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Abstract
In the last decade, cloud computing has become an effective and efficient service delivery platform to offer resources,

innovation, and economies of scale on telecommunication networks. An allocation scheme without security constraints

consideration may assign the high security-sensitive tasks onto the lower trustworthy machines. This would lead the

performance deterioration. To address this issue, in this paper, a security-prioritized multiple workflow allocation

(SPMWA) model is proposed by integrating the security-prioritized mapping scheme for Infrastructure-as-a-Service cloud

computing environment. It is expected that incorporating a security-prioritized allocation scheme under precedence

constraints will enhance the performance of workflow processing in risk-prone environments. In this model, more priority

is given to tasks with high-security demand to get allocated onto the more trustworthy virtual machines during allocation to

minimize the failure probability of the cloud system. The failure probability can be minimized by assigning the tasks on to

the trustable virtual machines exhibiting sufficient trust level to minimize the number of task failures. The number of task

failure, failure probability, and makespan have been computed for the comparative evaluation of the SPMWA. For

performance comparison, the SPMWA model has been compared with state-of-the-art models from the literature having

the same environment and objective. The experimental evaluation confirms the superior performance of the proposed

model on account of the considered objective among its peers.

Keywords Cloud computing � Multiple workflow allocation � Security � Precedence constraints � Number of task failure �
Failure probability

1 Introduction

Cloud computing is an internet-based service infrastructure

that facilitates on-demand access on a pay-as-you-go basis

for users of configuration resources such as stockpiling,

server, network, administrations, and other applications to

allow them pervasive services which can be rapidly

discharged and provisioned with insignificant administra-

tive effort [1, 2]. Day-by-day, cloud computing is growing

in heterogeneous distributed processing, automatic com-

puting, utility, and matrix computing. The heterogeneous

distributed computing facilitates any type of administration

for worldview like social networking, registering applica-

tions of computational assets, broadcast communication,

and web administration. From these benefits of cloud

computing, cloud users can make use of processing assets,

and an apparition of IT resources used on-demand. These

assets can be used for managing the different types of

services such as Workflow as a Service (WaaS), Infras-

tructure as a Service (IaaS), Network as a Service (NaaS),

Platform as a Service (PaaS), Storage as a Service (StaaS)

Software as a Service (SaaS), and Data as a Service (DaaS)

[3–6]. Cloud computing also allows anyone to provision

services, virtual hardware, and runtime environments with

a credit card. However, with newly developed technology,
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several issues have to be addressed in cloud computing

such as dynamic resources provisioning, virtualization

technologies and large computing infrastructure for cloud

service providers (CSPs), availability and storage for large

data processing, protection, and confidentiality of resour-

ces, legal issues arise in different countries and losing of

data [2, 6, 7]. Some researchers and scientists utilize the

CSP for computation-intensive applications and running

large-scale data by workflow applications.

Workflow is a specific model used for scientific appli-

cation in various domains having dependent and commu-

nicating components [8]. Generally, a workflow application

is modeled by using Directed Acyclic Graph (DAG),

having a node-set representing tasks and an edge set with

the dependencies among the tasks using the directed edges

between them. Workflow allocation faces several chal-

lenges due to its dynamic nature and heterogeneity as well

as searching for suitable resources of geographical distri-

bution to construct the allocation decision while meeting

optimization of the Quality of Service (QoS) parameters in

a cloud computing environment. The workflows are used in

several applications from different domains like genomics,

earthquake analysis, gravitational waves detection, astron-

omy, healthcare, project planning, chemical reaction, and

supply chain management. Since a huge amount of data is

processed in cloud computing daily so the task allocation

mechanism is more important and should be computed

efficiently. Workflow’s task allocation is one of the most

common application models, particularly in designing,

business plans, and logical fields which has been directed

towards workflow task allocation. Therefore, many

researchers address the workflow tasks allocation problem

for many aspects such as computational time minimization

[9–15], minimum budget assurance [16, 17], least energy

consumption [18, 19], improving the throughput and server

performance [20, 21] and employing security measures

[22–32] in heterogeneous and other efficient computing

[33, 34] for single workflow. Further, the work has been

also reported for multiple workflows allocation to improve

the turnaround time, response time and flowtime [35–43],

budget [43, 44], and energy [45, 46], by aggregating the

batch of workflows prior to allocation. In workflow allo-

cation, precedence constraints (execution order) manage-

ment is one of the challenging issues. Precedence

constraints in workflow tasks are preserved by various

methods such as ranking methods [11], and level attribute

methods [10, 38, 39]. In recent times, we can see that many

researchers have been working to ensure the security

constraints in the IaaS cloud and the trust of cloud users so

that their information and applications are protected and

managed effectively. However, the creation of ad-hoc

security solutions, targeting a very small part of the whole

problem makes a fair and sound evaluation of the state of

the art. At this point, we start from the view that the cloud

computing paradigm can be fully exploited only if the

contributions of cloud users and CSPs for security con-

straints are made wider by improving their trust. As a

result, software security assurance mechanisms improve

the confidence level of cloud users and cloud transparency

so that the CSPs behave as expected [47]. The standard

software security assurance is defined with the line and the

assurance of cloud security is defined to gain reasonable

confidence that applications and/or infrastructure will

reliably demonstrate more than one security constraint, and

process performs as expected despite attacks and failures

[48]. Since assurance is an extensive notion in a cloud

environment than security for any type of workflow

applications, it consists of methodologies for collecting and

validating proof supporting security constraints. Moreover,

various challenging works have been proposed for secure

workflow allocation only for a single workflow [22–32] but

lagging for multiple workflows. So, emergent work

requires exploiting the process of security services for

multiple workflow applications to defend security-critical

applications from threats in the IaaS cloud where batch

mode processing is necessary. In addition to security con-

straints in the cloud user request will increase the security

overhead (in terms of time), which turns the turnaround

time, flowtime, and operational cost of use increments [49]

but reduces the risk or failure probability [24, 28].

In this paper, a security-prioritized multiple workflow

allocation (SPMWA) model is proposed by integrating the

security-prioritized mapping scheme for Infrastructure-as-

a-Service cloud computing environment. It is expected that

incorporating a security-prioritized allocation scheme un-

der precedence constraints will enhance the performance of

workflow processing in risk-prone environments. SPMWA

gives more priority to the tasks having high-security

demands to get allocated onto the more trustworthy virtual

machines during allocation to minimize the failure proba-

bility of the system. The contributions of the proposed

model are given below as follows:

• A Security Prioritized Multiple Workflows Allocation

(SPMWA) model is proposed by incorporating a

security prioritization scheme in workflow task alloca-

tion to minimize the failure probability of the system

for the cloud computing environment.

• A security model is introduced to estimate the failure

probability of the system. This model also calculates the

total number of task failure to assess how often tasks

with a given security requirement end up being

allocated on the VMs exhibiting insufficient trust.

• Workflows are partitioned in accordance to depth level

to maintain precedence constraints. Communication
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requirements among the workflow tasks are estimated

by considering the edge weights and machine distances.

• An idle gap reduction policy is employed to the

utilization of the idle gaps generated during the

allocation process by accommodating the successor

tasks from the next partitions.

• We expect that integrating such security measures

would aid in designing a more robust workflow task

allocation model for networked and high security-

sensitive applications.

• The experimental results of SPMWA are compared

with state-of-the-art workflow models from the litera-

ture. For this, we have taken two multiple workflow

allocation strategies namely sequential-based strategy

and merge-based strategy [35]. These strategies and

security prioritized allocation are incorporated in HEFT

[11] to develop two versions of Security Prioritized

Multiple workflow allocation (SPM) models, namely

SPM1 (Merge-Based) and SPM2 (Sequential-Based)

respectively. For performance comparison, LBSIR [39]

and HEFT [11] have also been included.

• The performance evaluation of the proposed model has

been carried out on random multiple workflows and

real-world scientific application graphs namely Mon-

tage [50], CyberShake [50], and LIGO [51].

• The proposed model can be used in many emerging

security-sensitive domains such as batch mode trans-

action processing, chemical reaction, supply chain

management, project management, and Pegasus project

for some other scientific workflow applications.

The basic structure of the paper is as follows: Sect. 2

presents the standard and current literature review related

to the work. Section 3 describes the system model for the

proposed methodology. Section 4 describes the proposed

model design with an algorithmic template, a simple

illustration, and a time complexity analysis. The perfor-

mance evaluation for the proposed work with experimental

results is discussed in Sect. 5. The conclusion and future

work are presented in Sect. 6.

2 Related work

Workflow allocations have been a common research topic

in the recent computing environment for decades and have

been built together with changes in technology. In the last

few years, most of the research has been engrossed in

workflow allocation problems using DAG heuristics

[8, 11]. The mapping of workflow allocation problems is

well-established NP-complete [52]. Consequently, various

heuristic algorithms have been developed to achieve sub-

optimal solutions for resource allocation in the cloud

environment. Here, some reported works deal with inde-

pendent task allocation considering VM placement [53],

cost-effective task allocation [54], security-aware task

allocation [55–57], etc. On other hand, many other models

have presented the mechanism for addressing the allocation

of dependent communication workflow tasks. In this sec-

tion, the various models are further categorized into single

workflow allocation [9–19], security-aware workflow

allocation [22–32], and multiple workflow allocation

models [35–46].

2.1 Single workflow allocation

In single workflow allocation, only one DAG is represented

by task mapping onto parallel resources. The most common

DAG-based scheduling is designed for a single workflow

on heterogeneous distributed systems such as [9–19].

Dynamic-Level Scheduling (DLS) [9] is one of the first

algorithms that find the availability of resources and thus

allow the task to be scheduled onto the current busy

resource. DLS does not guarantee the minimum processing

time for a task. Furthermore, it also does not attempt to idle

time gaps between two tasks on the same resource in

contrast to other more current algorithms. Levelized Min-

imum Time (LMT) algorithm [10] is very simple and based

on the precedence level of tasks onto the resource having

the lowest processing time for a heterogeneous distributed

system. The CPOP [11] algorithm attains better allocations

than LMT and is similar to DLS with lower time com-

plexity. The main characteristic of CPOP is the workflow

of all the tasks that belong to the critical path assigned to a

single resource. The HEFT [11] is one of the best DAG list

scheduling algorithms, as it has quadratic time complexity.

This algorithm aims to reduce the time complexity and

schedule length. The modified HEFT has also been pro-

posed to reduce processing time in a cloud computing

environment [12]. Other versions of HEFT have also been

proposed, such as Predict Earliest Finish Time (PEFT)

[13], Communication aware Earliest Finish Time (CEFT)

[14], and Dependency-ratio Bundling Earliest Finish Time

(DBEFT) [15] to reduce the schedule length. PEFT algo-

rithm defines the task priority based on the optimistic cost

table. PEFT takes the assurance of task execution in min-

imum processing time. CEFT algorithm is based on the

task duplication heuristic using communication ratio hav-

ing task execution order as according to upward rank.

DBEFT is also list-based task duplication scheduling to

reduce communication costs. DBEFT improves the

scheduling length ratio over the PEFT, CEFT, and HEFT.

Some of the work has been proposed for multi-objective

workflow allocation reducing the makespan and economic

cost, [16, 17], and optimizing time and energy [18, 19].
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2.2 Security-aware workflow allocation

Security plays an essential role in e-commerce and digital

transaction processing systems. In the field of distributed

information-sharing networks, significant work considering

security constraints [22–32] has been reported in the

heterogeneous distributed environment like grid/cloud

computing to share and process the resources with trust-

worthy contributing peers. The authors presented a task

allocation strategy with security constraints and the dead-

line for parallel applications [22] with the objectives of

optimizing security parameters and processing time.

However, it is implemented on homogeneous clusters. In

[23], the authors present the trust-based allocation model

for the scientific workflow to improve the stability of the

schedule. In [24], authors have developed the security-

driven scheduling (SDS) model for heterogeneous dis-

tributed systems to optimize the makespan, speedup, and

risk probability. SDS introduces task priority allocation on

the suitable processor using estimated security overhead.

The strategy presented in [25] namely Cloud-DLS incor-

porates dynamic trust-based task allocation in the DLS

algorithm in the cloud environment. The objective of

Cloud-DLS is to assure the execution of the task and

minimize the processing time. In [26], the authors have

proposed a trust service-oriented workflow allocation

(TMOWS) model to minimize the execution time and cost

simultaneously in a cloud environment using fuzzy mem-

ber functions. TMOWS meets the security demands of the

users or other constraints with balance factors. In [27], the

authors model maintains the reliability of services. It

avoids discrete events, and workflow application failure

between the direct and recommended trust. It also found

the best solution and concurrently satisfied deadline con-

ditions. The work in [28] presents a novel security-sensi-

tive workflow allocation with a task duplication (SOLID)

scheme. SOLID has been developed having three features,

firstly, the selection of duplicated predecessor tasks which

is useful to avoid the data encryption and transmission time

by delaying the start time of the task, further, defines the

latest finish time of workflow’s task, and lastly, it also

assures these tasks should be finished on the cheapest

resources with aim of minimizes the makespan and mon-

etary cost. In [29], trust-based stochastic workflow

scheduling (TSS) is proposed to minimize the makespan

with increased speedup using the TSS trust model for

security estimation including both direct trust and reputa-

tion relationships. The strategy presented in [30] for

security-aware workflow allocation (SAWA) is to reduce

the number of failed tasks. SAWA selects the task allo-

cation as per depth level. In [32], the authors are presenting

a security-prioritized HEFT (SPHEFT) algorithm in the

cloud computing environment to optimize the guarantee

ratio. SPHEFT is integrated by the security requirements

into the HEFT [11] algorithm by giving more priority to the

tasks having a high degree of security constraints. SPHEFT

creates the clusters for distinct upward rank values and then

again sorts each cluster as per the security demand of the

tasks. Thus, the tasks with higher security demand will get

more chances to execute at first. Therefore, it will improve

the guarantee ratio over the HEFT algorithm.

