
Integrated method for distributed processing of large XML data

Rongxin Chen1,2 • Guorong Cai1 • Jie Chen1 • Yuling Hong1

Received: 20 January 2023 / Revised: 18 March 2023 / Accepted: 15 April 2023 / Published online: 13 May 2023
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The traditional standalone computing approach is difficult to handle the task of processing large XML data due to

scalability, thus distributed processing using cluster systems becomes an inevitable choice. The currently distributed XML

processing methods generally rely on existing distributed computing frameworks for general purpose data, which have

limitations such as complex configuration, inflexible working mechanism, and difficult performance optimization in the

context of XML semi-structural features and complex queries. In addition, XML distributed queries suffer from a low level

of automatic processing and lack of effective integration with distributed XML parsing and indexing. In this paper we

propose an integrated method for distributed processing of large XML data, called the dXML method. Our method supports

the distributed parsing of arbitrary XML fragment and the distributed creation of index, and adopts the efficient naviga-

tional XPath evaluation based on relation index. Through a distributed XPath evaluation approach based on filter-upon-pre-

evaluate, our method enables data locality and reduces network traffic during the distributed evaluation of complex XPath

predicates. dXML integrates the distributed processing technology of XML parsing, index creation and XPath query,

provides a one-stop XML processing solution, supports the automatic distributed processing of large XML data, and has

the characteristics of lightweight configuration and flexible working mechanism. Experimental evaluation verifies the

effectiveness of dXML, and comparative experimental results show that dXML has better distributed query performance

than both the typical existing navigational and Twig distributed processing methods.

Keywords Large XML data � XML parsing � XPath evaluation � Distributed processing � Integrated method

1 Introduction

With the popularity of the Internet and the rapid develop-

ment of Web services, XML is widely used as a standard

for information exchange and storage, and the technologies

related to XML data processing are continuously devel-

oped [1, 2]. As the size of XML data generated in various

applications is becoming larger and larger, it is difficult for

a single computer to process it. For example, DBLP [3] is a

computer science bibliography system which provides

open bibliographic information on major computer science

journals and proceedings. The data size of the latest XML

data provided by the system in the form of single file

reaches 3.5 GB. The famous Wikimedia [4] provides

researchers with XML data export function. The size of

XML data exported from its latest web documents exceeds

50 GB. OpenStreetMap [5] provides map data for thou-

sands of websites, mobile applications and hardware

devices. The exported data is stored in a single XML file,

and the size of data exceeds 400 GB. The parsing and

querying of XML data usually consumes a lot of resources,

so large XML data volumes are difficult to handle in

standalone systems, and multi-computer distributed pro-

cessing becomes an inevitable requirement [6].

In XML data processing applications, on the one hand,

XML query is the main function of data processing [7], and

XPath [8] evaluation is the core part of XML query. On the

other hand, XML documents have strict nested formatting

constraints and need to be parsed before querying. Com-

pared with the traditional relational structured data, the

semi-structured characteristics of XML data make the

parsing and query operations more complex. The

& Guorong Cai

guorongcai.jmu@gmail.com

1 Computer Engineering College, Jimei University, Xiamen,

China

2 Digital Fujian Big Data Modeling and Intelligent Computing

Institute, Xiamen, China

123

Cluster Computing (2024) 27:1375–1399
https://doi.org/10.1007/s10586-023-04010-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04010-0&domain=pdf
https://doi.org/10.1007/s10586-023-04010-0

processing of large-scale XML data in distributed com-

puting environment faces great challenges in feasibility and

performance optimization. MapReduce programming

model [9, 10] is widely used in large data processing to

adapt to multi-machine distributed computing, and has

achieved great success in general batch applications.

However, the running environment configuration of

MapReduce is cumbersome, and MapReduce can not

directly and effectively deal with nested complex data such

as XML. Due to a large number of iterative operations in

XML processing, it is difficult to ensure good performance

by multiple MapReduce operations [11]. XML data is

semi-structured data organized in a nested way, it is diffi-

cult to be directly partitioned and processed. However,

partition is often a prerequisite for adapting to distributed

computing. Currently, most of the data partitioning in

distributed XML processing is done in a pre-processing

way. Typical examples, such as Fan et al. [12], partition

XML data before processing distributed XPath queries and

use serial XML parsing for data preparation. The prepro-

cessing can not make full use of the advantages of dis-

tributed parallel computing on the one hand, but also

reduces the overall automation. How to effectively inte-

grate distributed processing of main stages such as XML

parsing, indexing, and query has a positive impact on the

overall performance of XML processing. From the specific

parallelization techniques at each stage of XML process-

ing, the XML parsing technology that supports arbitrary

fragmentation [13] can effectively increase the flexibility

of parallelization. Specific XML indexes [14, 15] play a

positive role in improving the performance of XPath

evaluation. In terms of query, XPath queries include nav-

igational approach [16] and twig approach [17, 18],

depending on how the query step is handled. Since the

navigational XPath evaluation is easy to realize rich XML

query semantics, it is of great significance to improve its

efficiency through parallel processing [19]. Since XML

processing involves key aspects such as XML parsing,

indexing and querying, how to effectively integrate these

aspects to support efficient distributed processing of XML

data has become an important topic.

In response to the performance optimization problem

and the difficulty of configuration during the processing of

large-scale XML data in distributed computing environ-

ments, this paper develops a distributed processing tech-

nique for large XML data called the dXML method. Since

dXML does not rely on complex environment configura-

tion, the working mechanism of the method has the flexi-

bility to support efficient regular and ad hoc queries [20]

for XML large data in distributed environments. Our main

contributions include:

(1) We give a way to support the distributed parsing and

index creation of XML arbitrary fragments, and use

relation index for efficient navigational XPath

evaluation.

(2) We propose a filter-upon-pre-evaluate method for

distributed XPath evaluation, which can fully local-

ize the data during distributed XPath evaluation and

reduce the communication overhead.

(3) We provide a one-stop solution that integrates

distributed XML parsing, distributed index creation,

and distributed XPath query to support automatic

distributed processing of large XML data.

(4) We present the overall performance evaluation

results and the comparative results of queries,

showing the advantages of dXML method.

The rest of the content is organized as follows. Section 2

introduces the related work. Section 3 details the dXML

method proposed in this paper, including its overall

framework, distributed XML parsing, distributed index

building, and distributed XPath query. Section 4 conducts

performance evaluation and comparative experiments.

Section 5 discusses the problems that exist. The last section

provides conclusion and future work.

2 Related work

Since XML data models are relatively complex and semi-

structured, and XML queries have rich semantics, efficient

processing of XML queries is a challenge in the context of

large-scale data. From the development of XML distributed

processing system, MapReduce programming model, as a

general parallel framework, has been widely used in the

processing of distributed large data sets in recent years.

The main distributed platforms, including Hadoop [21],

Spark [22], are based on the MapReduce model. For

example, HadoopXML [23] implements the simultaneous

processing of multiple XML queries on Hadoop platform.

Large XML data in this system is pre-partitioned into XML

data blocks. Spark-XML [24] is an XML processing

module integrated on Spark platform to support distributed

XML query by converting XML data into DataFrames.

Andromeda [25, 26] queries and updates large XML

datasets through MapReduce cluster computing. The

1376 Cluster Computing (2024) 27:1375–1399

123

system partitions large XML data statically and dynami-

cally, and XML partitions stored in the form of subtree set

are distributed across workers to support distributed com-

puting in clusters. However, the system does not support

common XPath predicate evaluation. PAXQuery [27]

implements parallel processing of XQuery [28] queries in

clusters through a Parallelization Contract (PACT) pro-

gramming model, but manual data partitioning is required

for large XML datasets. VXQuery [29] is an open source

large data processing platform for XML. It uses Hyracks

data parallel processing platform and also does not support

automatic partitioning of large XML data. OHX (Oracle

XQuery for Hadoop) [30] converts XQuery queries into

MapReduce work tasks on Hadoop to run on clusters, but

the logic for migrating and transforming data depends on

the developer’s design. SparkSQL [31] uses the Spark

platform for distributed query of XML data. The system

requires expensive data conversion because it uses rela-

tional storage to store XML data. Moreover, common

predicate evaluation is not supported at this time. From the

above XML distributed processing systems, the existing

systems support distributed processing to some extent, but

there are still some limitations, such as the level of support

for XML query semantics, the automated integration of

various stages in the query process, and the distributed

parsing ability of large XML data.

From the different stages of XML distributed process-

ing, each research has its own focus since XML processing

involves XML parsing, XML index and XML query.

Khatchadourian et al. [32] developed a language called

ChuQL, which can use MapReduce framework for XML

distributed processing by extending XQuery. Fegaras et al.

[33] designed MRQL language for the analysis and pro-

cessing of large-scale XML data in MapReduce environ-

ment, and optimized the processing of XML queries

through this language. Senk et al. [34] proposed an XPath

distributed evaluation method, which is limited to simple

paths and does not support common predicate evaluation.

The HoX-MaRe method proposed by Damigos et al. [35] is

a distributed XPath evaluation method. This method par-

titions XML data to horizontal fragmentations, combines

query decomposition, and carries out distributed query in

the way of MapReduce. The XML data in this method is

pre-partitioned, and parallel XML parsing is not involved.

