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Abstract
With the rapid development of cloud computing technology and the broad application of the Internet, more and more user

data are stored in the cloud storage system online. Data copy technology is an effective technical means to manage various

data in cloud storage systems, which has the advantages of improving data access speed and enhancing data availability in

cloud storage systems. Since a data copy management strategy has an important impact on the performance of cloud

storage systems, how to design a data copy management strategy is of great significance to achieving high-quality cloud

storage management. Firstly, this paper analyzes the HDFS random copy placement strategy and its shortcomings. Sec-

ondly, proposes a copy placement strategy based on evaluation value and load balancing. Thirdly, gives the evaluation

function of rack and node by considering multiple evaluation indicators such as node disk space load capacity, node

memory utilization, node CPU utilization, rack load rate and network distance between racks. Fourthly, finds suit-

able nodes through computer shelf evaluation values and node evaluation values when placing replicas. Finally, through

simulation experiments, the experimental results of the HDFS random replica placement strategy and the evaluation results

and load balancing-based replica placement strategy are compared and analyzed.
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1 Introduction

In recent years, the rapid rise of cloud computing tech-

nology has changed the traditional data storage mode and is

favored by more and more enterprises and individuals.

Cloud computing is distributed computing, which connects

and integrates storage and computing resources across

regions through the Internet to provide users with various

required services. Cloud computing includes four essential

parts: cloud platform, cloud storage, cloud terminal, and

cloud security [1].

Cloud storage has many advantages over traditional

storage systems, but it still faces considerable challenges

[2–6]. Bata copy management technology is proposed to

improve the performance of cloud storage systems. Data

copy management technology replicates multiple copies of

data blocks and places them on different nodes. When the

node to be accessed fails, users can access other copies of

the data block to obtain data, thereby improving system

availability. The emergence of data copy management

technology, a way to effectively manage the data lifecycle

and conserve storage resources, has brought new opportu-

nities to cloud storage systems [7–14].

Data copy technology is a data management strategy

that improves system performance through data redun-

dancy policies. Because data copy technology has excellent

performance, such as reducing data response time and

increasing system reliability, it has been widely used in

cloud storage systems to solve the problems and opti-

mizations they face. To implement data copy technology in

cloud storage systems, solve two key issues: the determi-

nation and adjustment of the number of copies and the

determination and optimization of the location of the

replicas. Because the cost of maintaining a system
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increases as the number of replicas increases, it is essential

to minimize operational costs while ensuring that system

availability requirements are met. In addition, how to make

the location layout of replicas can quickly respond to user

access needs, and balance the load balancing requirements

and other performance indicators of the system, is a critical

problem that data replica technology needs to solve. In the

existing data copy management solution, a typical system

adopts the default number of data copies, such as Google

File System, Hadoop Distributed File System, etc. This

method of defaulting to the number of data copies is con-

venient to operate, but it will cause a particular waste of

resources. Moreover, most of the existing copy placement

strategies are designed according to the needs of data node

performance or file corresponding rate. There few data

copy layout strategies consider multiple performance

metrics as a total optimization function and solve them

using heuristics. A heuristic algorithm is obtained by

simulating the activities of swarm intelligence in nature,

and the obtain optimal solution in a limited time by using it

to solve optimization problems [15–18]. Therefore, it is of

great practical significance to study suitable data copy

technology to solve the issues in data copy technology.

In addition, with the large-scale construction of data

centers around the world to meet the demand for storage

systems, the energy consumption problem has become

increasingly prominent and has received much attention

from industry and academia. As early as 2013, the power

consumption of data centers in the United States reached

9.1 9 1010KWh. Annual energy consumption is expected

to reach 1.4 9 1011KWh by 2025 [19]. In other words, the

cost of electricity in the data center has far exceeded the

price of hardware configuration. According to ENP’s

analysis of data center energy consumption, server energy

consumption accounts for more than half of the total

energy consumption.

In addition, when some servers are overloaded for a long

time, it is easy to cause rapid equipment aging and increase

hardware purchase expenses, while some servers are not

overloaded for a long time, which will lead to the reduction

of effective energy utilization and increase power expen-

diture. The overload and no-load of data nodes are partly

caused by the unreasonable placement of data copies.

Therefore, optimizing the layout of the data copy stored in

the data center is essential.

In summary, the data copy management strategy has an

important impact on the performance of the cloud storage

system, and the design of a suitable data copy management

strategy is of great significance to achieve high-quality

cloud storage management, and optimizing the layout of

data copy to integrate the cloud storage resources of the

system and improve the effective utilization of energy in

the cloud storage system is also of great practical

significance to solve the energy efficiency problem in the

cloud storage system.

In this paper, we will focus on data copy placement

strategies. This paper first introduces the HDFS distributed

file system, then introduces and analyzes the HDFS random

replica placement strategy and points out its shortcomings,

then studies the way of file partitioning, and then proposes

a replica based on evaluation value and load balancing

placement strategy.

By considering five evaluation indicators, including

node disk space load capacity, node memory utilization,

node CPU utilization, rack load rate, and network distance

between racks, the appropriate node is selected for place-

ment through the computer shelf evaluation value and node

evaluation value when placing replicas. Finally, through

the simulation experiment, the experimental results of the

evaluation factors, such as rack load balancing, node load

balancing time overhead under the HDFS random replica

placement strategy, and the replica placement strategy

based on evaluation value and load balancing, are com-

pared and analyzed. Experimental results show that com-

pared with the HDFS random copy placement strategy, the

copy placement strategy based on the evaluation value and

load balancing can better achieve inter-rack load balancing

and inter-node load balancing and improve data security,

but its time cost is large.

This paper makes the following contributions:

(1) Analyzes the shortcomings of existing HDFS random

replica placement strategies.

(2) A replica placement strategy based on evaluation

value and load balancing is proposed. When select-

ing the replica placement location, it is analyzed and

evaluated from both the rack and the node.

(3) Through implementation analysis, the replica place-

ment strategy based on evaluation value and load

balancing proposed in this paper has more significant

advantages in rack load balancing, node load

balancing, and data security.

