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Abstract
XACML is a standard to define a declarative fine-grained, attribute-based access control security policy language. Eval-

uation of the similarity of XACML policies can be used for a variety of purposes such as clustering rules, merging policies,

analysing anomalies in rules, selecting high-speed web servers, and finding collaborators with similar security settings.

Existing approaches for calculating the similarity between security policies are primarily designed based on the XACML

2.0 version, and are insufficient for complicated policies can be specified in XACML 3.0. In this paper, we propose a

hierarchical approach, called XACSim, to assess the similarity of security policies specified by XACML 3.0. XACSim

takes into account the distance of both numerical and nominal values for computing the similarity. More precisely, the

distance is hierarchically computed by the aggregate of the distance values at four different levels namely, value, attribute,

rule, and policy. For nominal attributes, the similarity is calculated based on their context and using distribution of their

values in the input dataset. While, for numerical attributes, intersection intervals of their corresponding values are esti-

mated to compute the similarity. We present an empirical evaluation of the effectiveness and efficiency of XACSim. The

evaluation results show that our approach provides promising efficiency while it outperforms the effectiveness of the state

of the art methods. (The XACSim tools are publicly available at https://gitlab.com/nassirim/XACSim.)
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1 Introduction

The provision of data security is a fundamental require-

ment of any information system and access control is a

crucial mechanism in data security. Using access control,

administrators, and resource owners can protect their crit-

ical resources against unauthorized access and manipula-

tion. After logging in to a system, the access control

module decides about the user’s access to specific resour-

ces based on some security policies defined by the system

administrator. Extensible Access Control Markup Lan-

guage (XACML) is an attribute-based language to describe

access control security policies in web applications and is

represented by XML language [1–4].

Access control facilitates the sharing and protection of

resources for different organizations. Therefore, organiza-

tions can easily share their resources for secure collaboration

in cloud computing applications. In these environments,

however, each organization needs to know whether the

access control policies used to share the resources are still

required after sharing the resources. Thus, the comparison

between access control policies and measurement of their

similarities are an urgent need. As a result, a measure should

be defined to specify the degree of similarity of every two

access control policies. This measure can be used to merge

policies with shared security features and share resources

among several organizations [5].

Evaluation of the similarity of policies can be used for a

variety of purposes such as clustering rules, merging

policies, analyzing anomalies in rules, selecting high-speed

web servers, finding collaborators with similar security

settings [3, 6–12], and mutation analysis for different types
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of policies [13, 14]. The existing solutions to measure the

similarity of XACML policies are mainly based on the

older version of the standard, i.e., XACML 2.0

[6, 7, 15–17]. Most of these approaches tried to construct

tree-based structures to examine the relationship between

the values in each component of the XACML policies, such

as resource and action. Establishment of such

structures for calculating the similarity degree, however, is

particularly difficult in XACML 3.0 given the broad variety

of attributes as well as its hierarchical and nested nature of

policies. In fact, the XACML 3.0 standard provides a more

complex structure for policy specification which makes the

similarity assessment more complicated. For example, the

newer version of XACML proposes a dynamic and more

complex syntax for defining the target elements along

with additionally combining algorithms for resolving con-

flicts [1]. Therefore, a comprehensive similarity assessment

method for XACML must be both simple and able to find

relations among the values of the various attributes in the

policies with the aim of calculating the degree of similarity

in the case of any semantic relationship.

This paper proposes a novel and distance-based

approach, called XACSim, to measure the similarity of

security policies specified using XACML 3.0. The hierar-

chical structure of XACML 3.0 policies entails that simi-

larity is calculated at all levels and among all components.

Therefore, XACSim assesses the similarity of two policies

at four levels, i.e., value, attribute, rule, and policy. The

similarity of two policies is, then, an aggregate of the

similarity degree at all four levels. Moreover, XACSim

calculates the similarity of both categorical and numerical

values using two different mechanisms. It computes the

similarity of categorical values using the Distance Learning

for Categorical Attribute (DILCA) [18] method, while it

employs the concepts of distance and range intersection for

numerical values. In addition to exact matching, our sim-

ilarity measure can recognize related policies and estimate

their similarity. DILCA calculates the similarity between

categorical values based on the distribution of attributes in

policies. For example, the attribute city may contain the

following values: Rome, Paris, Florence. Obviously, Rome

is more similar to Paris in that they are both capital cities.

Geographically, however, Florence and Rome are more

similar due to their shorter distance, which can only be

recognized by humans [18]. Through application of our

suggested mechanisms to the XACML Standard, a simi-

larity evaluator can be developed.

We implement a prototype of XACSim as a software

tool in the Java environment. We believe the XACSim tool

can help security administrators to take into account dif-

ferent viewpoints that only humans can recognize. Also,

using a bottom-up mechanism in XACSim that is based on

the hierarchical structure and the semantics of XACML 3.0

policies, the proposed approach calculates the similarity of

the components of policies and, ultimately, of two policies.

We also conduct extensive experiments using both real-

world and synthetically generated XACML policies to

evaluate the efficiency and effectiveness of XACSim. The

evaluation results show that the proposed approach can

effectively assess the similarity of XACML policies using

an acceptable amount of computation resources.

In summary, we make the following contributions:

– We propose a measure to calculate the similarity of

categorical values according to the context and the

distribution of values. This measure helps in identifying

two policies with identical contexts and similar

meanings.

