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Abstract
In software engineering, the planning and budgeting stages of a software project are of great importance to all stakeholders,

including project managers as well as clients. The estimated costs and scheduling time needed to develop any software project

before and/or during startup form the basis of a project’s success. The main objective of soft- ware estimation techniques is to

determine the actual effort and/or time required for project development. The use of machine learning methods to address the

estimation problem has, in general, proven remarkably successful for many engineering problems. In this study, a fully

connected neural network (FCNN) model and a metaheuristic, gray wolf optimizer (GWO), called GWO-FC, is proposed to

tackle the software development effort estimation (SEE) problem. The GWO is integrated with FCNN to optimize the FCNN

parameters in order to enhance the accuracy of the obtained results by improving the FCNN’s ability to explore the parameter

search field and avoid falling into local optima. The proposed technique was evaluated utilizing various benchmark SEE

datasets. Furthermore, various recent algorithms from the literature were employed to verify the GWO-FC performance. In terms

of accuracy, comparative outcomes reveal that the GWO-FC performs better than other methods in most datasets and evaluation

criteria. Experimental outcomes reveal the strong potential of the GWO-FC method to achieve reliable estimation results.

Keywords Metaheuristic � Optimization � Grey wolf optimizer � Fully-connected neural network � Software development

effort estimation

1 Introduction

The process of estimating software development efforts

prior to and/or during the development stage is critical to

the success of a software project and to reducing risk.

Software projects do not have the same structure and nature

and so the estimation of the effort process may become a

challenging task [1, 2]. In the literature, several machine

learning (ML) methods have been proposed to enhance

software development effort estimation (SEE) [3–7]. Fur-

thermore, a wide variety of research articles have been
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published on the optimization of the parameters of the three

COCOMO-based models by employing an artificial neural

network (ANN) [8–11].

Commonly, ANNs have been employed to tackle soft-

ware estimation problems due to their suitability for arbi-

trary accuracy and superior predictive ability [12, 13].

They have also been used in various real-world applica-

tions [10, 14–16], proving capable of tackling estimation

issues very effectively because of their learning capacity.

The ANN learning technique mainly involves the updating

of the weights and biases of neurons as they modify the

transmission of signals among interconnected neurons.

Therefore, the learning technique defines how the weights

and biases should be updated in order, for example, to

optimize the loss function.

Several studies have employed various types of ANNs

to address SEE problems. For instance, [17] compared four

previous studies [18–21] which used different neural net-

work architectures–multilayer perceptron (MLP), a general

regression neural network (GRNN), a radial basis function

neural network (RBF), and cascade correlation neural

networks (CCNN)—to estimate software project efforts. In

their study, the authors of [17] found that each network

outperformed the previous one, confirming the ability of

different types of networks to address the SEE problem but

with varying capabilities. One of the most popular and

efficient learning techniques employed to train an ANN is

the backpropagation algorithm, which has proved able to

address a variety of estimation and classification issues

[22].

The backpropagation algorithm utilizes a local search-

based technique called gradient descent to minimize the

value of the error function in the weight space [23]. The

fully connected neural network (FCNN) has many superior

properties, including an excellent self-learning technique,

robustness, self-adaptation, and generalization capacity

[24]. In addition, a three-layer FCNN can tackle non-linear

functions [25]. The FCNN can also be applied to a wide

range of research fields, such as function approximation,

image processing, and pattern recognition [26]. Neverthe-

less, the FCNN suffers from many drawbacks, such as slow

convergence speed [27–29], becoming easily stuck in local

optima [27, 28], low convergence accuracy [28], and high

dependency on initial parameters [29]. To overcome these

drawbacks, several metaheuristic algorithms have been

proposed, most notably the genetic algorithm (GA) [30],

particle swarm optimization (PSO) [31], the artificial bee

colony (ABC) [32], the whale optimization algorithm [33],

biogeography-based optimization (BBO) [34], the firefly

optimization algorithm (FFA) [35], the bat algorithm (BA)

[36], and the cuckoo search (CS) [37].

In this study, we propose a novel technique known as

GWO-FC, in which the gray wolf optimizer (GWO)

[38, 39] is integrated with the FCNN to optimize the FCNN

parameters (i.e., weights and biases) so that they are more

sensitive to tackling the SEE problem. It is essential to find

a low-complexity and high-utility estimation method. In

this regard, the GWO is fast, robust, and has simple fea-

tures [40] which support dependability. The motivation for

this work is the priority that must be given to managing the

expenditure and effort incurred during the software project

development cycle. The effort estimation process aims to

provide an accurate estimation of the cost of software

development, as well as assist in the efficient use and

allocation of human and computational resources for

development tasks.

To validate the SEE findings obtained by the GWO-FC

approach, 12 dataset instances for the SEE were selected

from different repositories, such as PROMISE and GitHub.

First, the data preparation step for the selected datasets

with parameter configurations was conducted. Then, the

performance of the proposed GWO-FC was studied and

analyzed in terms of convergence behavior. After this, a

statistics-based evaluation was performed to compare the

GWO-FC against traditional FCNN methods. Finally, the

efficiency of the proposed GWO-FC was further validated

by comparing its results with those of selected state-of-the-

art methods. The analysis of the findings shows that the

GWO-FC approach is a viable method for the SEE problem

in the field of software engineering.

It should be noted that the gray wolf optimizer (GWO)

has been used in previous studies to tackle the problem

addressed in this study [37, 41]. In [41], the authors used

the GWO algorithm to address the shortcomings of con-

ventional software prediction methods, a result of impre-

cise model construction and erroneous outcomes. They

combined three metaheuristic algorithms–the GWO, har-

mony search (HSA), and strawberry algorithms (SB)–to

optimize the COCOMO effort estimation method and

applied the developed model to a NASA dataset. Their

study did not use ML methods with the GWO to address

the prediction efforts problem, and instead they opted for

outdated traditional methods. In [37], a combination of the

GWO and SB algorithms was utilized to build a parametric

model for the SEE problem; GWO was used to optimize

the weights of a deep neural network, while SB was used to

improve its learning rate. However, their model suffers

from a high convergence time as well as a poor balance

between exploitation and exploration.

In short, the ultimate goal of this study is to integrate the

GWO into the FCNN to tackle the SEE problem. To

achieve this, three novel contributions are made in the

following order:

• Introduction of the FCNN network to tackle the SEE

problem;
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• Use of the GWO algorithm as a learning technique for

FCNN network to identify best parameter values,

consequently enhancing the estimation ability;

• Formulation of the FCNN parameters as input solutions

for the GWO;

• Use of the GWO to find the optimal vector to use as the

optimal parameter for the FCNN;

• Evaluation of the proposed GWO-FCNN using several

well-known benchmark datasets.

The remainder of this article is organized as follows:

Sect. 2 provides the background to the study and an

overview of the GWO and FCNN, and Sect. 2.3 presents

the SEE problem. The proposed method is discussed in

Sect. 3, while Sect. 4 presents the experimental results and

performance evaluation. Sect. 6 concludes the article.

2 Background

In this section, the GWO is thoroughly discussed and the

mathematical formulation of the FCNN presented.

2.1 Grey wolf optimizer

Mirjalili et al. [38] developed the GWO as a population-

based metaheuristic algorithm inspired by the social lead-

ership and hunting behavior of a pack of gray wolves. In

the GWO, three dominant leaders, a, b, and d, can lead the

remainder of the pack, called x, to the candidate regions to

discover the global solution. The hunting mechanism

consists of three stages: encircling, hunting, and attacking

the prey.

Encircling: As seen in Eqs. 1 and 2, it is possible to

mimic how wolves might surround their prey:

D ¼ jC � XpðtÞ � XðtÞj ð1Þ

Xðt þ 1Þ ¼ XpðtÞ � A � D ð2Þ

where, the prey position is symbolized by Xp, the position

vector of a gray wolf is symbolized by X, the current

iteration is symbolized

A ¼ 2 � A � r1 � aðtÞ ð3Þ

C ¼ 2 � r2 ð4Þ

where, r1 and r2 coefficients are vectors with random

values ranging from 0 to 1. vector a items is linearly

decreased in [2,0] through the iterations using Eq. 5:

aðtÞ ¼ 2 � ð2 � tÞ
MaxIter

ð5Þ

Hunting: In order to model the wolves’ hunting

behavior mathematically, it is presumed that a, b, and d

have better knowledge of the prey’s location. Therefore,

given the location of the three best solutions a, b, and d, the

other wolves x are forced to follow. The description of the

hunting behavior is represented by Eqs. 6, 7, and 8:

Da ¼ jC1 � Xa � XðtÞj

Db ¼ jC2 � Xb � XðtÞj

Dd ¼ jC3 � Xd � XðtÞj

ð6Þ

where the coefficients C1, C2, and C3 are computed by

Eq. 4.

Xi1ðtÞ ¼ XaðtÞ � Ai1 � DaðtÞ

Xi2ðtÞ ¼ XbðtÞ � Ai2 � DbðtÞ

Xi3ðtÞ ¼ XdðtÞ � Ai3 � DdðtÞ

ð7Þ

where the coefficients Xa, Xb, and Xd are the first three best

solutions at iteration t, while A1, A2, and A3 are computed

by Eq. 3, and Da, Db, and Dd are computed by Eq. 6.

