– In the search area, ants move along a variety of random

paths in all directions.

– Antlion traps have an effect on idly walking.

– Antlions can make holes that are appropriate for their

size (more powerful fitness, bigger hole).

– Large holes yield higher chances of finding more ants.

– The most athletic antlion will repeatedly catch each ant.

– The subjective movement scale has been adaptively

reduced to mimic sliding ants toward the antlion.

– An antlion may have caught and pulled an ant under the

sand when the ant became more athletic than the

antlion.

– To increase its chances of capturing new prey, the

antlion digs a pit close to the most recent caught prey’s

position.

4.1.1 Ant’s random walks

The ants randomly explore the search area to collect food,

and the antlions construct traps in order to catch them. The

ants’ movement is modeled as a random walk as follows:

XðtÞ ¼½0; cusumð2rðt1ÞÞ � 1; cusumð2rðt2ÞÞ � 1;

. . .cusumð2rðtTÞÞ � 1�:
ð8Þ

where cusum stands for calculated cumulative sum, T is the

maximum number of iterations, X(t) is the motion of ants at
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iteration ti, and r(t) is a stochastic function that can be

expressed as [23]:

rðtÞ ¼
�
0; if rand� 0:5

1; if rand[ 0:5:
ð9Þ

The term rand presents a random number that has a uni-

form distribution in the range [0, 1]. According to the

random motion mechanism, the ant locations change after

each iteration. The spontaneous ants’ movement has to be

normalized such that it is mapped into a location inside the

actual search field based on the upper and lower values.

The following formula can be applied for each iteration to

find the location of the ants [23].

Xt
i ¼

ðXt
i � xiÞðdi � ctiÞ

dti � ai
þ ci ð10Þ

where ai and di represent an ant’s minimum and maximum

values for random motion, respectively. dti andc
t
i stand for

the antlion’s lowest and highest position values at the

iteration of ith, respectively.

4.1.2 Trapping in Antlion’s pits

This represents the vicinity of the chosen antlion. When an

ant enters the trap, the antlion immediately begins hunting

it and drags it down into the pit, which has an effect on how

the ants move. The mathematical model for this step is

given as [23]:

cti ¼Antliontj þ ct ð11Þ

dti ¼Antliontj þ dt ð12Þ

where Antliontj is the location of each selected jth antlion at

the ith iteration, and dt and ct are the maximum and min-

imum values for the variables related to ant i during the ith

iteration.

4.1.3 Sliding ants towards antlion

A roulette wheel is utilized to mimic the antlion’s hunting

abilities. Specifically, the ALO uses a roulette wheel

operator during the optimization process to choose antlions

according to their fitness. This mechanism increases the

likelihood that fitter antlions can capture ants.

The techniques presented so far allow antlions to con-

struct traps in proportion to their fitness, and ants should

move at random. When an antlion finds an ant in the trap, it

throws sand from the trap’s center to prevent colorbluethe

ant’s escaping. The ants’ random walk hyper-sphere radius

is dynamically reduced to mathematically present such

behavior. The change in the trap range as the number of

iterations evolves can be given as:

ct ¼ ct

I
; ð13Þ

dt ¼ dt

I
: ð14Þ

The term I is a constant that is computed in accordance

with the iterative process (the current iteration t) as

follows:

I ¼

1þ 102
t
T ; if 0:1T\t\0:5T

1þ 103
t
T ; if 0:5T\t\0:75T

1þ 104
t
T ; if 0:75T\t\0:9T

1þ 105
t
T ; if 0:9T\t\0:95T

1þ 106
t
T ; if 0:95T\t\T

1; otherwise :

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð15Þ

4.1.4 Catching prey and rebuilding the trap

In this stage, an ant’s new position is evaluated for its

fitness. If an ant is fitter than its associated antlion, it is

captured by the antlion, which then reconstructs the trap for

the next hunt. To maximize its chances of capturing new

prey, the antlion must adapt its location to the most

recently hunted ant’s location. This stage can be mathe-

matically expressed as:

Antliontj ¼ Antti ; if f ðAntliontjÞ[ f ðAnttiÞ ð16Þ

where Antliontj represents the location of the selected

antlion j at iteration t, and Antti symbolizes the position of

ant i at the tth iteration.

4.1.5 Elitism

It is a key feature of evolutionary-based methods that

enables maintaining the best-found solution at any opti-

mization time. In ALO, the best antlion generated thus far

during every iteration is stored and identified as elite.

Because the elite antlion is the fittest, it is capable of

influencing the behavior of all ants during the optimization

process. Consequently, it is supposed that each ant moves

around an antlion that is determined simultaneously using

the roulette wheel as well as the elite. Accordingly, the

location of the ith ant at the tth iteration can be determined

as:

Antti ¼
RAt þ REt

2
ð17Þ

where RAt and REt respectively denote the arbitrary

movements, selected based on the roulette wheel, near an

antlion and near an elite at the tth iteration.
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4.2 The ALO-based profit-maximization
algorithm

Under the duopoly model, ALO can be effectively utilized

to solve the profit maximization problem in (7). Each

anthill entity in the algorithm represents the ants’ locations

and maps them to a channel-user index. The lion’s position

represents the ant’s elite location inside the search space

(feasible channel-user assignment). The algorithm then

evaluates the objective function trade to examine the fit-

ness/objective value of the antlions and then chooses the

best one based on the ‘‘survival of the fittest’’ principle.