2.3 Multiple workflow allocation

In the multiple workflow allocation, more than one work-

flow task is grouped to form a batch for processing on

suitable machines to achieve the desired QoS parameters.

To tackle the multiple workflow allocation problems, Bit-

tencourt and Madeira [35] have first introduced four

strategies to schedule multiple workflows namely sequen-

tial-based strategy, gap search strategy, interleave strategy,

and merge-based strategy. The sequential-based strategy,

schedules the workflows sequentially, one after another on

the available resources. The gap search strategy works the

same as the first strategy but it finds the gaps between tasks

already executed, and then accommodatable tasks from the

workflow at hand are being scheduled into the found gaps

without interfering with their starting time. Interleave

strategy uses both the first and second strategies, however,

the strategy schedules tasks of each workflow in turns,

interleaving their tasks in the schedule of the available

resources. The merge-based multiple workflow strategy

merges all workflows into a single one and then schedules

this resulting workflow as a single workflow. Here, a sig-

nificant number of works have been proposed for multiple

workflow allocation to reduce turnaround time [38, 39].

The strategy proposed in [36] aggregates multiple work-

flows to achieve near-optimal throughput for heteroge-

neous cloud computing. In [37], the authors analyze the

allocation strategy for multiple workflows including two

and four stages like labeling, adaptive information, priori-

tization, and parallel machines in the grid environment. In

[38], the authors have proposed a novel approach (SLBBS)

for the multiple workflow allocation problem in a compu-

tational grid environment to optimize the turnaround time.

SLBBS divides the multiple workflows as per depth level

and allocation of tasks is assigned on best-fit resource

levelwise. Level-based Batch scheduling Strategy with Idle

slot Reduction (LBSIR) [39] strategy reduces the draw-

backs of SLBBS by incorporating an idle slot reduction

policy. The work reported in [40], concurrently executes

multiple workflows using a rescheduling algorithm and

dynamic task rearrangement to exploit task allocation

flexibility under precedence constraints. In [41], the

authors present the cluster-based allocation strategy for
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multiple workflow applications with soft deadlines to

achieve the quality of schedule in terms of fairness and

execution time. In [42], the authors present deadline budget

workflow allocation to optimize the time and cost in the

cloud environment. Some of the work has been proposed

for multi-objective of multiple workflow allocation reduc-

ing the makespan and economic cost [43, 44] and to

optimizing time and energy [45, 46].

In the literature, various approaches have been proposed

for solving single workflow [9–19] and multiple workflows

[35–43] allocation problems in heterogenous distributed

systems. However, many cloud-based workflow applica-

tions need to be processed in batch mode to enhance the

systems performance. Therefore, to develop superior mul-

tiple workflow allocation models is a requirement in vari-

ous domains. Further, as we see in Table 1, a significant

number of approaches [22–32] have also been proposed for

security-aware workflow allocation problems for consid-

ering only a single workflow. In the majority of the work,

the task execution order is computed by the ranking

method, and then the allocation of the resources is done as

per the task execution order. In this scenario, high-security

demand tasks with low rank may be allocated to untrust-

worthy machines leading to more failure in the system. But

in the proposed work, workflow tasks are grouped into

partitions as per depth level. In each partition, the task

execution order is computed by using the security demand

levels. In this way, high-security demand tasks always

get allocated first and have a chance of getting higher

trustable machines leading to lower failures in the system.

Finally, in multiple workflow scenario, the models

[35–46] have also been reported for cloud environments to

optimize the makespan, schedule length, speedup, energy,

total budget, and utilization. However, as per our knowl-

edge, we have not found any work on multiple workflow

allocation considering security constraints in the cloud

environment. Therefore, this paper is the first attempt

toward the allocation of the batch of workflow applications

satisfying the security requirements of the workflow tasks.

3 System model

This section presents an insight into the SPMWA devel-

oped for multiple workflow allocation, representing each

workflow by using DAGs. e.g., the notation used, work-

flows descriptions, virtual machine descriptions, security

model, parameter estimation, and problem statement. The

proposed model aims to produce an efficient schedule for

the workflow tasks and optimizes considered parameters

from the quality of service of the cloud.

3.1 Symbols used

To describe the various models, symobls, and parameters

involved in the process have been listed in Table 2 as

follows:

3.2 Multiple workflow model

In this work, we consider a set of multiple workflows,

Wf ¼ Wf i : i ¼ 1; 2; 3; . . .. . .NWf

� �
and each Wf i has

tasks set, si ¼ Tij : 1� j�NWf i

� �
. Each workflow consists

of tasks with parent (predecessor) and child (successor)

relationships. Here, jth task of ith workflow (Tij) has a set of

successor tasks (Succ(Tij)) and predecessor tasks

(Pred(Tij)). The successor tasks depend on the predecessor

tasks with a communication requirement termed edge

weight (eixy) between all possible pair of tasks. The fol-

lowing characteristics of multiple workflows in this work

are given below:

• The batch of NWf the number of compute-intensive

workflows, represented by DAG.

• The number of tasks in each Wf i is Nwf i .

• Each Tij2Wf i has an associated level attribute (lij).

• Precedence and dependency constraints have been

handled through level attributes.

• The number of depth levels (lWf i) in an ith workflow is

defined as lWf i ¼ max
8j
flij : 8Tij 2Wf ig.

• The depth level of a batch of workflows (Wf ) is defined

as, L ¼ max
8i

lWf i

� �
.

• The multiple workflows are divided into L partitions

(dl) as per the depth levels such that

dl ¼ fTij : 8Tij&lij ¼ lg.
• The eixy is for communication between Tix and Tiy, and

it is considered in MIs.

The set of multiple workflows is presented in Fig. 1 with

all associated attributes. We can see that each partition

tasks are shown by using the same color e.g. (T11, T12,

T21,…,TNWf 3), (T13, T14, T22,….,TNWf 4), (T1NWf 1
, T23,

T24,….,TNWf 7) and (T2NWf 2
,…,TNWf NWf NWf

) are at depth

levels 1, 2, 3, and L depicted by using sky blue, magenta,

canary, and green color respectively. Further, we can see in

Fig. 1, T13 is dependent on T11 and T12 to start its execution

with edge weights, whereas the tasks are at the same

precedence level within the batch of tasks. For example,

T11, T12, T21,…,TNWf 3 can be executed in parallel.
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Table 1 A comparison of related works for workflow allocation models

Ref. Techniques/approaches used Workflow

types

QoS parameters Compared

algorithms

Advantages Limitations

[10]

(2009)

Level based heuristic Single Speedup NA Simple level

attribute is used

for task ordering

Communication

requirement is not

considered in the

mapping of task onto

machines

[11]

(2002)

Earliest finish time-based

method using upward /

downward rank

Single Makespan,

Speedup

CPOP, MH,

DLS, LMT

Minimize the total

execution time

and effectively

achieve a better

schedule length

ratio

Suffer from the idle gap

and load balancing

[13]

(2013)

Prediction of earliest finish time

using optimistic cost table and

allocation order is as upward

or downward rank

Single Schedule length

ratio, Speedup

HEFT,

HCPT,

PETS,

lookhead

Minimize the total

execution time

and effectively

achieve a better

schedule length

ratio

Suffer from the idle gap

and load balancing

[14]

(2017)

HEFT-based model using

communication ratio for

assignment of tasks

Single Schedule length

ratio, Speedup,

Average surplus

time, Redundant

computing ratio

PEFT,

HDCPD,

HEFT

It reduces the

communication

overhead and

schedule length

ratio

Suffer from the idle gap

and load balancing

[15]

(2019)

Extended version of HEFT with

task dependency ratio-based

allocation

Single Schedule length

ratio, Speedup

HEFT,

PEFT,

CEFT

It reduces the

communication

overhead and

schedule length

ratio

Suffer from the idle gap

and load balancing

[22]

(2008)

Assigns the tasks based on the

critical path to minimum

security demands

Single Makespan,

Guarantee Ratio,

Risk Probability

EDF, LLF Satisfies the
deadline meet of

the tasks

It is valid only for

homogeneous clusters

[23]

(2009)

Genetic algorithm Single

with

multi-

objective

Success

Probability

To meet the

deadline and

budget

The scheduler sometimes

has to select a less

trustable machine for

tasks of shorter

processing time or

cheaper price

[24]

(2010)

Tasks are processed on the

machine that takes the least

EFT based on security upward

rank

Single Makespan, Risk

probability, and

Speedup

HEFT Decrease the total

execution time

and effectively

achieve a better

schedule length

ratio

Suffer from the idle gap

and load balancing

[25]

(2012)

Security constraints are

incorporated in dynamic level

scheduling (DLS)

Single Schedule length

and Guarantee

Ratio

DLS, BSA To assurance of

tasks execution

and reduce the

failure probability

It does not attempt to idle

time gaps between two

tasks on the same

resource

[28]

(2017)

Tasks are processed based on

upward rank with duplicating

predecessor tasks to idle time

slots considering laxity times

on resources and data

encryption

Single

with

multi-

objective

Makespan,

Resource

Utilization, and

monetary cost

Earliest

finish

time-

Maximum

Effective

Reduction

To reduce

monetary

cost without

delaying their

successors’ start

and workflows’

makespan

Suffer from the load

balancing

[29]

(2019)

Schedule planning based on the

stochastic trust model

Single Makespan,

Speedup

HEFT,

SHEFT

It optimizes both

securities for trust

model and

makespan

Suffer from the load

balancing
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3.3 Machine model

In this work, we consider a cloud computing environment

having a set of n heterogeneous VMs, V = {Vk | 1 B k

B n} interconnected via a fully connected network. The

computational VM under this work with following char-

acteristics are:

• We consider n, number of heterogeneous VMs.

• Each VM has Rtlk due to previously assigned tasks.

• VM distances (Vkr) among the heterogeneous VMs. Vkr

actually calculates the distance between Vk and Vr by

finding the number of hop counts between them.

• The processing capacity (PCk) of VMs is in MIPS.

• Once a VM has started task execution, it continues

without interruptions, and after completing the execu-

tion it immediately sends the output data to all the

children tasks in parallel.

• The expected time to compute matrix Eijk is the

estimated execution time of task Tij on Vk.

Table 1 (continued)

Ref. Techniques/approaches used Workflow

types

QoS parameters Compared

algorithms

Advantages Limitations

[32]

(2022)

Tasks are executed onto

trustable VMs ensuring

security demands on a priority

basis

Single Makespan,

Security

Overhead and

Guarantee Ratio

HEFT It reduces the

communication

overhead and

schedule length

ratio

Suffer from the idle gap

and load balancing

[36]

(2011)

Level-based mapping heuristic Multiple Throughput HEFT To maximize the

throughput

Communication

requirements among

tasks are not taken into

consideration

[37]

(2012)

Multi-stage multiple workflow

allocation policies with user

run time estimates

Multiple Approximation

factor, critical

path slowdown,

and waiting time

CPOP,

HEFT

To reduces the

performance

degradation

suffer from a significant

time complexity

[39]

(2015)

Levelized-based mapping

heuristic with idle gap

reduction at each depth level

Multiple Turnaround Time,

Flowtime,

Utilization

SLBBS,

HEFT,

DLS,

CPOP

Using idle gap

reduction

performance is

improved

Extra waiting time in

queue is due to batch

formation

[40]

(2015)

Reservation adjustment on

rescheduling heuristic with

the support of task

rearrangement

Multiple Makespan,

Utilization,

Speedup, and

running time

HEFT, DCP,

DAGMap

To exploit the

scheduling

flexibility of

multiple

workflows

Extra overhead has

occurred for the task

rearrangement

[41]

(2016)

Clustering-based workflow

allocation scheme

Multiple Makespan,

Fairness,

Utilization

Path

Clustering
Heuristic

To makes a

qualitative

schedule and

improve the

effectiveness of

resource

utilization

Low parallelism and time

restrictions quality of

schedule

[42]

(2019)

Assigns the scheduling

priorities to the workflows

based on a weighted upward-

rank priority policy

Multiple Schedule length

ratio, Speedup,

Success rate

MSLBL,

HBCS,

BHEFT

To improve the

plain

upward-rank

priority policy

Suffer from the idle gap

[43]

(2021)

Allocation of each task is done

based on EST and EFT which

is computed by the deadline of

the task

Multiple Resource

utilization,

Rental Cost,

Success Rate,

Deadline

deviation

ROSA,

NOSF

To satisfy the

deadline and meet

the tasks

Suffer from the load

balancing
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The measure of communication cost depends on two

parameters eixy between the tasks (i.e., Tix and Tiy) and Vkr

between the VMs (i.e., Vk and Vr). Suppose two tasks’

Tix [ dl and Tiy [ dl-s of the workflow Wf i assigned on Vk

and Vr respectively, is represented by CCl�s;l
ixykr. It can be

computed as [38, 39]:

CCl�s;l
ixykr ¼ p eixy � Vkr

� �
ð1Þ

where p is considered as one for liner behaviour, CCl
k gives

the total communication cost of tasks assigned on Vk at

depth level l and needs communication to their predecessor

tasks allocated to other VMs. This value is zero for tasks

with predecessors being assigned on the same VM. In this

model, this is taken as the maximum of all CCl�s;l
ixykr among

tasks assigned on Vk due to having the possibility of par-

allel communication and written as

CCl
k ¼ max

8k
ðCCl�s;l

ixykrÞ ð2Þ

3.4 Security model

Security in cloud computing can be perceived as the pro-

tection mechanism against unauthorized access, use, and

modification of cloud resources. To safeguard infrastruc-

ture of the cloud-based systems from security risk, a variety

of rules, processes, controls, and technologies are used. The

security risk is related to vulnerabilities, failure probability,

and attacks or threats. The cloud environment is risk prone

due to challenging security threats. Therefore, it is very

crucial to provide the best-in-class security by vendors

tailored for the cloud infrastructure. Thus, the cloud ven-

dors use their own unique security standards, methods, and

models to satisfy the client’s requirements. Further, cloud

system security offers many benefits, including centralized

security, reduced cost and administration, and reliability. In

workflow execution in the IaaS cloud, a workflow man-

agement system (WMS) allocates the workflow tasks onto

the secure cloud resources so that they could be executed

without failures. A secure workflow system requires taking

into account a variety of security services for modeling any

Table 2 Definition of symbols

Symbols Meaning

NWf Number of workflows

Wf i ith workflow

NWf i Number of tasks in ith workflow

Tij jth task in the ith workflow

Succ(Tij) Set of successor tasks

Pred(Tij) Set of predecessor tasks

SDij Security demand of Tij

Wlij Workload of Tij

n Number of VMs

Vk kth VM

lij Level attribute of Tij

dl Set of depth level of Tij

Nl
wf i

Number of tasks in each depth level

Cl
SD

Set of clusters of SD at dl

eixy Edge weight between Tix and Tiy

Vkr Machine distance between Vk and Vr

VFit Fit Virtual Machine

TLCS Trust level of cloud system

Tfailure Set of failed tasks

Eijk Expected time to execution of Tij on Vk

STijk Start Time of Tij on Vk

FTijk Finish Time of Tij on Vk

Rtlk Initial ready time of Vk at starting of the allocation

PCk Processing Capacity of Vk

Iglk Idle gap on Vk at level l

Ptlk Processing time of allocated tasks of level l at the Vk

CCl
k

Communication cost on the Vk at level l

SOijk Security overhead of Tij on Vk

Enet
ijk Net processing time of Tij on Vk

NTF Number of task failure

kk Failure coefficient for Vk

Fpijk Failure probability of Tij on Vk

Fp Failure probability of entire IaaS System

TPtlk Total processing time on Vk at level l

ðTPtlkÞ
u Updated total processing time on Vk at level l

Ms Makespan of the multiple workflows submitted to IaaS

system

l Service Rate of queuing system at global queue

C Arrival Rate of queuing system at global queue

Qu Queuing unit

Qt Queuing time

Fig. 1 A sample multiple workflows application
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security-sensitive applications, such as authentication,

integrity, and confidentiality as discussed follows:

• Authentication: It refers to trustworthily confirming the

task execution agents’ identities. Authentication, autho-

rization, and accounting (AAA) is a security organizing

module for authentication, authorization, and account-

ing. When a user tries to access cloud resources from

CSP, then AAA verifies the user’s authentication

information. If the user is authenticated, then AAA

verifies the user’s access into the system. The authen-

tication methods are available to fulfill the authenti-

cated users, such as HMAC-MD5, HMAC-SHA-1, and

CBC-MAC-AES [22, 24, 55].

• Integrity: Integrity services guarantee that no one can

tamper or modify the data and applications while

executing on the IaaS cloud. When the attacker

modifies the data, the integrity of the data is compro-

mised. Integrity can be achieved using various hash

functions such as Tiger, RIPEMD-160, SHA-1, etc.

[28, 55, 57].

• Confidentiality: Confidentiality is important for users to

store their confidential resources in the cloud. Confi-

dentiality is the defense against eavesdropping and

other passive attacks on cloud resources. A passive

attacker could disclose that sensitive information is

being transferred insecurely or without encryption.

Confidentiality can be achieved by using various

encryption algorithms like IDEA, DES, etc.

[22, 55, 57].

In authentication service, the machines are authenticated

and allowed for the workflow task to process them in

workflow execution. A workflow authorization model is

capable of authorization in such a way that machines have

access to necessary objects and synchronize the autho-

rization flow with the workflow during execution. After

this, the associated information of workflow tasks needs to

be transferred among machines during processing due to

communicating and dependent tasks. Hence, it is the ser-

vice provider’s responsibility to make these transfers con-

fidential and unaltered to maintain confidentiality and

integrity, respectively. The task failure could result from

the security threat or inaccessibility from the security-im-

posed barricade in the cloud system. In the proposed

SPMWA model, authentication service is considered dur-

ing secure workflow task allocation. Authentication is the

initial process which allows entering the authorized

machines to satisfy the security requirement for execution

of the workflow tasks from the various users. In this way,

the cloud system can prevent the tasks failure during the

workflow task’s executions. The authentication must be

validated to protect the data transfer from security attacks

to a certain extent according to its service level require-

ment. For task Tij having a security level ðSLaijÞ in the

aspect of authentication of mi
th method used, an authenti-

cation method providing a higher security level must be

applied if the task is outsourced to the cloud such as

SLaij� Slami
where Slami

represents the security level provided

by the mi
th authentication method (mi [ {0, 1, 2, 3}). We

also assume that, lami�1\la
mi
; 8mi 2 f0; 1; 2; 3g without

loss of generality as shown in Table 3, where lami
is the

authentication time overhead of mi. For task Tij, the optimal

authentication method that satisfies the security level

requirement with the least amount of time overhead is that

which meets the following criteria Slami�1\SLa
ij
� Slami

.

These authentication methods are shown in Table 3.

Each authentication method is assigned a security level

(SLamiÞ, in agreement with the concert. If it is assigned to 1

then CBC-MAC-AES method will be used. SLs for the

other two methods can be computed as per Eq. (3) where

lami
is the performance of the mi

th authentication method

i.e., 0 B mi B 3.

SLa
mi
¼ lami

=163; 0�mi� 3 ð3Þ

Assume that SOijk is the security overhead to fulfill

authentication service for workflow tasks and Tij is a

function security level. The following characteristics rela-

ted to the security of multiple workflows and VMs are

given below:

Table 3 Authentication methods for authentication services [55, 58]

Authentication

methods

Security level

SLami

� � Time overhead lami

� �

ms

No Method 0 0

HMAC-MD5 0.55 90

HMAC-SHA-1 0.91 148

CBC-MAC-AES 1 163

Private Cloud 1.00 –
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• Each Tij has a SDij that needs to be satisfied on VMs.

• SDij varies in the range from very high to very low,

representing their priority, such that SDij [ {0.0, 0.1,

0.2,……,1.0}. For example, SDij = 1.0, SDij = 0.5, and

SDij = 0.1 are very high, average, and low-security

demands respectively.

• Each virtual machine (VMk) has a trust level (TLk)

normalized in the range [0, 1].

• Trust level of a cloud system (TLCS) is defined as the

trust level of the highest trustable VM such as

TLCS ¼ max
8k
fTLkg.

• The range of failure coefficient, kk [ (0.1–5.5).

Now, in the allocation process, each task from the cloud

users requiring SDij has been mapped onto fit VMs. The

security overhead of Tij on Vk (SOijk) with security

demands can be estimated as per Eq. (4).

SOijk ¼
lami
ðSDij � TLkÞ=PCk; SDij [ TLk

0; SDij� TLk

�
ð4Þ

SDij is a security demand of Tij that can be specified

security levels by the workflow tasks. TLk is the trust level

of Vk for fulfilling the security demand of the tasks. lami
is a

time overhead considered by the authentication methods

[24, 55, 58] to fulfill the security levels of authentication

methods. In this workflow risk analysis model, we have to

consider failure probability as a function of SLs and the

distribution of failure rate for any fixed time interval fol-

lowing the Poisson probability distribution. Accordingly,

the workflow’s task failure probability for combined

security services onto a particular VM can be signified by

an exponential distribution as follows [24, 28–30].

Fpijk ¼
1� e�kk SDij�TLkð Þ; SDij [ TLk
0; SDij� TLk

(

ð5Þ

In cloud computing, kk is taken as a failure coefficient,

and it varies over VMs. The negative exponent shows the

failure probability raised by the difference SDij - TLk.

3.5 Problem statement and parameter
estimation

In this section, the workflow allocation problem and

parameter estimation of performance metrics for the pro-

posed model have been discussed in detail. In multiple

workflows allocation problem, a set of workflows (Wf)

needs to map on a set of n heterogeneous virtual machines

(V) in an IaaS cloud computing environment to optimize

the number of task failure and failure probability of

workflow systems satisfying various constraints. A picto-

rial representation of the same problem is presented in

Fig. 2. Here, multiple workflows are submitted to the cloud

from different users. Security prioritized workflow alloca-

tor is responsible for capturing all required information and

performs high security prioritized workflow tasks alloca-

tion effectively. VM manager manages and offers the set of

VMs having required objects, i.e., trust level, computing

capacity, etc. The physical machine comprises clusters,

servers, supercomputers, and the fundamental physical

computing resources that make up a cloud infrastructure.

Through virtualization, users can use a virtualized version

Fig. 2 Multiple workflow

allocation problem
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of machines of the physical machine without any man-

agement overhead.

The problem statement can be represented by the map-

ping function, f: Wf 3 V ? {1, 0}, producing an alloca-

tion schedule such that.

Minimize Fp, NTF subject to constraints:

1.

XNwf i

j¼1
Allocation½i�½j�½k� ¼ P;where;0�P�Nwf i

2.

Xn

k¼1
Allocation½i�½j�½k� ¼ 1

3.

XNwf

i¼1

XNwf i

j¼1

Xn

k¼1
Allocation½i�½j�½k� ¼

XNWf

i¼1
Nwf i

4.

STijk �max FT pred Tij

� �	 
� �

The SPMWA model aims to optimize the failure prob-

ability and number of task failure as per the requirements

of the cloud users. Some of the main parameters considered

in the study that is given as follows:

The Expected Time to execution (Eijk) can be written by

using Eq. (6) as follows:

Eijk ¼
Wlij
PCk

ð6Þ

Now, the allocation of tasks from various depth levels

are assigned on the fit virtual machine using the proposed

SPMWA model explained in Sect. 4. The Finish Time

(FTijk) of Tij on each Vk is computed by using Eq. (7) as

follows:

FTijk ¼ STijk þ Eijk þ SOijk ð7Þ

where STijk is the Start Time of Tij on Vk to be assigned task

and can be taken as the FTijk of the last task assigned on

that virtual machine. After the allocation of all tasks from

the specified partition, i.e., 8Tij 2 dl, the processing time

Ptlk
� �

on Vk at lth level has been estimated. It is the

summation of the difference between the finish time and

start time of the tasks of specified partition on VMs and can

be written as

Ptlk ¼
X

Vk 8Tij2dl
FTijk � STijk

� �
ð8Þ

Rtlk is the initial ready time of each VM. It is the pre-

vious workloads assigned on them and affects only task

allocation for the first level only. Total processing time on

Vk TPtlk
� �

are the sum of initial ready time, total com-

munication cost, and processing time on the Vk as pre-

sented by using Eq. (9)

TPtlk ¼
Rtlk þ Ptlk; if Tij 2 d1

CCl
k þ Ptlk; otherwise

�
ð9Þ

After allotment of 8Tij 2 dl, few idle gaps are left on

some VMs. The idle gap list Igl ¼ Iglk:gk; 8 k
� �

is main-

tained on the respective VM in various depth levels. The

idle gap size (Iglk) at depth level l on Vk can be computed as

Iglk ¼ max
8k

TPtlk
� �

� TPtlk ð10Þ

After this, succ(Tij) from the next depth level partition

(dl?1) are selected and suitable tasks are accommodated

within the idle gaps generated as per idle gap reduction

method presented in Algorithm #3. Further, TPtlk is

updated due to some additional assignments on VMs. The

updated total processing time ðTPtlkÞ
u
on VM can be

written as

ðTPtlkÞ
u ¼ TPtlk þ

XL

8Tij2dlþ1
Enet
ijk ð11Þ

where Enet
142 is the net processing time of successor task

which is inserted into idle gaps i.e.,

Enet
ijk ¼ Eijk þ SOijk þ CCl�s;l

ixykr. Now, Makespan is the total

processing time taken for the submitted batch of work-

flows. It is estimated as the addition of queuing time and

summation of maxðTPtlkÞ
u
for all depth levels and written

as

Ms ¼ Qt þ
XL

l¼1
max
8k

TPtlk
� �u ð12Þ

where Qt is the Queuing Time which is estimated as the

average waiting time of the multiple workflows in the

global queue as

Qt ¼

1

l� C
; if b�Qu

1

l� C
b
Qu

� �
; if b�Qu

8
>><

>>:
ð13Þ

where b is the sum of the workloads of all workflow tasks.

The virtual machines may not be available to the system

when being infected by malicious attacks or intrusions.

Many parallel workflows are executed in the risk-prone

environment of the cloud computing system. Therefore, it is

essential to have some guaranteed security services to exe-

cute the workflow tasks with negligible failures. If task

failures happen, then it is desired that the number of task

failure should be insignificant to prove the security of the
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system. Thus, the number of task failure (NTF) is an

important QoS parameter to assess how often tasks with a

given security requirement being allocated on the VMs

exhibit insufficient trust. Also, the failure probability of the

workflow system needs to be estimated as one of the main

targets. Hence, we do evaluate the proposed SPMWA on

securitymetrics such as the number of task failure and failure

probability of the entire batch of workflows in the cloud

system. Here, the aim is to ensure that all the tasks must be

satisfied on trustable VMs. Yet, in some cases, it is also a

possibility to assign some tasks on untrustworthy VMs. So,

we defined a task failure set, Tfailure = {Tij:Vk/ Tij such that

SDij[ TLk, i.e.,Tfailure � [si, i = 1, 2,…Nwf}, where on

allocation Tij assigned on insufficient trustworthy VMs.