2 Related work

Regarding data replica placement, Armani et al. [20] have

studied the problems of increased bandwidth consumption

and transmission delay and reduced quality of service and

reliability by the consistency overhead between replicas. In

the paper, by analyzing the latency and reliability of dif-

ferent data consistency operations to study the copy

placement problem with consistency overhead, propose a

replication algorithm, namely write-aware copy placement

(WARP). WARP consists of two algorithms: leader

selection and copy placement. Both algorithms are
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executed based on the latency of the operation in question.

The leader selection algorithm produces a data center with

the minimum average latency with which the leader allo-

cates all operations. The replica placement algorithm

allocates master and slave replicas based on average

latency and the number of requests to improve the per-

formance of different operations. Experimental results

show that WARP can shorten the response time, improve

the quality of service, and provide reliability comparable to

the previous algorithm. Li Pengden et al. [21] proposed a

load-balanced replica placement method to solve the

problem of selecting a suitable data center for data repli-

cation to improve the access performance of cloud storage

systems effectively. The strategy determines the new data

center node based on all data center loads for the entire

system, based on the distance the service request infor-

mation is forwarded between the two nodes. The parame-

ters for the standby data center are then sent to the data

center. The central node calculates the capital value for

each data center, selecting the data center with the highest

capital value as the new replica placement node. This

strategy can adapt to the changes in the system and rea-

sonably select the data center to place the replica, which

can not only meet the availability and reliability of the data

but also improve the overall stability of the system and

ensure the load balance between the data centers. However,

this strategy has some drawbacks, as the number of new

replica nodes increases, management costs will increase

rapidly, and energy consumption issues will become a new

challenge [22, 23]. Mansouri et al. [24] have studied the

waste of time and resources caused by the current HDFS

relying on load-balancing utilities to balance replica dis-

tribution. To solve this problem, the authors propose an

innovative HDFS replica placement strategy for data-in-

tensive computation on massive data sets of cloud systems.

This strategy not only meets all the requirements of the

original HDFS copy placement policy but also distributes

the replicas evenly to the cluster nodes without allowing

balancing utilities. In addition, use this strategy in both

homogeneous and heterogeneous environments. It can

achieve perfect load balancing based on the difference in

processing power of the cluster nodes. Experimental results

show that the proposed strategy has better data node uti-

lization than the default replica placement strategy of

HDFS. Wang Yan et al. [25] proposed a decentralized copy

placement (D-ReP) algorithm that is based on the facility

location problem (FLP) and requires only local topology

information. The two versions of the algorithm (source and

edge) are triggered at equal intervals and iteratively push

the replica from the source node (central storage) to the

request edge node. Duplicate a set of closely adjacent

nodes that require the same data object causes replicas to

be created and migrated to those nodes. When demand

drops, replicas are discarded or migrated to a different

location. The main goal of the D-ReP algorithm is to place

replicas between storage nodes (based on cloud storage

providers and edge entities) in a way that minimizes the

cost function. Experimental results show that D-ReP has

significant advantages in terms of latency and cost for non-

replicated data sources and client-side caching. Park et al.

[26] constructed a model based on a cryptogram to express

the data copy placement problem and proposed a data copy

placement strategy based on genetic algorithms. In the

three-point graph model, three vertices represent copies of

data and data nodes. The edge between a task vertex and a

data replica vertex is a mapping from task to data replica

representing a scheduling scheme. The edge between the

vertex of a data copy and the vertex of a data node is a

mapping from a copy of the data to a data node repre-

senting the location of the copy. The authors use a strategy

based on genetic algorithms to search for mappings from

tasks to data replicas and data replicas to data nodes. Using

genetic algorithms, the best-performing mapping is

obtained as the best solution to the problem of data copy

placement. This strategy reduces the size, data movement

time, and several moves. The copy placement strategy

based on genetic algorithms performs better in cloud sci-

ence applications than the random placement strategy used

by HDFS. Huang et al. [19] proposed an approach focused

on virtualizing Hadoop to coordinate the management of

virtual machines and file copies simultaneously. This

method minimizes power consumption, waste of physical

resources, and file unavailability by determining virtual

machine allocation, template selection, and file copy

placement. The non-dominant sorting genetic algorithm-II

(NSGA-II) is used to implement this solution, using dual

chromosomes and cross-operators to solve multi-objective

optimization problems. Experimental results show that the

proposed method has a significant effect on file unavail-

ability and resource waste and has little improvement in

power consumption. Huang et al. [27] devised a novel data

placement strategy based on genetic algorithms to manage

data on large social networks and reduce storage costs

while meeting access latency requirements. This method

can find the best data placement location and minimize

inter-server traffic based on each user’s location and social

graph. Experiments using a real Facebook dataset show

that the strategy can significantly reduce data storage costs

and inter-server traffic. Unlike other heuristics that require

the addition of replicas to reduce inter-server traffic, the

proposed algorithm does not need to increase the number

of replicas when optimizing inter-server traffic, ensuring

optimal storage costs.

In terms of replica placement strategy, by learning the

default replica placement strategy and drawing on previous

experience, it is concluded that the replica dynamic
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management strategy needs to consider the practical

compromise between load balancing and computing effi-

ciency, so this paper uses multi-factor evaluation of node

performance to optimize the replica placement strategy

with computing efficiency as the primary and inter-node

load as the supplement. The relative importance of node

evaluation factors is described by the weight of each factor,

the weight of the node determinant is determined by ana-

lytic hierarchy, and the sum of the importance of each

determinant is 1. By setting the primary and secondary

relationship between each factor and calculating the

impotrance of each element according to probability the-

ory, this method can avoid the influence of subjective

human factors and objectively assign the important of each

judgment factor at the node. In this paper, we select five

factors to evaluate node performance and calculate the

node evaluation value by linearly weighting the three load

factors under the condition of ensuring node availability to

represent node performance and select nodes with high

performance for replica placement.

3 Replica placement strategy based
on evaluation values and load balancing

The default copy placement strategy of HDFS meets the

reliability and fish-load balance of the system to a certain

extent. Still, it cannot solve the read-and-write efficiency

and storage space utilization after the change of file access

heat. The longer the file system runs, the heat of system

Chinese shows different levels, and the high-popularity

files cannot meet the sudden increase in user access due to

the limitation of the number of copies, resulting in a

decrease in system processing efficiency and affecting the

user experience. Low-heat files are accessed by users

below average, and the default 3-copy policy will

undoubtedly cause a waste of system storage space.