After completing the iterations, the elite antlion that has the

best fitness value (highest CR profit) is considered the best

sub-optimal solution (the best channel-user assignment in

the CR system). The location of the elite lion represents the

CR system’s maximum profit.

Specifically, the ALO-based channel assignment is

executed as follows: the initial obtained solution (ant

location) is mapped into a channel-user assignment and

assessed to determine the objective function (the CR

profit). Upon completion of the evaluation procedure, the

best fitness (highest CR profit) is recorded as elite antlion-

fitness and elite antlion-position. The ALO then repeats the

same assessment procedure based on (9)–(17) until the

maximum number of iterations is reached. The pseudo-

code in Algorithm 1 summarizes the operation details of

the proposed ALO-based CR-profit maximization algo-

rithm.

4.3 Computational complexity analysis

Typically, the time complexity (i.e., the number of opera-

tions required to obtain the sub-optimal solution) is used to

assess the efficacy of optimization algorithms [24]. The

time complexity of metaheuristic algorithms heavily

depends on the population size, number of iterations,

number of loops, and number of function evaluations.

The following quantifies the time-complexity analysis of

the proposed ALO-based algorithm in Algorithm 1. Line 1

represents the algorithm’s parameters’ initialization

(number of population n, dimension d ¼ 1, the maximum

number of iteration Itermax), which has a time complexity

of O(n). In lines 2 and 3, the algorithm computes the

objective function (CR profit) for each feasible channel-

user assignment (the fitness of ants and antlions) and then

determines the best-found solution so far (identifies the

elite), which incurs a time complexity of O(n). The main

loop (While) starts from line 4, and it stops when the

iteration reaches the maximum number of iterations. The

complexity of each line is multiplied by the maximum

iteration (Itermax) in this while loop. In the for loop (for

each antlion) in line 5, the steps in this loop are executed n

times with time complexity (OðItermax� nÞ). Because the
antlion’s random walk is independently generated for each

dimension (d) in lines 6-8, the time complexity for these

lines is OðItermax� n� dÞ. The time complexity of cal-

culating all ant positions in lines 5-10 is OðItermax� nÞ.
The cost values of the ants with updated positions can be

calculated with time complexity OðItermax� nÞ in lines

11-19. Thus, the time complexity of the used ALO algo-

rithm with d ¼ 1 is OðItermax� nÞ as d ¼ 1.

Observation In our proposed ALO-based algorithm, the

only two adjustable parameters that impact the algorithm’s

performance and complexity are the maximum number of

iterations and the population size n. In general, the per-

formance of ALO algorithms improves as the population

size increases, up to a sufficient size. After such a suffi-

ciently large n, increasing n does not improve ALO per-

formance, but rather adds unnecessary computational

complexity. Therefore, an empirical investigation is nec-

essary for determining the best parameters that optimize

the performance of the proposed ALO-based optimization

algorithm while incurring the least computational

complexity.

5 Performance evaluation

We compare the performance of the proposed ALO-based

profit-maximization channel assignment algorithm

(MaXPCA) with that of two reference CRN channel
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assignment algorithms, the maximum-rate assignment

(MaXRCA) and the minimum-channel assignment (MiN-

CCA), using MATLAB simulations. The MaXRCA algo-

rithm seeks to increase the number of admitted SUs with

the highest overall network throughput without considering

the overall profit achieved in the CR system. On the other

hand, MiNCCA attempts to maximize the number of

served CR users using the least number of PR channels

without awareness of the network’s overall profit. For a fair

comparison, the channel-assignment optimization prob-

lems in MaXPCA, MaXRCA, and MiNCCA are computed

using the ALO optimization algorithm and under the same

QoS and design constraints.

5.1 Simulation setup

In a network area of 200m� 200m, we consider two CRN

service providers to coexist geographically with four

PRNs. Every PRN is authorized to utilize a set of jCj=4
orthogonal channels, each with a bandwidth of 5 MHz. The

number of CR users in each CRN is set to 50 SUs. The SUs

in each CRN are uniformly distributed in the service area.

The Rayleigh fading channel model characterizes the

channel gain between any two communicating SUs [25].

The PR activity level (spectrum utilization) determines the

cost of accessing channel i (fi) at a specific time.

Throughout the simulation time, the PR activity level fnðtÞ
for each PRN n is uniformly varied in the range

½fminn ; fmaxn �.The activity level ranges for the PRNs 1, 2, 3, 4

are [0.1, 0.4], [0.1, 0.5], [0.5, 0.9], and [0.4, 0.9], respec-

tively. As a result, the cost of using a channel i in a PRN n

at a given time t is given as fi ¼ ð1þ fnðtÞÞ � 10 price

units. We set the CR service subscription fee to P ¼ 30

units of price. The maximum CRN cost paid to PRNs to

serve a single SU is c ¼ 25 price units. We note that a

similar evaluation methodology that is based on the unit

price was considered in [26, 27]. The number of PR

channels varies from 20 to 80.