Thus, total tasks failures can be determined as the size of the

set of failure tasks, o(Tfailure) by using Eq. (14) as follows:

NTF ¼ oðTfailureÞ ð14Þ

The failure probability is the performance metric to

assess the rate of failure tasks assigned on a specified

virtual machine that could result from the inaccessibility of

a security-imposed barricade or severe attack. Thus, the

task failure probability of Tij assigned on Vk can be com-

puted as:

Fp Tijð Þ ¼
Xn

k¼1
zijk 	 Fpijk ð15Þ

where zijk is the assignment vector, indicating whether Tij is

assigned on Vk or not, such as

zijk ¼
1; Tij is assigned to Vk

0; otherwise

�
ð16Þ

The failure probability of the cloud system (FpÞ for a
considered batch of the workflow (Wf ) executed in a risk-

prone environment (attack or failure). Fp can be computed

as:

Fp ¼ 1�
Y

Tij2s
1� Fp Tijð Þ

� �
ð17Þ

NTF, Fp, and Ms are used as performance metrics to

evaluate our proposed security prioritized multiple work-

flow allocation model presented in Sect. 4.

4 Security prioritized multiple workflow
allocation model

In this section, a security prioritized multiple workflow

allocation (SPMWA) model with precedence constraints is

presented for a cloud computing environment. In this

model, more priority is given to high-security demand

workflow tasks at allocation, and the main target is to

minimize the failure probability of the IaaS cloud system

during processing. Workflow tasks are allocated in accor-

dance to a level attribute. After the allocation of each

partition, idle gaps are eliminated by inserting suit-

able tasks from the next partition. An algorithmic template

for SPMWA is presented in Algorithm #1.

Firstly, the batch of multiple workflows is divided into

depth levels before the allocation as mentioned already in

Sect. 3.2. In this phase, the allocation ofworkflow tasks from

each partition is assigned in sequential mode onto the set of

virtual machines. In each partition, the allocation preference

is given to the higher security demand tasks followed by

lower ones and assigned to the fit VMs. The fit VM for a

specified task is the VM which satisfies its security demand

against the trust level offered and also takes the least finish

time to execute it. The allocation of task selection from each

partition is accomplished as follows:

• Divide the batch of multiple workflows into partitions

(dl) as per depth level. In dl list, tasks have the same

level attribute and can be executed in parallel.

• In each partition, clusters are created by grouping the

tasks having the same security demand (SD) Cl
SD ¼

fTij : 8SDij ¼ SDg where SD [ {0.0, 0.1, 0.2…1.0}. In

this way, at most, eleven clusters can be formed in each

partition by grouping the tasks of the same security

demands. For allocation, the clusters are selected in

higher to lower order of security demand.

• Then, sort each cluster tasks as per the workloads in

descending order as shown in Algorithm #1 in step 4.

Workflow’s tasks are selected one by one from the

cluster. In this way, largest tasks are allocated first.

• Select Tij 2 Cl
SD form the sorted cluster, then find VFit

by Call VM Selection () as per step 10 in Algorithm

#1. Algorithm #2 selects the best fit machine, VFit, and

returns the status of tasks, Fail equals to 0 or 1. After

this NTF is updated as per step 13. Further, the set of

failed tasks (Tfailure) is updated as steps 14–17.

• After assignment of 8Tij 2 dl, Compute the value ofCCl
k

and Ptlk as per Eq. (2) and Eq. (8) respectively. Conse-

quently, the communication cost will be zero for the first

level of workflow task because it has no parent task.

• After completion of all tasks in each dl, find the idle gap

list and reduce the idle gap by inserting suitable tasks

into them by Call Idle Gap Reduction () in Algorithm

#1. The procedure of idle gap reduction is explained in

Algorithm #3.

• Finally, CCl
k and ðTPtlkÞ

u
are computed after the

allocation of tasks in the idle gap list as per Eq. (2) and

Eq. (11) respectively. Finally, a schedule will be

generated and QoS parameters are computed.
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4.1 VM selection

In this part, the VM selection procedure is presented for the

task at hand for mapping. The VM selection aims to find a

fit VM for each task assignment that satisfies the security

demands of tasks against the trust levels of VMs. Initially,

the security requirement of the task to be assigned (SDij) is

compared to the trust level of the cloud system, i.e.,

TLCS = max (TLk, k = 1,2,…,n). The VM selection proce-

dure works into two cases as follows:

Case 1 (If SDij £ TLCS): It implies that the cloud sys-

tem has a set of VMs having trust levels greater than or

equal to the security demand of the task. These

trustable VMs can fully satisfy the security demand of the

task and can execute it without any risk of failure. Further,

the best fit virtual machine (VFit) is the VM which is a fully

trustworthy machine offering the least finish time for the

task among all fit VMs (step 4, Algorithm #2). The VM

selection procedure returns VFit and that can execute the

task without any risk or zero failure probability as the

requirement is satisfied fully. Hence, the variable Fail

returns 0 indicating the task is not failed. Thus, in this case,

all the task is assigned onto a fully trustworthy machine as

shown in Algorithm #2 as per steps 2–5.

Case 2 (If SDij > TLCS): The cloud system is capable

enough of providing the services on demand with elasticity.

It implies that the cloud is able to supply the required

trustable resources for processing irrespective of the place,

time, and amount demanded. Yet there may be some cases,

often not happen, when the task’s security demand is not
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fully satisfied against the trust level of the VM available. It

means that the cloud system has a set of VMs having a trust

level lesser than the security demand of the task. In this

scenario, our SPMWA model finds the highest trustworthy

machine from the cloud system (max TLCS). In such a

special case, this is rarely happen at the cloud platform as

cloud systems are committed to supply the needed

resources on demand. Then, the SPMWA model finds the

highest trustworthy VM in the system (steps 6–13, Algo-

rithm #2). For this, the procedure tries to find the VM

against the security demand of the tasks by decrementing it

by one level. This process is continued till the updated SDij

reaches TLCS so that, the task could be assigned on the

highest trustworthy available VM (steps 9–11, Algorithm

#2). In this way, the failure probability can be minimized to

a possible minimum value. The task is considered partially

failed (Fail is set to 1) and counted as task failure.

Thus, the SPMWA model tries to assign each task to the

highest trustworthy machine in the cloud system so that the

failure probability is either zero or minimal. All the number

of task failure (NTF) are partially failures, not fully fail-

ures. The same stepwise VM selection procedure is pre-

sented in Algorithm #2.

4.2 Idle gap reduction

The idle gap reduction begins after the allocation of all

workflow tasks on fit VMs at each partition. The idle gaps

on VM at any given depth level are reduced by inserting

the suitable tasks from the next level succ(Tij). For better

visualization, we have shown in the illustration Sect. 4.1

with Fig. 4. At first, after allocation of all workflow tasks at

each level computes max TPtlk
� �

2 dl. Now, determine the

idle gap list, Igl ¼ Iglk:gk; 8 k
� �

at each level as per

Eq. (10). For insertion of tasks from next levels/partitions,

i.e., Tij 2 dlþ1, we need to find out the start time of to be

inserted tasks, the finish time of their predecessor, and

the communication cost between them. To find out the best

fitted idle gap for the tasks at hand are being allocated, two

conditions must satisfy, (i) The start time of inserted tasks

should be greater than or equal to the finish time of their

predecessors i.e., STijk C FTixk (ii) The gap size must be

greater than or equal to the expected time to complete the

inserted task such that gk�Eijk þ SOijk þ CCl;lþ1
ijxkr as per

steps 5–8 in Algorithm #3. Idle gaps (Iglk) has been reduced

Fig. 3 A sample of two multiple workflows application
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by allocating the task with fulfilling the security demand

and size of the task from the successor level so that these

tasks may be adjusted in the gaps onto VFit. The workflow

tasks have been inserted to preserve the precedence con-

straints of the multiple workflows. For any Iglk, the neigh-

boring tasks in the workflow tasks assigned to that VM are

considered so that communication overhead can be mini-

mized by the insertion. This phase avoids VMs idle gaps as

much as probable, resulting in optimizing the makespan of

the system. The idle gap reduction phase algorithm is

presented in Algorithm #3.

4.3 An illustrative example

An illustration has been demonstrated for a better under-

standing of the SPMWA model. We have considered a

virtual machine set with three instances, V = {V1, V2, V3}

for illustration purposes. The various characteristics

namely, processing capacities, ready time, trust levels,

failure coefficients, and machine distances associated to the

cloud VMs are presented in Table 4. Now, the trust level of

a cloud system, TLCS = max(TL1, TL2, TL3) = max(0.4, 0.6,

0.7) = 0.7.

Further, we consider two workflows, Wf 1 and Wf 2;

consisting of 8 and 7 tasks, respectively. And depth levels

are 4 and 3 respectively, as shown in Fig. 3. The corre-

sponding edge weights (inter-task communication)

between tasks have been shown by edge labels in Fig. 3.

For example, 3.4 is the edge weight (e113) between the

tasks T11 and T13 of Wf 1. Now, the workflow tasks attri-

butes, such as level attribute (lij), workload (Wlij), and

security demand (SDij) of each task are presented in

Table 5. The information regarding the workflow’s tasks

have been shown for the three VMs in Table 5. Let lami
=

90 ms, service rate (l) = 0.05, arrival rate (C) = 0.03, and

queue unit (Qu) = 10,000 MIs. The queuing time (Qt) = 50

for the batch of workflows which is computed by using

Eq. (13).

The expected time to compute (Eijk), security overhead

(SOijk), and failure probability ðFpijkÞ of each task are

computed onto all VMs as per Eqs. (6), (4), and (5),

respectively. And the same values are presented in Table 6.

Table 4 The heterogeneous VMs parameters

Number of VM (n) V1 V2 V3

Processing capacity (PCk) 10 08 15

Ready time ðRtkÞ 24 10 20

Trust level (TLk) 0.4 0.6 0.7

Failure coefficient (kk) 1.7 1.1 1.5

Vkr V1 0 5 2

V2 5 0 1

V3 2 1 0
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At first, the SPMWA divides the workflows shown in

Fig. 3, into the four partitions (dl) as (T11, T12, T21, T22,

T23), (T13, T14, T15, T24), (T16, T25, T26, T27) and (T17, T18),

according to depth levels 1, 2, 3, and 4 respectively.

Afterward, in each partition, the various clusters with dis-

tinct security demands of the workflow tasks are created.

Then, each cluster is sorted as per Wlij of the tasks in

descending order. For example, the first partition’s tasks

have three distinct security demands i.e., 0.8, 0.7, and 0.4.

So, three clusters are created from the first partition (d1),

namely,C1
0:8;C

1
0:7; and C1

0:4 and sorted according to their

workloads. Thus, the remaining partitions are also treated

in a similar manner. In allocation, SPMWA gives higher

priority to the clusters consisting of high-security demand

tasks. It implies that the higher-level clusters are allocated

prior to the lower ones. In any cluster, the tasks allocation

order is maintained as per the workload by sorting them in

descending order. So, the larger task gets assigned before

the smaller tasks in the specified cluster. As we know that

SPMWA follows the level/partition-wise tasks allocation

policy. Hence, the complete allocation order of clusters in

the partitions and their associated tasks within the specified

clusters are presented as follows:

d1 ¼ fC1
0:8 ¼ fT11g; C1

0:7 ¼ fT21; T23g; C1
0:4 ¼ fT22; T12gg

d2 ¼ fC2
0:9 ¼ fT13g; C2

0:6 ¼ fT24; T14g; C2
0:5 ¼ fT15gg;

d3 ¼ fC3
0:7 ¼ fT27; T16g; C3

0:6 ¼ fT26g; C3
0:4 ¼ fT25gg and

d4 ¼ fC4
0:7 ¼ fT18g; C4

0:4 ¼ fT17gg

At first, the ready time ðRtkÞ, i.e. (24, 10, 20) acts as the
start time (STijk) of Tij on respective VMs as shown in

Table 7. Now, the cluster from the first partition (d1) with

the highest security demand i.e., C1
0:8={T11}, is selected for

allocation having only one task. As we can see in Table 7,

the finish times of T11 on VMs are computed by using

Eq. (7). Now, T11 has security demand, (SD11) = 0.8 and

the cloud system can offer maximum trust level, TLCS-
= max (0.4, 0.6, 0.7) = 0.7. As, SD11[ TLCS, it means the

cloud system has no VM which can completely satisfy

SD11 and can execute it risk-free. Therefore, T11 decre-

ments its security demand by one level to approach its

value to the highest trustable VM in the system i.e., TL3-
= 0.7 (steps 7–9, Algorithm #2). Algorithm #2 returns

VFit = V3 and Fail = 1 for T11. While we see that V2

offered the least finish time, FT112 = 16. Yet, SPMWA

determines V3 as the fit machine for T11 by giving priority

to the security requirement over completion time, (i.e.,

TL3 = 0.7 is higher than TL2 = 0.6). Thus, T11 is assigned

on V3 starting from ST113 = 20 and finishing at

Table 5 The workflow tasks information

Wf 1 Wf 2

Tij lij Wlij SDij Tij lij Wlij SDij

T11 1 30 0.8 T21 1 20 0.7

T12 1 12 0.4 T22 1 25 0.4

T13 2 39 0.9 T23 1 10 0.7

T14 2 50 0.6 T24 2 90 0.6

T15 2 120 0.5 T25 3 55 0.4

T16 3 48 0.7 T26 3 120 0.6

T17 4 30 0.4 T27 3 125 0.7

T18 4 40 0.7 –

Table 6 Computed values of Eijk, SOijk, and Fpijk for the tasks on respective VMs