Kunfang et al. [36] gave a keyword query method for large-

scale XML data, which involves parallel loading of XML

data. However, when partitioning and loading XML data,

some partition parameters need to be provided in advance.

Liang et al. [37] proposed a method based on NoSQL

platform for the processing of massive small XML data.

The method utilizes HBase [38] distributed platform

through XML encoding conversion and query optimiza-

tion. Similar to the work in [37], Liu et al. [39], when

processing large XML-based biological datasets, also

transfers XML data into HBase and requires transforming

the XML query model into a MapReduce query model.

These non-native-XML working models bring the over-

head of data transformation. Longjian et al. [40] coordi-

nates XML processing through shortest path routing

algorithm to improve processing efficiency across the dis-

tributed network, but does not involve XML partitioning

and generic XML queries. Bi et al. [41] presented a dis-

tributed twig query method for XML big data, which can

support arbitrary partition, while the partition and index

establishment are processed serially. Subramaniam et al.

[42] proposed a distributed processing method of twig

query, which requires path index of data. The query is

decomposed by linear path, and then the local results are

obtained by distributed evaluation. Finally, the merging

process is optimized by pruning. Since the method is a non

holistic twig query, it has a high merging cost. Fan et al.

proposed TwigStack-MR method in [43], which performs

distributed processing based on MapReduce framework for

TwigStack [17], a classic holistic twig query method. In

their latest work [12], they further explained and evaluated

the method. However, their method still lacks the ability to

parse XML fragments in parallel. The partition of XML

data is an important prerequisite for distributed XML

processing [44], which involves the parsing and processing

of XML fragments. From the perspective of the overall

process, the optimization of XML parsing, which is usually

ignored, is an important factor causing performance bot-

tleneck. Choi et al. [45] explored the distributed parallel

parsing of large-scale XML data and provided a distributed

approach to obtain common XML encodings, including

interval-based encoding [46] and prefix-Based encoding

[47]. However, their work does not involve XML queries.

Hsu et al. [48] proposed a method of creating an index for

large XML documents in MapReduce using cloud parallel

computing, and then to perform XPath queries on this

basis. In the process of XML parsing, each part file of the

document is processed by MapReduce in sequence. Such

serial processing between part files is likely to cause per-

formance bottlenecks. In addition, the work did not test the

frequently used XPath predicate query, so the feasibility of

predicate branch query is unknown. From a variety of

related work, more practical integrated distributed solu-

tions involving XML parsing, XML indexing and XML

query in XML processing still need to be developed. Since

the optimal design of distributed XML processing involves

several related topics, a list of the main related works by

research topic is given in Table 1 in order to facilitate the

clarification of the entire technical system.

Cluster Computing (2024) 27:1375–1399 1377

123

3 Proposed method

3.1 Overview of dXML method

The dXML method proposed in this paper is an integrated

solution for distributed parsing and query of a single large

XML document. The typical running environment of

dXML is shown in Fig. 1. The cluster in the dotted box

contains two types of machines with different roles: coor-

dinator and worker. There is only one coordinator, which

plays the role of coordinating the workers in the cluster and

undertakes global computing tasks. There are multiple

workers, which allow heterogeneous configuration and can

be expanded in quantity. Their role is to perform dis-

tributed computing tasks. Clients outside the cluster inter-

act with the coordinator through LAN or Internet, submit

query requests and required data to the coordinator, and

obtain query results from the coordinator.

The distributed processing procedure of dXML is shown

in Fig. 2. The whole procedure includes two stages: the

first stage is distributed data preparation, and the second

stage is distributed query. The first stage mainly involves

XML parsing and index creation. The coordinator loads the

XML document specified by the client, partitions the

document according to the number of workers, obtains the

XML fragment (see Definition 1), and then directly sends

the fragment to each worker, so that each worker obtains a

fragment. After receiving the XML fragment, the worker

starts the local XML parsing, which is usually the most

time-consuming. However, due to the distributed parallel

processing of each worker, it can effectively overcome the

problem of poor performance caused by serial XML

parsing. When each worker completes the parsing of XML

fragment, it sends the initial adjustment information back

to the coordinator. After collecting all the adjustment

information, the coordinator starts merge operation to

Table 1 Taxonomy of related works in research topics

Topic Authors Description

XML

system

Choi et al. [23]

Owen et al. [24]

Bidoit et al. [25, 26]

Camacho-R et al.

[27]

Carman et al. [29]

Oracle Inc. [30]

Hricov et al. [31]

HadoopXML system, based on the MapReduce framework on Hadoop Spark-XML system, based on the

MapReduce framework on Spark

Andromeda system, based on the MapReduce framework

PAXQuery system, based on the PACT programming model

VXQuery system, based on Hyracks data parallelism platform

OHX system, based on the MapReduce framework

SparkSQL system, based on the MapReduce framework

XML

parsing

Chen et al. [13]

Braganholo et al.

[44]

Choi et al. [45]

Support parallel parsing of arbitrary XML fragments

Overview of distributed XML fragmentation

Distributed parsing of XML data

XML

indexing

Chen et al. [14, 15]

Lu et al. [47]

Hsu et al. [48]

Parallel construction of relation index

Indexing for extended Dewey prefix encoding

Indexing for interval encoding under distributed conditions

XML

query

Khatchadourian

et al. [32]

Fegaras et al. [33]

Damigos et al. [35]

Fan et al. [12, 43]

ChuQL language, extending XQuery, running on MapReduce

MRQL language to optimize distributed queries

HoX-MaRe method, the typical distributed navigational method

TwigStack-MR method, the typical distributed Twig method

WorkerWorkerWorker

Client

Coordinator

Internet
Client

Fig. 1 Running environment of dXML

1378 Cluster Computing (2024) 27:1375–1399

123

obtain the merging information that can be used for further

adjustments. Then the merging information is sent to each

worker to guide the adjustment of the local parsing result.

Since the subtrees obtained from the parsing result of XML

fragment is local, the INnode (see Definition 4) information

is required to construct a fragment tree (see Definition 5).

The detailed information of the INnodes exists in the pre-

cursor fragment. Therefore, the INnode information owned

by each fragment is collected by the coordinator, so as to

further be sent to the corresponding worker through the

coordinator. After receiving the detailed information of the

required INnodes, the worker completes the construction of

fragment tree. The worker creates the corresponding

relation index on the basis of completing the construction

of fragment tree. So far, the distributed data preparation has

been completed. In the second stage, the coordinator first

preprocesses the query submitted by the client. For the

XPath query expression, the query primitive sequence is

generated by rewriting, and then the sequence is sent to

each worker for query processing. While for XQuery pro-

grams, preprocessing steps such as XPath expression

extraction are also required. Next, the filter-upon-pre-

evaluate approach proposed by us is used for distributed

query. After each worker completes the local query, it

sends the results back to the coordinator, and the

Distributed XML processing procedure

P
h
as

e
1
:

d
is

tr
ib

u
te

d
 d

at
a

p
re

p
ar

at
io

n
P

h
as

e
2
:

d
is

tr
ib

u
te

d
 q

u
er

y

<Coordinator> <Worker>

Load XML

document

Waiting for
parsing

XML fragment

parsing

Merge&Adjust

Waiting for
adjustment

Collect INnodes

Waiting for
query

Waiting for
merging

Adjust

Waiting for
collecting

Add INnodes

Contruct relation

index

Query

Collect result

Send XML fragment

Send adjustment info

Send INnodes for fragment

Send merging info

Send INnodes contained

in fragment

Send query primitive

sequence

Send query result

Rewrite query

Waiting for
rewriting

①

②

③

④

⑤
⑥⑦

Refer to Algorithm 2.

 Refer to Algorithm 3.

 Refer to Algorithm 4.

 Refer to Algorithm 6.

 Refer to Algorithm 7(a).

 Refer to Algorithm 7(b).
 Refer to Algorithm 5.

Fig. 2 Distributed processing in

dXML

Cluster Computing (2024) 27:1375–1399 1379

123

coordinator collects all the local results and returns the final

query results to the client.

The corresponding processing programs are deployed on

the coordinator and the workers respectively to complete

the distributed processing in a synchronous manner. From

the perspective of the overall interaction framework, the

main process on coordinator is described in Algorithm 1(a),

and the main process on worker is described in Algorithm

1(b).

Considering that the dXML method includes three main

steps: distributed XML parsing, distributed index con-

struction and distributed XPath query, they are described in

detail below.

3.2 Distributed XML parsing

The steps of distributed XML parsing in dXML method

include XML document partition on the coordinator,

fragment parsing on the worker, and merging and adjust-

ment on the coordinator. Finally, the construction of frag-

ment tree is completed on each worker. Because our

method supports the parsing of arbitrary XML fragments,

the overall performance is improved through the dis-

tributed parallel parsing of fragments.

3.2.1 Arbitrary XML fragment

Large XML data needs to be distributed across workers for

parsing. A simple method of partitioning is to divide the

Algorithm 1 Interactive framework for distributed processing

Algorithm 1 (a) On coordinator:

Input: XML document data D and query Q

Output: XML query result S

1: Sync { // Start synchronization.