– Concerning numerical values, the similarity is com-

puted through the distance. We normalize the distance

of values so that the difference in the scales does not

affect the numerical similarity.

– In the proposed method, values along with their

corresponding functions are extracted hierarchically

from relevant rules.

– We also propose a hierarchical algorithm to calculate

the similarity of two XACML 3.0 policies.

– We develop a software tool to measure the similarity of

security policies in XACML 3.0.

– We conduct extensive experiments to evaluate the

performance of our proposed approach and compare it

with the state of the art.

The rest of the paper is organized as follows: Sect. 2 briefly

describes XACML 3.0. Section 3 presents the related

work. Section 4 introduces the proposed method. Next,

Sect. 5 discusses the implementation and experimental

results. Finally, Sect. 6 concludes the paper and suggests a

direction of further research.

2 XACML Standard

The XACML Standard provides an access control policy

language based on attributes and XML. So far, three ver-

sions of this standard have been released. The main com-

ponents of a policy defined in XACML are policy set,

policy, rule, target, environment condi-

tion, and combining algorithm. This request/re-

sponse standard has a particular architecture and a

processing model that defines how requests should be

evaluated according to policy sets, policies, and

rules defined in the policy [19–23].

The root of every XACML document contains either a

policy or a policy set (see Fig. 1). Every policy set contains

a target, a combining algorithm, and one or more policies.

Every policy contains a target, a combining algorithm, and
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one or more rules. In addition to a target, every rule

includes an effect, a condition and may also contain obli-

gation and advice. The effect of a rule indicates the con-

sequence of evaluating the rule which can be either Permit,

Deny, or Indeterminate. The target of a rule defines the

applicability of the rule to a set of access requests. A target

may contain a conjunctive sequence of zero, one, or more

AnyOf components. An AnyOf component contains a

disjunctive sequence of one or more AllOf components. An

AllOf component contains a conjunctive sequence of one

or more Match elements against which the user’s request is

matched. A Match element contains an Attribute-Value as

well as an Attribute-Designator or an Attribute-Selector.

There are four popular combining algorithms in

XACML including Permit-Override, Deny-Override, First-

Applicable, and Only-One-Applicable. The user’s request

may match several rules in a policy or several policies in a

policy set, but because the evaluation engine, called policy

decision point (PDP), should return a single access level to

the user, the combining algorithms can help to return a

single result [1, 24, 25].

3 Related work

Analysing XACML policies with regard to the verification

of policy properties, policy refinement and reconfiguration

have already received the attention of research community

[26–28]. Calculating similarity between two XACML

policies is also necessary for several applications. By using

a similarity measure, the number of policies to be evaluated

can be reduced since similar policies could provide the

same decisions. In [11, 15], the authors defined similarity

to allow comparison of access control policies to locate

providers that have similar policies in cloud environments.

Vaidya et al. [5] proposed the XyDiff change detection

tool to measure the similarity of two XACML 2.0 policies.

They also used their measure to address the problem of

policy migration in collaborative environments at the

lowest transition cost. Lin et al. [15] developed a method

for calculating similarity of two XACML 2.0 policies

considering both nominal and numerical attributes. They

also integrated dictionary lookup and ontology matching.

Their measure can be used as a filter phase to quickly

reduce the number of policies for further analysis [29].

Fig. 1 XACML policy language

model v3.0 [1]
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Although we take a similar hierarchical approach for

numerical attributes, we propose a context-based measure

for nominal attributes.

Yan Hung et al. [6] proposed a similarity measure

between two security policies and categorized every policy

into two rule sets. They separately calculated similarity in

each set in a hierarchical manner. For categorical attributes,

they measure the exact match of two values. In other

words, a higher score indicates that the two attributes share

more common attribute values. El-hadej et al. [7] used

similarity to reduce redundancy among XACML 2.0 rules

by either eliminating or merging them into other rules. Lin-

Lee et al. [30] proposed to calculate the weight of each

attribute in all XACML 2.0 rules. Next, they calculated the

similarity between policies for categorical and numerical

values in a hierarchical manner. Also in [31], Bretia et al.

developed a hierarchical similarity analyzer (HSA) for

policies that should be merged. They calculated the key

component SL (Security Level) and allocated it to users

who share their data. SL refers to the amount of data that is

allowed to be shared during the collaboration of two

policies. This measure can be used to find collaborators

with similar security settings. The problem of policy sim-

ilarity have been recently investigated for ABAC policies

[29, 32, 33]. Batra et al. in [29] proposes a policy similarity

metric for two ABAC policies based on the maximum

common possible subset of accesses covered by their rules.

El Hadj et al. [27, 34] are attempts to identify redun-

dancy and interference between rules in a policy. They

calculate the similarity in order to cluster the rules and

eliminate redundancy. This approach detects and elimi-

nates redundancy by clustering the rules and calculating the

similarity of the rules in each cluster. On the other hand,

Lenco et al. [18] investigated the relation between attribute

values by calculating the distance which was then used to

cluster attributes. However, their work did not rely on

XACML. We employ a similar approach to measure the

similarity between values of the nominal attributes without

establishing a relation between the resource and the subject

for the attributes.

As mentioned earlier, the literature has mostly focused

on older versions of XACML, and the proposed similarity

measures are almost impractical in the context of the

variety of attributes in XACML 3.0.