To solve the above problems existing in the default copy

placement strategy, this paper designs a dynamic copy

placement strategy that increases the copy factor of hot

files and selects nodes with high node evaluation coeffi-

cients as target nodes when reducing the copy factor of

low-heat files, comprehensive file heat decision and

availability decision two methods determine the number of

reductions. They should also follow the system reliability,

ensure that each data block minimum two copies, and

distributed in different racks, under the above rules to

evaluate the node where the replica is located. Select a

node with a low rating to delete the representation. This

part uses a multi-objective optimization algorithm to esti-

mate the node where the model is situated, comprehen-

sively assesses the node performance in three aspects: CPU

load capacity, memory load capacity, and disk space load

capacity, and uses the node performance evaluation level to

select.

4 Evaluation indicators

This paper proposes the following five evaluation

indicators:

(1) Node disk space load capacity The lower the disk

space occupancy, the greater the disk space remain-

ing, and the stronger the load capacity of the disk,

and the node with low disk occupancy should be

preferred when placing the secondary. The node disk

occupancy Pdisk in this paper is expressed as the ratio

of the amount of disk used to the total disk space.

(2) Node memory utilization The lower the node mem-

ory share, the stronger the memory load capacity,

and the node with a standard memory share should

be preferred when placing the copy. The node

memory utilization PRAM in this paper is expressed

as the ratio of the memory used by the node running

process to the total memory of the node.

(3) Node CPU usage The lower the node CPU usage, the

stronger the CPU load capacity, and the node with

common node CPU utilization is preferred when

placing the replica. In this paper, the node CPU

utilization of the PCPU is expressed as the ratio of the

CPU execution time of non-idle processes to the total

execution time of the CPU.

(4) Rack load rate Rack load rate is an important

indicator to measure the load balance between racks

in the cluster, and racks with a low rack load rate

should be preferred when selecting racks. In this

paper, the rack load rate Prack is expressed by the

ratio of the total used space of all host nodes in the

rack to the entire disk space of all host nodes in the

rack.

(5) Network distance between racks The size of the

network distance has a direct impact on the data

transmission bandwidth. The smaller the network

distance means that the bandwidth of data transmis-

sion is more significant, which will make the data

transmission rate higher and speed up the read and

write speed of data.

We use a simple method to define network distance:

think of the network as a tree, the distance between two

nodes is the sum of their lengths to the nearest common

ancestor, and the hierarchy in the tree is not predetermined

but relative to the data center, racks, and nodes, it is usually

possible to set the level [28]. Generally, there are the fol-

lowing common situations, and the network distance

gradually increases:
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(1) process located on the same node;

(2) different nodes situated in the same rack;

(3) Nodes situated in different racks in the same data

center;

(4) nodes located in other data centers.

For example, as shown in Fig. 1, there are data centers

D1 and D2, racks R1, R2, R3, and R4, nodes N1, N2, N3,

N4, N5, N6, N7, N8, N9, N10, N11, N12. As follows, we

give descriptions of distances in four different situations,

where dis represents distance:

The distance between the same nodes is: dis(N1,

N1) = 2.

The distance between the other nodes located on the

same rack is: dis(N1, N3) = 2.

The distance between the other nodes located in the

same data center is: dis (N1, N5) = 4.

The distance between nodes located in other data centers

is: dis (N1, N8) = 6.

Assuming that the network distance between node i and

the client where the data copy is located is di, and the

network distance from the node furthest to the client is

dmax, we can use the formula (1) to describe the network

distance.

Di ¼
di

dmax

ð1Þ

Among the above five evaluation indicators, node disk

occupancy, node memory utilization, and node CPU uti-

lization are the evaluation indicators of the node, and the

rack load rate and inter-rack network distance are the

evaluation indicators for the rack. Since these five indica-

tors contribute to the evaluation values to different degrees,

they need to be normalized separately. Section Review

Value Vnode Calculation Formula is shown in formula (2),

rack evaluation value Vrack Calculation Formula is shown

in formula (4).

Vnode ¼ a � Pdisk þ b � PRAM þ c � PCPU ð2Þ
aþ bþ c ¼ 1 ð3Þ
Vrack ¼ u � Prack þ ð1� uÞ � Di ð4Þ

This paper transforms the replica management problem

to be solved into a multi-objective optimization problem. It

looks for the relationship between multiple performance

indicators and the number and location of replicas based on

the plant root algorithm. Use the full objective function to

represent the replica management problem to be solved by

target(p), and consider five indicators comprehensively, as

expressed by the formula.

Among them, 5 indicators correspond to the scale factor.

Adjust different scale factors to increase the adaptability of

the strategy. In the data copy management strategy based

on the cuckoo algorithm, the total objective function value

obtained by the individual is called the fitness value of the

individual. In this section, a smaller fitness value indicates

better individual fitness, which is the better the replica

management solution sought.

The algorithm steps of strategy optimization in this

paper are as follows:

1 Time interval T, through the CFRS algorithm [29] to

calculate the number of copies that need to be added or

deleted by the file;

2 Based on the current copy layout in the system,

generate Q points, that is, Q feasible layout schemes

Q{q1, q2,… qn}, and calculate the fitness for each

feasible layout and record the most suitable fitness;

3 The current iteration is less than or equal to GC,

execute (4)–(5), otherwise transfer (6);

4 Levy flight: randomly select a solution qa from Q for

Levy flight, obtain a new feasible solution q’a,

calculate its fitness’, and then randomly select a

solution qb from Q, if fitness’[ fitnessb, replace qb
with solution q’a, otherwise discard q’a;

5 Discard other solutions that are not optimal according

to probability, and randomly generate feasible solu-

tions, turn (3).

6 Select the most suitable layout scheme from the Q set,

and the system will layout according to this scheme.

The pseudocode that produces the new solution in the

cuckoo algorithm is shown in Algorithm 1.