2: SendFragment(D); //Send XML fragment to each worker.

3: wait; // Waiting for parsing results.

4: MakeMerge(); // Merge XML subtrees.

5: wait; // Waiting for adjustment results.

6: CollectINnodeDetail(); // Collect INnode information.

7: SendQuery(Q); // Send query request.

8: wait; // Waiting for local query results.

9: CollectResult(); // Collect local query results.

10: } // End synchronization.

11: return S;

Algorithm 1(b) On worker:

1: Sync { // Start synchronization.

2: wait; // Waiting for XML fragment.

3: ParseFragment (); // Parse XML fragment.

4: wait; // Waiting for merge results.

5: AdjustFragment (); // Adjust XML subtrees.

6: wait; // Waiting for INnode information.

7: AddINnode(); // Add INnodes and construct fragment tree.

8: CreateIndex(); // Create relation index.

9: wait; // Waiting for query request.

10: DoQuery(); // Execute query.

11: } // End synchronization.

1380 Cluster Computing (2024) 27:1375–1399

123

entire XML data equally by the number of workers, so that

a worker can process one fragment. This partitioning,

regardless of the logical structure of XML, is arbitrary

based only on the absolute position in the XML document.

Such partitioning can be accomplished efficiently and can

also achieve a certain load balancing.

Definition 1 (XML fragment) Refers to continuous XML

data within a certain range of an XML document. It is a

logical partition on XML document data, which is still

unparsed text.

Definition 2 (Node) Refers to the basic components that

make up the XML document tree. It mainly includes ele-

ment nodes and attribute nodes. The node storage in this

paper adopts interval-based encoding [42], which is

described as\ ID, nodeType, tagName, level, startpos,

endpos[, including six items: ID—node ID, a unique

sequence number in document order; nodeType—node

type, nodeType [{ELEM, ATTRIB}, corresponding to the

two main types of elements and attributes; tagName—the

tag name of node; level—the level of the node in the DOM

tree; startpos—the document position where the node starts

and endpos—the document position where the node ends.

The ‘‘document position’’ here refers to the file pointer

position expressed by byte offset. The content information

of the node is recorded separately using a hash table.

For example, in Fig. 3b, the encodings of nodes B1, C1

and T2 are\ 1, ELEM, B, 0, 5, 57[,\ 3, ELEM, C, 2,

18, 39[and\ 8, ATTRIB, T, 3, 67, 74[respectively.

Definition 3 (Subtree) Refers to part of the XML docu-

ment tree. The subtree types obtained from fragment

parsing include complete subtree and incomplete subtree.

Complete subtree means that all information of the subtree

is in the same fragment. The incomplete subtree is trun-

cated, and some node information is in different fragments.

The storage structure of subtree is described as\ ID,

nodes[, including two items: ID—subtree ID, a unique

sequence number and nodes—list of nodes contained in

subtree.

Arbitrary partitioning of an XML document using doc-

ument position rather than physical partitioning. The

method is to set the file reading pointer directly to the

starting position of each fragment and start to read, and

then adjust the fragment boundary as necessary to obtain

the fragment boundary information. This is a lightweight

partitioning method since complex preprocessing is not

necessary. For example, the XML document in Fig. 3a is

arbitrarily partitioned into three fragments, and the blue

solid line represents the document position of fragment.

After boundary adjustment, the actual partition will be

carried out according to the principle of retaining complete

tag names, and the red dotted line indicates the adjusted

boundary. Figure 3b is the corresponding XML document

tree. Each circle represents a node, and the string in the

circle represents the tag name of the node, which is dis-

tinguished by numbers. The number next to the circle

represents the node ID which reflects the document order.

The red dotted line indicates the boundary of fragment. The

(a) XML document and fragments (b) XML document tree

<A>

 <B T="t01">

 <C>

 <D>d01</D>

 </C>

 <C>c02</C>

 <A>

 <B T="t02">

 <A>

 <D>d02</D>

 <C>c03</C>

 <E>e01</E>

 <C>c04</C>

 <D>d03</D>

Fragment I

Fragment II

Fragment III

B1

A1

C1T1

D1

C2 B2

T2 A3

D2

C3

A2

C4 D3

E1

0

1

2 3

4

5

6

7

8 9

10

11 12

13 14

Fragment I

Fragment II

Fragment III

Fig. 3 Arbitrary partitioning of XML

Cluster Computing (2024) 27:1375–1399 1381

123

nodes within the green solid line belong to the same sub-

tree, and each fragment may contain multiple subtrees.

3.2.2 Parallel parsing of XML fragments

Parsing an XML fragment is a process of constructing

subtrees in parallel on each worker in a distributed manner.

Subtree construction not only obtains the subtree set of the

fragment, but also obtains the mismatch head/tail tag

sequence of each fragment. The subtree information

retrieved within the fragment, including the node relation

in the local subtree, the node content, and the tag name. In

the process of subtree construction, the node to be pro-

cessed at the beginning of each fragment is the root node of

the first subtree, and the root node of the subtree can only

be element type. By recording the necessary mismatch

information, the dependence between each fragment is

decoupled, so that each fragment can be parsed indepen-

dently and processed in parallel by different worker. Each

worker maintains a tag stack within the fragment for mis-

match tag identification and subtree root node

identification.

Algorithm 2 gives a brief description of the subtree

construction process. The overall framework of this pro-

cess is to continuously read a complete tag for a fragment

until the end, during which all the subtrees within an XML

fragment are constructed by parsing the content of the tag.

The line 3*8 in Algorithm 2 describes that in the

fragment range, first use the ReadCompletedTag function

to get a complete tag string, then call the ParseTagContent

function to parse the tag string to get the information of the

subtree, and use the stack to record the mismatch tag

information, repeat such operations until the end of the

fragment. T in line 4 is a local variable in tuple form, which

is used to record the complete tag string and the current

read position. P in line 5 is also a local variable in tuple

form, which is used to record tag stack and subtree infor-

mation. Line 9 calls the ProcessUnmatched function to

process the mismatch tag information. Since the last sub-

tree may be incompleteee, it needs to be built here and the

relevant information of the subtree set needs to be updated.

The algorithms involved in each processing function are

omitted here.

3.2.3 Merging and adjustment

Since the parsing results of each fragment are independent

of each other, some information is local and inconsistent

with the global XML tree, such as the ID value, the level

value, the actual start and end position of the node, etc. the

real value of these information needs to be obtained

through merging and adjustment. The adjustment should be

carried out not only on the coordinator, but also on each

worker. First, merge and adjust the global relevant infor-

mation on the coordinator, and then send the merging

results to the workers to guide the local adjustment.

Finally, each worker completes local adjustment according

to the merging results.

The merging and adjustment in the coordinator includes

several steps: first, initialize the input and output infor-

mation, collect the adjustment information from each

working machine and create the tail tag index; secondly, by

1382 Cluster Computing (2024) 27:1375–1399

123

finding the parent nodes of the subtrees and adjusting the

relevant information, the preliminary final subtrees are

obtained; next, merge the tag name table; finally, pack the

merging information. The adjustment information collected

by the coordinator from each worker includes the level

values of nodes, the mismatch head and tail tag informa-

tion, the number of subtrees and the number of nodes.

While the merging information returned to each worker

after merging includes the adjusted document tail position

shared by each fragment and the level values of all nodes.

Algorithm 3 briefly describes the merging and adjustment

process.

In Algorithm 3, the FindParentOfSubtreeAndAdjust

function is called to search the parent node of the subtree.

The basic principle is: in the node sequence of mismatch

head tag, find the node with the mismatch head tag closest

to the root node of the subtree in document order, that is,

the parent node of the subtree. The principle is illustrated in

Fig. 4. The first row of blocks in the figure represents the

mismatch tag sequence obtained from the parsing of the

fragments in Fig. 3. The string in the box represents the

node where the mismatch tag is located, and the ’\ ’

symbol indicates the mismatch head tag, and the ’[’

symbol indicates the mismatch tail tag. The dashed vertical

line is the partition position. For the subtree composed of

node C2, the root node is C2, and the position of its head

tag is shown by the first arrow. Its closest unpaired mis-

match head tag is ’B1\ ’, so the parent node of the subtree

is node B1. For the subtree composed of nodes A2, B2, T2,

A3 and D2, the root node is A2, and its head tag position is

shown by the second arrow. Since there are paired tags

’B1\ ’ and ’B1[’ in the first half of the interval, the

closest unpaired mismatch head tag should be ’A1\ ’, so

the parent node of the subtree is A1. Similarly, the parent

node of node D3 is A2.

3.2.4 Construct fragment tree

According to the merging information sent by the coordi-

nator, each worker completes the adjustment of the local

parsing results and obtains the adjusted subtree set. In order

to facilitate query, each worker needs to build a complete

local tree based on these subtree sets. Related definitions

are introduced below.