Xðt þ 1Þ ¼ Xi1ðtÞ þ Xi2ðtÞ þ Xi3ðtÞ
3

ð8Þ

Attacking: Hunting ends when the prey stops and the

wolves attack. All of this can be simulated mathematically

with the linear decrement in a value over the course of the

iterations in order to control exploration and exploitation.

Eq. 5 shows that the value of a is updated in each iteration

across the range [2,0]. Emary et al. [42] recommend that

50% of the iterations are used for exploration and the

remaining iterations for exploitation in a seamless transi-

tion. At these moments, wolves randomly move location to

any other location in the range between the current one and

that of the prey.

Figure 1 depicts a full flowchart of the GWO. Generally,

within the search space, the method begins with an initial

random formation of wolves. Next, the fitness of each

solution (wolves’ positions) is then evaluated. The

remaining steps are repeated until the halting requirement

is met. The maximum number of iterations is defined as the

halting requirement. In each iteration, the highest ranked

solutions (i.e., wolves a, b, and d) with the best finesses are

considered. Subsequently, the location of each wolf is

updated in the above stages (i.e., encircling, hunting, and

attacking). Through repetition of the above three stages, the

best prey position can be determined, which is a’s position.

2.2 Fully connected neural network

One of the most well-liked ANN models is the FCNN. It is

widely used to tackle regression and classification prob-

lems [43, 44]. Essentially, the FCNN contains several

layers in addition to processing elements called neurons.
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The layers are stacked parallel to each other, with neurons

distributed over each layer. Also, neurons are fully con-

nected to each other between the layers, as shown in Fig. 2.

The input layer is the first layer, in which the network

receives its input variables, while the output layer is the

last. The layers between the input and output layers are

known as hidden layers.

Weights are associated with all neuronal connections,

which determine the impact of the relevant inputs on

neurons. In addition, there is an activation and aggregation

function within each neuron to produce the output, with the

activation function being unique within a single layer. The

aggregation function is shown in Eq. 9, which computes

the inputs’ weighted sum. The activation functions

Fig. 1 Flowchart of the GWO

algorithm
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(Eq. 14) apply a threshold to the derived weighted sum to

produce the neuron’s output.

netj ¼
Xn

i¼1

wij � xi þ bj ð9Þ

where, the variable of the input i is denoted as xi, the value

of jth neuron bias is denoted as bj, the value of connection

weight from the ith input to the jth neuron is denoted by wij.

To calibrate the network connection weights, the FCNN

training technique is employed, consisting of the forward

propagation (FP) and backward propagation (BP) stages

respectively. Data are fed to the input layer and then

transferred to the output layer after being transferred to the

hidden layer in the FP stage. During this pass, the aggre-

gation and activation functions update the weights and

biases of each neuron. The estimation error e is often

measured in the output layer by computing the difference

between the real and anticipated outputs. The obtained

error is then back-propagated to the hidden layer in the BP

stage to adjust the weights and biases according to the

value of e so that the error is reduced. The weights xij and

xjk are updated as in Eqs.10 and 11, respectively. In

addition, biases b1 and b2 are updated as in Eqs.12 and 13,

respectively. These two processes are repeated iteratively

till the e value approaches zero or a tolerable limit. Thus,

the FCNN is trained to reduce the overall network error,

which might be viewed as an issue of optimization [45].

The training technique is portrayed in Fig. 3.

cxij ¼ xij þ gHið1 � HjÞIi
Xt

k¼1

xjkek ð10Þ

cxjk ¼ xjk þ gHjek ð11Þ

where, adjusted weights obtained are donated by cxij and

cxjk , original weights are donated by xij and xjk, learning

rate is donated by g.

bbj ¼ bj þ gHjð1 � HjÞ
Xt

k¼1

xjkek ð12Þ

bbk ¼ bk þ ek ð13Þ

where, adjusted biases obtained are donated by bbj and bbk ,

original biases are donated by bj and bk, the learning rate is

donated by g.

2.3 The software development effort estimation
issue

The estimation of software development effort can be

defined as the process of estimating the practical amount of

effort necessary to develop a software project from

Fig. 2 Basic structure of fully-

connected neural network
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inconsistent, incomplete, noisy, and uncertain input data

[46]. This is the crucial moment when the project manager

needs to estimate in advance the substantial resources

required for the development of a software project [47].

Suppose there is a reasonable estimation of the effort

needed to build a software project. This will facilitate the

process of allocating resources to project tasks as well as

accurately estimating costs, reducing failures and delays in

development, and smoothing the project schedule [10]. The

possibility of stakeholders accepting or rejecting a software

project is a substantial factor in estimating the effort

involved in realizing a software project [4]. In general,

underestimation and/or overestimation are the main issues

encountered in the forecasting process, with underestima-

tion leading to understaffing of the project, delivery delays,

and inaccurate forecasting of budget expenditure. In con-

trast, overestimation will cause project overrun and loss of

resources [48, 49].

Generally, money and person-hour criteria are used to

measure effort, which means how many persons per hour

spent is needed to develop the software. In [50], there is an

explanation of the general factors that may lead to software

failure, including the risk of mismanagement, unrealistic

software project objectives, employment of unripe tech-

nology, inaccurate definition of system requirements,

incompetence in managing the complexity of the project,

incorrect project status reports, disagreements between

stakeholders, labor market pressures and difficulties, and

miscommunication between customers/users and software

developers. Nevertheless, the success of the software

depends mainly on the accuracy of estimating the efforts

made to develop it [51]. Consequently, effort estimation

must be optimized for a software project because correct

estimation is desired by both developers and clients.

Furthermore, estimating the effort required assists the

developer in building and controlling a software project

efficiently, as well as enabling the client to accomplish

project contract completion dates, negotiations, and pro-

totype release dates. Although there are many methods of

estimating software development effort, it remains difficult

for researchers to develop a reliable approach to estimating

development efforts.

3 Proposed method

The proposed method involves combining the FCNN and

the GWO, as shown in Fig. 4. The FCNN design consists

of three layers: an input, output, and single hidden. A

single hidden layer is sufficient to enhance the estimation

accuracy of the problem addressed in this study [52, 53],

and a three-layered FCNN has the ability to address any

non-linear functions [54]. In the input layer, the number of

neurons is based on the number of dataset features. In the

hidden layer, the amount of neurons is established through

the trial-and-error method [55]. The total estimated effort is

determined by the output layer, which contains only one

neuron.

According to Eq.14, the sigmoid function is unique to all

neurons in the hidden layer, as well as an aggregation

function. In general, most ANN types use the S-shaped

sigmoid function because it is thought to be suitable for

reducing the influence of overfitting and accelerating the

training of the model [56–59]. Likewise, the output layer

neurons have a linear activation function, as in Eq.15.

f ðxÞ ¼ 1

ð1 þ e�xÞ ð14Þ

f ðxÞ ¼ x ð15Þ

After the FCNN has finished its training process, the vector

form of the adjusted parameters (weights and biases) is

retrieved and delivered as shown in the following expres-

sion and Fig. 5:

ðw; bÞ ¼ ðw1;1;w1;2; :::;wn;n; b1;1; b1;2; :::; bn;nÞ

where. input nodes number referred as n, connection

weight is denotes as wij, bias in the hidden node is repre-

sented by bj.

This vector consists of two parts, as shown in Fig. 5.

The first (blue side) is for the weights and the second (red

side) for the biases. After the vector is optimized by the

GWO-FC and fed back to the FCNN network, the vector is

split into two parts, weights and biases. This returns them

to the state/condition they were in before being merged into

a single vector, for further use by FCNN.

Fig. 3 Backpropagation training technique
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The FCNN is trained as far as the population size of the

GWO allows, which in this study is equal to 30. With every

training process, one vector of FCNN-adjusted weights and

biases is modeled, as mentioned earlier. Therefore, all

vectors aggregate to form a population that is used as a

GWO population. This population is directed to GWO for

optimization. The population optimization process is

implemented to find the optimal individual solution (vec-

tor), which reduces the overall FCNN estimation error, and

this process can be considered an optimization problem

[45].

The FCNN is a gradient-based search method and so,

unfortunately, it has a scaling problem which can lead to a

prompt decline in performance when handling high-di-

mensional issues [45, 60]. Gradient-based search tech-

niques may also become stuck in local minima since FCNN

parameters are multi-modal spaces with a range of local

minima close to the global minimum [45]. Metaheuristic

optimization algorithms can be used to address this prob-

lem because these are generally combined with an ANN to

obtain high-precision results as well as to minimize net-

work training time [61]. In the present study, the assembled

metaheuristic algorithm is the beating heart of the proposed

method of using the GWO to optimize the FCNN weights

and biases. The main aim of using the GWO algorithm is to

reduce the probability of the FCNN falling into local

minima. This can be obtained by utilizing the joint process

between GWO and FCNN, as the GWO promotes great

exploration while the FCNN promotes exploitation, leading

to a reasonable balance between them. A previous study

has proven that population-based metaheuristic algorithms

have powerful exploration capabilities [62].