The rate demand is set to RD ¼ Rd Mbps for all SUs.

The main performance metric in our study is the achieved

CR profit. The presented results are the average of 100

experiments, each lasting for 2000 optimization instances.

5.2 Simulation results

The achieved CR overall profit is depicted in Fig. 2 with

the number of SUs per each CRN for different numbers of

PR channels (20, 40, 60, and 80) and Rd ¼ 10 Mbps.

Figure 2 also indicate that as the number of available PR

channels increases, the number of SUs that can be served

increases for all algorithms, resulting in higher CR profit.

(a) |C| = 80 channels. (b) |C| = 60 channels.

(c) |C| = 40 channels.. (d) |C| = 20 channels.

Fig. 2 CR profit vs. the number of SUs for the different numbers of PR channels
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In particular, Figs. 2a, b show that for jCj ¼ 80 and 60, the

CR system can serve up to 40 and 30 SUs, respectively.

Furthermore, for jCj ¼ 40 and 20, Figs. 2(c) and (d) indi-

cate that up to 20 and 10 SUs can be served, respectively.

Figure 2 shows that for jCj ¼ 80, our MaXPCA algorithm

can provide a profit of up to 727 per unit price, while the

MaXRCA and MinCCA algorithms respectively provide

610 and 500 per unit price. Specifically, for the identical

number of admitted SUs and regardless of the number of

available PR channels, MaXPCA outperforms MaXRCA

and MinCCA by up to 20% and 45%, respectively. This is

due to the fact that our proposed channel assignment takes

into consideration the interdependence between the activ-

ity-dependent price for PR channel utilization by the CR

system and the received data rates across the different idle

channels. Therefore, MaXPCA chooses the channel-user

assignment that meets the SU’s rate demand at the lowest

cost, regardless of the amount of used spectrum (i.e., our

proposed ALO-based MaXPCA algorithm prefers choosing

2 low-price PR channels with a combined transmission rate

that exceeds Rd over one high data-rate, high-price

channel).

Figure 3 investigates the profit performance versus the

rate demand requirements under different numbers of PR

channels and 50 SUs. Figures 3a–d demonstrate that our

proposed ALO-based MaxPCA algorithm performs better

than the other two algorithms, regardless of RD and C. The

proposed ALO-based profit-aware algorithm outperforms

the Max-rate and minimum channel assignment by up to

20% and 35%, respectively. The achieved profit of Rd � 14

Mbps is clearly the highest of any algorithm. This is

because the chances of serving the SUs with the required

rate demand using one channel are high. Serving each SU

will require more than one channel at Rd � 14 Mbps,

resulting in higher costs and lower profit. Figures 3a–d

show how profit increases as jCj increases. This is expected
because of the higher availability of PR channels and the

resulting higher number of served SUs, which increases the

achieved CR profit.

The performance of the various algorithms is examined

in Table 1 under various rate demand ranges, where the

transmission rate requirement Rd for every SU is uniformly

chosen from the range ½Rmin
d ;Rmax

d �. The results indicate that
our proposed algorithm significantly outperforms the other

algorithms, irrespective of the rate demand range. Finally,

Fig. 4 depicts the convergence (iterative) curve of our

ALO-based algorithm with N ¼ 80 channels. The average

best objective values are plotted versus the number of

iterations. It is clear that the proposed ALO profit-maxi-

mization algorithm converges after 300 iterations. This

(a) |C| = 80 channels. (b) |C| = 60 channels.

(c) |C| = 40 channels. (d) |C| = 20 channels.

Fig. 3 CR profit vs. the rate requirements for different number of PR channels
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convergence behavior of the proposed ALO-based profit-

maximization assignment algorithm indicates that the ALO

algorithm has an effective global-search capability, which

can eliminate the local optimum constraints that exist in

other evolutionary algorithms (this results in line with that

presented in [28]).

6 Conclusion

In this paper, we investigated the channel assignment

problem in a duopoly CR market model to enhance the

profit achieved in the CR system while achieving a set of

QoS and design constraints. The set of design constraints

includes the utilization-dependent mandated price paid to

the PRNs, the total paid subscription fees by all served

SUs, the SU link-quality characteristics across the different

channels, and the available transceivers at each SU. This

aim was pursued by taking into account the time-varying

characteristics of the various PR channels and the depen-

dence between the spectrum utilization and cost paid by the

CR system. The mathematical formulation of the channel

assignment problem was shown to be a BLP problem that

seeks to increase the CRNs’ profit by reducing the CR paid

fees to the PRNs while simultaneously servicing the largest

possible number of SUs. We adopted the well-known ALO

technique, which can provide sub-optimal solutions in

polynomial time since the optimum solution to this BLP

could not be obtained in polynomial time. Simulation

results revealed that the proposed profit-aware channel

assignment depicts a significant CR profit improvement

over previously proposed profit-unaware CR channel

assignment algorithms. This improvement is attributed to

the fact that our algorithm considers the interdependence

between the price of PR channels and their utilization

levels as well as the SU achieved rate over the various PR

channels.
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