The implementation pseudocode for Levy’s flight in the

cuckoo algorithm is shown in Algorithm 2:

The pseudocode for the cuckoo algorithm used in this

paper is shown in Algorithm 3 [34]:

L

D1 D2

R4R3R2R1

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

D: Datacenter

R: Rack

N: Node

Fig. 1 Network topology diagram
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Algorithm 1: New layout generation method
Input: n Number of copies added or deleted

Current layout qnow

Output: Lower cycle layout qnext

For  i=0 to n do

While numchange(i)>0  do
// Randomly select one of the nodes that does not contain the file fi and meets the constraints, and 

stores a copy of fi
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Formula (2) in the equilibrium factors a, b, and c can be

adjusted by the administrator according to actual needs.

In this article, we set the value of a to 0.55, the value of

bto 0.18, and the value of c to 0.27 according to the degree

of influence of the three indicators on node selection.

Therefore, the calculation formula of the node evaluation

value is:

Vnode ¼ 0:55 � Pdisk þ 0:18 � PRAM þ 0:27 � PCPU ð5Þ

The balance factor u in formula (5) can be adjusted by

the administrator according to the actual needs.

In this paper, we set the value of u to 0.7 based on the

degree of influence of two indicators on rack selection.

According to the replica placement strategy proposed in

this paper, the rack evaluation value calculation formula is

divided into two formulas: formula (6) and formula (7).

Vrack ¼ 0:7 � Prack þ 0:3 � Di ð6Þ

Vrack ¼ 0:7 � Prack þ 0:3 � 1

Di
ð7Þ

The critical point of the multi-factor comprehensive

evaluation method is determining the appropriate weight of

each factor. The literature [28] is used to read the relevant

literature and define the weight of each factor according to

the different importance of different factors. The methods

in this literature rely on expert experience and can only

roughly reflect the relative importance of factors, and this

paper needs to optimize the weight allocation further.

Multivariate evaluation methods are divided into two

categories: objective empowerment evaluation method and

subjective empowerment evaluation method [30]. The

subjective empowerment evaluation method is based on the

relevant experience of the expert’s subjective judgment,
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artificially defined the importance of factors to determine

the weight coefficient, and then on the node performance

comprehensive evaluation. Common subjective empower-

ment evaluation methods have analytic hierarchy method,

fuzzy evaluation method, index weighting method, etc.,

although this kind of method will be affected by human

factors, according to the relevant expert experience to

determine the importance between the factors, through the

above methods for weight distribution can still achieve

good results. The objective weighting evaluation method is

to determine the weight coefficient according to the coef-

ficient of variation of each factor or the correlation rela-

tionship between factors and then comprehensively

evaluate the node’s performance. Standard objective

weighting evaluation methods are the coefficient of varia-

tion method, entropy value method, neural network anal-

ysis method, etc., this kind of method needs to consider the

interrelationship between the factors, and the weight is

determined according to the amount of initialization

information provided by each factor. The comprehensive

evaluation can be carried out more accurately.

According to the above methods, we use the analytic

hierarchy method in the subjective weighting evaluation

method to determine the influence of each evaluation factor

on the performance of data nodes [31]. The method belongs

to the theory of operations research, which was first

developed by Thomas in the United States. Set i proposed

that the technique is mainly applied to complex decision-

making problems. The difficult issue of this method is

decomposed into several influencing factors, and the

selection and judgment are made through quantitative

calculation by comparing the importance of each evalua-

tion factor.

5 Replica placement policy based
on evaluation values and load balancing

The default number of data replicas proposed in this paper

is 3 for the replica placement strategy based on evaluation

values and load balancing, and the replica placement is as

follows:

5.1 First copy

If the client is in the cluster, place the first copy on different

nodes in the rack where the client node is located; If the

client is not in the cluster, place the first copy on the node

in the closest rack to the client. The selection of nodes on

the rack is determined by calculating the section review

start

Whether the client is in 

the cluster

Select the rack where the 

client is located

Select the rack closest to the client

Select a rack that is close to the client 

and has a lighter load than the rack 

where the client is located.

Calculate the node evaluation value in 

the rack, and select the node with the 

lowest value to place the first replica

Calculate the node evaluation value in 

the rack, and select the node with the 

lowest value to place the second replica

Calculate the node evaluation value in 

the rack, and select the node with the 

lowest value to place the third replica

Select a rack that is far from the client 

and has a lighter load except the rack 

where the first and second replicas are 

located

Finish

No

Yes

Fig. 2 Flowchart of replica

placement strategy based on

evaluation values and load

balancing
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value Vnode. The node with the lowest evaluation value is

selected to place the first copy. Placing replicas on different

nodes in the same rack can ensure that when the node

where the client is located fails, data can be quickly

retrieved from other nodes in the same rack for recovery.

5.2 Second copy

The second copy should be placed in a different rack than

the first copy. First, according to formula (6), calculate the

evaluation value of the racks except for the rack where the

first replica is located, select the rack with the smallest rack

evaluation value, and select the nodes on the rack by cal-

culating the node evaluation value Vnode. It is decided that

the node with the smallest evaluation value is determined

according to formula (5) to place the second replica. The

second replica is placed on a rack with a low rack load rate

and a close network distance. The second replica is placed

on a rack with a low rack load rate and a tight network

distance, and if the client’s rack fails, data can be quickly

retrieved from the rack closer to the client’s rack for

recovery. In addition, the rack load ratio can balance the

load conditions between racks.

5.3 Third copy

The third copy is placed in a different rack than the first

and second replicas. First of all, according to the formula

User or Datacenter Broker

Cloud  Scenario
User

Requirements

Application

Configuration

User Code
Simulation 

Specifcation

Scheduling

Plocy

VM  Gridlet Virtual Machine

VM  Gridlet Execution VM  management

VM

Provision

CPU

Allocation

Memory

Allocation

BandWidth

Allocation

Storage

Allocation

Host Datacenter

CloudSim

User Interface 

Structure

Virtual Machine 

Service

Cloud service

Cloud 

Resources

CloudSim Core simulation engine

Fig. 3 CloudSim architecture

diagram

Table 1 Host Type

Configuration
host type Hard disk capacity (GB) Memory (MB) CPU(MIPS/CORE)

Type 1 1024 8192 3600/32

Type 2 1024 8192 3200/28

Type 3 1024 8192 2800/24

Type 4 512 4096 2400/20

Type 5 512 4096 2000/16

Type 6 512 4096 1600/12
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(7), the rack evaluation value except for the first copy and

the second copy is located, select the rack with the smallest

evaluation value, the selection of nodes on the rack should

be determined by calculating the node evaluation value

Vnode, and select the node with the smallest evaluation

value according to formula (5) to place the third copy. The

third copy is placed on a rack with a low rack load rate and

a long network distance, and the choice of a rack farther

away from the client’s rack is to consider that in practical

applications, the probability of simultaneous failure of the

closer rack is higher, and the likelihood of the distant rack

to fail at the same time is small, so choose to store one of

the copies on the rack far away, although this practice

consumes specific resources, but to a large extent ensures

data security and availability.