Definition 4 (Incomplete node, abbreviated as INnode)

Refers to those nodes whose node information is dis-

tributed to different fragments when the XML document is

partitioned. INnode is not obtained from the parsing of the

current fragment, but plays the role of logically connecting

to the root node of the original document tree.

INnodes are related to specific fragments. If the XML

document is partitioned according to Fig. 3, nodes A1, B1,

A1
<

B1
<

B1
>

A2
<

B2
<

B2
>

A2
>

A1
>

C2
<

A2
<

D3
<

Fig. 4 Example of finding the parent node of subtree

Cluster Computing (2024) 27:1375–1399 1383

123

A2 and B2 in Fig. 3b are INnodes. For ease of description,

‘‘complete node’’ (abbreviated as CNnode) is used to

indicate that the node is not partitioned, but completely

exists in a fragment. For example, nodes C1, C4 and D3.

Definition 5 (Fragment tree): Refers to a complete local

document tree formed after adding INnodes information,

which takes the root node of the original document tree as

the root and contains all nodes in the fragment.

Figure 5 shows the corresponding fragment trees for

each fragment in Fig. 3, with the INnode with gray back-

ground color.

Proposition 1 All ancestors of the first node in a non-first

fragment are the additional INnodes required to construct

the fragment tree for that fragment.

Proof If node u1 is the first node in the fragment, since u1

must be the root node of the first subtree T1 of the frag-

ment, all ancestors of u1 form a INnode sequence, which is

recorded as Pu1. Assuming that there is a root node u2 of

another subtree in the fragment, and one of its ancestor

nodes u3 satisfies u3 62 Pu1, there is a path from u1 to the

root node u0 of the original document tree and a path from

u2 through u3 to u0. Since u1\ u2 (indicating u1 is before

u2 in document order), u1\ u3 in the document tree. On

the other hand, because u1 and u2 are in the same fragment,

u3 is the ancestor of u2 and must be in the precursor

fragment, so u3\ u1. This conclusion contradicts the

previous conclusion, so the previous assumption does not

hold. It shows that the ancestor nodes of the root nodes of

other subtrees except T1 do not add additional INnodes,

that is, all ancestors of node u1 are all the additional

INnodes required. h

As can be seen from Fig. 3b, for fragment II, the first

node is C2, and all its ancestors are B1 and A1. For frag-

ment III, the first node is C3, and all its ancestors are B2,

A2 and A1. A key to the construction of the fragment tree

is to obtain the required INnodes. After the merging and

adjustment are completed on the coordinator, a list con-

taining all the adjusted nodes is obtained. Since the

adjusted node ID and level values are globally unified, the

INnodes of all fragments can be found on this basis. All

ancestors of a node u1 can be described in the form of a

recursive predecessor parent node as Pu1 = {u | u / u1,

u / Parent(u) till u = u0}, which calls the Parent func-

tion to get the parent node, and u0 refers to the root node of

the original document tree. According to Proposition 1, the

method to obtain the required INnodes is as follows: for a

given fragment, take the first node of the fragment as the

seed node, traverse backward according to the document

order, and obtain the precursor parent nodes one by one

until the root node of the original document tree, which is

the INnodes of the fragment. As described in Algorithm 4.

(a) Fragment tree I (b) Fragment tree II (c) Fragment tree III

B1

A1

C1T1

D1

B1

A1

C2 B2

T2 A3

D2

A2

A1

B2

C3

A2

C4 D3

E1

Fig. 5 Fragment tree

1384 Cluster Computing (2024) 27:1375–1399

123

Lines 2 to 7 in Algorithm 4 perform the acquisition of

INnodes from the second fragment to the last fragment one

by one. It is noted that the first fragment does not need to

obtain INnodes. Line 4 indicates traversal from the current

node to the root node in reverse order of the document

order. After finding and collecting all the INnodes on the

coordinator, these INnodes will be sent to the worker in

need. After receiving these INnodes, the worker updates

the local nodes list in order by header insertion, that is,

INnodes are inserted before the local nodes according to

the document order. In this way, the construction of a

fragment tree is completed on each worker.

3.3 Distributed index construction

After the XML parsing is completed, the relation index of

XML nodes needs to be further constructed, which pro-

vides a way to optimize query processing for the naviga-

tional XPath evaluation method based on relation search.

Definition 6 (Relation index) Refers to the storage struc-

ture that records the effective relation between XML nodes.

The entry of index is represented by a tuple as

\u:ID; v:ID; ru!v [, where ru?v represents the unique

relation type value of node u and node v, and ru?v [{DE,

CH, AT}, which contains the three common node relation

types: descendant, child and attribute. The relation index of

a node u refers to the set of index entries of the node and all

subsequent nodes in document order that have a relation

with the node, expressed as

RIndex:
S

u:ID\vi:ID

f\u:ID; vi:ID; ru!vi [g.

For example, in Fig. 3b, the index of node B1 is {\ 1, 2,

AT[,\ 1, 3, CH[,\ 1, 4, DE[,\ 1, 5, CH[}, the

index of C1 is {\ 3, 4, CH[} and the index of T2 is {}.

Since the fragment tree is a complete tree with the root of

the original document tree as its root, the relation index can

be created directly on the fragment tree. Suppose u and v

are XML nodes with interval-based encoding, and the basic

rules for relation calculation are as follows:

� ru!v = ’CH’ if (u.begin\ v.begin)^(v.be-
gin\ u.end)^(u.level = v.level-

1)^(v.nodeType = ELEM).

` ru!v = ’DS’ if (u.begin\ v.begin)^(v.be-
gin\ u.end)^(u.level = v.level-

1)^(v.nodeType = ELEM).

´ ru!v = ’AT’ if (u.begin\ v.begin)^(v.be-
gin\ u.end)^(u.level = v.level-

1)^(v.nodeType = ATTRIB).

In rule `, since only one relation is stored between two

nodes, and ’DS’ contains ’CH’ semantically, the constraint

of ‘‘u.level = v.level-1’’ is considered when creating the

index. During implementation, ’CH’ relation information

will be automatically included for ’DS’ relation. In order to

optimize processing, an auxiliary relation ’NN’ is added to

indicate that there is no relation between nodes. The con-

struction of relation index is a process of calculating the

relation value. This process uses the relation calculation

rules to get the relation value between two nodes, and then

stores the relation value in the relation index. The index

creation executed on each worker is shown in Algorithm 5.

In line 5 of Algorithm 5, the GetRelation function is

called to calculate the relation value according to the

Cluster Computing (2024) 27:1375–1399 1385

123

relation calculation rules. When the ’NN’ value is obtained,

the subsequent relation value must be ’NN’ [17]. The

optimization processing in line 8 can greatly reduce the

unnecessary traversal and improve the performance of

index creation. Since each worker independently creates

the corresponding relation index according to the parsing

and adjustment results of local fragment, the index creation

is a process of distributed parallel processing as a whole.

3.4 Distributed XPath query

In the navigational query based on relation index [13, 17],

the query steps of XPath are organized by the sequence of

query primitives, which is efficient and flexible, and easy to

implement the query semantics of XPath. However, in the

distributed environment, the locality of XML data may

lead to evaluation errors. For example, when evaluating

XPath predicates, some conditions may not be satisfied

because the data is distributed to different workers,

resulting in the loss of evaluation results. In order to adapt

to the distributed computing environment, a distributed

XPath evaluation approach based on relation index is

proposed below. It currently covers the functions of XPath

subsets {/, //, *, @, []} and supports the operation of

complex nested multiple predicates.

3.4.1 XPath query primitive

In the distributed query process of each worker, XPath

evaluation based on relation index is used to organize the

query in the form of query primitive sequence. Query

primitives are the implementation of corresponding XPath

query steps. The supported query primitives include non-

filter primitives and filter primitives. Non-filter primitives

correspond to the axis operation of XPath, including

primitives for descendants, children and attributes. Filter

primitives correspond to predicates of XPath, including the

basic filter primitive FilterS1ByS2 and variants of filter

primitives, such as filter primitives with ’AND’, ’OR’ and

’NOT’ conditions. The evaluation of query primitives is

described by Algorithm 6. In line 5 in Algorithm 6(a) and

line 3 in Algorithm 6(b), n is an index of node m, and index

is the relation index, which is defined as RIndex index.

Algorithm 6(a) is an evaluation description of a non-filter

primitive case, taking the primitive of getting descendant

nodes as an example. Algorithm 6(b) describes the evalu-

ation of a basic filter primitive. Its working mechanism is

to filter the node sequence input1 according to the node

sequence input2. XPath is evaluated through index lookup

and simple comparison, so it has high efficiency.

1386 Cluster Computing (2024) 27:1375–1399

123

The corresponding query primitive sequence is obtained

by rewriting the input XPath expression on the coordinator,

and then the sequence is sent to each worker for evaluation.

Describe the rewriting function with T[e]s = e’, where e is

the XPath expression, e’ is the rewritten primitive

sequence, and s represents the input XML node sequence in

the current context. The main rules of XPath query

rewriting are as follows, where ehead represents the header

of expression e, corresponding to a tag name, and etail
represents the rest after ehead is removed.