4 Context-based similarity measurement

In this paper, we propose a context-aware similarity

assessment between two policies specified in XACML, we

call it XACSim. In this section, we first describe the con-

ceptual framework of XACSim including an overview of

the main steps of the similarity assessment. We then

explain the details of its components.

4.1 Solution overview

Figure 2 summarizes the main steps in XACSim for

assessing the similarity of two policies specifies in XACML.

As shown in the figure, the similarity between two policies is

calculated hierarchically according to the hierarchical

structure of the XACML standard, as explained in Sect. 2.

First, every policy is divided into two rule sets, namely,

Permit (including the rules with a permit effect) and Deny

(containing the rules with a deny effect). Next, the similarity

of each pair of rules in both input policies is computed by

comparing their respective attributes. The similarity of the

attributes is calculated by comparing their values. By finding

the average degree of similarity between two rule sets, the

similarity of Permit and Deny sets is calculated. Finally, the

degrees of similarity of the components of the two policies

are added to obtain the degree of similarity at a policy level.

Details about each step is discussed in Sects. 4.2 to 4.5. In

general, XACSim assigns a higher degree of similarity to

policieswithmore similar values for attribute types. It should

be noted that the total degree of similarity is a value in the

range [0, 1].

Two policies are called equal if they possess completely

identical attribute values, i.e., their similarity is 1. On the

other hand, two policies are unequal if they have at least

one unequal attribute value. Unequal policies are divided

into ‘‘partially similar’’ and ‘‘completely dissimilar’’. By

way of example, we consider two unequal policies that are

partially similar in terms of their meaning. The first policy

Fig. 2 A high-level view of the main computation steps in XACSim
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(P1) specifies people in Rome who have only access to

POP3 email service. In contrast, the second policy (P2)

specifies females living in Florence who have access to

both SMTP and POP3 services. The attribute types of these

two policies include ‘‘population’’, ‘‘city’’, and ‘‘email

service’’ with their values consisting of ‘‘females’’,

‘‘Rome’’, ‘‘Florence’’, ‘‘POP3’’, and ‘‘SMTP’’.

In this example, we examine how the similarity of Rome

and Florence can be discovered. As the two values, Rome

and Florence are different, their relation can be found

employing the similarity of other values within this policy.

Should two policies have at least one common value that is

related to Rome and Florence, then the obtained similarity of

Rome and Florence is greater than 0; otherwise, it becomes 0.

Here, the point of similarity between the two policies is

the group of females who have access to POP3 service. As

a result, the obtained similarity is greater than 0 due to a

shared value that is related to both Rome and Florence.

Following the same procedure, we can hierarchically cal-

culate the similarity between attributes (categorical and

numerical) and rules, in which we present the detailed

computation in the rest of this section.

Our proposed solution calculates similarity by compar-

ing the components of XACML policies, which is gener-

ally similar to the method proposed in [15]. Components

here refer to the target elements of the rules within policies.

This comparison of components is performed on rules with

similar effects. We categorize the rules of policies P1 and

P2 according to their effects, resulting in two Permit rule

sets PR1 and PR2 and two Deny rule sets DR1 and DR2, as

shown in Fig. 2. Each rule in P1 is compared with all rules

in P2 having a similar effect to calculate the degree of

similarity of those two rules. Thus, the degree of similarity

between all rules as well as between both Permit rule sets

ðPR1 and PR2Þ and between both Deny rule sets ðDR1 and

DR2Þ are calculated. To calculate the similarity between

two rule sets with similar effects, we define a mapping

functions denoted by map. The map functions relate two

rules with the highest degree of similarity to each other.

Thus, we first explain the details of the mapping calcula-

tion, and then the computation details of each element are

separately described.

4.2 Mapping computation and policy similarity

Since we are employing a hierarchical similarity assess-

ment between XACML security policies, an important

concept is to compute the similarity of a rule and a rule set.

Moreover, we need to generalize such concepts to calculate

the similarity of two rule sets, for example, between two

permit rule sets extracted from two input policies. Thus, we

define the concept of the map as the similarity degree of a

rule and a rule set as follows:

Definition 1 (Rule Map) The map of rule r to rule set P,

denoted as mapðr;PÞ, is a measure of the similarity of rule

r to rule set P, defines as

mapðr;PÞ ¼ max
ri2P

fsimðr; riÞg ð1Þ

where simðr; riÞ denotes the similarity score of two rules r

and ri.

As one can see in Definition 1, we employ a single-link

approach, where the similarity of a rule and a rule set is

equal to the similarity of that rule with the most similar

member in the rule list. This single-link criterion is local.

In other words, we pay attention solely to the area where

that rule comes closest to the rule set. It is to be noted that

we can also use a complete-link approach, where the most

dissimilar link is considered for such computation. Such

non-local criterion results in a preference for a compact

rule set with small diameters over long, straggly sets, but

also causes sensitivity to outliers. Moreover, our experi-

ments show an improvement using the single-link criterion.

More specificity, since we only check the similarity of

rules sets with similar effect values, a local criterion is a

suitable alternative.

Definition 2 (Rule set Map) The map of rule set P1 to

rule set P2, denoted as mapðP1;P2Þ, is a measure of the

similarity of rule set P1 to rule set P2, defines as

mapðP1;P2Þ ¼
X

ri2P1

mapðri;P2Þ ¼
X

ri2P1

max
rj2P2

fsimðri; rjÞg

ð2Þ

where mapðri;P1Þ denotes the map of ri to rule set P1, and

simðri; rjÞ denotes the similarity score of two rules ri and rj.