The specific copy placement flowchart is shown in

Fig. 2.

Table 2 Distribution of host nodes in a rack

Rack host node host type Storage space/GB

Rack 1 NameNode Type 1 7680

DataNode 1 Type 1

DataNode 2 Type 1

DataNode 3 Type 1

DataNode 4 Type 3

DataNode 5 Type 3

DataNode 6 Type 3

DataNode 7 Type 5

DataNode 8 Type 5

DataNode 9 Type 5

Rack 2 DataNode 1 Type 2 6144

DataNode 2 Type 2

DataNode 3 Type 2

DataNode 4 Type 4

DataNode 5 Type 4

DataNode 6 Type 4

DataNode 7 Type 6

DataNode 8 Type 6

DataNode 9 Type 6

Rack 3 DataNode 1 Type 1 7680

DataNode 2 Type 1

DataNode 3 Type 1

DataNode 4 Type 3

DataNode 5 Type 3

DataNode 6 Type 3

DataNode 7 Type 5

DataNode 8 Type 5

DataNode 9 Type 5

Rack 4 DataNode 1 Type 2 6144

DataNode 2 Type 2

DataNode 3 Type 2

DataNode 4 Type 4

DataNode 5 Type 4

DataNode 6 Type 4

DataNode 7 Type 6

DataNode 8 Type 6

DataNode 9 Type 6

Rack 5 DataNode 1 Type 1 7680

DataNode 2 Type 1

DataNode 3 Type 1

DataNode 4 Type 3

DataNode 5 Type 3

DataNode 6 Type 3

DataNode 7 Type 5

DataNode 8 Type 5

DataNode 9 Type 5

Router

Switch

Rack 3

Rack 2

Rack 1

Rack4

Rack 5

Fig. 4 Cluster network topology diagram

Table 4 Network distances between racks in a cluster

Rack Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

Rack 1 – 3 5 9 11

Rack 2 3 – 4 8 10

Rack 3 5 4 – 6 8

Rack 4 9 8 6 – 6

Rack 5 11 10 8 6 –
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6 Simulation experiments and analysis
of results

In cloud computing research, new algorithms or strategies

are constantly emerging. They usually need to be con-

stantly tested and validated before they can be officially

applied in a natural cloud environment. However, initial

testing and validation in a natural cloud environment are

hazardous, and it is likely to accidentally destroy existing

services and data in the natural cloud environment, and the

cost is exceptionally high. CloudSim is therefore a very

suitable alternative to seamlessly modeling the real cloud

environment to fully replicate a real cloud environment in

the framework, and then add the algorithm or strategy to be

verified to the modeled virtual cloud environment in an

appropriate way, which can easily and cost-effectively test

and validate the related work.

Before extending CloudSim, you need to give a brief

introduction to the system structure of the platform. The

platform adopts a hierarchical structure, with four levels of

SimJava, GridSim, CloudSim, and user code from the

bottom up. CloudSim version 2.0 was previously the

SimJava discrete event simulation engine, which was

responsible for performing the core functions of the upper

layer, building system components, communicating

between different system components, and analog clock

management. With the system update, SimJava has been

removed from the emulation platform architecture to

improve the system’s functionality. The CloudSim layer

extends the core functions provided by the system. It is the

core layer of the platform, which can perfectly support

experiments in the cloud computing environment. For

example, according to the expansion of bandwidth and

storage performance, determine whether the task schedul-

ing algorithm meets the target requirements [32]. The top

layer is the user code layer, which describes information

such as task requests, the number, and the characteristics of

resources, etc. If you want to verify the method or theory,

you should extend the platform according to your research

theory and call the extended classes and practices in the

simulation platform. The architecture and main compo-

nents are shown in Fig. 3:

0

0.1

0.2

1 2 3 4 5 6 7 8 9 10

Default method This paper method

St
or

ag
e 

re
pl

ic
as

 p
er

 n
od

e 
as

 a
 

pe
rc

en
ta

ge
 o

f t
ot

al
 r

ep
lic

as
Node number

Fig. 5 Percentage of total

replicas stored by node

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

Default method This paper method

N
od

e 
st

or
ag

e 
sp

ac
e 

ut
ili

za
tio

n

Node number

Fig. 6 Storage space usage of each node

0

500

1000

1500

2000

2500

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

HDFS random replica placement strategy

da
ta

 b
lo

ck
/p

ie
ce

Fig. 7 Data copy distribution in HDFS random copy placement

strategy

Cluster Computing (2024) 27:457–476 467

123



7 Experimental setup

This experiment uses CloudSim-3.0 as a simulation tool.

The hardware environment is Intel(R) Core(TM) i7-10,700,

the memory is 16 GB, the operating system is Windows 10,

and the compilation environment is JDK 1.8.0.

In the experiment, we will use CloudSim simulation

software to simulate a heterogeneous cluster with 5 racks,

each containing 9 DataNode nodes and rack 1 containing 1

NameNode node. In this experiment, we are targeting a

heterogeneous node network, so the host nodes are con-

figured to 6 different types, the specific configuration of the

host type is shown in Table 1, and the layout of the host

nodes on each rack is shown in Table 2.
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In a Hadoop cluster, the network structure is typically a

tree topology. To verify the impact of network distance on

replica placement racks, we set up a network topology

shown in Fig. 4 and the network topology distance shown

in Table 4.