Cluster Computing (2024) 27:1375–1399 1387

123

3.4.2 XPath query based on filter-upon-pre-evaluate

When the query primitive sequence and the data to be

queried are available, each worker executes the query and

then returns the query results to the coordinator for merg-

ing. When querying on each fragment tree, the results

obtained may be duplicate, thus it is necessary to further

de-duplicate during merging. On the other hand, predicate

evaluation may have problems in distributed processing.

Taking the fragment trees in Fig. 5 as an example,

assuming that ‘‘//B[//C]//D’’ needs to be queried, the cor-

rect result should be {D1, D2}. However, if each fragment

tree is queried independently, the query results obtained

from the three fragment trees are {D1}, {} and {}

respectively, and the merging final result is {D1}. On

fragment II, node B2 is partitioned, and its child node C3 is

distributed into fragment III, resulting in that the predicate

condition cannot be met, so the returned result is null. In

order to overcome this problem, we propose a distributed

XPath evaluation approach based on filter-upon-pre-eval-

uate. The main idea is to pre evaluate each local fragment

tree on the worker, record the corresponding predicate filter

conditions, and then filter the pre evaluating results

according to the merged filter conditions on the coordinator

to obtain the final results that meet the conditions. Pre-

evaluation and condition acquisition on each fragment

satisfy data locality, thus effectively reducing network

traffic. In the process of filter condition recording, value

chain is used for data operation. For the convenience of

explanation, the following definitions such as value chain

are introduced.

Definition 7 (INnode to be filtered, abbreviated as INno-

deFt) Refers to the input INnode in XPath predicate

evaluation.

For example, when querying each XML fragment in

Fig. 3, if the predicate query expression is ‘‘//B[]’’, the

input nodes B1 and B2 are INnodes, so they are INnodeFts.

For an XPath expression, according to the order of predi-

cate, the input INnode corresponding to the first occurrence

of predicate evaluation in nested predicates is called the

first level INnodeFt, and so on. For example, in query ‘‘//

A[/B[//C]]’’, the INnodes corresponding to the evaluation

of ‘‘//A[]’’ are the first level INnodeFts, and the INnodes

corresponding to ‘‘/B[]’’ are the second level INnodeFts or

the last level INnodeFts in this case.

Definition 8 (Branch path) Refers to the linear query path

formed from the root item to the leaf item in the query tree.

In particular, the branch path containing the returned query

item is called the main path.

For example, in the XPath expression ‘‘A[/B[//C]]//D’’,

the branch paths include ‘‘A/B//C’’ and ‘‘A//D’’, where

‘‘A//D’’ is the main path. In the expression ‘‘A[/B]//C[D/

E]/F’’, the branch paths include ‘‘A/B’’, ‘‘A//C/D/E’’ and

‘‘A//C/F’’, where ‘‘A//C/F’’ is the main path.

Definition 9 (Value chain) Refers to the value sequence

used to record the evaluation results of branch paths. The

items in the sequence are INnodeFts or the query results.

The form of value chain is\ vn-1, vn-2,…, v0[, and the

corresponding node order from node v0 to vn-1 is

increasing in the branch path. The last item v0 in the

sequence is the first level INnodeFt. The first item vn-1 is

1388 Cluster Computing (2024) 27:1375–1399

123

the returned result item (for the main path) or the last level

INnodeFt (for other branch paths).

The filter-upon-pre-evaluate approach is described as

Algorithm 7, including the processing on the worker and

coordinator. In line 1 of Algorithm 7(a), the fragment is

evaluated normally according to the complete path of the

query Q, and the CNnode evaluation result SCN is obtained.

Lines 2*4 evaluate the branch paths corresponding to

query Q to obtain the pre evaluating result Sp. At the same

time, record the filtering condition Sv required for the

INnodeFts. In the process of branch path evaluation, the

evaluating results are compared with the INnode list from

parsing to obtain the INnodeFts. Line 5 sends the CNnode

evaluating result, pre evaluating result and filter condition

information to the coordinator. Line 2 in Algorithm

7(b) obtains the processing results from each worker. Lines

3*4 collect the filter conditions by branch path. Line 5

merges conditions in order. The order rule is to merge the

predicates at the last level first, and then deal with each

predicate one by one at the front level. Line 6 filters the

node sequence of the pre evaluating result with the merging

conditions to obtain the evaluation result of the INnodeFts.

In line 7, the evaluation result of the INnodeFts and the

evaluation result of the CNnodes are merged, and then de-

duplication and sorting are carried out.

During the query process, since the query on each

fragment is carried out according to the basic method of

navigational evaluation, only the filter conditions are

recorded during the query period, without data exchange

between fragments. This process can be carried out inde-

pendently in each worker, avoiding the communication

between workers, thus ensuring the efficiency of predicate

evaluation. During XPath evaluation, complete predicate

filtering conditions ensure that the final result of predicate

evaluation is not missed. Proposition 2 illustrates the

availability of complete results from the evaluation of

INnodeFts.

Proposition 2 The predicate filter condition in dXML is a

sufficient condition to obtain the complete evaluation result

of the INnodeFts.

A

B

A E C

D

D

Fig. 6 Query tree

Cluster Computing (2024) 27:1375–1399 1389

123

Proof In the dXML method, the fragment tree stores the

complete node relation information from the root node to

the leaf node, so that the collection of evaluation results of

a branch path Qp in all fragments Sp meets the Sp) Sp0
relationship with the evaluation results Sp0 of Qp in the

original document tree. When Sp is de-duplicated, there is

Sp = Sp0. The predicate filter conditions in the dXML

method come from the collection of the evaluation results

of each fragment and each branch path, and are recorded

according to the INnodeFts. The filter condition obtained

by Algorithm 7 is the complete judgment criterion for the

retention of INnodeFt, so that the INnodeFt that can obtain

the non empty final evaluation result is not omitted, that is,

it meets the sufficient condition for obtaining the complete

evaluation result of the INnodeFt. h

An example is given below to illustrate the process of

obtaining predicate filter conditions. Suppose that the XML

data to be queried is Fig. 3a and is partitioned as shown in

the figure. If the XPath query is ‘‘/A[//B[/A//D][//E]/C]//

D’’, the query contains complex nested multiple predicates,

and the corresponding query tree is shown in Fig. 6. The

nodes with gray background color in the figure are predi-

cate items and the node with circle are return item. The

branch paths contained in the query include �/A//B/A//D,

`/A//B//E, ´/A//B/C and ˆ/A//D. Each branch path is

represented by a number. The branch path ˆ is the main

path. The process is as follows:

(1) Obtain local filter conditions

This step is completed on each worker. On each

fragment, the filter conditions of each branch path

are obtained respectively. First, record the nodes to

be filtered. The nodes to be filtered of the three

fragments are {A1, B1}, {A1, B1, A2, B2} and {A1,

A2, B2}. Then, compared with the INnode list {A1,

B1, A2, B2} obtained during XML parsing, the

INnodeFts of each fragment can be obtained as {A1,

B1}, {A1, B1, A2, B2} and {A1, A2, B2}. Next, the

processing results on each fragment are as follows:

Evaluate on

fragment I:

V I1 = E(�) = {}

V I2 = E(`) = {}

V I3 = E(´)

= {\B1,A1[}

V I4 = E(ˆ)

= {\D1,A1[}

Evaluate on fragment

II:

V II1 = E(�)

= {\B2,A1[}

V II2 = E(`) = {}

V II3 = E(´)

= {\B1,A1[}

V II4 = E(ˆ)

= {\D2,A1[}

Evaluate on fragment

III:

V III1 = E(�) = {}

V III2 = E(`)

= {\B2,A1[}

V III3 = E(´)

= {\B2,A1[}

V III4 = E(ˆ)

= {\D3,A1[}

Table 2 Query cases
Case Platform XPath expression

XM1 XMark //open_auctions/open_auction//time

XM2 XMark //people/person[.//address/city][.//creditcard]//name

XM3 XMark //categories[./category[./name]/@id]//description

XM4 XMark //categories/category[.//description//text[.//*//keyword]/bold]

//name[contains(text(),’er’)]

DB1 DBLP //proceedings//url

DB2 DBLP //article[.//url][./ee]//journal

DB3 DBLP //inproceedings[.//title[./sub]//i]//url

DB4 DBLP //phdthesis[./note/@type][.//url][./year[2000]//author

[contains(text(),’Michael’)]

Table 3 Number of results of

query cases
Case Data size

1.25 GB 2.5 GB 5 GB 1.5 GB 2.25 GB 3 GB

XM1 658,184 1,258,596 2,574,541 – – –

XM2 70,318 134,398 275,015 – – –

XM3 11,000 21,000 43,000 – – –

XM4 275 536 1047 – – –

DB1 – – – 25,702 37,381 45,545

DB2 – – – 1,218,575 1,823,651 2,376,134

DB3 – – – 194 205 228

DB4 – – – 123 214 261

1390 Cluster Computing (2024) 27:1375–1399

123

The evaluation function E (Pid) is used to get the value

chain set of the branch path Pid on the current fragment.