Proposition 1 The rule set map is not a symmetric prop-

erty. In other words, we have:

9P1;P2 : mapðP1;P2Þ 6¼ mapðP2;P1Þ ð3Þ

Proof In order to prove this proposition, we only need to

provide an example holding such inequality. To this end, it

is enough to consider two rule sets with a different number

of members. For example, assume that NP1
¼ 1 and

NP1
¼ 10. In this case, we can clearly see that it is highly

possible that mapðP1;P2Þ � mapðP2;P1Þ. h

As mentioned in the previous section, XACSim first

divides every input policy into two rule sets, permit and

deny rule sets. Consequently, it generates four rule sets

from two input policies. Next, we employ the map for-

mulas to separately compute the similarity of rule sets with

the same effect value; for example, the similarity of permit

rule sets and similarity of deny rule sets.
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Since themap of two rule sets is not symmetric, we need to

consider the map on both sides, and then normalize the

obtained values. We repeat this procedure for both permit

and deny rule lists obtained from two input policies. Thus,we

compute the similarity of permit and deny pairs, as follow:

SPðP1;P2Þ ¼
mapðPR1;PR2Þ þmapðPR2;PR1Þ

jPR1j þ jPR2j

SDðP1;P2Þ ¼
mapðDR1;DR2Þ þmapðDR2;DR1Þ

jDR1j þ jDR2j

8
>>><

>>>:
ð4Þ

where P1 and P2 are two input XACML policies. PR1 and

PR2 (DR1 and DR2) are the permit (deny) rule sets of P1

and P2, respectively. For a set S, |S| indicates the number of

elements in the set. SPðP1;P2Þ is the similarity score of

permit rule sets obtained from policies P1 and P2.

SDðP1;P2Þ is the similarity score of deny rule sets obtained

from policies P1 and P2.

Now, we can compute the similarity of two XACML

policies as the sum of the similarity scores of their com-

ponents, including their Permit and Deny rule sets and their

target elements, as follows:

SðP1;P2Þ ¼wt � STðP1;P2Þ þ wp � SPðP1;P2Þ
þ wd � SDðP1;P2Þ

ð5Þ

where SðP1;P2Þ indicates the similarity score of two

XACML policies P1 and P2. Also, STðP1;P2Þ denotes the
degree of similarity of the target elements of these two

policies. In equation (5), wt, wp and wd are three constants

in the range 0�wt � 1, 0�wp � 1, 0�wd � 1 and

wt þ wp þ wd ¼ 1, chosen to reflect the impact of each

policy element in the computation of the similarity score.

4.3 Similarity of rules

The similarity of two rules is calculated hierarchically by

comparing the corresponding components of the two rules.

We consider such similarity only between two rules with a

common effect value that we categorized them in a the

same category in the previous step. Each rule has a target

component containing a set of attributes. More precisely,

we compute the similarity of two rules based on the sim-

ilarity of their common attribute types. Moreover, we need

to take the intrinsic difference of categorical and numerical

attributes into the account in our computation. The simi-

larity score of rules ri and rj is obtained as:

simðri; rjÞ ¼

0 if Ari \ Arj ¼ ;
1 if jAri j þ jArj j ¼ 0

P
a2Ari

\Arj
Sðri; rj; aÞ

jAri j þ jArj j
if Ari \ Arj 6¼ ;

8
>>>><

>>>>:

ð6Þ

where, Sðri; rj; aÞ denotes the similarity of two rules ri and

rj based on their common attribute type a. Also, Ari is the

set of attribute types in rule ri.

As one can see in equation (6), we compute the simi-

larity of two rules based on the similarity of their common

attribute types. It is obvious that the similarity of two rules

with no common attribute type is 0 as their attributes are

completely different. Likely, the similarity of two rules

with no attributes in their target elements is 1 as their target

elements are identical. Note that we compute the similarity

only for two rules with common effect value.

We also employ two separate similarity functions for

categorical and numerical attribute types. Both of these two

functions are defined based on the attribute values pre-

sented in each rule. Thus, we need to extract a list of values

of the comparing attribute for each rule. Then, we employ

two similarity functions to find the similarity of two list of

values, categorical and numerical values. Thus, we have:

Sðri; rj; aÞ ¼
ScatðVa

ri
;Va

rj
Þ if a is categorical

SnumðVa
ri
;Va

rj
Þ if a is numerical

(
ð7Þ

where Va
ri
is the set of all values of attribute a presented in

rule ri. Also, Scat and Snum are two functions for computing

the similarity of two set of values in categorical and

numerical types, respectively.

4.4 Similarity of attributes

As mentioned in the previous section, the similarity score

of two identical attribute types in two rules is obtained by

the sum of similarities of their corresponding values and

varies with the type of their values. More precisely, in

order to compute the similarity of two rules based on a

common attribute type within them, we first extract two

sets of all possible values matched in each of these two

rules. Then, we compute the similarity of these two sets of

values using two similarity functions, one corresponding

for the categorical and another for numerical values.