This experiment needs to calculate the disk space uti-

lization, memory utilization, and CPU utilization of the

node, where the node CPU utilization can be obtained by

the getUtilizationOfCpu() function in org.cloudbus.-

cloudsim.HostDynamicWorkload.java. There is an error in

the getUtilizationOfRam() function that comes with

sources.org.cloudbus.cloudsim.HostDynamicWorkload.-

java, so it is modified. Add the node disk space utilization

function getUtilizationOfStorage() in org.cloudbus.-

cloudsim.Host.java and node memory utilization function

getUtilizationOfRam(). The rack load rate is calculated

based on the usage of all host nodes on the rack. In this

experiment, we added the rack load rate calculation func-

tion getUtilizationOfDCStorage().

8 Experiment results and analysis

In this experiment, we used the Data Node 1 node in rack 1

as the client and submitted 2000 data blocks to the server

through the client, each with a data block size of 64 MB.

The number of replicas defaulted to 3. That is, the system

needed to process a total of 6000 data blocks.

The experiment first tests whether the replica placement

strategy proposed in this paper can be more balanced and

reasonable than the distribution of replicas in each node in

the system default replica placement strategy. In the sim-

ulation experiment, multiple clients write 600 files to the

cluster at the same time, that is, 1800 block copies need to

be written, and the default copy placement strategy is used

for the initial write of files. Now we start to simulate the

scenario of the system after running for a period of time,

the access heat of the file changes, the copy factor dynamic

adjustment strategy proposed in this paper begins to take

effect, and the factor analysis method proposed in this

paper is used to place the copy of the increased data copy.

At this point, observe the replica storage status and storage

resource usage of each node in the cluster, as shown in

Fig. 5 and Fig. 6.

Figure 5 shows the ratio of the number of stored replicas

to the total number of replicas in the system, and under the

default placement strategy, node 7 with high performance

stores fewer replicas, and node 6, 8, and 9 with poor per-

formance stores more replicas, resulting in unbalanced load

between nodes. After the model optimization in this paper,

nodes 6,7,8,9 comprehensively consider the storage

resources and computing resources, and place an appro-

priate number of replicas on the node. In Fig. 6, there are

three sets of data, and the ‘‘default method’’ is the default

replica placement policy in the distributed file system;

‘‘This paper method’’ is the proposed dynamic copy

placement strategy. From the figure, it is found that the disk

storage space usage of each node in the default replica

placement strategy varies greatly, with the highest node

utilization rate reaching 71%, and some nodes only about

12%, which is relatively idle and has a serious uneven

distribution of replicas. The default replica placement

strategy also has a balancer tool to adjust the replica dis-

tribution, which consumes a lot of system resources and

has a great impact on computing efficiency if the cluster

size is large. The paper method optimized by analytic

hierarchy method can make the storage space utilization of

each node in the cluster relatively balanced, and there are

no nodes with too much difference in utilization, and the

standard deviation of storage space utilization of each node

in the default method is 0.206, and the standard deviation

of the method in this paper is 0.058. Experiments show that

the node data distribution of the improved method is

adapted to the overall performance, which reduces the

impact of different node performance on the system exe-

cution time.

8.1 The starting load is no load

When the data load is empty at the start of the system, we

use the HDFS random copy placement strategy and the

copy placement strategy based on evaluation values and

load balancing to conduct the copy placement experiment.

8.1.1 Rack-to-rack load balancing

When the HDFS random copy placement strategy is used

experimentally, the specific distribution of data copies on

rack 1, rack 2, rack 3, rack 4, and rack 5 is shown in Fig. 4.

When using a copy placement strategy based on evaluation

values and load balancing, the specific distribution of data

copies on racks 1, rack 2, rack 3, rack 4, and rack 5 is

shown in Fig. 7.

Figure 7 reflects the distribution of data copies across

racks when HDFS random copy placement strategy is

adopted (Fig. 8). We can see from Fig. 9 that there are

2000 data blocks in rack 1 because the client is on rack 1,

Table 5 Number of blocks in a rack

Rack Rack 2 Rack 3 Rack 4 Rack 5

Data blocks/blocks 950 1050 867 1133
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and according to the HDFS random copy placement strat-

egy, 2000 copies are placed on the node where the client is

located. Another 4000 copies are randomly distributed on

rack 2, rack 3, rack 4, and rack 5. We can see that the

number of data blocks on rack 2 and rack 4 is more than the

number of data blocks on rack 3 and rack 5, but the storage

space of rack 2 and rack 4 is smaller than that of rack 3 and

rack 5. The reason for this result is that the copy uses a

random selection strategy when selecting nodes. This

shows that the HDFS random copy placement strategy does

not guarantee load balancing between racks.

Figure 8 shows the specific distribution of data replicas

on different racks using a replica placement strategy based

on evaluation values and load balancing. We can see from

Fig. 10 that there are 2000 blocks of data on rack 1 because

the client is on rack 1, and the replica placement strategy

based on the evaluation value and load balancing requires

the first vice to be placed on the node in the rack where the

client is located. In addition, 4000 copies are distributed on

rack 2, rack 3, rack 4, and rack 5. We can see that the

number of data blocks on rack 2 and rack 4 is less than the

number of data blocks on rack 3 and rack 5. This is because

the storage space of rack 2 and rack 4 is smaller than that of

rack 3 and rack 4. Using the evaluation value and load

balancing copy placement strategy to consider the rack

load situation, racks with ample storage space can place

more copies, and racks with small storage space can place

fewer copies. This reduces load variability between racks

and allows for better load balancing.

The number of data blocks on rack 2, rack 3, rack 4, and

rack 5 is shown in Table 5. Based on the different storage

space sizes of rack 2, rack 3, rack 4, and rack 5, to better

reflect the replica placement strategy based on evaluation

values and load balancing to ensure good load balancing

between racks, we calculated the rack load rate. The rack

load rate of these four racks is shown in Table 6. From

Table 6, it can be seen that the difference in rack load rate

between these four racks is slight, and the load between

racks is relatively balanced. Among them, the rack load

rate of rack 2 is more significant because rack 2 is closest

to the client, and the second copy is preferred to rack 2 for

placement when the rack load rate is similar; The rack load

rate of rack 5 is higher because rack 5 is the farthest away

from the client, and the third replica is preferred to rack 5

for placement when the rack load rate is similar.

In addition, we can compare the rack load rate of the

HDFS random copy placement strategy with the secondary

placement strategy based on evaluation values and load

balancing, as shown in Fig. 9.