The value chain set is represented by V, and its subscripts

are fragment id and branch path id. For example, the result

sequence obtained by evaluating the branch path ´ on

fragment I is\C1, B1, A1[, where B1 and A1 are

INnodeFts, while C1 is not INnodeFt, so the recorded value

chain is\B1, A1[.

(2) Collect filter conditions.

This step is completed on the coordinator. Its

function is to collect the received filter conditions

from each worker according to each branch path. The

collecting process only records different value chains

from each worker.

Collect for branch path �: V c1=V I1[V II1[V

III1={\B2,A1[}

Collect for branch path `: V c2 = V I2 [V II2 [V

III2 = {\B2,A1[}.

Collect for branch path ´: V c3 = V I3 [V II3 [V

III3 = {\B1,A1[,\B2,A1[}.

Collect for branch path ˆ: V c4 = V I4 [V II4 [V

III4 = {\D1,A1[,\D2,A1[,\D3,A1[}.

The basic collecting operation [is the union of

sets of value chains.

(3) Merge filter conditions

This step continues on the coordinator. Merging is

performed for the nodes to be filtered by predicates,

from the last level to the first level, to process the

collection results of filter conditions. The basic

merge operation \ P takes the predicate node to be

filtered P as the merging point to obtain the common

part of the value chain set, that is, to carry out the

intersection of the value chain set. In this example,

(a) 1.25GB (b) 2.5GB

(c) 5GB

0

10

20

30

40

50

60

XM1 XM2 XM3 XM4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

0

10

20

30

40

50

60

70

80

90

XM1 XM2 XM3 XM4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

0
20
40
60
80

100
120
140
160
180
200

XM1 XM2 XM3 XM4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

Fig. 7 Total execution time on XMark

Cluster Computing (2024) 27:1375–1399 1391

123

the predicate evaluation includes B[] and A[] in order

from the last level to the first level, so there are:

Merge for B[]:V mB = V c1 \ B V c4 \ B V

c3 = {\B2,A1[}.

Merge for A[]:V ret = V mB \ A V c4 = {\A1[}.

Since the pre evaluating result of this example is {D1,

D2, D3}, the query result is {D1, D2, D3} after filtering the

pre evaluating result according to the returned final filter

condition V ret.

4 Experiments

4.1 Experimental Settings

We use two typical common test platforms to carry out the

experiment. One is the XMark [49] platform, which pro-

vides a tool for generating XML data of any size. We use

XM1*XM2 cases in Table 2 for testing, of which XM1 is

a simple linear path query, XM2 is a query with multiple

juxtaposed predicates, XM3 is a query with nested multiple

predicates and a query step to obtain attribute nodes, and

XM4 is a complex query with not only nested multiple

predicates but also wildcard query and function call. The

other is the DBLP platform [3], which provides real data of

computer science bibliographies described in XML. The

tests were performed using DB1*DB4 cases in Table 1,

covering simple path queries and complex multi-predicate

queries. DB1 is a simple path query, DB2 has juxtaposed

multiple predicates, DB3 has nested predicates, and DB4

has function calls and content comparison operation.

The hardware platform is a high-performance server

with the model of HP ProLiant DL380. Its hardware con-

figuration includes two Intel Xeon E5-2660 CPUs, which

can provide 40 CPU threads, a total capacity of 164 GB

memory and a total capacity of 4.8 TB hard disk space. By

configuring VMware ESXi 5.5 software, a small cluster of

(a) 1.5GB (b) 2.25GB

(c) 3GB

0

20

40

60

80

100

120

DB1 DB2 DB3 DB4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

0

20

40

60

80

100

120

140

160

DB1 DB2 DB3 DB4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

0

20

40

60

80

100

120

DB1 DB2 DB3 DB4

Standalone Cluster

Ex
ec

u�
on

 �
m

e
(s

ec
)

Fig. 8 Total execution time on DBLP

1392 Cluster Computing (2024) 27:1375–1399

123

1 coordinator and 4 workers is obtained. The coordinator

and each worker are configured with four CPU threads;

32 GB of memory and 300 GB of disk space. The type of

virtual network adapter is E1000, which simulates a giga-

byte network. Both the coordinator and the worker run

Centos 7.6 operating system, and the Java virtual machine

environment used for software development and running is

JRE1.8.

4.2 Performance evaluation

To assess the overall performance of dXML method, dif-

ferent sizes of XML data and various typical XML queries

are tested. The total execution time of dXML in cluster is

investigated and compared with that of standalone pro-

gram. In the cluster, since users submit cluster processing

requests to the coordinator through the client, the total

execution time of distributed computing is the time from

receiving the query program on the coordinator to the

return of the final query result. For the fairness of com-

parison, the hardware and software environment of the

standalone program is consistent with that of the worker in

the cluster, and the standalone program adopts the same

data model and basic evaluation method as that in dXML

method. The configuration of XML data size is shown in

Table 3. The data in the table is the number of results that

can be obtained by query. The data provided for XMark

queries is generated data with data size of 1.25 Gb, 2.5 Gb

and 5 GB respectively, and the magnification of data size is

1, 2 and 4 respectively. DBLP queries are provided with

real data with data size of 1.5 GB, 2.2 GB and 3 GB

respectively, and the magnification is 1, 1.5 and 2

respectively.

The experimental results of the total execution time are

shown in Figs. 7 and 8, which correspond to the queries on

XMark platform and the queries on DBLP platform

respectively. Each sub graph shows the execution results

under different data size conditions. In Fig. 8c, when the

(a) On coordinator (b) On workers

0
5

10
15
20
25
30
35
40
45
50

Send
fragment

Wait
parsing

Merge Wait
adjus�ng

Collect
INnodes

Wait
query

Coordinator

Ex
ec

u�
on

 �
m

e
(s

ec
)

0

10

20

30

40

50

60

Parse
fragment

Wait
merging

Adjust Wait
collec�ng

Add
INnodes

Construct
index

Query

Worker1
Worker2
Worker3
Worker4

Ex
ec

u�
on

 �
m

e
(s

ec
)

Fig. 9 Execution time of each step on coordinator and workers (case XM4, 5 GB)

(a) On coordinator (b) On workers

0

5

10

15

20

25

30

35

Send
fragment

Wait
parsing

Merge Wait
adjus�ng

Collect
INnodes

Wait
query

Coordinator

Ex
ec

u�
on

 �
m

e
(s

ec
)

0

5

10

15

20

25

30

35

40

45

Parse
fragment

Wait
merging

Adjust Wait
collec�ng

Add
INnodes

Construct
index

Query

Worker1
Worker2
Worker3
Worker4

Ex
ec

u�
on

 �
m

e
(s

ec
)

Fig. 10 Execution time of each step on coordinator and workers (case DB4, 3 GB)

Cluster Computing (2024) 27:1375–1399 1393

123

data size is 3 GB, the standalone execution time is not

presented, the reason is that in standalone manner, each

query cannot return the final result due to timeout.

It can be seen from the figure that the performance of

dXML in cluster manner is better than that of standalone

program. The extent of performance improvement is rela-

ted to specific queries and XML data. Taking the execution

speed as the performance indicator, the performance

improvement refers to the average improvement of the

execution speed of each case in cluster manner compared

with that in standalone manner under various test condi-

tions (specified query and data size). Equations 1 and 2 are

used to calculate the performance improvement. Equa-

tion 1 is used to calculate the performance improvement of

a single case, where Tsi and Tci are the execution time in the

standalone and cluster manner respectively. Equation 2 is

used to calculate the average performance improvement of

all cases. On XMark platform, the performance of cluster

manner is 41% higher than that of standalone manner on

average, while on DBLP platform, the performance

improvement is up to 104%. In addition, when the data size

increases to a certain value, the final result cannot be

obtained due to timeout in standalone manner. It shows that

the use of distributed computing can break through the

dilemma that a single machine cannot process large data

due to its limited processing capacity.

gi ¼ ð1=Tci � 1=TsiÞ=ð1=TsiÞ ¼ Tsi=Tci � 1 ð1Þ

(a) XM1 (b) XM2

(c) XM3 (d) XM4

0

1000

2000

3000

4000

5000

6000

7000

8000

1.25GB 2.5GB 5GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.25GB 2.5GB 5GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.25GB 2.5GB 5GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

1000

2000

3000

4000

5000

6000

7000

8000

1.25GB 2.5GB 5GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

Fig. 11 Comparison of query time on XMark

1394 Cluster Computing (2024) 27:1375–1399

123

g ¼
Xn

i¼1

gi=n ð2Þ

In order to further investigate the execution of each step

in dXML method, we recorded the execution time of each

step in the process of dXML. Since the distributed pro-

cessing of dXML includes the execution on the coordinator

and the execution on each worker, we show it respectively

according to the coordinator and worker. Figures 9 and 10

respectively illustrate the execution of case XM4 on

XMark platform when the data size is 5 GB and case DB4

on DBLP platform when the data size is 3 GB. The results

show that the execution time of the distributed data

preparation phase accounts for a large proportion, while the

time of the query phase accounts for a relatively small

proportion. In specific processing steps, such as parsing on

fragment, due to the unbalanced load on each worker, it

directly caused a long time of synchronous waiting.