The similarity between two list of categorical values L1
and L2 is computed as follows:

ScatðL1; L2Þ ¼
P

v2L1 Scatðv; L2Þ
NL1

ð8Þ

Scatðv; LÞ ¼
1 if 9v0 2 L : v ¼ v0P

v02L Scatðv; v0Þ
NL

if 6 9v0 2 L : v ¼ v0

8
<

:

ð9Þ

where L1, L2 and L are sets of categorical values from an

identical attribute type, NL indicates the number of ele-

ments in list L. We assume NL1 �NL2 . Also, v and v0 are

two categorical values from an identical attribute type. It is
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to be noted that we defined here three overloaded similarity

functions that are different in their argument types. More

clearly, we have a function with two lists of values, a

function with a value and a list of values, and a function

with two attribute values in the input arguments. We

describe the detailed computation of the last function for

computing the similarity of two categorical values in

Sect. 4.5.1.

We employ a similar method for calculating the simi-

larity of two lists of numerical range values, as referred in

equation 7. Each element of this list represents a range of

numerical values. Since XACML standard allows us to use

comparison operators for numerical attributes, we represent

the matched values of an attribute type in a target element

using a list of range values. We describe the details of this

algorithm in Sect. 4.6.

The similarity of two sets of range values of a single

attribute type L1 and L2 is computed as follows:

SnumðL1; L2Þ

¼
P

v2L1 maxv02L2 Snumðv; v0Þ þ
P

v2L2 maxv02L1 Snumðv; v0Þ
NL1 þ NL2

ð10Þ

where Snumðv; v0Þ is the function for computing the simi-

larity of two range values of v and v0 obtained from the

domain of a single attribute type.

As one can see, we employ a single-link technique for

computing the similarity of two sets of numerical range

values, while for the categorical values, we use an average-

link method. This is because of the fact that we can define

an intersection relation among numerical range values, so a

single-link approach considers the contribution of the lar-

gest intersection among the range values for computing the

similarity. However, it is tough to define a subset/superset

relationship among the contextual values, so we consider

the contribution of all values in the set for computing the

similarity by using an average-link technique. It is to be

noted that in average link and for two sets R and S, first for

the distance between any data-point i in R and any data-

point j in S and then the arithmetic mean of these distances

are calculated. However, the single linkage returns the

minimum distance between two points i and j such that

i belongs to R and j belongs to S [35].

4.5 Similarity of attribute values

In order to compute the similarity of two values, we con-

sider the following two states: 1) if the values exactly

match each other, the degree of similarity is 1; If the values

are not equal, we compute the similarity of the numerical

values using the length of the intersection of the range

values, while for the categorical values, the similarity is

calculated similar to the DILCA method [18]. In the sub-

sequent subsection, we explain how to calculate the simi-

larity for both types of values.

4.5.1 Similarity of categorical values

To calculate the similarity of two unequal categorical

values, the distance between the values is calculated sim-

ilar to the DILCA method proposed in [18]. Here, we

provide several definitions to explain this approach:

– Target attribute: Both attributes to be compared are

called target attributes.

– Context attributes: Attributes that have frequently co-

occurred with the values of the target attributes in the

input policy.

– Entropy of attribute X: The distribution of the values of

an attribute X in the input policy is called the entropy of

that attribute.

– Information Gain of an attribute: The amount of

information needed by an attribute to partition related

attributes.

– Heteronymous attributes: Attributes with identical types

but different names and values.

– Homonymous attributes: Attributes with identical

names and types but not necessarily identical values.

– Conditional entropy ðX j YÞ: The distribution of the

values of an attribute X in cases where they co-occur

with the values of an attribute Y in the input policy is

called the conditional entropy of X given that Y.

The DILCA method is a context-based approach consists of

three steps: 1) finding the frequency of values, 2) selecting

context attributes for every target attribute, and 3) calcu-

lating the distance using context attributes. We now briefly

explain the details of these three steps.

Finding the frequency of values: the first step is to find

the frequency of values in the input XACML policy. More

precisely, we use the distribution of values within policies

which refers to the frequency of co-occurrence of each pair

of categorical values in the policies. Thus, the frequency of

co-occurrence of values within one rule of a policy should

be calculated. This is done for all rules and policies in the

input data. For example, suppose that a given policy has

only one policy element with a single rule, and the rule has

only two attributes, namely, book author (X) and book

subject (Y). The values of author and subject are respec-

tively fx1; x2; x3g and fy1; y2g in the input policy. If the

data distribution pattern resembles what is shown in

Table 1, the frequency of co-occurrence of values is rep-

resented by the distribution shown in Table 2. Each item in

the table represents the frequency of the co-occurrence of

the values in its row and columns. A distribution
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table should be provided for each target attribute and

between every two heteronymous attributes in each rule

(e.g. X and Y).

Selection of context attributes: To specify the context

of attributes, we need to select a subset of relevant and non-

overlapping attributes. To this end, we use Symmetric

Uncertainty approach which has already been used in [18]

to measure the correlation between two variables. Here, we

recall how Symmetric Uncertainty is derived from entropy

according to the information theory. Using the frequency

distribution table of two given attributes (e.g. X and Y), the

entropy of attribute X is computed as follows:

HðXÞ ¼ �
X

xi2X
pðxiÞ log2 pðxiÞ ð11Þ

where pðxiÞ is the probability of the value xi of the attribute

X. After having observed the values of attribute Y, the

conditional entropy of X is calculated as [8, 23, 36]:

HðXjYÞ ¼ �
X

xj2Y
pðyjÞ

X

xi2X
pðxijyjÞ � log2 pðxijyjÞ ð12Þ

where pðxi j yjÞ denotes the probability that X ¼ xi after

observing yj and pðyjÞ is the frequency of yj in the input

policy. The context attributes should be calculated sepa-

rately for the two target attributes in the policies P1 and P2.