Figure 9 shows the comparison of the rack load ratio

between the HDFS random replica placement strategy and

the replica placement strategy based on evaluation values

and load balancing. As shown in Fig. 9, the rack load rates

of the four racks in the HDFS random copy placement

strategy vary greatly. In contrast, the rack load rates differ

less across racks in the replica placement strategy based on

evaluation values and load balancing. Compared with the

HDFS random copy placement strategy, the copy place-

ment strategy based on evaluation values and load bal-

ancing can reduce the rack load difference between each

rack and better achieve inter-rack load balancing.

8.1.2 Load balancing between nodes

The replica placement strategy based on evaluation values

and load balancing not only considers the load balancing

between racks but also considers the real-time performance

of the nodes, which we use as an example to illustrate the

distribution of replicas on each node in rack 3. When the

HDFS random copy placement strategy is used in experi-

mental statistics, the specific distribution of replicas in rack

3 is shown in Fig. 10. When using the replica placement

strategy based on evaluation value and load balancing

proposed in this article, the specific distribution of replicas

in rack 3 is shown in Fig. 11.

Figure 10 shows the specifics of the data copy distri-

bution on shelf 3 when the HDFS random copy placement

Table 6 Rack Load Rates

Rack Rack 2 Rack 3 Rack 4 Rack 5

Rack load rate 0.00966 0.00854 0.00882 0.00922
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Fig. 11 Distribution of data copies on rack 3 based on evaluation

value and load balancing copy placement strategy

Table 7 Initial rack loads

Rack Rack 1 Rack 2 Rack 3 Rack 4 Rack 5

Initial load rate/pc 100 50 500 300 100
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strategy is used. We can see that the number of replicas

distributed on each node in rack 3 is unbalanced. Some

nodes have a large number of replicas, and some nodes

have a small number of replicas. This is because the HDFS

random replica placement strategy is used when placing

replicas. Node performance is not considered, just random

placement.

Figure 11 shows the distribution of data replicas on

shelf 3 with a replica placement strategy based on evalu-

ation values and load balancing. From Fig. 11, we can see

that the number of data blocks on DataNode 1, DataNode

2, and DataNode 3 is the largest and the number of data

blocks on these three DataNodes is the same, the number of

data blocks on DataNode 4, DataNode 5, DataNode 6 is

less than the first three DataNodes. The number of data

blocks on these three DataNodes is the same, DataNode 7,

and DataNode 8. The number of data blocks on DataNode

9 is the smallest, but the number of data blocks on the three

DataNodes is the same. The reason for this distribution is

because the first three DataNodes have the same and best

performance, the middle three DataNodes are worse than

the first three DataNodes in terms of CPU performance,

and the last three DataNodes are worse than the first six

DataNodes in terms of hard disk capacity, memory and

CPU performance. Therefore, nodes with poor perfor-

mance have fewer data blocks. From this, we can see that

the replica placement strategy based on the evaluation

value and load balancing can achieve load balancing

between nodes in the same rack.

8.2 The starting load is not empty

The data load is not empty during the system start state,

and the initial load of each rack is shown in Table 7. We

use the HDFS random replica placement strategy and the

replica placement strategy based on evaluation value and

load balancing to conduct replica placement experiments.

8.2.1 Rack-to-rack load balancing

When the HDFS random copy placement strategy is used

in experimental statistics, the distribution of data copies on

rack 1, rack 2, rack 3, rack 4, and rack 5 is shown in

Fig. 12. When the replica placement strategy based on

evaluation value and load balancing is adopted, Fig. 13

shows the distribution of data copies across racks 1, rack 2,

rack 3, rack 4, and rack 5.

Figure 12 reflects the distribution of data blocks on each

rack after the HDFS random copy placement strategy is

used to place the copy. We can see from Fig. 11 that there

are 2100 blocks in rack 1, including 100 initial blocks and

2000 generated copy blocks. On rack 1, there are 2000

copies placed on the node where the client resides

according to the HDFS random copy placement strategy. In

addition, you can see that the number of data blocks on

rack 2, rack 3, rack 4, and rack 5 is quite different before

and after replica placement because the HDFS random

copy placement strategy does not consider the rack load
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when placing replicas, but uses random node selection to

identify replicas.

Figure 13 reflects the distribution of data replicas on

rack 1, rack 2, rack 3, rack 4, and rack 5 when using a copy

placement strategy based on evaluation values and load

balancing. We can see from Fig. 13 that there are 2100

blocks in rack 1, including 100 initial blocks and 2000

generated copy blocks, because on rack 1, there are 2000

copies placed on the node where the client resides,

depending on the replica placement strategy based on

evaluation values and load balancing. Another 4000 copies

are distributed in rack 2, rack 3, rack 4, and rack 5. You can

see that the number of data blocks on rack 2 and rack 4 is

less than on rack 3 and rack 5. This is because the storage

space of rack 2 and rack 4 is smaller than that of rack 3 and

rack 5. Using the evaluation value and load balancing copy

placement strategy to consider the rack load situation,

racks with ample storage space can place more copies, and

racks with small storage space can place fewer copies. This

reduces load variability between racks and allows for better

load balancing.

To better reflect that the replica placement strategy

based on evaluation value and load balancing can ensure

good load balance between racks, we calculate the rack

load rate of four racks in the HDFS random copy place-

ment strategy and the replica placement strategy based on

evaluation value and load balancing, respectively, the

HDFS random copy placement strategy rack load rate is

shown in Fig. 14. The replica placement strategy based on

evaluation value and load balance is shown in Fig. 15.

Figure 14 shows the HDFS random replica placement

strategy compared to the rack load before and after replica

placement. As can be seen from Fig. 14, the initial rack

load rate difference between these four racks before the

replica placement is significant. The difference in the rack

load rate of the four racks is even more significant after the

replica placement is completed, so we can see that the

HDFS random copy placement strategy cannot reduce the

rack load difference between racks and cannot guarantee

the load balance between racks.

Figure 15 compares rack load before and after replica

placement based on evaluation value and load balancing

strategy. From Fig. 15, we can see that the initial rack load

rate difference between these four racks before the replica

placement is significant. The difference in the rack load

rate of these four racks becomes smaller after the replica

placement is completed, so we can see that the replica

placement strategy based on the evaluation value and load

balancing can reduce the load difference between racks and

better achieve inter-rack load balancing.