Returning to the procedure of the proposed method,

after the optimal vector has been obtained by the GWO,

this vector is returned to the FCNN, which utilizes the

vector in the validation process and calculates the accu-

racy. Mean square error (MSE) is employed in this article

as the key fitness function by which to measure output

error. The MSE measures the errors between the estima-

tions and the true labels of each estimation process during

the training and validation steps of the proposed method, as

shown in Eq.16:

MSE ¼ 1

m

Xm

i¼1

ðAi � DiÞ ð16Þ

where, training samples number is donated by m, actual

output of the ith instance is donated by Ai, desired output is

donated by (Di).

The reason for using MSE as a primary loss function in

this research is due to the tackling of a regression problem,

and MSE is a standard measure of test error for this type of

problem [63]. In addition, the FCNN model often employs

Fig. 4 Proposed GWO-FC method

Fig. 5 Single vector (Solution)

extracted from FCNN
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the MSE as robust loss functions [64, 65]. Furthermore, as

seen in Table 3, this study uses several loss functions since

there is no single measurement method that is useful for all

types of problems [57].

In short, the main contribution of this research is com-

bining the GWO algorithm with FCNN to act as one unit

(GWO-FC) to address the SEE problem. Therefore, the

parameters (weights and biases) of the BP network are

collected as a single vector and sent to the GWO algorithm

as input solutions. Then, the GWO optimizes this solution,

which is then used as optimal parameters for the BP net-

work. Finally, the developed GWO-FC is evaluated using

several global benchmark datasets.

4 Experimental results and performance
evaluation

The performance evaluation of the proposed GWO-FC

approach to the SEE issue is covered in this section. First,

the evaluation criteria, datasets used, experimental design,

and parameter composition are discussed. The outcomes of

the proposed approach are then contrasted with those of the

conventional FCNN on datasets for SEE. After this com-

parison, the results are presented of a statistical analysis

utilizing the Wilcoxon-Mann-Whitney test to generate

statistically significant findings. In addition, boxplot and

convergence behavior analyses are provided, respectively.

Finally, performance validation results are given by com-

paring the results of the proposed method with those of

some state-of-the-art methods when applied to SEE prob-

lem datasets.

4.1 Evaluation criteria

The determination of evaluation criteria is critical to the

success of a proposed approach. There are different eval-

uation criteria in the literature and this study sought to

utilize the most reliable and common criteria. Heuristic

algorithms are stochastic optimization methods which can,

therefore, produce different outcomes [45]. Thus, an

average of 30 separate runs for each dataset was evaluated

to acquire all the experimental outcomes.

MSE served as the primary evaluation criterion in this

study, as previously established. Additionally, other criteria

were also used, namely: relative absolute error (RAE),

mean absolute error (MAE), variance-accounted-for

(VAF), Manhattan distance (MD), root mean square error

(RMSE), root relative squared error (RRSE), median of

magnitude relative error (MdMRE), correlation coefficient

(R2), euclidian distance (ED), standardized accuracy (SA),

and effect size (4) measures. In utilizing the proposed

method, the main aim was to decrease the value of these

criteria, except for VAF and R2, where the aim was to

increase their value.

4.2 Datasets used

In this study, twelve different freely and publicly available

benchmark datasets were utilized to estimate software

development efforts research community. These bench-

mark datasets have been employed in related works in the

literature and thus they are appropriate for use in evaluating

the proposed method [3]. The literature states that using a

relatively large number of software development effort

estimation datasets is helpful for reaching a stable conclu-

sion [66]. All the employed datasets were obtained from

GitHub and PROMISE repositories and had several fea-

tures ranging from 7–27, all of which were used in the

experiments. The observations amount ranged between

15–499 and they also had different technological features.

Table 1 provides the following details for each dataset:

the name of the dataset, number of features, search space

dimensions, estimated time unit, and repository source. It is

evident from the table that there is variation in the com-

plexity and size of all datasets. In terms of both the number

of features and instances, Albrecht, Kemerer, and Miyazaki

are small datasets, whereas China, COCOMO, Maxwell,

and NASA are medium/large. The Kemerer, Albrecht, and

Kitchenham datasets have the fewest number of features,

whereas the COCOMONASA-II and Maxwell have the

most. While all other datasets are recorded in person-

months, the Maxwell, China, and Desharnais are recorded

in person-hours. In all datasets, the dependent variable is

effort, expressed in person-months or person-hours.

It is critical to comprehend the scope of software

development work to produce an accurate estimate and

learn how to deliver estimates for the effort of software

development. Estimation is crucial because it enables the

developer to determine the expenses and time needed to

finish the task. Once it is known how much a person-hour

costs and the dependencies of all tasks have been analyzed,

one can easily calculate the time it will take to complete the

entire software project. A person-hour refers to that portion

of work achieved by an average specialist in one hour of

uninterrupted work. The term refers to two distinct con-

cepts: Man (person) refers to the specialist performing the

activity (e.g., analyst, developer, engineer, tester, etc.), and

Hour refers to 60 minutes of uninterrupted work. Finally,

what applies to the term person-hours also applies to per-

son-months, except that the second term is calculated as the

total hours worked in a month. The features of the datasets

are as follows givn in Table 1.
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• Size features: data on the scope of the project as mea-

sured by several metrics, e.g., function points (fp), lines

of code (loc).

• Environment features: company data, the development

team of the project, number and experience of devel-

opers, and so on.

• Development features: project technical details, such as

the database type and development language employed.

• Project-related features: regarding the project’s pur-

pose, type, and requirements.

The IBM DP service corporation generated the Albrecht

dataset, which includes 24 samples from industrial IT

projects and eight attributes. It is described in terms of

KSLOC and FPs, which are weighted sums of inputs,

outputs, files, and inquiries for software projects. The

China dataset contains information from projects devel-

oped by Chinese corporations and considers 16 features

and 499 samples. Functional elements are used as inde-

pendent variables to find how many FPs there are, such as

inquiry, file, input, interface, and output.

For the COCOMO dataset created by NASA, this

includes 17 features and 63 samples. Among the features

are: loc (line of code), rely (reliability of the software), tool

(use of software tools), data (size of the datasets), modp

(modern programming practices), cplx (process complex-

ity), lexp (language experience), time (cpu time constraint),

sced (schedule constraint, stor (main memory constraint),

vexp (virtual ma- chine experience), virt (volatility of the

machine), pcap (capability of programmers), turn (turn-

around time), aexp (application experience), and acap

(capability of analysts).

The Kemerer dataset is small, with seven features and

15 samples. There are two category aspects to the inde-

pendent features (language and hardware). Raw FPs are

based on KSLOC, and adjusted function points. The two

dependent variables are the project time and overall effort.

The Maxwell dataset contains information about 62

projects, including details of the industrial software ini-

tiatives programmed by one of Finland’s leading com-

mercial banks. Among the significant independent features

are T15 (staff team skill), FPs (SizeFP), T14 (staff tool

skills), T01 (customer participation), T13 (staff application

knowledge), T02 (development environment adequacy),

T12 (staff analysis skills), T03 (staff availability), T11

(installation requirements), T04 (standards used), T10 (ef-

ficiency requirements), T05 (methods used), T09 (quality

requirements), T06 (tools used), T08 (requirements

volatility), and T07 (software logical complexity).

Miyazaki is a medium-sized dataset with 48 samples

that include data on projects created by Fujitsu Large

Systems Users Group software firms. It has eight inde-

pendent features, with the dependent variable being the

number of person-hours needed to finish the development

process from system design through system testing. The

number of various record formats, various report forms

(form), and various input or output screens (scrn) are all

significant dependent variables (file).

In the 1980s, the Desharnais dataset, which contains 81

software projects, was gathered from ten Canadian firms.

The total effort was used as a dependent variable in this

study, but not the loc. The categorical variables (i.e., lan-

guage and year end) were also omitted from this study, and

the following variables were employed: adjusted FPs,

transactions (i.e., the total number of fundamental logical

transactions in the system), teamexp (i.e., the team’s years

of experience), entities (i.e., the number of entities in the

system’s data model), and managerexp (i.e., the manager’s

experience measured in years).

The datasets used include data from one or more soft-

ware firms representing a wide range of application envi-

ronments and project features. The datasets above have

also been utilized in wide ranging practical research to

evaluate effort estimation approaches in the literature

[71, 72].

4.3 Experimental design

Before the proposed method was assessed, it was necessary

to pre-process the data to enable optimal usage of it. By

analyzing the variables within the datasets, we found that

the characteristics exhibited several notable factors. For

instance, large projects are less numerous than smaller

ones, which influences the skewness of the data and, as the

scale of the project increases, so does the diversity of the

effort. There are also some very large data values, which

mean that there are outliers. Finally, it appears that the

correlations between size and effort varied for different

software projects.

Based on the previous findings, it appears that there is a

need to use transformation techniques for the data to

guarantee that the developed model will traverse the raw

data’s scale origin. This will take into account the rela-

tionships between size and effort, which may be linear,

nonlinear, or both. Transforming the data values by

applying the transformation technique will bring the data

closer to a normal distribution, and also bring the values

closer together by reducing larger values to smaller ones.

On this basis, the datasets were converted into a new form

where all the values were between 0 and 1, in a transfor-

mation technique called min-max normalization, as shown

in Eq. 17:

Yi ¼
xi � xmin
xmax � xmin

ð17Þ
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where, normalized data is referred as Yi, data initial value is

referred as xi, minimum and maximum data are referred as

xmax and xmin, respectively.