For the target attribute X1 (X2) that belongs to the policy P1

(P2), the context attributes are selected from the attributes

of the policy P1 (P2).

The information about attribute X provided by Y is given

by the information gain defined as follows:

IGðXjYÞ ¼ HðXÞ � HðXjYÞ ð13Þ

For two attributes X and Z, IG(X|Y) means that X is more

correlated to Y than Z [8].

Equation (13) represents information Gain. According

to this measure, the attribute Y is more dependent on the

attribute X than the attribute Z if IGðXjYÞ[ IGðZjYÞ.
Information Gain for two random variables X and Y is

symmetrical, which means that the information Gain of Y

after observing X has become equal to the information

Gain of X after observing Y [8]. Information Gain has

become biased on attributes with a larger number of values.

That is, attributes with a larger number of values have

greater information Gain than attributes with a smaller

number of values. In addition, the values should be nor-

malized to ensure the accuracy and validity of compar-

isons. Therefore, there is a need to define and use a

measure called symmetrical uncertainty. Symmetrical

uncertainty (SU): To compensate for the bias of informa-

tion Gain on attributes with larger values, this measure

normalizes the values in the range [0,1] in which 1 indi-

cates that each value perfectly predicts the other variable

whereas 0 indicates total independence between X and Y.

Thus, a pair of attributes behave symmetrically [8].

Equation (14) calculates symmetrical uncertainty.

SUðX; YÞ ¼ 2� ½ IGðXjYÞ
HðXÞ þ HðYÞ� ð14Þ

Now, we define two attributes as context attributes if their

symmetric uncertainty value is greater than a threshold

value. Thus, we define the set of context attributes for an

attribute X as:

ContextðXÞ ¼ fY j Y 6¼ X; SUðX; YÞ� SUthresholdg ð15Þ

where X and Y are the target and context attribute,

respectively [18]. Also, SUthreshold is the threshold value. A

higher threshold value results in a fewer context attributes

leaving room for only those attributes that have higher

distribution with the target attribute. In this paper, the

threshold value (SUthreshold) was set to 0.5 as a result of a

trial and error mechanism.

Calculating the distance using context attributes: To

calculate the distance between two values, the context

attributes obtained in the previous step are used. Here, only

common context attributes belonging to both target attri-

butes will affect the distance. Equation (16) calculates the

distance between two categorical values v and v0. Recall that
v and v0 are two values of the target attribute X in policies P1

and P2 respectively. Also, Y is a context attribute of X.

Eqs. (17) and (18) define the values Pðv j ykÞ and Pðv0 j ykÞ.
Pðv \ ykÞ denotes the co-occurrence probability of v and yk
and PðykÞ is the probability of occurrence of yk in the entire
input policy where yk is a value of the attribute Y.

Dcatðv; v0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Y2ContextðXÞ

X

yk2Y
ððPðvjykÞ � Pðv0jykÞÞ2

s

ð16Þ

Table 1 Sample input dataset
X Y

x1 y1

x2 y2

x1 y1

x3 y2

x2 y1

Table 2 Contingency table for

the dataset shown in Table 1
X/Y y1 y2

x1 2 0

x2 1 1

x3 0 1
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PðvjykÞ ¼
Pðv \ ykÞ
PðykÞ

ð17Þ

Pðv0jykÞ ¼
Pðv0 \ ykÞ
PðykÞ

ð18Þ

Now, the similarity between two categorical values is the

inverse of the distance [37] and computed as follows:

Scatðv; v0Þ ¼
1

Dcatðv; v0Þ þ 1
ð19Þ

where Scatðv; v0Þ is always in the range of 0 and 1.

4.5.2 Calculation of similarity between numerical values

The similarity of two numerical ranges values is a nor-

malized score computed based on the distance between the

ranges as follows:

Snumðv; v0Þ ¼ e�Dnumðv;v0Þ ð20Þ

where v and v represent the numerical ranges values in

policies P1 and P2, respectively. In addition, e ’ 2:7 is a

constant value, and Dnumðv; v0Þ denotes the distance

between two numerical ranges values v and v0. Clearly, we
assume that all numerical values are in the form of ranges.

Therefore, the intersection between two numerical ranges

can be used in calculating their distance. The intersection

of two range variables v and v0, denoted by ðv \ v0Þ, is a

new numerical range value that we represent as [m, n],

where m and n are the minimum and maximum of the

range, respectively.

Moreover, we need to transform the range value into a

numerical value, which helps for computations as well as

working with attributes in different scales. Here we use the

following transformation:

gð½m; n�Þ ¼ jn� mj
jnþ mj � jn� mj ¼

n� m

2m
if m\n

0 Otherwise

(

ð21Þ

The distance is, now, computed as:

Dnumðv; v0Þ ¼
maxðgðvÞ; gðv0ÞÞ

gðv \ v0Þ ð22Þ

4.6 Extraction of the values of attributes
from a rule

As mentioned above, we need the list of all values of

attributes in the input policy for our similarity computation.

Each rule contains a set of attributes with categorical and

numerical values. These values are extracted hierarchically

from the target element of the rule. The extraction of these

values begins from the smallest member of the target, i.e.

the match component. As every match component has a

value in its Attribute value tag and a function in its

function match tag, the similarity of the related function

should be taken into account in addition to that of the

values while calculating the degree of similarity. The

function refers to five operators, i.e. greater than, less than,

less than or equal to, greater than or equal to, equal to. The

extraction of values related to the attributes from a rule

may address either categorical values or numerical values.