Tij Ei,j1 Ei,j2 Eij3 SOij1 SOij2 SOij3 Fpij1 Fpij2 Fpij3

T11 3 3.75 2 3.6 2.25 0.6 0.4933 0.1975 0.1393

T12 1.2 1.5 0.8 0 0 0 0 0 0

T13 3.9 4.875 2.6 4.5 3.375 1.2 0.5726 0.2811 0.2592

T14 5 6.25 3.33 1.8 0 0 0.2882 0 0

T15 12 15 8 0.9 0 0 0.1563 0 0

T16 4.8 6 3.2 2.7 1.125 0 0.3995 0.1042 0

T17 3 3.75 2 0 0 0 0 0 0

T18 4 5 2.667 2.7 1.125 0 0.3995 0.1042 0

T21 2 2.5 1.33 2.7 1.125 0 0.3995 0.1042 0

T22 2.5 3.125 1.667 0 0 0 0 0 0

T23 1 1.25 0.667 2.7 1.125 0 0.3995 0.1042 0

T24 9 11.25 6 1.8 0 0 0.2882 0 0

T25 5.5 6.875 3.667 0 0 0 0 0 0

T26 12 15 8 1.8 0 0 0.2882 0 0

T27 12.5 15.625 8.33 2.7 1.125 0 0.3995 0.1042 0
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FT113 = 22.60. The task failure set is updated by including

T11, Tfailure = {T11} (step 15, Algorithm #1). Here, T11
assignment is considered as the allocation with task failure

(F) having failure probability 0.1393 computed as per

Eq. (5). The start time and finish time of T11 are presented

without a rectangle box. In Table 7, the numerical values of

the start and finish time of VFit (best fit VM for allocation)

for respective tasks are shown in bold. And, the values

shown in rectangle boxes represent that corresponding

VMs can fully satisfy the security demand of the specified

task and vice versa.

Again, the next cluster is taken for allocation, C1
0:7 ¼

{T21, T23} having two tasks. For, T21, the finish time is

computed again by using Eq. (7) and presented in Table 7.

Here, SD21 = TLCS. It means T21 can be executed without

any failure on the cloud system. As per the allocation

process mentioned earlier, VFit = V3 with TL3 = 0.7 against

SD21 = 0.7. So, T21 is assigned and executed on V3 without

any risk of failure (i.e., Fp213= 0). The status of T21 on

allocation is Non-failure (NF). Finally, the start and finish

times are made bold in a rectangle box. T23 is also assigned

on V3 similar to T21 with status NF. For cluster, C
1
0:4 = {T22,

T12}, both tasks have a security demand is 0.4. The trust

levels of all VMs are greater than or equal to 0.4. There-

fore, these tasks can be allocated and executed on any VM

without risk. However, as per SPMWA for both tasks (T22
and T12) fit machine is VFit = V2 as V2 offers the least finish

time among all as shown in Table 7. Hence, T22 and T12 are

assigned on V2 with status as NF. In this way, the first-level

tasks are assigned. At this level, only the T11 task is exe-

cuted with risk due to the unavailability of VM, and the rest

of the tasks are executed risk-free with zero failure

probability.

As shown in Table 8, the processing time and total

processing time on Vk at the first depth level are

computed as per Eqs. (8) and (9) respectively. The

communication cost values are zero for first-level tasks on

all VMs. After this, the idle gap reduction (Algorithm #3)

procedure finds the idle gaps ðIg1kÞ on Vk by using

Eq. (10) and presented in Table 8. The successor tasks of

d1 from the next partition (d2) (T13, T24, T14, and T15) are

taken and tried to accommodate into the suitable idle gaps

in accordance to Algorithm #3. Consequently, only

T14 [ d2 is fitted in the idle gap (Ig12 : 9:97) on V2 because

the net processing time of T14 is less than the size of the

idle gap ðIg12Þ on V2 i.e., Enet
142 ¼ E142 þ SO142 þ

maxðCC12
14222Þ = 6.25 ? 0 ? 0 = 6.25\ 9.97. Here,

CC12
14222 is computed by using Eq. (1). After that,

SPMWA computes ðTPt1kÞ
u
as per Eq. (11) and given in

Table 8.

The level-wise tasks allocation and idle gap reduction

along with ready time, communication cost, processing

time, and maximum updated processing time on virtual

machines are also presented in Fig. 4 for better clarity. The

illustration of allocation of tasks and respective idle gap

reduction for remaining partitions have been presented in

Tables 9, 10, 11, 12 presenting various intermediary

computations following the similar procedure as discussed

earlier for the first partition tasks. In the second partition,

only one task T13 is allocated to fit VM with risk of failure,

and the other remaining tasks across the partitions are

assigned to their corresponding fit machine without risk or

zero failure probability.

On allocation of all workflows, the set of failed tasks is

Tfailure = {T11, T13} with the total NTF = 2 as per Eq. (14).

The failure probability of the set of workflows on cloud

system is computed as Fp = 0.3623 by using Eq. (17). As

it is observed from the above illustration that the number of

task failure is only two and happened only due to the

Table 7 Illustration of allocation of tasks at depth level = 1

Tasks Start Time  Finish Time 
Assigned VM Status 

Tij STij1 STij2 STij3 FTij1 FTij2 FTij3 

T11 24 10 20 30.60 16 22.60 V3 F 
T21 24 10 22.60 28.70 13.63 23.93 V3 NF 

T23 24 10 23.93 27.70 12.38 24.60 V3  NF 

T22 24 10 24.60 26.50 13.13 26.26 V2  NF 

T12 24 13.13 24.60 25.20 14.63 25.40 V2  NF 

Various symbols meaning for Tables 7-12 
           : Security demand Tij is fully satisfied on respective VM 

F: Failure 

NF: Non-Failure  
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unavailability of the demanded VM in the cloud system. As

per Eq. (12), makespan (Ms) of the set of workflows can be

computed as sum of maximum ðTPtlkÞ
u
on each depth

level presented in Tables 8, 10, 12, and Fig. 4. Ms = 50

? (24.60 ? 15.30 ? 21.70) = 50 ? 61.60 = 111.60

units. Therefore, it is expected that on larger workflow sets

and VMs the proposed model would exhibit better per-

formance behavior.

4.4 Time complexity analysis

The computational time of the proposed model for parallel

multiple workflows is defined in terms of the number of

workflows (NWf ), depth level (L), number of tasks ðNwf iÞ

and edges weight between (eixy) in a single workflow, and

the number of VMs (n). The time complexity of the

SPMWA model is the computational time taken for com-

plete execution, as a function input parameter which is

discussed in various steps as follows:

• Partitioning: The Wf of depth level is divided into L

partitions. As per the algorithmic template of SPMWA,

the time complexity for this process can be computed as

O L� NWf � Nwf i

� �
.

• Sorting: Partitions are sorted as per security demand in

descending order with time complexity O NllogNlð Þ,
• Allocation: The computational time of task allocation

for each partition and adjusting the idle gaps by

Fig. 4 Allocation Schedule by

using the SPMWA model

Table 8 Illustration of idle gap reduction for depth level = 1

Parameter V1 V2 V3 Remarks

CC1
k

0 0 0 No communication as first-level tasks have no parents

Pt1k 24 14.63 24.60 Computed as per Eq. (8)

TPt1k 24 14.63 24.60 Computed as per Eq. (9)

Ig1k 0.60 9.97 0 Idle gaps by subtracting, maxðTPt1kÞ � TPt1k as per Eq. (10). T14 is inserted into Ig12 as its E
net
142 is less than

Ig12 i.e., 6.25\ 9.97

ðIg1kÞ
u 3 3.72 3 Ig1k is updated by subtracting net processing time from Ig12 i.e., 9.97 - 6.25 = Ig 3.72

ðTPt1kÞ
u 24 20.86 24.60 ðTPt1kÞ

u
is updated as per Eq. (11), wherever tasks are inserted

Bold denotes the maximum of all VMs

3 : No task can fit in the idle gap due to the smaller gap size
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checking the fit VM created during the allocation phase

is in the same order. The allocation of each task checks

the fit VM using IF-Else condition can be done in time

O(1). In the same way, each task allocation assigned

onto the set of VMs can be done in O L� Nl � nð Þ.

Hence, the total time complexity for SPMWA model is

O L � NWf � Nwf i

� �
þ O NllogNlð Þ þ O L � Nl � nð Þ ffi

O NWf � NllogNl

� �
where Nl is the number of tasks in lth

partition, Nl � Nwf i ; NWf [ n and L ¼ logNl.

Table 9 Illustration of allocation of tasks at depth level = 2

Tasks Start Time Finish Time 
Assigned VM Status 

Tij STij1 STij2 STij3 FTij1 FTij2 FTij3 

T13 24.60 24.60 24.60 33.00 32.85 28.40 V3 F 
T24 24.60 24.60 28.40 35.40 35.87 34.40 V3 NF 

T15 24.60 24.60 34.40 37.50 39.60  42.40  V2 NF 

Various symbols meaning for Tables 7-12 
           : Security demand Tij is fully satisfied on respective VM 

F: Failure 

NF: Non-Failure  

Table 10 Illustration of idle gap

reduction for depth level = 2
Parameter V1 V2 V3 Remarks

CC2
k

0 0 5.50 Total communication cost CC2
k is computed as per Eq. (2)

Pt2k 0 15 9.80 Pt2k is computed as per Eq. (8)

TPt2k 0 15.00 15.30 TPt2k is computed as per Eq. (9)

Ig2k 15.30 0.30 0 Find Idle gaps as per Eq. (10)

ðIg2kÞ
u 3 3 3 9 : No task can fit in the idle gap due to the small gap sizes

ðTPt2kÞ
u 0.00 15.00 15.30 ðTPt2kÞ

u
is computed as per Eq. (11)

Bold denotes the maximum of all VMs

Table 11 Illustration of allocation of tasks at depth level = 3

Tasks Start Time Finish Time 
Assigned VM Status 

Tij STij1 STij2 STij3 FTij1 FTij2 FTij3 

T27 39.90 39.90 39.90 55.10 56.65 48.23 V3 NF 
T16 39.90 39.90 48.23 47.40 47.02 51.43 V3 NF 

T26 39.90 39.90 51.43 53.70 54.90  59.43 V2 NF 

T25 39.90 54.90 51.43 45.40 61.77 55.09 V1  NF 

Various symbols meaning for Tables 7-12 
           : Security demand Tij is fully satisfied on respective VM 

F: Failure 

NF: Non-Failure  
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5 Performance evaluation

In this section, to evaluate the performance of SPMWA,

simulation experiments have been conducted on a system

having the configuration, Intel (R) i7-8700

CPU@3.20 GHz, 64 GB RAM on a single physical

machine by implementing a workflow allocator prototype

in MATLAB 8.5. We compare the performance of the

SPMWA model with four standard workflow allocation

models such as HEFT, LBSIR, SPM1, and SPM2. HEFT

[11] and LBSIR [39] are designed to generate time effec-

tive schedule without considering the security requirements

of the workflow tasks. In the literature section, we have

seen that HEFT is rank based list scheduling heuristic that

is still competitive for workflow allocation problems.

HEFT works in two phases as follows: in the priority

phase, it determines the upward rank for maintaining the

precedence of the tasks, and in the resource selection

phase, it selects the resources which have the earliest finish

time.

Moreover, LBSIR is a level-based heuristic for multiple

workflow allocation problem to optimize total completion

time. After partitioning of workflow tasks in accordance to

level attribute, LBSIR also works in two phases viz. allo-

cation and idle slot reduction. In the allocation phase, the

mapping of the task is done on the machine that offers the

least execution time. In the second phase, best-fitted suc-

cessor tasks will be accommodated into the idle slots left

during the allocation phase between two tasks at the same

machines getting a better quality of the schedule. In each

partition, the selection of workflow tasks is accomplished

in two ways, largest module selection (LMS) and smallest

module selection (SMS), resulting in two variants of

LBSIR namely LBSIR with largest module selection (L-

LMS) and LBSIR with smallest module selection (L-SMS)

respectively. Therefore, we are considering them for per-

formance evaluation in our work.

As mentioned earlier in Sect. 2.3 in detail, the work

presented by Bittencourt and Madeira [35] suggested four

strategies to manage the multiple workflow allocation. For

performance evaluation, we have taken two strategies

namely sequential-based and merge-based multiple work-

flows strategies proposed in [35]. The security upward

ranks are computed following the method presented in

[24]. Further, the security prioritized VM selection and

allocation has been done in accordance to SPHEFT [32].

This way, two versions of Security Prioritized Multiple

workflow allocation (SPM) models namely SPM1 (Merge-

Based) and SPM2 (Sequential-Based) respectively have

been designed for comparison purposes.