The second step in the data pre-processing was to divide

it into training and testing sets. The training set accounted

for 70% of the original dataset and the testing set 30%. The

selection of the data rows for the training set was per-

formed by random selection. The remaining rows were

included in the testing set. Random selection was employed

to prevent method overfitting and data selection bias.

Therefore, for each run of the 30 runs of the proposed

method, new training and testing sets of data were for-

mulated randomly. The training phase was executed for all

of the datasets used. Then, the testing phase was carried

out. Finally, 30 separate runs of each experiment were

conducted, so that all the evaluation criteria measurements

could be calculated for each dataset by averaging the

results obtained for the 30 runs as a final result.

4.4 Parameter configuration

The parameter configuration was the same for all experi-

ments. Where the population size of the GWO was deter-

mined to be 30, the maximum iterations of GWO (L) was

determined to be 300, and all experiments were performed

30 separate times. Extensive experiments were carried out

to find the parameter values (i.e., maximum of iterations

and population size), and the optimal values were chosen.

The experiments were carried out using a personal com-

puter with an Intel Core i5 processor, Windows 10 system,

8 GB of RAM, 2.0 GHz CPU, using MATLAB 2016a.

4.5 Evaluation comparison of GWO-FC
against traditional FCNN

The first experiment was conducted to evaluate the per-

formance of the proposed GWO-FC method. This involved

comparing the results obtained by the GWO-FC with those

produced by the traditional FCNN for SEE problems on

test data. A comparison of the results obtained by the

GWO-FC and conventional FCNN for each data set is

shown in Tables 2 and 3 in terms of MSE and other

measures (i.e., RAE, MAE, VAF (%), MD, RMSE, RRSE,

MdMRE, R2, ED, standardized accuracy (SA) and effect

size (4) measures), respectively. Table 2 shows that the

GWO-FC approach gave more accurate estimates than the

classic FCNN in terms of MSE for all datasets. Table 3

shows that the GWO-FC achieved the lowest RRSE, ED,

MdMRE, RAE, RMSE, MAE, MD, SA and effect size (4)

for most datasets. Moreover, the GWO-FC produced the

largest VAF and R2 for all datasets.

The outcomes of the proposed technique thus show that

the performance of the FCNN estimator and the quality of

the findings were significantly improved by GWO opti-

mization of the FCNN parameters. As previously men-

tioned, the FCNN tends to become trapped in local optima

and has a sluggish convergence rate, and yet the proposed

GWO-FC overcame these drawbacks. Providing more

optimal weights and biases adds greater balance concern-

ing exploitation and exploration in addition to exponen-

tially accelerating the convergence of the FCNN estimation

process. This provides a remarkable generalization esti-

mation performance.

A boxplot was created to show the distribution of the

findings obtained using the proposed method. Figure 6

shows the MSE results produced by the GWO-FC method,

demonstrating that the majority of the results of the

examined datasets were more successful when using the

proposed strategy. The effectiveness of the obtained find-

ings may be related to the proposed method’s ability to

identify the optimal weights of the FCNN, which is

essential for resolving the early convergence defect as well

as improving the convergence behavior of the FCNN.

4.5.1 Wilcoxon Mann-Whitney statistical test analysis

The significance of the outcomes produced using the sug-

gested strategy was validated with the Wilcoxon-Mann-

Whitney statistical test. This test is utilized for the purpose

of demonstrating a difference in the value of an ordinal,

interval, or ratio variables between two sets. This non-

parametric test is utilized for continuous, interval or ratio

data. The technique for computing the test statistics is

straightforward but too lengthy to explain here. For the

details, the interested reader may wish to consult [73]. The

calculation technique is as follows:

Take into account that (x1; :::; xm) and (y1; :::; yn) are

different pairs of separate sets of random variables. Also,

let each set’s arbitrary response be denoted by x and y. In

addition, take into account that y� G and x� F, and let

the data of observations be categorized. The function of

Mann-Whitney is as follows:

/ ¼ hMWðF;GÞ ¼ Pr½x\y� þ 1

2
Pr½x ¼ y� ð18Þ

The bG and bF experimental distributions can be used to

estimate the / as shown below:

b/ ¼ hMWð bF ; bGÞ ¼ 1

mn
ðSy �

nðnþ 1Þ
2

Þ ð19Þ

The mid-ranks are calculated by ranking all N ¼ mþ n

replies combined, breaking ties randomly, and average the

tied values. Where Sy is regarded the total of the n mid-
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ranks from the next group. Using the b/, the Wilcoxon–

Mann–Whitney Test is a permutation test.

Table 4 presents the outcomes of the Wilcoxon test

according to the average of the best results obtained across

30 independent experiment runs. Regression and correla-

tion values were used in this test to compare the two

methods (GWO-FC and FCNN), as well as to assess how

different the two estimation methods were from each other.

The likelihood of the hypothesis’s random validity is rep-

resented by the q-value. Confirmation versus the null

hypothesis and high statistical significance are shown by a

low q-value, because the null hypothesis is true. Depending

on the q-value, the null hypothesis is either rejected or

accepted. If the q-value is less than or equal to the prob-

ability threshold (a), which is the case, the null hypothesis

is not supported.

Since the experimental factors affected the experiment’s

digital observations in this test, where a ¼ 0:05, any

probability value less than a meant that less than 5% of the

experiment results were due to chance and not to the

experimental factors. As a result, there was a difference in

the statistical significance between the two methods. From

Table 4, it can be seen that the statistical indicators

demonstrate that the results obtained by the GWO-FC were

significantly different from those of the traditional FCNN

in all datasets.

4.5.2 Convergence rate analysis

To evaluate the proposed method in depth, a convergence

rate analysis was performed. In this work, the maximum

number of iterations was 300. The values of the parameters

(weights and biases) were changed at each iteration. The

parameters had random values at the early iterations, but as

the number of iterations increased, these values dropped

and so the FCNN became stuck in the local optimum.

Therefore, using the GWO helped the FCNN to escape

from any local optima using the GWO’s ability regarding

exploration and exploitation, which accelerated and

enhanced the convergence. The parameters produced by

the GWO give the method the ability to explore the search

space around the related best solutions.

The convergence curves for the average values of the

overall results for the GWO-FC versus the FCNN for each

dataset are shown in Fig. 7. It can be seen from the curves

that the integration of the GWO algorithm with the FCNN

Table 2 Results obtained by

GWO-FC and FCNN in terms of

MSE

MSE

Dataset Method Worst Best Average Std

Albrecht FCNN 3.12E-02 3.12E-02 3.12E-02 7.06E-18

GWO-FC 1.84E-06 4.57E-07 1.06E-06 7.12E-07

China FCNN 2.88E-03 2.88E-03 2.88E-03 2.21E-18

GWO-FC 1.34E-03 1.34E-03 1.34E-03 0.00E?00

Cosmic FCNN 9.79E-02 9.79E-02 9.79E-02 2.82E-17

GWO-FC 2.57E-05 1.55E-08 1.02E-06 4.66E-06

COCOMO81 FCNN 3.19E-02 3.19E-02 3.19E-02 1.41E-17

GWO-FC 1.88E-03 2.82E-04 1.03E-03 4.39E-04

COCOMONASA-I FCNN 2.53E-02 2.53E-02 2.53E-02 1.76E-17

GWO-FC 7.06E-03 4.58E-05 4.54E-03 3.36E-03

COCOMONASA-II FCNN 2.01E-02 2.01E-02 2.01E-02 3.53E-18

GWO-FC 1.17E-02 1.17E-02 1.17E-02 7.06E-18

Desharnais FCNN 3.47E-02 3.47E-02 3.47E-02 7.06E-18

GWO-FC 5.21E-03 1.85E-03 3.36E-03 8.44E-04

Kemerer FCNN 5.87E-02 5.87E-02 5.87E-02 0.00E?00

GWO-FC 1.72E-05 8.81E-08 1.85E-06 3.46E-06

Kitchenham FCNN 3.38E-02 3.38E-02 3.38E-02 2.12E-17

GWO-FC 1.71E-02 6.12E-03 1.05E-02 3.50E-03

Maxwell FCNN 1.77E-02 1.77E-02 1.77E-02 0.00E?00

GWO-FC 4.34E-03 3.15E-05 1.40E-03 1.81E-03

Miyazaki 94 FCNN 1.11E-02 1.11E-02 1.11E-02 5.29E-18

GWO-FC 3.47E-03 3.47E-03 3.47E-03 1.32E-18

USP05 FCNN 1.21E-02 1.21E-02 1.21E-02 5.29E-18

GWO-FC 4.73E-03 4.64E-03 4.73E-03 1.67E-05
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significantly enhanced the convergence rate, as well as the

accuracy of FCNN estimation, which in turn improved the

quality of the results.

The findings of the experiments suggest that the usage of

metaheuristic techniques in general, and the GWO in par-

ticular, may produce significant gains in the field of

parameter optimization, since generating high quality

results for ANNs is correlated to parameter optimization,

which in turn enhances estimate effectiveness. Therefore,

the use of metaheuristic methods to estimate optimal

parameter values may enable ANNs to address the uncer-

tainties in estimations for different benchmark datasets and

provide more accurate results. In addition, the use of

parameter optimization methods based on metaheuristic

algorithms increases the chance of a neural network being

able to enhance estimation accuracy and convergence

speed, as well as reduce the possibility of falling into local

optima.