In this method, all the values related to an attribute are

extracted from a rule independently and separately from

other attributes. We describe the extraction of both cate-

gorical and numerical values in the rest of this section.

4.6.1 Extraction of categorical values

With this type of value, each operator along with its value

in a match component is converted into a range and hier-

archically extracted from the corresponding rule. These

ranges are called categorical ranges. For example, a match

component holds the value L : ‘‘computer00 in its

attribute value tag. The related function holds the operator

‘‘greater than’’ ([). According to the proposed method, the

value and operator are extracted from such a match com-

ponent in the form of L
0
: ð‘‘computer00; [ Þ. For the

extraction of categorical values from a rule, we need to

define the intersection and union between the ranges.

Definition 3 (Intersection of Categorical Ranges) The

intersection of categorical ranges refers to finding similar

ranges among the existing ranges.

Definition 4 (Union of Categorical Ranges) The collec-

tion of categorical ranges into a list is called the union of

ranges.

Every AllOf component consists of one or more match

components. Equation (23) is used to find the intersection

between the values extracted from every match component.

This intersection results in none or only one range, which is

related to an AllOf. In this equation, every L0i ð1� i� kÞ
denotes the range created from a match component. Every

AnyOf component consists of one or more AllOf compo-

nents. After extracting the list of the ranges related to the

AllOf components of an AnyOf, equation (24) can be used

to create the union of the obtained lists of values (including

categorical ranges). In equation (24), every ni ð1� i� kÞ
represents a list of ranges that are related to an AllOf.

Finally, a target consists of one or more AnyOf compo-

nents. The intersection of the values in the extracted list of

every AnyOf component is calculated using equation (25).

In this equation, every ti ð1� i� kÞ denotes the list of
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ranges extracted from an AnyOf component. Thus, the

target of a rule may result in a value or a list of values.

Mallof ¼½L01 \ L02 \ . . . \ L0k� ð23Þ

Nanyof ¼½n1 [ n2 [ . . . [ nk� ð24Þ

Ttarget ¼½t1 \ t2 \ . . . \ tk� ð25Þ

4.6.2 Extraction of numerical values

We convert every numerical value obtained from a match

component into a range according to its function type. The

ranges should be extracted hierarchically from a target. For

example, a match component has a value of 21 and a

function of ‘‘less than’’ (\). It can be converted into the

range ð21;1Þ. Algorithm 1 is proposed to compute the

intersection/union of two lists of numerical range values.

First, all the unique limit values of all the intervals in both

L1 and L2 are stored in a temporary list (S) and sorted in

ascending order (lines 1–8). Then, using values in S, a new

set of all possible consecutive intervals is generated (lines

9–12). Finally, by comparing each interval with both L1
and L2, the intersection and union of these two lists are

calculated (lines 13–21).

4.7 Distance at different levels

This section addresses the calculation of the distance

between components at different levels. Just as we calcu-

lated similarity by the means of a bottom-up mechanism

for XACML 3.0 policies and measured it hierarchically for

the components of policy at the levels of value, attribute,

rule, and policy, we can also calculate the distance at dif-

ferent levels for the components of a policy. In what fol-

lows, the calculation of the distance at different levels is

described.

The distance between two categorical values is calcu-

lated by equation (16) and the distance between two

numerical values is calculated by equation (22), as

described in Sect. 4.6.

4.7.1 Distance of categorical and numerical attributes
at the level of attribute

Equation (26) represents the distance of two categorical

attributes ai and aj (belonging to P1 and P2, respectively)

which is the average of the distances between the values of

these attributes. Equation (27) denotes the distance of two

numerical attributes bi and bj (belonging to P1 and P2,

respectively) which is the average of the minimum dis-

tances between the values of these attributes.

Discatðai; ajÞ ¼
P

v2ai
P

v02aj Dcatðv; v0Þ
Nai þ Naj

ð26Þ

Disnumðbi; bjÞ ¼
P

v2bi minv02bj Dnumðv; v0Þ þ
P

v2bj minv02bi Dnumðv; v0Þ
Nbi þ Nbj

ð27Þ

where Nai (Naj ) is the number of values of ai (aj) in P1(P2).

4.7.2 Distance at the level of rule/ruleset/policy

We described the similarity computation between two rules

with similar effect values in Sect. 4.3. We employ a very

similar method for computing the distance between two

rules, avoid repeating the equations here.

Equation (28) represents the distance between two

policies, which is equal to the sum of distances of their

targets, their permit and deny rule sets. So, we have:

DisðP1;P2Þ ¼ DTðP1;P2Þ þ DPðP1;P2Þ þ DDðP1;P2Þ
ð28Þ

where DTðP1;P2Þ denotes the distance of the target ele-

ments of the two policies. Also, DPðP1;P2Þ and DDðP1;P2Þ
are the distances of permit and deny rule sets of the poli-

cies, respectively. It is to be noted that we employ a hier-

archical approach for computing these distance scores,
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which is very similar to the one we applied for calculating

the similarity score. Thus, we avoid repeating the equations

to save space.