5.1 Parameter setting

In this section, an experimental study has been carried out

for random DAGs and real application DAGs such as

Montage, CyberShake, and LIGO, and the results are pre-

sented in Sect. 5.2 and Sect. 5.3 respectively. The param-

eters/variables associated to workflow applications and

heterogeneous VMs in IaaS cloud environments are ran-

domly generated in the specified range using a uniform

Table 12 Illustration of idle gap reduction for depth level = 3

Parameter V1 V2 V3 Remarks

CC3
k

12.40 6.70 7.40 CC3
k is computed as per Eq. (2)

Pt3k 5.50 15 11.53 Pt3k is computed as per Eq. (8)

TPt3k 17.90 21.70 18.93 TPt3k is computed as per Eq. (9)

Ig3k 3.80 0 2.77 Finds idle gaps as per Eq. (10). T17 & T18 are inserted into Ig31 and Ig33 on V1 & V3 respectively

ðIg3kÞ
u 0.00 3 0.10 Ig31 and Ig33 is updated by subtracting net processing times, (Enet

171 ¼ 3:80) and (Enet
183 ¼ 2:67)

ðTPt3kÞ
u 21.70 21.70 21.60 ðTPt3kÞ

u
is computed as per Eq. (11)

Bold denotes the maximum of all VMs

Table 13 Common input parameters for the experiments

S. No Input parameters Range

1 Expected Time to execution (Eijk) 1–300,000

2 Edge weight (eixy) 1–3,000

3 Security demand (SDij) of Tij 0.0–1.0

4 Machine distance (Vkr) 1–100

5 Communication cost ðCCl
kÞ 1–300,000

6 Ready time ðRtkÞ 1–1,000

7 Trust level (TLk) 0.1–0.6

8 Failure coefficient (kk) 0.1–5.5

9 Service rate ðlÞ 0.05

10 Arrival rate (C) 0.03

11 Queue unit (Qu) 20,000
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Fig. 5 Boxplots of NTF on varying number of workflows

Fig. 6 Boxplots of failure probability on varying number of workflows
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distribution. The security demand of the task and the trust

level of the virtual machine are in the normalized range [0,

1]. For reproduction of the results, the common parameter

setting is given in Table 13 for Sect. 5.2 and Sect. 5.3.

And, the other remaining parameters used in the various

experiments are given in separate cases clearly.

(i) Parameter setting for random workflows

Case 1: Experiments on varying number of

workflows

In this case, the number of workflows is varied

from 16 to 512, and the results are shown in Figs 5,

6, 7 and Tables 14, 15, 16 in Sect. 5.2. The fixed

input parameters used in these experiments are as

follows:

Number of VMs (n) = 64, Number of depth

level (dmax) = 8, Number of tasks in each depth

level ðNl
wf i
Þ = 16, Number of tasks (Nwf i ) in a

workflow = 128.

Case 2: Experiments on varying number of VMs

In this case, the number of VMs is varied from

16 to 512, and the results are shown in Figures 8, 9,

10 and Tables 17, 18, 19 in Sect. 5.2. The fixed

input parameters used in these experiments are as

follows:

Number of workflows (NWf ) = 64, Number of

depth level (dmax) = 16, Number of tasks in each

depth level ðNl
wf i
Þ = 32, Number of tasks (Nwf i ) in a

workflow = 512.

(ii) Parameter setting for real application workflows

In this case, the number of real application

workflows is varied from 16 to 512, and the results

are shown in Figs. 12, 13, 14 and in Sect. 5.3. Due

to fixed structure, the number of tasks in Montage,

LIGO, and Cybershake in the study is 25, 30, and

40, and the depth levels are 9, 5, and 6 respectively.

The fixed input parameters in these experiments are

as follows: Number of VMs (n) = 32, Number of

depth level (dmax) = 9(montage)/5(CyberShake)/

6(LIGO).

All the experiments are repeated 20 times to find out the

representative values of the objective parameters to handle

the randomness during experiments. Tables 14, 15, 16, 17,

18, 19 have been presenting the minimum (Min), maxi-

mum (Max), average (Avg), and standard deviation (Std)

for all the cases. The superior values are also shown in bold

in all the tables.

Fig. 7 Boxplots of Makespan on varying number of workflows
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5.2 Experimental results for random workflows

In this section, the experiments have been conducted dis-

cussing the results for randomly generated workflows for

the first two cases such that a varying number of workflows

and VMs. For this, the Eijk for the VM and workflow tasks

has been generated by using the standard ETC simulation

benchmark model [59] with high machine and workflow

tasks heterogeneity for an inconsistent environment. So,

the range of Eijk becomes 1–300,000. As per Eq. (2), CCl
k

is becomes in the range 1–300,000 which is equal to the

range of Eijk.

Case 1: Varying Number of Workflows

For the first case, the experimental results presenting a

varying number of workflows for L-LMS, L-SMS, HEFT,

SPM1, SPM2, and SPMWA are shown in Figs. 5, 6, 7

using boxplot for better representation and graphical self-

interpretation and Tables 14, 15, 16. For performance

comparison, simulation results of each algorithm viz.

L-LMS, L-SMS, HEFT, SPM1, SPM2, and SPMWA have

been done.

As expected, the number of task failure (NTF) is

increasing as the number of workflows is increased for

fixed VMs for all considered models, as shown in Fig. 5(a–

f) and Table 14. The performance of the SPMWA model is

observed to be superior among all the models for all batch

of workflows. The reason behind this is strictly satisfying

the security demand of the tasks on allocation if any VM

with sufficient trust is available. It reduces the number of

tasks failure (NTF) on the allocated VMs. As shown in

Fig. 5(a–f) and Table 14, SPMWA clearly exhibits its

superior performance in terms of best, average, worst, and

standard deviation values of NTF in comparison to LBSIR

variants, HEFT, SPM1, and SPM2 for varying number of

workflows from 16 to 512. In this case, the average per-

formance gain of SPMWA over LBSIR, HEFT, SPM1, and

SPM2 on account of NTF is approximately 43%. As

expected, the performance order on NTF is SPMWA,

SPM1, SPM2, LBSIR, and HEFT.

As shown in Fig. 6(a–f) and Table 15, SPMWA out-

performs to all considered models on account of the failure

probability. This is due to the allocation of high-security

demand tasks in each partition to higher trustworthy VMs

satisfying requirements fully. In this case, the failure

probability of tasks becomes zero. Moreover, if the security

demand of a task is not satisfied against the trust level of

Table 14 Computed NTF of

LBSIR, HEFT, SPM1, SPM2,

and SPMWA for varying

workflows

Number of task failure

NWf L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 924 902 827 800 817 741

Max 1574 1584 1659 1651 1651 848

Avg 1284.46 1287.25 1298.61 1278.52 1285.75 798.75

Std 218.21 233.98 292.91 268.94 271.74 16.09

32 Min 1678 1644 1562 1472 1536 1509

Max 3197 3234 3336 3316 3326 1639

Avg 2289.72 2282.45 2263.05 2242.45 2253.05 1597.63

Std 485.84 512.48 574.73 547.43 563.44 30.06

64 Min 3368 3344 3249 3124 3138 2219

Max 6412 6457 6550 6513 6524 2349

Avg 4585.45 4577.62 4557.35 4482.35 4509.74 2279.71

Std 968.21 995.02 1058.29 991.01 1017.17 38.62

128 Min 6651 6606 6492 6389 6463 5212

Max 12,972 13,026 13,154 13,051 13,125 5438

Avg 10,284.35 10,295.52 10,309.44 10,206.41 10,280.42 5309.65

Std 1821.48 1852.18 1920.18 1819.56 1897.76 59.54

256 Min 13,115 13,070 12,947 12,729 12,844 11,722

Max 26,066 26,110 26,251 26,042 26,148 12,145

Avg 20,096.62 20,105.53 20,116.01 19,901.32 20,026.13 11,936.22

Std 4878.26 4913.78 5016.06 4725.71 4917.64 93.9972

512 Min 34,972 34,423 35,864 35,029 35,453 21,574

Max 50,006 49,510 51,208 50,373 50,797 21,822

Avg 43,997.22 43,483.41 45,081.17 44,246.22 44,670.23 21,691.42

Std 6496.15 6534.49 6646.27 6410.88 6506.02 112.15
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the VM, then it is assigned onto the VMs which offer the

least risk of failure. Hence, the Min and Max failure

probability of SPMWA is below 7–20% in all cases while

other models give a minimum (Min) failure probability of

18% and maximum (Max) failure probability of 99% as

shown in Table 15. In Fig. 6(a–f), SPMWA clearly exhibits

it is superior performance in terms of best, average, stan-

dard deviation, and worst values of failure probability in

comparison to LBSIR variants, HEFT, SPM1, SPM2 for all

batch sizes from 16 to 512. So, it is evident that SPMWA

outperforms among all algorithms on failure probability. In

this case, the average performance gain on the failure

probability of SPMWA over SPM1, SPM2, LBSIR, and

HEFT has been improved by approximately 73%. The

performance order on the failure probability is the same as

earlier.

In Fig. 7(a–f) and Table 16, the trend of the makespan

(Min, Avg, Max) values are increased when the number of

workflows increases as expected. Both variants of the

LBSIR clearly show superior performance on makespan for

all varying batch sizes. However, SPMWA is showing

better results in terms of makespan other models excluding

the LBSIR variants. The reason for the superior results of

LBSIR variants on makespan is that LBSIR variants target

makespan to minimize without considering the security

demand of the task. The average improvement of LBSIR

variants over the SPMWA is approximately 21% in terms

of makespan. However, SPMWA has better performance

than HEFT, and SPM variants. The performance

improvement against them is approximately 89%, 90%,

and 97% respectively, with performance order such as

LBSIR, SPMWA, HEFT, SPM1, and SPM2.

Case 2: Varying number of VMs

For the second case, the experimental results presenting

varying the number of VMs for L-LMS, L-SMS, HEFT,

SPM1, SPM2, and SPMWA are shown in Figs 8, 9, 10 and

Tables 17, 18, 19 for n = 16 to n = 512. For the perfor-

mance comparison, simulation results of each algorithm

viz. L-LMS, L-SMS, HEFT, SPM1, SPM2, and SPMWA

have been done. The best, worst and average values of the

number of task failure, failure probability, and makespan of

obtained solutions are reported in Tables 17, 18, 19,

respectively.

As presented in Fig. 8(a–f) and Table 17, the number of

task failure is in a decreasing trend when the number of

VMs is increased on keeping the fixed batch of workflows

Table 15 Computed failure

probability of LBSIR, HEFT,

SPM1, SPM2, and SPMWA for

varying workflows

Failure probability

NWf L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 0.41780771 0.40980595 0.46193543 0.21205328 0.31205328 0.06971988

Max 0.92090465 0.92964141 0.97639928 0.78672588 0.78886909 0.40148686

Avg 0.68648617 0.69446336 0.77561393 0.62194596 0.66105399 0.18566491

Std 0.41501985 0.40705119 0.47109597 0.47109597 0.64510466 0.13233911

32 Min 0.46045686 0.46999685 0.43834144 0.37655183 0.39491497 0.13698623

Max 0.91601856 0.90399986 0.86506832 0.76506832 0.77338433 0.29265141

Avg 0.63717201 0.64492252 0.64188587 0.54313586 0.57743300 0.17441038

Std 0.29102402 0.27838174 0.30338879 0.30338879 0.35941159 0.11378482

64 Min 0.40711625 0.40268412 0.40370586 0.18034843 0.23244708 0.14080143

Max 0.99939836 0.98242828 0.99483059 0.89483059 0.99522263 0.26776503

Avg 0.70510046 0.70345435 0.72040759 0.61539719 0.66522918 0.17238576

Std 0.29926094 0.30029151 0.35589094 0.33589093 0.51083522 0.12855644

128 Min 0.38386372 0.38904075 0.35648627 0.34648627 0.19911258 0.14911514

Max 0.93804049 0.95868924 0.97562432 0.90998349 0.93333231 0.21254426

Avg 0.66633752 0.66249589 0.70514810 0.62914810 0.63311068 0.16806132

Std 0.37922802 0.37987547 0.45096312 0.39096312 0.42820587 0.12094725

256 Min 0.34862577 0.34223097 0.29485761 0.29485760 0.17675254 0.14655866

Max 0.86124714 0.86586449 0.94563898 0.84563898 0.89369889 0.20926695

Avg 0.61311255 0.61084080 0.63812877 0.58797635 0.59581893 0.17935648

Std 0.35899546 0.37922294 0.43186124 0.38186124 0.60543060 0.11955267

512 Min 0.38112709 0.36434602 0.44223935 0.39695359 0.14430318 0.14387614

Max 0.97701689 0.97506096 0.94835382 0.84835382 0.89705327 0.28048212

Avg 0.67207622 0.67015136 0.69554231 0.64454231 0.62710382 0.19013570

Std 0.4699139 0.4670278 0.61785037 0.41785037 0.50060319 0.12983303
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for all considered models. This is because of the better

exploitation of parallelism available in the workflows. In

various runs, Min and Max NTF for SPMWA are 9975 and

13,231 in all cases, while for other models these values are

12,129 and 24,608, respectively. As we see in Fig. 8(e–f),

when the number of VMs increases from 16 to 512, the

average number of task failure for SPMWA is decreasing.

It is due to the fact that when the number of VMs is

increased, the chances of getting more trustworthy

machines increase. For this metric, SPMWA outperforms

on all other models in the study. In this case, the average

performance gains of SPMWA on NTF over SPM1, SPM2,

and LBSIR, HEFT are approximately in the range of 37%-

40%. The performance order is SPMWA, SPM1, SPM2,

LBSIR, and HEFT.

As can be seen in Fig. 9(a–f) and Table 18, the failure

probability is slightly decreasing when the number of VMs

is increased. The average failure probability of SPMWA is

below 18% in all cases while other algorithms attain the

Min failure probability 44%. As shown in Fig. 9(d–f),

when we test the SPMWA model on a large number of

VMs, then the average failure probability of the proposed

model becomes lower e.g., Fp = 15 - 12% for a number

of VMs from 256 to 512. Because when the number of

machines is increased, the chances of more trustworthy

machines to assign the task increase. So, it is evident that

SPMWA outperforms all algorithms on failure probability.