4.5.3 Computational time

In order to compare the selected methods further, a com-

putational time comparison between the traditional FCNN

and the proposed GWO-FC in the simulation phase was

performed using the test data. This comparison was made

in Windows 10 64 bit, i5-10600 CPU@3.30 GHz, with 16

RAM. The results are presented in Table 5 for all datasets

used by computing the mean time for 30 runs.

The results show that FCNN took less time compared to

the GWO-FC method. The noticeable increase in the

GWO-FC computation time is due to the fact that it con-

sists of the FCNN training time plus the GWO optimization

time. As a result, the GWO-FC method has several loops,

as well as the process of passing data across the methods.

Moreover, the calculated time that was considered here is

for the total time of the FCNN training process and the

GWO optimization process, where the bulk of the time is

spent on the optimization process. Since the training and

optimization processes are the same for all employed

datasets, in addition to the fact that a small dataset (i.e.,

USP05) consumes more computational time than a large

dataset (i.e., China), this is due to the complexity of the

database itself. The same is true of the COCOMO81 and

the COCOMONASA-II datasets, where COCOMONASA-

II is comparatively larger than COCOMO81, but

COCOMO81 takes more computational time than

COCOMONASA-II.

Table 3 Obtained results by GWO-FC and FCNN in terms of RAE, MAE, VAF, ED, MdMRE, RMSE, RRSE, R2, MD, SA, 4

Dataset Method RAE MAE VAF ED MdMRE RMSE RRSE R2 MD SA j 4 j

Albrecht FCNN 0.3775 0.1180 79.0230 1.3688 0.0652 0.1767 0.5079 74.1995 7.0810 0.2954 1.3094

GWO-FC 0.0021 0.0006 99.9996 0.0052 0.0011 0.0007 0.0019 99.9996 0.0385 0.7897 4.6520

China FCNN 0.4051 0.0310 87.8659 0.6567 0.5708 0.0536 0.3768 85.8050 4.6433 0.6010 11.9641

GWO-FC 0.2855 0.0218 93.3808 0.4485 0.3815 0.0366 0.2573 93.3802 3.2722 0.7604 15.0653

Cosmic FCNN 0.7500 0.2656 81.3625 0.6258 0.2787 0.3129 0.7621 41.9168 1.0624 0.4286 2.8564

GWO-FC 0.0003 0.0001 100.00 0.0002 0.0001 0.0001 0.0003 100.00 0.0004 0.5483 3.9629

COCOMO81 FCNN 1.0363 0.1518 58.5010 0.7789 0.1725 0.1787 0.7802 39.1241 2.8849 0.7193 6.7439

GWO-FC 0.0889 0.0130 99.4646 0.0731 0.0131 0.0168 0.0733 99.4633 0.2476 0.9679 11.7360

COCOMONASA-I FCNN 0.5455 0.1063 73.1959 0.6749 0.7871 0.1591 0.5528 69.4408 1.9136 0.4382 3.5230

GWO-FC 0.0246 0.0048 99.9448 0.0287 0.0063 0.0068 0.0235 99.9447 0.0864 0.5348 4.8351

COCOMONASA-II FCNN 0.5381 0.0967 63.7860 0.7505 0.8245 0.1418 0.6031 63.6300 2.7086 0.6381 5.1493

GWO-FC 0.3632 0.0653 78.8259 0.5728 0.6308 0.1082 0.4603 78.8112 1.8284 0.6934 6.3965

Desharnais FCNN 0.6609 0.1268 53.7076 0.9122 0.4391 0.1862 0.7416 45.0058 3.0430 0.4173 4.2956

GWO-FC 0.1671 0.0321 97.0785 0.2106 0.0843 0.0430 0.1712 97.0697 0.7695 0.5301 6.0354

Kemerer FCNN 0.5864 0.2021 59.7163 0.5418 0.2926 0.2423 0.6378 59.3243 1.0105 0.4581 1.8574

GWO-FC 0.0008 0.0003 100.00 0.0007 0.0008 0.0003 0.0008 100.00 0.0014 0.5217 2.3965

Kitchenham FCNN 0.6468 0.0981 37.5662 1.2200 0.4104 0.1839 0.8453 28.5507 4.3164 0.5380 3.4756

GWO-FC 0.4055 0.0615 87.0676 0.5191 0.4622 0.0783 0.3596 87.0668 2.7059 0.6036 4.7639

Maxwell FCNN 0.6902 0.1157 71.3400 0.5809 0.6550 0.1333 0.5665 67.9086 2.1982 0.4095 3.8723

GWO-FC 0.0223 0.0037 99.9434 0.0245 0.0246 0.0056 0.0239 99.9430 0.0710 0.6740 5.8790

Miyazaki 94 FCNN 0.4909 0.0709 85.9358 0.4081 0.5017 0.1054 0.4345 81.1190 1.0632 0.4295 1.4053

GWO-FC 0.3528 0.0509 94.4088 0.2281 0.5583 0.0589 0.2429 94.0987 0.7642 0.6492 2.5001

USP05 FCNN 1.5246 0.0762 37.8199 0.8506 3.3709 0.1098 0.8362 30.0812 4.5697 0.3905 4.8737

GWO-FC 0.8443 0.0422 74.4427 0.5278 2.7289 0.0681 0.5189 73.0749 2.5307 0.4610 6.7600
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4.6 Validation comparison of GWO-FC against
state-of-the-art methods

To support the proposed methodology, a comparison with

state-of-the-art approaches from the literature was con-

ducted. The comparison was performed based on

experiments employing analogous evaluation criteria and

benchmark datasets as in the previously described experi-

ment. The results of the comparison are presented in five

tables: Table 6 presents MSE and MAE, Tables 7, 8 and 9

present MAE, and Table 10 presents SA and (4).

Fig. 6 Boxplots of GWO-FC
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Table 6 shows that the GWO-FC was superior to Salp

Swarm Algorithm with Backpropoagation Neural Network

(SSA-BPNN) method in most of the datasets except in

Cosmic and COCOMONASA-II in terms of MSE, in

Miyazaki 94 in terms of MAE.

From Table 7, the proposed GWO-FC can be seen to be

superior to other methods in most of the datasets except for

China and Kitchenham, where SRF achieved the best

results. The abbreviations used in Table 7 are as follow:

– Decision Tree (DT),

– Deep Net (DN),

– Elastic Net Regression (EN),

– Ensemble Technique: Bagging (BA),

– Ensemble Technique: Boosting (BS),

– Ensemble Technique: Weighted Averaging (WAVG),

– LASSO Regression (LASSO),

– Random Forest (RF),

– Ridge Regression (Ridge),

– Stacking Using RF (SRF)

Table 8 shows that the GWO-FC approach outper-

formed the competition over all datasets. The abbreviations

available in Table 8 are as follow:

– Genetic algorithm - hybrid search-based algorithm

(GA-HSBA)

– Black hole optimization algorithm - hybrid search-

based algorithm (BHO-HSBA)

– Firefly algorithm (FFA) - hybrid search-based algo-

rithm (FFA-HSBA)

Table 9 shows that the GWO-FC approach outper-

formed the competition over all datasets. The abbreviations

available in Table 9 are as follow:

– Ant colony optimization (ACO)

– Chaos optimization algorithm (COA)

– Genetic algorithm (GA)

– Partial swarm optimization (PSO)

– Bat algorithm (BA)

Table 10 shows that the GWO-FC approach outper-

formed the competition over all datasets. The abbreviations

available in Table 10 are as follow:

– Cluster-based fuzzy regression tree (CFRT)

– Multi-layer perceptron (MLP)

– K-nearest neighbor (KNN)

– Classification and regression trees (CART)

– Linear regression (LR)

In conclusion, the comparative results generally

demonstrate that the proposed GWO-FC method can out-

perform other methods because it is robust and can handle

a variety of situations that are different in complexity and

dimension.