8.2.2 Load balancing between nodes

When the HDFS random copy placement strategy is used

experimentally, the specific distribution of data copies in
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each node in rack 3 is shown in Fig. 16. When using a

replica placement strategy based on evaluation values and

load balancing, the specific distribution of data replicas

across the nodes in rack 3 is shown in Fig. 16.

Figure 16 reflects the specific situation where data

copies are distributed on rack 3 using the HDFS random

copy placement strategy. We can see that the number of

replicas distributed across the nodes in Rack 3 is uneven

because the HDFS random copy placement strategy only

places replicas randomly when placing replicas without

regard to node performance.

Figure 17 shows the distribution of data replicas on rack

3 with a replica placement strategy based on evaluation

values and load balancing. From Fig. 17, we can see that

the number of data blocks on DataNode 1, DataNode 2, and

DataNode 3 is the largest. The number of data blocks on

these three DataNodes is the same, the number of data

blocks on DataNode 4, DataNode 5, and DataNode 6 are

less than the first three DataNodes. The number of data

blocks on these three DataNodes is the same. DataNode 7,

DataNode 8, and DataNode 9 have the fewest blocks, but

the number of blocks on the three Data Nodes is essentially

the same. The reason for this distribution is because the

first three DataNodes have the same and best performance,

the middle three DataNodes are worse than the first three

DataNodes in terms of CPU performance, and the last three

DataNodes are worse than the first six DataNodes in terms

of hard disk capacity, memory and CPU performance.

Therefore, nodes with poor performance have fewer data

blocks. From this, we can see that the replica placement

strategy based on the evaluation value and load balancing

can achieve load balancing between nodes in the same

rack.

Next, we’ll analyze the time overhead of both strategies.

We define the time overhead as the time overhead of

submitting a 64 MB block of data to a node, recording the

time taken from the time a block commit request is made to

the completion of the data block storage.

In this experiment, we will use the HDFS random copy

placement strategy and the copy placement strategy pro-

posed in this paper to submit 10 data blocks to the same

node 10 times in the same environment, recording the time

cost of each data block separately. The time cost of each

data block is selected in the experimental node, and the

time cost of the two strategies is shown in Table 8.

To compare the two data sets in Table 8 more intu-

itively, we use a line chart for analysis, as shown in Fig. 18

Figure 18 reflects the time overhead of submitting a data

block using the HDFS random copy placement strategy and

the copy placement strategy based on evaluation values and

load balancing. As can be seen from the figure, the time

overhead generated by the HDFS random copy placement

strategy is less than that of the replica placement strategy

based on evaluation value and load balancing, which

occurs because the HDFS random copy placement strategy

adopts a random placement strategy when placing data

block copies, while the copy placement strategy based on

evaluation value and load balancing needs to computer the
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Fig. 16 HDFS Random Copy Placement Strategy Replicas distribu-

tion in rack 3
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Fig. 17 Distribution of replica placement strategies in rack 3 based on

evaluation values and load balancing

Table 8 The time overhead of the two strategies

Data blocks HDFS random

copy placement

strategy

Replica placement

policy based on

evaluation values

and load balancing

Data blocks 1 5.91 7.59

Data blocks 2 5.97 7.65

Data blocks 3 5.67 7.37

Data blocks 4 5.98 7.26

Data blocks 5 5.92 7.84

Data blocks 6 5.89 7.45

Data blocks 7 5.76 7.69

Data blocks 8 5.69 7.85

Data blocks 9 6.02 7.53

Data blocks 10 5.85 7.92
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shelf evaluation value and node evaluation value before

setting the copy, which will consume a certain amount of

time. In addition, based on the evaluation value and load

balancing replica placement strategy, a replica is chosen to

be placed on a rack far away from the network, so it also

consumes some time.

From the above comparison, we can see that the replica

placement strategy based on evaluation values and load

balancing proposed in this paper not only ensures load

balancing between racks but also achieves load balancing

between nodes in the rack. In addition, the copy placement

strategy proposed in this paper also considers the network

distance between racks, placing the second copy and the

third copy on the rack closer and farther away from the

client, respectively. Although this will consume specific

network resources, but significant improve data security

and reliability. Of course, there are some drawbacks to the

replica placement strategy based on evaluation value and

load balancing. For example, compared with the HDFS

random copy placement strategy, the replica placement

strategy based on evaluation value and load balancing has a

more significant time cost when placing data blocks.

Through the analysis and research of the default replica

creation and placement strategy of the distributed file

system, aiming at its shortcomings, the proportion of load

capacity of each factor of cluster nodes is quantitatively

described, the evaluation value of each node is calculated

through the comprehensive evaluation model of cluster

node performance given, and the best selection is carried

out according to the node evaluation value. An improved

copy placement strategy is proposed. Experimental results

show that the optimized replica placement strategy in this

paper can improve the overall computing efficiency and

disk space utilization of the system and help the replica

distribution in the cluster to be more balanced and

reasonable.

9 Conclusion

This paper first briefly introduces the HDFS distributed file

system, then introduces and analyzes the HDFS random

copy placement algorithm, points out the shortcomings,

then studies file chunking and HDFS data reading and

writing process, and finally proposes a copy placement

strategy based on evaluation value and load balancing.

Using five evaluation indicators, including node disk space

load capacity, node memory utilization, node CPU uti-

lization, rack load rate, and inter-rack network distance,

both racks and nodes are analyzed, and evaluation func-

tions are given. CloudSim simulation software is used to

simulate the HDFS random copy placement strategy and

the copy placement strategy based on evaluation value and

load balancing and analyze and compare the experimental

results. From the experimental results, it can be seen that

the copy placement strategy based on evaluation value and

load balancing proposed in this paper is better than the

HDFS random copy placement strategy in terms of node

load balancing, rack load balancing, and data security.

The replica placement strategy based on evaluation

value and load balancing proposed in this paper focuses on

the performance of rack load balancing, node load bal-

ancing, and data security. Still, it does but does not take

much account of resource consumption. In addition, other

factors are ignored in the current evaluation indicators,

which need to be improved and improved in future work.
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