4.3 Comparative experiments

Current related methods mainly focus on the efficiency of

the XML query part, while XML data is usually partitioned

and parsed serially in the data preparation phase prior to

XML query. In addition, the data preparation phase is time-

consuming for any method, but has no specificity for

related method. The difference between various XML

processing methods is mainly reflected in the query

(a) DB1 (b) DB2

(c) DB3 (d) DB4

0

2000

4000

6000

8000

10000

12000

14000

16000

1.5GB 2.25GB 3GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1.5GB 2.25GB 3GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1.5GB 2.25GB 3GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1.5GB 2.25GB 3GB

Nav-MR
Twig-MR
dXML

Ex
ec

u�
on

 �
m

e
(m

s)

Fig. 12 Comparison of query time on DBLP

Cluster Computing (2024) 27:1375–1399 1395

123

approach. Therefore, the comparative experiment in this

section is limited to the query stage, and takes the evalu-

ation efficiency of XPath as the comparison object.

Because the steps of XML parsing, index creation and

XPath query are relevant in XML processing, for the sake

of fairness, the data to be queried used in each method of

comparison are consistent. We choose two kinds of typical

methods for comparison. One is navigational method, and

HoX-MaRe [35] is selected for comparison; the other is

twig method, and TwigStack-MR [12, 43] method is

selected for comparison. In this paper, the implementation

versions of these two comparative methods are named

Nav-MR and Twig-MR respectively. Both methods use

hadoop-2.8.5 as the development and running environment.

In the testing process of each method, the XML data is

parsed in advance, the data to be queried is in a ready state,

and the execution time of the query stage is recorded. For

Nav-MR method, the parsed data is pre-partitioned into

horizontal fragments. The query time includes the navi-

gational evaluation time on each XML fragment in MAP

stage and the result merging time in Reduce stage. For the

Twig-MR method, the query time includes the time to

query the XML subtrees using the TwigStack method in

Map stage and the merging time of the results in Reduce

stage. Since the construction of the subtrees has been

completed in advance and is not in the process of querying,

the lower bound of query time for Twig-MR is obtained.

The query time of dXML includes the query time on the

worker and the merging time on the coordinator. The actual

measurement is the whole period from the query rewriting

on the coordinator to the return of the final result. The test

cases adopt the same configuration as Sect. 4.2. The query

time comparison results on XMark and DBLP platforms

are shown in Figs. 11 and 12 respectively. For case XM4

and case DB4, the twig method does not support query

semantics with function call, so there are no corresponding

results in Figs. 11d and 12d.

In terms of query execution time, the performance of

dXML is better than other methods based on MapReduce.

This is mainly due to two factors: One is the basic per-

formance of the algorithm. dXML adopts the query method

based on relation index, which can carry out efficient

navigational query. Another is that in terms of distributed

computing framework, dXML adopts a flexible algorithm

framework different from MapReduce. MapReduce is

suitable for batch processing of large-scale data, but the

complex XML processing process needs to be transformed

into multiple batches, and the performance is negatively

affected. In addition, the processing method based on

MapReduce has the problem of data replication [50]. The

high replication rate increases the network traffic, resulting

in limited overall performance. By contrast, dXML pro-

vides a controllable distributed XML processing method.

Since dXML supports flexible parsing of arbitrary XML

fragments, it is conducive to load balancing. In the query

stage, the filter-upon-pre-evaluate approach can obtain

better data locality and avoid excessive communication

overhead. In addition, because dXML supports XML

fragment parsing and independent index creation, it can

make full use of the distributed computing environment for

parallel processing.

5 Discussion

Although dXML can effectively utilize distributed comput-

ing resources for large XML data processing, there is still a

need for performance optimization. From the performance

evaluation experiments in Sect. 4.2, the results of the time

consumption of each execution step in dXML show that the

current performance limitations come mainly from the fol-

lowing three aspects: first, the unbalanced load on each

worker; second, the long fragment sending time; and third,

the high percentage of XML parsing time. Therefore, the

corresponding improvement measures include:

(1) Load balance on each worker. Due to the unbalanced

load, synchronous waiting has become an important

factor causing the performance bottleneck. In the

current test, XML data is only evenly partitioned

according to the data size, which is easy to cause load

imbalance in local parsing and query. Fortunately,

since dXML supports the processing of arbitrary

fragments of XML data, it is easy to combine with a

more optimized load balancing strategy.

(2) Network performance. Network performance is

another important factor that affects dXML effi-

ciency. Optimizing network communication condi-

tions in the cluster can improve overall performance.

Because dXML does not rely on any specific

computing framework, it is highly adaptable to

changes in the computing environment.

(3) Preprocessed data loading. Optimize preprocessed

data loading by reusing parsing results and indexes.

Because the parsing and indexing of XML data

account for a large proportion in the whole XML

processing process, the parsed data and created

indexes can be reused to improve the performance of

multiple queries in practical application scenarios.

6 Conclusion

Due to the limitation of standalone computing capacity, it

is an inevitable choice to use distributed computing to

process large-scale XML data in the cluster. The dXML

1396 Cluster Computing (2024) 27:1375–1399

123

method proposed in this paper is an integrated XML pro-

cessing technology including distributed parsing, dis-

tributed indexing and distributed query of XML data. Our

method supports the distributed parsing of arbitrary XML

fragments and the distributed creation of indexes. Dis-

tributed XPath evaluation is carried out through the filter-

upon-pre-evaluate approach, which realizes the data

locality during query and reduces the network traffic. In

general, our method is an integrated automatic distributed

processing of XML, and can support ad hoc query of large

XML data. The working mechanism of dXML has strong

flexibility, does not rely on the existing distributed

framework, and does not need a complex environment

configuration. Therefore, it is a lightweight solution.

Through experimental evaluation, we found that under

various query conditions, the performance of dXML in

cluster manner is superior to that in standalone manner, and

can overcome the dilemma that single machine can not

handle large XML data. Through comparative experiments,

it shows that dXML has advantages over the existing

typical methods based on MapReduce in terms of XML

query performance. Based on the discussion in Sect. 5, our

future work focuses on performance optimization of

dXML. The measures considered include optimization of

the load balancing approach, optimization of cluster net-

work performance, and optimization of preprocessed data

loading. In addition, effective automatic processing

mechanisms need to be provided for these optimizations.

Author contributions RC: conceptualization, formal analysis, soft-

ware, wrote original draft. GC: validation, project administration. JC:

validation, software. YH: validation, reviewed & edited.

Funding This research was supported by the Natural Science Foun-

dation of Fujian Province of China (2022J01336, 2022J01820) and

Open Fund of Digital Fujian Big Data Modeling and Intelligent

Computing Institute.

Data availability Enquiries about data availability should be directed

to the authors.

Declarations

Conflict of interest There is no conflict of interest by any of the

authors of this article.

References

1. Zhen, H.L., Murthy, R.: A Decade of XML data management: an

industrial experience report from oracle. In: Proceedings of the

25th International Conference on Data Engineering (ICDE 2009),

Shanghai, China, March 29 - April 2 2009 2009, pp. 1351–1362.

IEEE Computer Society

2. Lee, H.: Data storage practices and query processing in XML

databases: a survey. Knowl.-Based Syst. 24(8), 1317–1340

(2011)

3. DBLP XML dataset. http://dblp.uni-trier.de/xml/.

4. Wikimedia XML dataset. http://download.wikimedia.org/enwiki/

latest.

5. OpenStreetMap XML dataset. http://www.openstreetmap.org/

export.

6. Sankari, S., Bose, S.: Elaborative survey on storage technologies

for XML big data: A real-time approach. In: 2016 International

Conference on Recent Trends in Information Technology (ICR-

TIT) 2016

7. Brahmia, Z., Hamrouni, H., Bouaziz, R.: XML data manipulation

in conventional and temporal XML databases: a survey. Comput.

Sci. Rev. 36, 100231 (2020)

8. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay,

M., Robie, J., Siméon, J.: XML path language (XPath) 2.0

(Second Edition). W3C recommendation (2015).

9. Dean, J.: MapReduce : simplified data processing on large clus-

ters. In: Symposium on Operating System Design & Implemen-

tation 2004

10. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel

data processing with MapReduce: a survey. ACM SIGMOD Rec.

40(4), 11–20 (2012)

11. Gou, G., Chirkova, R.: Efficiently querying large XML data

repositories: a survey. IEEE Trans. Knowl. Data Eng. 19(10),
1381–1403 (2007)

12. Fan, H., Ma, Z., Wang, D., Liu, J.: Handling distributed XML

queries over large XML data based on MapReduce framework.

Inform. Sci. 15, 2–89 (2018)

13. Chen, R., Liao, H.: ParaParse: A parallel method for XML

parsing. In: Proceedings of the 3rd IEEE International Confer-

ence on Communication Software and Networks (ICCSN2011)

2011, pp. 81–85

14. Chen, R., Liao, H., Wang, Z.: Parallel XPath evaluation based on

node relation matrix. J. Comput. Inform. Syst. 9(19), 7583–7592
(2013)

15. Chen, R., Wang, Z., Su, H., Xie, S., Wang, Z.: Parallel XPath

query based on cost optimization. J. Supercomput. (2021). https://

doi.org/10.1007/s11227-021-04074-y

16. Cate, B.T., Marx, M.: Navigational XPath. ACM. SIGMOD

Record 36(2), 19–26 (2007)

17. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: opti-

mal XML pattern matching. In: Proceedings of the 2002 ACM

SIGMOD International Conference on Management of Data,

Madison, Wisconsin, USA, June 3–6, 2002 2002, pp. 310–321.