4.7 Statistical test analysis

To investigate the significance and variations among the

outcomes of a proposed method and competitive methods,

statistical analysis is crucial. A theoretically and empiri-

cally based analysis of potential statistical tests was applied

to this research problem to compare two or more predic-

tors/classifiers across multiple datasets included non-para-

metric tests (Wilcoxon and Friedman tests), parametric

tests (paired ANOVA test). The non-parametric test

assumes no commensurability of the results (sign test). In

the theoretical part, we specifically addressed how a typical

ML dataset can deviate from the basic assumptions of the

Table 5 Comparison of computational time

Dataset FCNN GWO-FC

Albrecht 0.3663 80.2685

China 0.4157 80.8358

COCOMO81 0.3729 80.3617

COCOMONASA-I 0.4522 79.9746

COCOMONASA-II 0.3767 79.7782

Cosmic 0.3659 80.4361

Desharnais 0.3717 80.8466

Kemerer 0.3975 80.3391

Kitchenham 0.3666 80.4654

Maxwell 0.3621 80.2819

Miyazaki 94 0.3883 80.4830

USP05 0.3857 81.9378

* Measurements in seconds

Table 4 q-values of Wilcoxon Test for GWO-FC against FCNN

Dataset q-values

Albrecht 5.96E-13

China 8.44E-15

COCOMO81 6.06E-13

COCOMONASA-I 2.31E-13

COCOMONASA-II 8.44E-15

Cosmic 6.06E-13

Desharnais 6.06E-13

Kemerer 6.06E-13

Kitchenham 6.06E-13

Maxwell 5.66E-13

Miyazaki 94 8.44E-15

USP05 1.35E-14
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Table 6 Results obtained by

GWO-FC against state-of-the-

art methods [57]

Dataset SSA-BPNN GWO-FC SSA-BPNN GWO-FC

MSE MAE

Albrecht 1.61E-02 1.06E206 9.86E-02 6.00E204

China 3.00E-03 1.34E203 2.92E-02 2.18E202

Cosmic 1.34E207 1.02E-06 2.87E-02 1.00E204

COCOMO81 1.60E-02 1.03E203 1.01E-01 1.30E202

COCOMONASA-I 7.40E-03 4.54E203 7.02E-02 4.80E203

COCOMONASA-II 1.03E202 1.17E-02 6.59E-02 6.53E202

Desharnais 1.57E-02 3.36E203 9.78E-02 3.21E202

Kemerer 1.62E-04 1.85E206 1.17E-02 3.00E204

Kitchenham 2.29E-02 1.05E202 1.02E-01 6.15E202

Maxwell 6.80E-03 1.40E203 6.51E-02 3.70E203

Miyazaki 94 3.50E-03 3.47E203 4.23E202 5.09E-02

USP05 1.44E-02 4.73E203 6.05E-02 4.22E202

*Best results in bold

Table 7 Results obtained by GWO-FC against state-of-the-art methods [74]

Dataset Albrecht China Cosmic COCOMO81 Kemerer Kitchenham Maxwell

MAE

RF 0.1940703 0.03832486 0.11619460 0.06047924 0.20769360 0.104712400 0.23302240

DT 0.2299442 0.02229970 0.10672270 0.08838886 0.37092710 0.117400800 0.28969550

Ridge 0.2495593 0.01977087 0.08810373 0.07912894 0.19713350 0.043428920 0.21629830

LASSO 0.2672776 0.01344521 0.08731722 0.08097285 0.18396700 0.038768060 0.21066170

EN 0.2522743 0.01406866 0.08874032 0.07980254 0.18900740 0.039611220 0.21127400

DN 0.2702398 0.09730134 0.19138450 0.25489060 0.40118950 0.140050100 0.29017840

WAVG 0.1658832 0.05308728 0.13789110 0.06493144 0.18110160 0.027151460 0.12118710

BA 0.1784421 0.01207605 0.11952850 0.08604002 0.20429140 0.009002502 0.23560230

BS 0.1237017 0.01059957 0.10725950 0.08095949 0.23457430 0.009002502 0.08203951

SRF 0.0288617 0.00401619 0.07027704 0.02278088 0.07030604 0.005384577 0.03566583

GWO-FC 0.0006000 0.02180000 0.00010000 0.01300000 0.00030000 0.061500000 0.00370000

*Best results in bold

Table 8 Results obtained by GWO-FC against state-of-the-art meth-

ods [30]

Dataset Desharnais COCOMONASA-

I

COCOMONASA-

II

MAE

GA-HSBA 4.000008 2.198879 5.209081

BHO-

HSBA

4.001168 2.198906 5.200578

FFA-HSBA 4.000000 2.635393 5.256450

GWO-FC 0.032062 0.004800 0.065299

*Best results in bold

Table 9 Results obtained by GWO-FC against state-of-the-art meth-

ods [37]

Dataset COCOMO 81 Maxwell

Method MAE

ACO 5.6100 4.5400

COA 4.0700 2.8600

GA 4.7800 3.2200

PSO 5.0600 3.7200

BA 4.7100 3.6400

GWO-FC 0.0143 0.1083

*Best results in bold
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tests. We concluded that non-parametric tests should be

favored over parametric ones based on the well-known

statistical features of the tests and our understanding of the

ML data [76]. In addition, for statistical comparisons of

classifiers, we recommend a collection of straightforward

non-parametric tests that are secure and reliable [76], such

as the Friedman test with the appropriate post-hoc tests for

comparison of more classifiers across different datasets and

the Wilcoxon signed ranks test for comparison of two

classifiers [76].

To determine if there were statistically significant vari-

ations between the GWO-FC’s accuracy and that of the

cutting-edge methods listed in Table 7, Friedman and

Holm/Hochberg statistical tests [77, 78] were used in this

work. The efficiency and appropriateness of the proposed

strategy were also confirmed using statistical test methods.

4.7.1 Friedman’s tests of GWO-FC and state-of-the-art

methods in terms of MAE

A non-parametric statistical test called the Friedman’s test

was created by the economist, Milton Friedman. When

measuring an ordinal dependent variable, this test is used to

determine whether there are any variations between the sets

(treatments). When the identical parameter has been eval-

uated in multiple circumstances on the same participants,

Friedman’s test is utilized for a one-way repetitive mea-

surement analysis of variance by ranks. The following are

the hypotheses for the comparison of recurrent

assessments:

• H0: throughout repeated measures, the distributions are

the same (there is no substantial variation across the

tested sets);

• H1: throughout repeated measures, the distributions are

different (there is a substantial variation across the

tested sets).

In addition, this test looks at the values of rankings by

column after ranking each row (or block) jointly. The test

statistic that Friedman suggests [79] is as follows:

T ¼ 12

mkðk þ 1Þ
Xk

j¼1

R2
j � 3mðk þ 1Þ ð20Þ

where, sets number is donated by k, subjects number is

donated by m, sum of the ranks for the jth set is donated by

Rj.

Suppose significant differences are detected between

groups (treatments) by Friedman’s test (i.e., the null

hypothesis of Friedman’s test is rejected). In this case,

Holm’s procedure (Wright 1992) will be performed as a

post-hoc method for multiple comparison tests to deter-

mine which groups (treatments) differ from the others

(unplanned comparisons). Holm’s procedure is one of the

earliest usages of stepwise algorithms in simultaneous

inference. This method is an improvement of the Bonfer-

roni procedure [79] which applies a criterion’s unequal

allocation to each hypothesis being tested. A step-down

method of Holm’s tests the hypotheses in order of rele-

vance in a sequential manner, and adjusts the crucial value

in order to reject the null hypothesis. The more significant

of the surviving hypotheses are successively taken into

Table 10 Results obtained by

GWO-FC against state-of-the-

art methods [75]

Dataset Albrecht China COCOMO81 Desharnais Kemerer Miyazaki 94

Method SA

LR 0.5910 0.5480 0.4460 0.5040 0.1960 0.5040

MLP 0.2610 0.5860 0.7290 0.4080 0.4920 0.3710

CART 0.5040 0.7460 0.9570 0.4240 0.3820 0.5870

KNN 0.6550 0.5470 0.8910 0.4480 0.4630 0.4760

CFRT 0.7710 0.4620 0.8820 0.4370 0.4730 0.4350

GWO-FC 0.7897 0.7604 0.9679 0.5301 0.5217 0.6492

Method |D|

LR 2.9600 10.3880 4.4840 5.3710 0.7410 1.8300

MLP 1.2740 11.5890 7.6200 4.1490 1.9450 1.3900

CART 2.6370 14.1440 10.0610 4.4210 1.4520 2.1520

KNN 3.3270 10.6470 9.2910 4.8550 1.7420 1.6880

CFRT 4.0580 8.9300 9.0400 4.8500 1.8000 1.5530

GWO-FC 4.6520 15.0653 11.7360 6.0354 2.3965 2.5001

*Best results in bold
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consideration during the approach. Holm’s test rejects the

hypothesis linked to the most significant test statistic.

Friedman’s test was performed as a quantitative evalu-

ation of the statistical difference between the GWO-FC

method and the state-of-the-art methods in terms of MAE,

using a significance level of a = 0.05. By using the results

from Table 7 and Friedman’s test, the GWO-FC was

ranked against its rivals. Figure 8 provides an overview of

how all of the competing approaches ranked.

Figure 8 shows that the GWO-FC method ranked sec-

ond, with an average of 2.86, preceded by the SRF algo-

rithm (average ranking 1.71), and followed by, in

descending order, BS (4.78), WAVG (5.57), LASSO

(5.57), EN (6.00), Ridge (6.14), BA (6.36), RF (7.29), DT

(8.71), and DN (11.00). Also, the q-value calculated using

Friedman’s test for results listed in Table 7 was 1.1803E-5,

which is below the threshold for significance (a = 0.05).

These results illustrate the extent to which there was a

significant difference between the methods under

evaluation.

4.7.2 Holm’s/Hochberg statistical test analysis in terms

of MAE

A post-hoc statistical method for contrasting the control

method (i.e., the best performing method) with other

methods is the Holm’s/Hochberg test. This test was applied

to the proposed and compared methods because there were

significant statistical differences between the obtained

results. In addition, the null hypothesis of equivalent

accuracy was rejected by the Holm’s/Hochberg method,

with the aim of confirming the existence of significant

differences in the accuracy of the results produced by the

competing methods. The Holm’s/Hochberg results are

provided in Table 11. For all test instances, the confidence

threshold level was 0.05.