In this case, the average performance gain on failure

probability for SPMWA over SPM1, SPM2, and LBSIR,

HEFT has been improved by approximately 77%. The

performance order is SPMWA, SPM1, SPM2, LBSIR, and

HEFT.

When the number of VMs increased, best, worst, and

average values of the makespan have the same trend as

number of task failure as shown in Fig. 10(a–f) and

Table 19. In this case, LBSIR variants clearly show supe-

rior performance on makespan among all from 16 to 256

VMs. The reason behind the superior results of LBSIR

variants on makespan is the same as mentioned earlier. The

SPMWA is showing better results in terms of makespan

among all strategies except LBSIR variants. However, on a

large number of VMs, the makespan of LBSIR gets closer

Table 16 Computed makespan of LBSIR, HEFT, SPM1, SPM2, and SPMWA for varying workflows

Makespan

NWf L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 2,110,829.18 2,138,696.01 28,667,300.19 29,167,300.19 33,341,319.27 2,254,976.04

Max 2,298,726.71 2,283,559.53 30,739,599.57 31,539,599.57 54,889,142.03 2,426,075.19

Avg 2,192,722.47 2,195,217.02 29,597,752.57 30,122,752.57 47,072,052.68 2,338,265.46

Std 56,075.01 37,165.21 577,629.74 577,629.20 6,111,452.65 50,181.79

32 Min 2,163,456.65 2,126,016.92 29,084,308.53 29,784,308.53 54,878,332.13 2,298,038.54

Max 2,337,844.07 2,318,937.21 30,689,093.44 32,403,995.69 79,312,983.17 2,550,408.46

Avg 2,248,891.15 2,220,131.21 30,044,742.04 30,719,742.04 69,255,595.31 2,387,295.98

Std 56,643.31 46,756.39 408,641.04 4,017,416.53 6,801,229.94 52,197.22

64 Min 2,193,138.47 2,219,679.56 29,820,023.81 30,375,530.05 92,144,758.67 2,411,878.69

Max 2,339,394.26 2,385,564.43 31,371,995.13 32,471,995.13 127,334,623.90 3,538,371.51

Avg 2,258,316.83 2,273,152.16 30,519,671.32 31,323,671.37 110,109,338.62 2,618,076.28

Std 48,037.12 44,710.99 376,786.31 387,768.40 9,949,552.69 240,623.47

128 Min 2,286,174.14 2,285,655.97 30,326,332.42 31,026,332.42 166,326,253.35 2,681,616.65

Max 2,427,401.00 2,399,587.74 31,547,308.31 32,947,308.31 212,303,263.54 8,797,213.34

Avg 2,355,962.45 2,332,364.97 31,052,999.29 31,863,554.17 193,454,869.52 3,379,220.62

Std 38,403.78 33,643.58 393,435.67 401,412.03 13,421,121.18 1,437,976.08

256 Min 2,423,674.01 2,411,595.22 30,733,293.49 30,831,538.64 317,175,268.82 3,078,776.53

Max 2,552,990.92 2,502,598.09 32,314,380.89 32,412,626.04 401,123,807.44 4,586,197.46

Avg 2,485,048.72 2,449,196.02 31,540,369.97 31,638,615.12 356,740,890.52 3,701,275.03

Std 35,497.37 27,017.53 464,163.37 471,197.53 21,401,720.74 408,133.48

512 Min 2,423,674.01 2,411,595.22 30,733,293.49 30,831,538.64 317,175,268.84 3,078,776.53

Max 2,797,480.59 2,726,130.62 32,886,957.22 32,891,608.43 582,194,393.82 8,313,529.27

Avg 2,567,562.21 2,522,091.28 31,668,274.88 31,737,687.93 419,200,114.41 4,161,610.04

Std 29,869.31 19,985.91 447,346.32 446,695.02 16,565,528.34 1,872,780.05
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Fig. 8 Boxplots of NTF on varying number of VMs

Fig. 9 Boxplots of failure probability on varying number of VMs
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to the makespan of SPMWA as can be seen in Fig. 10(d–e).

SPMWA also tries to fill the idle gaps produced due to the

size difference between tasks at the depth level by

accommodating the best-fitted task which in turn, ensures a

better makespan. Based on the outcomes of Table 19 and

Fig. 10a, it is observed that HEFT and SPM1 algorithm

performs better than SPMWA on makespan for a very

small number of machines (e.g., n = 16). However, when

the number of VMs is increased, the proposed model

clearly shows better performance on makespan against

HEFT and SPM1. The performance gain on the makespan

of the proposed model over HEFT, SPM1, and SPM2 is

approximately 48%, 49%, and 98% but lagging to LBSIR

variants by 27%.

5.3 Experimental results for real application
workflows

In this section, the experiments have been conducted for

real application workflows (Montage_25, Cybershake_30,

and LIGO_40) on a varying number of workflows. The

parameters taken in this study are as mentioned earlier in

Sect. 5.1.

The Montage_25, Cybershake_30, and LIGO_40 having

25, 30, and 40 tasks respectively, are taken for the exper-

iments from the Pegasus website [60] as shown in Fig. 11a,

b, and c. The Montage workflow has scope in astronomy. It

creates unique sky mosaics from a set of input images in

the ‘‘Flexible Image Transport System (FITS)’’ format. The

majority of its tasks are simple. I/O intensives are used to

describe processing capacity. The CyberShake is employed

in synthetic seismograms to determine characteristics. The

Laser Interferometer Gravitational Wave Observatory

(LIGO) is a spacecraft that detects gravitational waves. It

developed a scientific methodology to identify gravita-

tional waves produced by various cosmic events [50, 51].

These real workflows are frequently used to examine the

quality of schedules generated by various models proposed

in the literature Here, SPMWA, L-LMS, L-SMS, HEFT,

SPM1, and SPM2 models are evaluated to see how failure

probability affects schedule quality.

Figures 12, 13, 14 present the number of task failure,

failure probability, and makespan for Montage, Cyber-

Shake, and LIGO when varying the number of real work-

flows from 16 to 512. SPMWA outperforms to all other

models from all batch sizes of real workflows on account of

Table 17 Computed NTF of

LBSIR, HEFT, SPM1, SPM2,

and SPMWA for varying VMs

Number of task failure

n L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 13,241 13,227 13,135 12,377 12,534 11,587

Max 26,228 26,248 26,326 25,568 25,725 11,824

Avg 20,153.35 20,157.7 20,164.51 19,406.49 19,563.63 11,710.75

Std 3946.65 3966.80 4008.57 3901.80 3927.98 63.33

32 Min 13,175 13,106 12,968 12,566 12,657 11,044

Max 26,035 26,106 26,220 25,818 25,909 11,330

Avg 18,522.35 18,510.55 18,484.15 18,082.15 18,173.15 11,204.55

Std 4755.81 4800.28 4899.66 4691.15 4759.91 69.67

64 Min 13,229 13,143 12,928 12,435 12,928 12,928

Max 25,961 26,094 26,316 25,823 26,316 13,231

Avg 17,155.40 17,108.25 17,014.45 16,521.45 17,014.45 13,083

Std 4246.76 4326.69 4480.69 4319.06 4411.13 87.88

128 Min 13,652 13,465 13,089 12,129 12,579 9975

Max 25,579 25,782 26,215 25,255 25,705 10,258

Avg 19,050.80 19,032.10 19,015.60 18,055.46 18,505.52 10,128.30

Std 5153.62 5320.87 5693.37 5789.44 5957.33 76.027

256 Min 16,832 16,696 16,350 15,739 16,053 11,825

Max 25,251 25,571 26,253 25,642 25,956 12,170

Avg 20,256.00 20,279.60 20,340.80 19,729.77 20,043.81 12,060.41

Std 3440.38 3622.43 4046.12 3989.96 4009.79 108.87

512 Min 14,721 14,317 13,115 12,425 12,800 10,768

Max 24,608 25,046 26,217 25,527 25,902 10,986

Avg 20,457.33 20,527.83 20,707.33 20,017.14 20,392.62 10,904.67

Std 4446.75 4824.98 5887.19 5712.76 5754.78 97.84
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the NTF as presented in Fig. 12. The number of task fail-

ures increases on increasing the number of workflows

(Montage_25, Cybershake_30, and LIGO_40) for all con-

sidered models keeping all the other input parameters fixed.

Again, the performance order is SPMWA, SPM1, SPM1,

LBSIR, and HEFT. The performance gain of SPMWA has

been enhanced over SPM1, SPM2, LBSIR, and HEFT

(taking the average of all three sets of workflows), in the

range of 30–36% approximately.

As shown in Fig. 13, SPMWA outperforms all other

models for every batch size from small to larger real

workflows on account of the failure probability. The trend

of SPMWA on failure probability keeps slightly increasing

on increasing the number of real workflows for Mon-

tage_25, Cybershake_30, and LIGO_40 keeping all the

other input parameters fixed. The performance order is

SPMWA, SPM1, SPM1, LBSIR, and HEFT as expected.

The performance gain of SPMWA has been enhanced over

SPM1, SPM1, LBSIR, and HEFT, as observed in the

average of all three workflows, is in the range of 47–55%

approximately.

Makespan is an increasing trend when the batch size is

increased for this case as shown in Fig. 14. Both variants of

LBSIR clearly show superior in terms of makespan on all

scientific workflows from smaller to larger batch sizes.

However, on a large number of every real workflow, the

makespan of SPMWA gets closer to the makespan of

LBSIR as can be seen in Fig. 14. The overall performance

gain of LBSIR has been enhanced over SPMWA as

observed is 19%, 20%, and 38% approximately on Mon-

tage, CyberShake, and LIGO workflows. However,

SPMWA is showing better than HEFT, SPM1, and SPM2,

in terms of makespan, and the performance gain is 18%,

20%, and 33% on Montage, CyberShake, and LIGO sci-

entific workflows with 16 to 512 workflows sets. The

performance order on makespan is LBSIR, SPMWA,

HEFT, SPM1, and SPM2. The worst performance is

observed by SPM2 because workflows are assigned one

after another in sequential exploiting only task-level par-

allelism in the workflow.

In summary of experimental results of Sects. 5.2

and 5.3, SPMWA performs remarkably best among all

considered models in terms of the failure probability,

henceforth, number of task failure by achieving the higher

optimal values on the objective for both cases. The per-

formance order is SPMWA, SPM1, SPM2, LBSIR, and

Table 18 Computed failure

probability of LBSIR, HEFT,

SPM1, SPM2, and SPMWA for

varying VMs

Failure probability

n L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 0.49540295 0.49950648 0.49872453 0.49872453 0.50345186 0.13297740

Max 0.98680623 0.98579043 0.98581180 0.98581180 0.98232667 0.22050118

Avg 0.77642564 0.77190286 0.79293019 0.70216307 0.75924079 0.17629113

Std 0.48769091 0.49113956 0.50370895 0.49018641 0.50345919 0.13286830

32 Min 0.58767142 0.58744126 0.58600623 0.55600620 0.60219977 0.13815901

Max 0.90676816 0.91287493 0.92131572 0.75879882 0.86091510 0.20723362

Avg 0.71058551 0.71592901 0.73081432 0.65195606 0.69947640 0.17024516

Std 0.37314403 0.38085002 0.38940868 0.35940851 0.42239395 0.12117481

64 Min 0.48785941 0.48426803 0.48115135 0.46115134 0.45078723 0.15086870

Max 0.84946963 0.84974616 0.84775085 0.84775086 0.82626065 0.18011457

Avg 0.63917655 0.64113203 0.65274838 0.62035838 0.63357437 0.16377027

Std 0.32596674 0.33262440 0.54784002 0.34788459 0.36904375 0.11115614

128 Min 0.51594003 0.50953323 0.51002192 0.47002192 0.50065642 0.16018718

Max 0.86117738 0.85865077 0.88502721 0.80156616 0.84966351 0.16999579

Avg 0.68823673 0.69982738 0.73366906 0.64866906 0.66084780 0.16451630

Std 0.36267195 0.38331087 0.42852453 0.38682207 0.40060956 0.01321524

256 Min 0.53506523 0.52714807 0.50124283 0.44124283 0.49532881 0.14548126

Max 0.80501808 0.81290424 0.86007077 0.83007077 0.80193763 0.15432674

Avg 0.66857609 0.67448073 0.67757188 0.63169688 0.64839048 0.15007623

Std 0.26384422 0.28230710 0.32522541 0.29541152 0.34954520 0.01262143

512 Min 0.56644160 0.55733438 0.59102072 0.51102072 0.56611105 0.12142489

Max 0.77708917 0.79899192 0.88670522 0.73176042 0.73133870 0.13227547

Avg 0.69362313 0.69910254 0.74645350 0.63245350 0.66643355 0.12648988

Std 0.21966101 0.24158836 0.30457895 0.28540093 0.30482349 0.01102571
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HEFT. It is due to the fact that SPMWA is a security-

adaptive workflow allocation method. Therefore, it ensures

the allocation of high-security demand tasks in each par-

tition to higher trustworthy VMs satisfying requirements

fully. As successful task execution with the least failure

probability is an inevitable need in the IaaS cloud. On

makespan LBSIR variants are better, however, for a large

number of VMs SPMWA becomes closer to them. For real

application workflows such as Montage, CyberShake, and

LIGO, the proposed SPMWA model is also exhibiting the

best performance on failure probability and number of task

failure for all considered real workflow sets. The perfor-

mance trend is the same as in the case of random work-

flows. Thus, SPMWA is very flexible from a programming

point of view, which is also an important concern of

designers of workflow allocation with security prioritiza-

tion applications. Thus, we can argue that the SPMWA

may greatly contribute to a secure and robust system

transaction with satisfied desired constraints.