ACM

18. Lukas, P., Baca, R., Kratky, M., Ling, T.W.: Demythization of

structural XML query processing: comparison of holistic and

binary approaches. IEEE Trans. Knowl. Data Eng. 33(04),
1439–1452 (2021)

19. Sato, S., Hao, W., Matsuzaki, K.: Parallelization of XPath

Queries Using Modern XQuery Processors. In: New Trends in

Databases and Information Systems. ADBIS 2018 2018 (2018)

20. Mortier, R., Narayanan, D., Donnelly, A., Rowstron, A.: Sea-

weed: Distributed Scalable Ad Hoc Querying. In: International

Conference on Data Engineering Workshops 2006

21. White, T.: Hadoop: the definitive guide. O’rlly Media Inc

Gravenstn Highway North 215(11), 1–4 (2012)

22. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,

I.: Spark: Cluster computing with working sets. (2010).

23. Choi, H., Lee, K.H., Kim, S.H., Lee, Y.J., Moon, B.:

HadoopXML: a suite for parallel processing of massive XML

data with multiple twig pattern queries. In: Acm International

Conference on Information & Knowledge Management 2012

Cluster Computing (2024) 27:1375–1399 1397

123

http://dblp.uni-trier.de/xml/
http://download.wikimedia.org/enwiki/latest
http://download.wikimedia.org/enwiki/latest
http://www.openstreetmap.org/export
http://www.openstreetmap.org/export
https://doi.org/10.1007/s11227-021-04074-y
https://doi.org/10.1007/s11227-021-04074-y

24. Owen, S., Kwon, H.: Spark-XML. https://github.com/databricks/

spark-xml (2015).

25. Bidoit, N., Colazzo, D., Sartiani, C., Solimando, A., Ulliana, F.:

Andromeda: a system for processing queries and updates on big

XML documents. In: East European Conference on Advances in

Databases & Information Systems 2015

26. Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Evaluating

Queries and Updates on Big XML Documents. Inf. Syst. Front.

20(1), 63–90 (2018)

27. Camacho-Rodriguez, J., Colazzo, D., Manolescu, I.: PAXQuery:

Efficient Parallel Processing of Complex XQuery. IEEE Trans.

Knowl. Data Eng. 27(7), 1–1 (2015)

28. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie,

J., Siméon, J., Stefanescu, M.: XQuery 1.0: An XML query

language (Second Edition). W3C working draft (2010).

29. Carman, E.P., Westmann, T., Borkar, V.R., Carey, M.J., Tsotras,

V.J.: A scalable parallel XQuery processor. In: IEEE Interna-

tional Conference on Big Data 2015

30. Using Oracle XQuery for Hadoop. http://docs.oracle.com/cd/

E63064_01/doc.42/e63063/oxh.htm #BDCUG527 (2016).

31. Hricov, R., Šenk, A., Kroha, P., Valenta, M.: Evaluation of XPath

Queries Over XML Documents Using SparkSQL Framework. In:

International Conference: Beyond Databases, Architectures and

Structures 2017

32. Khatchadourian, S., Mariano P. Consens, Siméon, J.: Having a

ChuQL at XML on the Cloud. In: AMW 2011

33. Fegaras, L., Philip, J.J.: XML Query Optimization in Map-

Reduce. In: International Workshop on the Web & Databases

2011

34. Senk, A., Valenta, M., Benn, W.: Distributed Evaluation of XPath

Axes Queries over Large XML Documents Stored in MapReduce

Clusters Paper presented at the DEXA.2014,

35. Damigos, M., Gergatsoulis, M., Plitsos, S.: Distributed Process-

ing of XPath Queries Using MapReduce. (2014).

36. Kunfang, S., Lu, H.: Efficient querying distributed big-XML Data

using MapReduce. Int. J. Grid High Perf. Comput. 8(3), 70–79
(2016)

37. Liang, B.A., Jin, Y.A., Cqw, B., Hq, A., Xin, Z.A., Sc, A.:

XML2HBase: Storing and querying large collections of XML

documents using a NoSQL database system. J. Parall.

Distrib.Comput. 161, 83–99 (2021)

38. Apache HBase. https://hbase.apache.org/.

39. Liu, J., Liu, Q., Zhang, L., Su, S., Liu, Y.: Enabling massive

XML-based biological data management in HBase. IEEE/ACM

Trans. Comput. Biol. Bioinf. 17(6), 1994–2004 (2020)

40. Longjian, Y., Koide, H., Cavendish, D., Sakurai, K.: Efficient

Shortest Path Routing Algorithms for Distributed XML Pro-

cessing. In: Proceedings of the 15th International Conference on

Web Information Systems and Technologies 2019, pp. 265–272

41. Bi, X., Zhao, X.G., Wang, G.R.: Efficient processing of dis-

tributed twig queries based on node distribution. J. Comput. Sci.

Technol. 32(1), 78–92 (2017)

42. Subramaniam, S., Haw, S.C., Soon, L.K.: Improved centralized

XML query processing using distributed query workload. IEEE

Access 9, 29127–29142 (2021)

43. Fan, H., Yang, H., Ma, Z., Liu, J.: TwigStack-MR: An Approach

to Distributed XML Twig Query Using MapReduce. In: IEEE

International Congress on Big Data 2016, pp. 133–140

44. Braganholo, V., Mattoso, M.: A Survey on XML Fragmentation.

ACM SIGMOD Record (2014).

45. Choi, H., Lee, K.H., Lee, Y.J.: Parallel labeling of massive XML

data with MapReduce. J. Supercomput. 67(2), 408–437 (2014)

46. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On

supporting containment queries in relational database manage-

ment systems. In: ACM SIGMOD Record, 2001 2001, vol. 2,

pp. 425–436. ACM

47. Lu, J., Meng, X., Ling, T.W.: Indexing and querying XML using

extended Dewey labeling scheme. Data Knowl. Eng. 70(1),
35–59 (2011)

48. Hsu, W.-C., Shih, H.-C., Liao, I.-E.: A scalable XML indexing

method using MapReduce. In: Fourth edition of the International

Conference on the Innovative Computing Technology (INTECH

2014) 2014, pp. 81–86. IEEE

49. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I.,

Busse, R.: XMark: A benchmark for XML data management. In:

Proceedings of the 28th international conference on Very Large

Data Bases 2002, pp. 974–985. VLDB Endowment

50. Afrati, F., Damigos, M., Gergatsoulis, M.: Lower bounds on the

communication of XPath queries in MapReduce. (2015).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Rongxin Chen received the

Ph.D. degree in computer sci-

ence from Beijing University of

Technology, Beijing, China, in

2014. He is currently a professor

with Computer Engineering

College, Jimei University, Xia-

men, China. He is also a

researcher with Digital Fujian

Big Data Modeling and Intelli-

gent Computing Institute, Xia-

men, China. His research

interests include parallel and

distributed computing, data

processing and analysis

technology.

Guorong Cai received the Ph.D.

degree in computer science

from Xiamen University, Xia-

men, China, in 2013. He is

currently a professor with

Computer Engineering College,

Jimei University, Xiamen,

China. His research interests

include machine learning, pat-

tern recognition, and high per-

formance computing.

1398 Cluster Computing (2024) 27:1375–1399

123

https://github.com/databricks/spark-xml
https://github.com/databricks/spark-xml
http://docs.oracle.com/cd/E63064_01/doc.42/e63063/oxh.htm
http://docs.oracle.com/cd/E63064_01/doc.42/e63063/oxh.htm
https://hbase.apache.org/

Jie Chen received the M.S.

degree in mathematics from

Fujian Normal University, Fuz-

hou, China, in 2004. He is cur-

rently a senior lecturer with

Computer Engineering College,

Jimei University, Xiamen,

China. His research interests

include program analysis and

algorithm design.

Yuling Hong received the Ph.D.

degree in systems engineering

from Fuzhou University, Fuz-

hou, China, in 2020. She is

currently an associate professor

with Computer Engineering

College, Jimei University, Xia-

men, China. Her research inter-

ests include network big data

mining, parallel and distributed

computing.

Cluster Computing (2024) 27:1375–1399 1399

123

	Integrated method for distributed processing of large XML data
	Abstract
	Introduction
	Related work
	Proposed method
	Overview of dXML method
	Distributed XML parsing
	Arbitrary XML fragment
	Parallel parsing of XML fragments
	Merging and adjustment
	Construct fragment tree

	Distributed index construction
	Distributed XPath query
	XPath query primitive
	XPath query based on filter-upon-pre-evaluate

	Experiments
	Experimental Settings
	Performance evaluation
	Comparative experiments

	Discussion
	Conclusion
	Author contributions
	Data availability
	References