Table 11 shows that the control method (SRF) was

statistically better than the compared methods based on the

results of the Holm’s/Hochberg test. Additionally, the

difference between the performance of the SRF and the

GWO-FC was slight. The SRF and GWO-FC q-values

based on the Holm’s/Hochberg test were too close.

Accordingly, the average estimation findings of the GWO-

FC approach were statistically superior and significantly

more compelling than those of the compared state-of-the-

art approaches, except for the SRF method. Therefore, the

GWO-FC method can be considered a viable alternative for

estimating software effort and other engineering problems.

The superiority of the proposed method can be attributed

to the synergy of estimation and optimization achieved by

combining the GWO with an FCNN, enabling the GWO to

explore the FCNN parameter space and discover the opti-

mal subset of parameters values. This provides the best

estimation performance and a reasonable balance between

exploitation and exploration, as well as preventing the

FCNN from falling into local optima.

11
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Fig. 8 Friedman’s Test average rankings for comparative methods

results in Table 7

Table 11 GWO-FC and other

comparative methods Holm’s/

Hochberg results in Table 7

i Method q-value Holm’s/Hochberg a � i Null Hypotheses H0

10 DN 0.0000 5.2378 0.0050 Rejected

9 DT 0.0001 3.9485 0.0056 Rejected

8 RF 0.0017 3.1427 0.0063 Rejected

7 BA 0.0088 2.6189 0.0071 Rejected

6 Ridge 0.0125 2.4981 0.0083 Rejected

5 EN 0.0156 2.4175 0.0100 Rejected

4 LASSO 0.0296 2.1757 0.0125 Rejected

3 WAVG 0.0296 2.1757 0.0167 Rejected

2 BS 0.0832 1.7325 0.0250 Rejected

1 GWO-FC 0.5191 0.6447 0.0500 Rejected
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4.8 Discussion

This research demonstrates that combining a metaheuristic

optimizer with an ML estimator, in this case, the GWO and

the FCNN network, can improve the accuracy of the esti-

mation process and achieve high quality estimation per-

formance and results. Using the GWO to optimize the

FCNN network significantly helps in optimizing the solu-

tion in an iterative search process. As a result, the GWO-

FC method helped identify the optimal set of parameters

for estimation activities. The results of the experiments

demonstrated the value of parameter optimization, as a pre-

processing step in any estimation process. As a result, there

is a strong likelihood that including non-optimal parameter

values degrades estimation quality. This is supported by the

evaluation comparison results in Sect. 4.5 and the verifi-

cation comparison results in Sect. 4.6. Furthermore, all the

results show that the proposed integration approach was

successful in identifying the best parameter values for the

estimation process.

Another notable finding from this study is that the pro-

posed GWO-FC performed significantly better than the

traditional FCNN because the GWO maintains a balance

among exploitation and exploration. Essentially, the GWO

has significant exploration ability in the GWO-FC

approach due to the embedded adaptive parameters [38].

Simultaneously, the FCNN contributes to the enhancement

of local search capability, which improves exploitation.

These are the main explanations for the results shown in

Tables 2 and 3, which show that the GWO-FC outper-

formed the conventional FCNN not only in terms of MSE

but also in a variety of other performance metrics.

In summary, the empirical findings show that combining

GWO and FCNN is beneficial. In the GWO-FC, the GWO

receives multiple new solutions from the FCNN during the

training step, which maximizes the exploration capability.

The GWO then evaluates the most promising solutions and

selects the best one for use in the FCNN testing step (the

estimation process). Based on the experimental results, it

can be inferred that the FCNN’s performance improved

and became more stable, and that the optimal parameter

values guarantee more accurate estimation. Finally, the

proposed method can be said to be superior to comparable

methods in the literature based on the statistical analyses.

In the future, researchers may wish to combine the

GWO optimizer with another local-search algorithm, for

instance, simulated annealing (SA), to improve search

exploitation (local) capability, or to employ the GWO in

other estimation/classification fields, such as medical

diagnosis, intrusion detection, or image segmentation.

5 Threats to the study’s validity

In the following subsections, a number of threats to the

study’s validity are covered:

5.1 Construct validity

If dependent and independent variables are not measured

properly, a construct threat arises [80]. The datasets for the

current research were taken from a trustworthy software

engineering source and therefore this threat is not present

here.

5.2 Internal validity

When a study’s usage of software metrics is loosely con-

nected to the software efforts, threats to internal validity

become possible. Internal validity threats are possible in

this study as the programmer’s expertise capacity was not

considered.

5.3 External validity

The study’s conclusions may be generalized since several

project kinds were represented in the datasets and so there

is very little threat to the study’s external validity.

6 Conclusion

Parameter tuning is a difficult optimization challenge for

engineering problems involving estimation and classifica-

tion because the aim of such tuning is to maximize and

strengthen the performance of the estimator used. Previous

studies have shown that metaheuristic techniques are

appropriate for addressing this issue. Therefore, in this

study, a promising metaheuristic algorithm, the gray wolf

optimizer (GWO), was combined with the fully connected

neural network (FCNN) method, named (GWO-FC), for

software development effort estimation (SEE) problems. In

GWO-FC, the GWO is utilized to optimize the FCNN

parameters (weights and biases) to increase the accuracy of

FCNN estimation by defining the most suitable parameter

values to tackle the SEE problem. Hence, the GWO helps

to increase exploration ability in the parameter search field

as well as prevent the FCNN from falling into local optima.

The proposed GWO-FC method was evaluated against

the traditional FCNN. In addition, the proposed method

was validated against 24 state-of-the-art methods extracted

from the literature. The research findings demonstrate that,

for the majority of benchmark datasets and evaluation

criteria, the GWO-FC substantially improved on the FCNN
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and most recent approaches. The results indicate that the

traditional FCNN has limitations when trying to address

the estimation problem. On the other hand, the GWO-FC

has the potential to tackle the estimation task by increasing

exploration in the search space. Thus, the results demon-

strate that the GWO can be integrated with ML methods for

the purpose of maximizing the accuracy of the estimation

task.

Nevertheless, it should be stated that the proposed

method still lacks the ability to compete with other modi-

fied metaheuristic algorithms in the literature. In addition,

the proposed method suffers from a relatively high com-

putational time compared to the traditional FCNN. There-

fore, further studies may wish to consider developing new

approaches to address the estimation problem. The authors

intend to develop new and more efficient methods of

tackling the SEE problem in the future. Also, a more

efficient method for computational time can be developed

by which the proposed method is improved.

Since the GWO algorithm’s limitations, in some cir-

cumstances, may prolong convergence time, plans have

been made to develop novel techniques to improve the

search behavior of the algorithm so that it maintains an

appropriate balance between exploitation and exploration,

while relatively increasing the exploration capacity.

Metaheuristic techniques have been effectively used in

several fields of study to enhance the training of ANNs but

there are still few pertinent papers in this field. Future

research should focus on investigating the use of meta-

heuristic algorithms in ANN architectures for SEE.
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20. López-Martı́n, C.: Predictive accuracy comparison between

neural networks and statistical regression for development effort

of software projects. Appl. Soft Comput. 27, 434–449 (2015)

21. Nassif, A. B., Capretz, L. F., Ho, D.: Software effort estimation

in the early stages of the software life cycle using a cascade

correlation neural network model. In: 2012 13th ACIS Interna-

tional Conference on Software Engineering, Artificial Intelli-

gence, Networking and Parallel/Distributed Computing,

pp. 589–594. IEEE (2012)

22. Shukla, S., Kumar, S.: Applicability of neural network based

models for software effort estimation. In: IEEE World Congress

on Services (SERVICES), Vol. 2642, pp. 339–342. IEEE (2019)

23. Mahmood, Y., Kama, N., Azmi, A., Ali, M.: Improving estima-

tion accuracy prediction of software development effort: a pro-

posed ensemble model. In: 2020 International Conference on

Electrical, Communication, and Computer Engineering

(ICECCE), pp. 1–6. IEEE (2020)

24. Hammouri, A.I., Braik, M.S., Al-Betar, M.A., Awadallah, M.A.:

Isa: a hybridization between iterated local search and simulated

annealing for multiple-runway aircraft landing problem. Neural

Comput. Appl. 32(15), 11745–11765 (2020)

25. Al-Betar, M.A., Alyasseri, Z.A.A., Awadallah, M.A., Doush,

I.A.: Coronavirus herd immunity optimizer (chio). Neural Com-

put. Appl. 33(10), 5011–5042 (2021)

26. Wang, L., Wu, B., Zhu, Q., Zeng, Y.-R.: Forecasting monthly

tourism demand using enhanced backpropagation neural network.

Neural Processing Letters 52(3), 2607–2636 (2020)

27. Sun, W., Huang, C.: A carbon price prediction model based on

secondary decomposition algorithm and optimized back propa-

gation neural network. J. Clean. Prod. 243, 118671 (2020)

28. Jiang, J., Chen, Z., Wang, Y., Peng, T., Zhu, S., Shi, L.:

Parameter estimation for pmsm based on a back propagation

neural network optimized by chaotic artificial fish swarm algo-

rithm. Int. J. Comput. Commun. Control 14(6), 615–632 (2020)

29. Shen, X., Zheng, Y., Zhang, R.: A hybrid forecasting model for

the velocity of hybrid robotic fish based on back-propagation

neural network with genetic algorithm optimization. IEEE Access

8, 111731–111741 (2020)

30. Rhmann, W., Pandey, B., Ansari, G.A.: Software effort estima-

tion using ensemble of hybrid search-based algorithms based on

metaheuristic algorithms. Innov. Syst. Softw. Eng. 18(2),

309–319 (2022)

31. Ardiansyah, A., Ferdiana, R., Permanasari, A.E.: Mucpso: a

modified chaotic particle swarm optimization with uniform ini-

tialization for optimizing software effort estimation. Appl. Sci.