6 Conclusion and future work

Nowadays, cloud computing is adopted in many emerging

application areas such as e-commerce services, medical

services, transaction processing systems, scientific work-

flow processing, and many more. Workflow allocation

satisfying the security requirements in the cloud system is

also one of the core issues. In this paper, Security Priori-

tized Multiple Workflow Allocation (SPMWA) model is

proposed that integrates the security constraints into allo-

cation to minimize the failure probability of the workflow

execution in the cloud computing environment. SPMWA

gives more chance to high-security demanded tasks to

get allocated onto the higher trustworthy VMs during

allocation. The performance of SPMWA has been com-

pared with standard algorithms, namely HEFT, LBSIR,

SPM1, and SPM2. Our experimental results reveal that

SPMWA outperforms to LBSIR, HEFT, SPM1, and SPM2,

on account of the number of task failure, and failure

Table 19 Computed makespan of LBSIR, HEFT, SPM1, SPM2, and SPMWA for varying VMs

Makespan

n L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 8,512,959.05 8,201,739.78 15,668,448.06 15,769,660.06 613,190,501.16 13,183,460.56

Max 9,312,779.38 8,927,320.09 19,154,708.15 19,259,211.24 783,110,656.21 100,056,710.61

Avg 8,940,234.59 8,555,342.02 17,438,495.77 17,539,800.84 709,258,390.97 33,972,887.07

Std 221,436.94 209,862.75 823,479.05 821,803.23 50,169,565.28 18,062,834.27

32 Min 5,644,477.92 5,673,719.76 32,799,855.38 33,841,969.62 502,843,194.24 8,036,199.47

Max 6,030,910.50 5,941,773.09 36,409,929.45 37,452,043.74 757,204,237.60 50,217,421.58

Avg 5,869,920.80 5,786,199.27 34,549,249.66 35,591,365.27 594,399,131.93 13,235,907.51

Std 92,156.19 72,777.61 894,851.99 898,844.07 60,298,052.76 9,133,623.45

64 Min 5,003,724.19 5,019,282.28 68,178,764.37 69,184,023.62 445,102,983.80 5,772,076.21

Max 5,291,563.54 5,185,603.88 70,659,538.05 71,664,797.34 672,233,549.25 7,256,913.62

Avg 5,135,411.32 5,087,294.12 69,400,701.13 70,405,960.38 552,985,099.51 6,307,084.66

Std 65,056.83 50,890.35 603,660.65 616,360.58 55,732,933.72 364,982.65

128 Min 4,889,497.04 4,808,678.27 40,080,655.99 41,983,778.26 431,487,279.94 5,157,102.31

Max 5,079,650.43 5,027,206.43 50,054,006.75 53,982,731.75 632,393,993.84 5,435,445.64

Avg 4,963,315.58 4,914,525.22 44,055,232.92 46,995,263.32 527,168,905.45 5,263,599.11

Std 70,365.61 68,786.77 429,810.99 434,915.46 8,678,336.63 103,610.21

256 Min 4,814,654.54 4,797,045.14 31,957,014.94 32,189,723.48 414,034,242.48 4,922,210.01

Max 5,039,167.21 5,032,021.87 37,507,992.62 37,602,494.26 638,281,462.46 5,203,070.31

Avg 4,910,896.32 4,902,282.71 34,549,249.66 35,591,365.27 492,026,662.32 5,054,511.21

Std 80,239.50 66,530.59 1,129,308.71 113,541.94 5,866,618.01 84,690.28

512 Min 4,813,498.43 4,791,330.13 10,696,905.31 10,767,980.59 328,779,014.82 4,999,300.37

Max 5,010,587.18 4,893,578.68 13,818,311.32 13,145,775.69 495,928,907.85 5,237,851.58

Avg 4,871,778.62 4,848,027.02 11,468,842.95 12,128,691.46 423,812,604.62 5,092,729.74

Std 74,465.97 39,097.12 383,713.79 394,589.28 4,922,408.73 84,086.40
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Fig. 10 Boxplots of Makespan on varying number of varying VMs

Fig. 11 Real Workflow

Applications a Montage

b CyberShake c LIGO
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probability. For makespan, SPMWA is better than HEFT,

SPM1, and SPM2, and lagging to LBSIR.

There are still some limitations of the proposed

SPMWA model for security-sensitive workflow applica-

tions which need to be addressed as potential future work

as follows:

• To be extended for a more robust and efficient model

considering all three security services namely, authen-

tication, integrity, and confidentiality.

• To include some more cloud system’s constraints in the

model such as deadline, budget, etc.

• To extend the model for a multi-objective model

considering QoS parameters like time, energy, and

economic cost.

Appendix

The overall security overhead (SO) of the system for

considered workflows can be estimated as per Eq. (18):

SO ¼
XNwf

i¼1

XNwfi

j¼1

Xn

k¼1
zijk � SOijk ð18Þ

Fig. 12 NTF on varying Montage, CyberShake, and LIGO workflows

Fig. 13 Failure probability on varying Montage, CyberShake, and LIGO workflows

Fig. 14 Makespan on varying Montage, CyberShake, and LIGO workflows
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Table 20 Computed overall

security overhead of LBSIR,

HEFT, SPM1, SPM2, and

SPMWA for varying workflows

Overall security overhead

NWf L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 113.878096 115.030312 104.686522 104.686524 85.419552 56.853354

Max 207.362053 209.309384 198.897617 198.897624 391.849433 101.814233

Avg 144.083288 145.600578 144.301426 144.301434 147.981614 77.805978

Std 23.633497 24.817673 24.812143 23.843851 66.637739 15.905697

32 Min 175.927568 179.334120 174.455822 154.455826 172.997254 91.313074

Max 386.101166 383.442475 400.126517 344.305014 484.433017 224.817317

Avg 272.481354 269.967266 274.830309 244.930318 286.062844 147.783164

Std 46.971745 44.477684 50.742505 48.276455 79.369407 39.739664

64 Min 400.988740 397.951671 376.858159 326.297975 367.957261 202.696358

Max 753.813885 747.544550 763.135104 701.135145 1161.136016 452.433005

Avg 525.095995 523.057243 526.524768 468.424774 586.207333 297.043262

Std 92.474661 92.419327 102.516305 98.489435 215.278283 72.997449

128 Min 882.333177 882.161041 871.115944 763.115944 709.944191 431.602415

Max 1660.043605 1654.793154 1603.299024 1495.299732 1825.580261 973.329669

Avg 1114.698473 1116.106257 1105.603162 997.706955 1064.343871 637.945337

Std 177.673618 175.330058 167.399579 149.883991 255.551838 138.298118

256 Min 1423.351823 1456.711929 1421.928264 1295.929345 1639.606494 653.428546

Max 3103.519866 3087.179547 3115.023356 2967.789461 3189.871066 1932.100962

Avg 2342.943414 2342.635992 2339.194670 2219.855512 2427.303731 1289.295109

Std 390.0128203 384.724584 401.799264 371.224583 392.041131 325.969640

512 Min 1423.351823 1456.711929 1421.928261 1295.929378 1639.606497 653.428546

Max 4971.211792 5028.407332 4973.146925 4923.146902 5115.683332 2375.469877

Avg 2891.060718 2891.031292 2882.951786 2786.985443 2936.848612 1527.564146

Std 677.731077 686.527198 668.935473 651.336207 788.647480 221.045410

Table 21 Computed overall security overhead of LBSIR, HEFT, SPM1, SPM2, and SPMWA for varying VMs

Overall security overhead

n L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

16 Min 1149.456355 1153.569466 1151.527183 786.402604 1129.112147 524.880818

Max 4726.162125 4620.540699 4736.561231 4371.436652 4188.790791 2687.117522

Avg 2477.007069 2473.978435 2477.787318 2261.825093 3094.814365 1300.21333

Std 946.704357 938.863488 952.409404 912.185067 951.066741 689.093760

32 Min 1450.806625 1449.520709 1449.355474 1078.100685 1306.965493 604.369247

Max 3492.597552 3501.213754 3582.016864 3210.762075 3353.079962 2055.811222

Avg 2408.308394 2425.405193 2432.743771 2153.05264 2535.232593 1277.178375

Std 513.341248 523.281742 532.501493 511.3202451 551.718885 454.894286

64 Min 1761.781622 1773.263286 1735.059697 1499.935118 1526.920929 867.9732894

Max 3029.834651 3028.31135 3083.038141 2847.991823 4082.185677 2067.451576

Avg 2390.990002 2386.778492 2388.158882 2112.834036 2441.035448 1248.518066

Std 402.614627 403.266269 404.337281 395.898240 619.744245 299.955819

128 Min 1928.920292 1926.961601 1875.702622 1564.702622 1745.421641 1014.121044

Max 2771.750385 2766.911167 2724.994167 2413.994167 3029.252951 1718.020903

Avg 2388.901911 2383.044714 2387.521093 2058.995513 2428.776197 1238.186599

Std 297.110144 300.120272 306.586975 351.0750379 480.082266 214.501951

256 Min 2105.542868 2101.700467 2164.921713 1795.297135 1940.76719 1019.141374

Max 2649.761968 2638.119367 2641.694363 2272.069785 3336.220046 1602.213114
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where zijk is the assignment vector, SOijk is the security

overhead of Tij on Vk and it is computed as per Eq. (4).

As shown in Table 20, the best, worst, and average

values of the security overhead are increased when the

number of workflows increases as expected. However,

SPMWA outperforms among all cases in terms of security

overhead. It is obvious that security overhead is directly

proportional to failure probability. Therefore, it follows the

same performance order as expected among all models

with the same reason explained above in the case of failure

probability. Here, also the majority of the tasks are exe-

cuted without risk or at least possible risk resulting in less

security overhead. The performance gain of SPMWA over

LBSIR, HEFT, SPM1, and SPM2 on account of security

overhead is 45%, 45%, 41%, and 46% respectively. The

performance order for the security overhead is SPMWA,

SPM1, LBSIR, HEFT, and SPM2 for all batch sizes of the

workflows which is almost the same for failure probability.

(see Tables 20, 21, 22)

Again, the best, worst and average values of the security

overhead are decreasing when the number of the VMs is

increased as expected presented in Table 21. Thus,

SPMWA outperforms all cases in terms of security over-

head. The average performance gain on security overhead

has been improved in the range of 40% to 50% over SPM1,

Table 21 (continued)

Overall security overhead

n L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

Avg 2350.136092 2355.683101 2369.995513 2017.896515 2414.826886 1196.865305

Std 151.461386 153.375373 147.806118 141.7967387 433.853777 229.640587

512 Min 2257.397769 2159.162044 2281.009815 1870.124786 1563.533646 1153.76281

Max 2537.340705 2563.924182 2595.887716 2356.974516 4593.38743 1574.455287

Avg 2268.238102 2269.974091 2289.553048 1918.386363 2302.581454 1181.530862

Std 92.177048 88.790449 103.976430 99.649307 1055.784145 133.408417

Table 22 The overall security

overhead on varying Montage,

CyberShake, and LIGO

workflows

Overall security overhead

NWf L-LMS L-SMS HEFT SPM1 SPM2 SPMWA

Montage_25

16 19.611503 12.186401 12.725582 9.954082 10.545810 6.734785

32 44.600799 30.397318 34.623158 28.623158 30.575113 21.164171

64 76.109843 64.342475 76.655145 67.805413 82.699239 46.149068

128 157.002155 144.353633 179.775017 161.174377 185.670904 112.237208

256 354.127825 324.457812 514.987451 478.225402 438.457813 302.145784

512 589.149880 608.517516 1047.505071 1000.002145 838.957523 433.544829

CyberShake_30

16 25.701806 15.075343 12.002836 11.000165 17.284475 10.801113

32 47.760595 34.624505 37.475029 30.123529 45.127304 28.620902

64 89.931613 78.253742 119.888245 101.200188 112.336365 64.487630

128 160.870883 147.278908 267.182974 207.718294 199.222863 133.797719

256 372.457812 364.445201 514.987451 478.225402 448.554455 349.458126

512 596.9100443 624.1387225 1106.78399 978.122545 809.2619064 581.028619

LIGO_40

16 38.0597726 20.536363 23.930908 20.571208 30.074275 15.097862

32 64.1380220 46.102428 54.204967 47.670492 68.205209 36.387757

64 116.779883 99.190207 134.955155 121.457814 138.826944 84.487089

128 271.251774 279.093340 366.077922 304.724571 325.134196 220.424729

256 526.781246 539.457813 701.584971 613.897451 609.145781 427.568912

512 825.949989 834.938621 1511.862342 1345.124578 1171.025079 681.463123
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SPM2, LBSIR, and HEFT. The performance order is

SPMWA, SPM1, LBSIR, HEFT, and SPM2 for all sets of

virtual machines.

The trend of average security overhead is increasing for

all batch sizes of Montage, CyberShake, and LIGO keeping

other parameters fixed as shown in Table 22. SPMWA

performs best among all other models on each real work-

flow for every batch size in terms of security overhead.

Even when the security demand for a task is not fulfilled,

the proposed model assigns that task where its failure risk

is least. Further, the Also, the performance of SPMWA has

been improved on all real workflows for every batch size

over SPM1, SPM2, LBSIR, and HEFT as observed in the

range of 32–43%, 19–36%, and 25–40% approximately on

Montage, CyberShake, and LIGO respectively. The per-

formance order on security overhead is SPMWA, SPM2,

SPM1, LBSIR, and HEFT.
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