12(3), 1081 (2022)

32. Khuat, T.T., Le, M.H.: A novel hybrid abc-pso algorithm for

effort estimation of software projects using agile methodologies.

J. Intell. Syst. 27(3), 489–506 (2018)

33. Parizi, M.K., Keynia, F., Bardsiri, A.K.: Hscwma: a new hybrid

sca-wma algorithm for solving optimization problems. Int. J. Inf.

Technol. Decis. Making 20(02), 775–808 (2021)

34. Ullah, A., Wang, B., Sheng, J., Long, J., Asim, M., Sun, Z.:

Optimization of software cost estimation model based on bio-

geography-based optimization algorithm. Intell. Decis. Technol.

14(4), 441–448 (2020)

35. Resmi, V., Vijayalakshmi, S., Chandrabose, R.S.: An effective

software project effort estimation system using optimal firefly

algorithm. Clust. Comput. 22(5), 11329–11338 (2019)

36. Arora, M., Verma, S., Wozniak, M., Shafi, J., Ijaz, M.F., et al.:

An efficient anfis-eebat approach to estimate effort of scrum

projects. Sci. Rep. 12(1), 1–14 (2022)

37. Khan, M.S., Jabeen, F., Ghouzali, S., Rehman, Z., Naz, S., Abdul,

W.: Metaheuristic algorithms in optimizing deep neural network

model for software effort estimation. IEEE Access 9,

60309–60327 (2021)

38. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer.

Adv. Eng. Softw. 69, 46–61 (2014)

39. Al-Betar, M.A., Awadallah, M.A., Krishan, M.M.: A non-convex

economic load dispatch problem with valve loading effect using a

hybrid grey wolf optimizer. Neural Comput. Appl. 32(16),

12127–12154 (2020)

40. Chen, X., Yi, Z., Zhou, Y., Guo, P., Farkoush, S.G., Niroumandi,

H.: Artificial neural network modeling and optimization of the

solid oxide fuel cell parameters using grey wolf optimizer.

Energy Rep. 7, 3449–3459 (2021)

41. ul Hassan, C. A., Khan, M. S.: An effective nature inspired

approach for the estimation of software development cost. In:

2021 16th International Conference on Emerging Technologies

(ICET), pp. 1–6. IEEE (2021)

42. Emary, E., Zawbaa, H.M., Grosan, C.: Experienced gray wolf

optimization through reinforcement learning and neural net-

works. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 681–694

(2017)

43. Sheta, A.F., Rine, D., Kassaymeh, S.: Software effort and func-

tion points estimation models based radial basis function and

feedforward artificial neural networks. Int. J. Next-Generation

Comput. 6(3), 192–205 (2015)

44. Sheta, A.F., Kassaymeh, S., Rine, D.: Estimating the number of

test workers necessary for a software testing process using arti-

ficial neural networks. IJACSA 5(7), 186–192 (2014)

45. Agahian, S., Akan, T., Battle royale optimizer for training multi-

layer perceptron. Evol. Syst. 2021, 1–13 (2021)

46. Kumar, P. S., Behera, H.: Role of soft computing techniques in

software effort estimation: an analytical study. In: Computational

Intelligence in Pattern Recognition, pp. 807–831. Springer (2020)

47. Jorgensen, M., Shepperd, M.: A systematic review of software

development cost estimation studies. IEEE Trans. Soft. Eng.

33(1), 33–53 (2006)

48. Heemstra, F.J.: Software cost estimation. Info. Softw. Technol.

34(10), 627–639 (1992)

49. Azzeh, M., Nassif, A.B., Banitaan, S.: Comparative analysis of

soft computing techniques for predicting software effort based

use case points. IET Softw. 12(1), 19–29 (2017)

50. Charette, R.N.: Why software fails [software failure]. IEEE

Spectrum 42(9), 42–49 (2005)

51. Gharehchopogh, F.S., Maleki, I., Khaze, S.R.: A novel particle

swarm optimization approach for software effort estimation. Int.

J. Acad. Res. 6(2), 69–76 (2014)

52. Wang, Y., Wang, L., Chang, Q., Yang, C.: Effects of direct input-

output connections on multilayer perceptron neural networks for

time series prediction. Soft Comput. 24(7), 4729–4738 (2020)

53. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward

networks are universal approximators. Neural Netw. 2(5),

359–366 (1989)

758 Cluster Computing (2024) 27:737–760

123



54. Ding, S., Su, C., Yu, J.: An optimizing bp neural network algo-

rithm based on genetic algorithm. Artif. Intell. Rev. 36(2),

153–162 (2011)

55. Han J., Pei, J., Kamber, M.: Data mining: concepts and tech-

niques. Elsevier (2011)

56. Kassaymeh, S., Abdullah, S., Al-Betar, M. A., Alweshah, M.:

Salp swarm optimizer for modeling the software fault prediction

problem. J. King Saud Univ. Comput. Info. Sci. 34, 3365 (2022)

57. Kassaymeh, S., Abdullah, S., Al-Laham, M., Alah, M., Al-Betar,

M. A., Othman, Z.: Salp swarm optimizer for modeling software

reliability prediction problems. Neural Process. Lett. 2021, 1–37

(2021)

58. Heryanto, A., Gunanta, A.: High availability in server clusters by

using backpropagation neural network method. J. Teknol. Open

Sour. 4(1), 08–18 (2021)

59. Luo, X., Shang, M., Li, S.: Efficient extraction of non-negative

latent factors from high-dimensional and sparse matrices in

industrial applications. In: 2016 IEEE 16th International Con-

ference on Data Mining (ICDM), pp. 311–319. IEEE (2016)

60. Montana, D. J., Davis, L., et al.: Training feedforward neural

networks using genetic algorithms. In: IJCAI, Vol. 89,

pp. 762–767. (1989)

61. Fong S., Deb, S., Yang X. S.: How meta-heuristic algorithms

contribute to deep learning in the hype of big data analytics. In:

Progress in intelligent computing techniques: theory, practice,

and applications, pp. 3–25. Springer (2018)

62. Talbi, E. G.: Metaheuristics: from design to implementation.

Wiley (2009)

63. Muthukumar, V., Narang, A., Subramanian, V., Belkin, M., Hsu,

D., Sahai, A.: Classification vs regression in overparameterized

regimes: does the loss function matter? J. Machine Learn. Res.

22(222), 1–69 (2021)

64. Dornaika, F., Bekhouche, S.E., Arganda-Carreras, I.: Robust

regression with deep cnns for facial age estimation: an empirical

study. Exp. Syst. Appl. 141, 112942 (2020)

65. Chen, X., Yu, R., Ullah, S., Wu, D., Li, Z., Li, Q., Qi, H., Liu, J.,

Liu, M., Zhang, Y.: A novel loss function of deep learning in

wind speed forecasting. Energy 238, 121808 (2022)

66. Keung, J., Kocaguneli, E., Menzies, T.: Finding conclusion sta-

bility for selecting the best effort predictor in software effort

estimation. Autom. Softw. Eng. 20(4), 543–567 (2013)

67. Albrecht, A. J., Gaffney, J. E.: Software function, source lines of

code, and development effort prediction: a software science

validation. IEEE Trans. Softw. Eng. 6, 639–648 (1983)

68. Qi, F., Jing, X.-Y., Zhu, X., Xie, X., Xu, B., Ying, S.: Software

effort estimation based on open source projects: case study of

github. Info. Softw. Technol. 92, 145–157 (2017)

69. Desharnais J.: Analyse statistique de la productivitie des projects

informatique a partie de la technique des point des function.

Masters Thesis University of Montreal (1989)

70. Kitchenham, B., Pfleeger, S.L., McColl, B., Eagan, S.: An

empirical study of maintenance and development estimation

accuracy. J. Syst. Softw. 64(1), 57–77 (2002)

71. Tawosi, V., Sarro, F., Petrozziello, A., Harman, M.: Multi-ob-

jective software effort estimation: a replication study. IEEE

Trans. on Softw. Eng. 48,1–3 (2021)

72. Ali, A., Gravino, C.: Improving software effort estimation using

bio-inspired algorithms to select relevant features: an empirical

study. Sci. Comput. Program. 205, 102621 (2021)

73. Bland, M.: An introduction to medical statistics. Oxford

University Press, UK (2015)

74. Ag, P.V., Varadarajan, V., et al.: Estimating software develop-

ment efforts using a random forest-based stacked ensemble

approach. Electronics 10(10), 1195 (2021)

75. Assia Najm A. M., Abdelali Z.: Cluster-based fuzzy regression

trees for software cost prediction. Indonesian J. Electr. Eng.

Comput. Sci. 27(2), 1138–1150 (2022)
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