As we described in Sect. 4.2, we employed a single-link

approach to defining the similarity assessment between two

rule sets. We use a very similar approach for computing the

distance between two ruleset, DPðP1;P2Þ and DDðP1;P2Þ.
The only difference here is that we define the map function

using a complete-link approach, where the distance of a

rule and a rule set is equal to the minimum distance

between the rule and all rules in the ruleset. Most of the

equations presented in Sect. 4.2 are used for computing the

distance between two rulesets; thus, we avoid repeating

them here.

5 Implementation and evaluation

In this section, we detail the implementation of the pro-

posed approach, and evaluate the performance of our

approach for assessing the similarity and distance of the

XACML policies.

5.1 Prototype implementation

We have implemented the XACSim tool1 in Java with JDK

1.8 as a similarity and distance evaluator for XACML

version 3.0 policies. For implementing the XACML navi-

gator to parse policies, we used the Java Architecture for

XML Binding (JAXB) API.2

5.2 Evaluation environment

We conducted several experiments to evaluate the effec-

tiveness and efficiency of the proposed method. All these

experiments were conducted on a system with these spec-

ifications: a dual-core Core i5 CPU with a 4 MB of cache

memory and a maximum frequency of 2.7 GHz, 4 GB

DDR-3 RAM, and running the Windows operating system.

We synthetically generated the following four datasets for

running these experiments. Our datasets were generated

using the XACBench toolset developed in our research

laboratory3 [38].

– DS1 Xacml3: This dataset consists only of categorical

values and has a policy set defined in XACML 3.0. It

contains 100 policies, each comprising three rules (two

with Allow and one with Deny effect) which each in

turn has at most 28 attributes with a maximum of three

different values.

– DS2 Xacml3: Defined in XACML 3.0, this dataset

consists of both categorical and numerical values. Its

policy contains 100 policies, each comprising at most

three rules (two with Allow and one with Deny effect)

which each in turn has at most 28 categorical attributes

with two different values. The maximum number of

attributes with identical values in each rule is 2.

– DS3 Xacml3: This dataset consists of an only categor-

ical value, and has a policy set defined in XACML 3.0.

The policy set has 100 policies, each containing a

maximum of one rule (Deny or Permit). Each rule has a

maximum of three attributes. This dataset was used to

compare the degrees of similarity obtained by our

proposed method and the approach proposed in [15].

– DS4 Xacml2: This dataset is the equivalent version of

DS3 Xacml3 in XACML 2.0.

Table 3 lists the specifications of these policy sets.

DS1 Xacml3 and DS2 Xacml3 have 25 subsets, each

consisting of four policies with equal number of context

attributes. In other words, we have 25 subsets of policies

differing in terms of the number of their context attributes.

Our method can calculate the similarity between poli-

cies and determine a similarity score for each pair of

policies. Also, it can measure the distance between the two

policies. An important parameter in our evaluation is the

number of context attributes that could affect both simi-

larity and distance. The threshold parameter was also

examined as a factor that affects the similarity between two

policies. To evaluate the efficiency of our method, the

elapsed time of the calculation of similarity and distance

between the policies was also taken into account.

We also compared our results with those of PSM [15]. In

addition, we use the similarity score Spolicy for any two

given policies which indicates the fraction of requests

obtaining the same decisions namely, Permit or Deny.

This measure is calculated as follows and referred as

SPDP:

SPolicyðP1;P2Þ 	
Sreq
jReqj ð29Þ

where Sreq represents the set of the requests with the same

decisions from P1 and P2 and Req is the set of the requests

applicable to either P1 or P2.

We implemented these approaches in Java to separately

evaluate the policies of XACML 2.0 and 3.0. SPDP uses

the number of user’s requests and employs a request

evaluator, called PDP, to calculate the similarity between

two policies.

1 The source code is publicly available at https://gitlab.com/nassirim/

XACSim. The developed tool is executed as a JAR file in a Java

virtual machine.
2 https://jaxb.java.net/
3 XACBecnh is a toolset developed in our research laboratory at Bu-

Ali Sina University, accessible via https://github.com/nassirim/

xacBench.
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To offer an unambiguous view of the changes, the tar-

gets of all policies in the datasets were assumed to be the

same in these experiments. Also, the symmetric uncertainty

threshold, SUthreshold was set to 0.5, and the weight of every

component was set to 0.33.

5.3 The effect of the number of context
attributes

This section aims at showing the effect of the number of

context attributes on distance. To this end, the dataset

DS1_Xacml3 was assumed with policy pairs that have

different numbers of context attributes. On receiving this

dataset as its input, the proposed method calculates the

distance of policies in pairs, i.e. DðP1;P2Þ, DðP3;P4Þ,
DðP5;P6Þ, etc. In every subset of the input dataset, two

distance values are obtained and averaged.

Figure 3a illustrates the relation between the distance

and the number of context attributes. Every point on the

plot represents one subset of the policies in the input data

set. More precisely, it represents the distance between a

pair of policies that have an equal number of context

attributes. As shown in Fig. 3a, an increase in the number

of context attributes leads to increase the distance between

two policies. The increase in the distance is explained by

the difference in the values of context attributes in the first

policy. If increased, this difference would increase the

distance. In fact, if yk in Eqs. (17) and (18) differs from the

first to the second policy, the number of dissimilar values

will increase, which in turn will increase the distance.

The next experiment seeks to evaluate the effect of the

number of context attributes on the degree of similarity.

Again, the dataset DS1_Xacml3 was employed. XACSim

calculates the similarity of policies in pairs, i.e. SðP1;P2Þ,
SðP3;P4Þ, SðP5;P6Þ, etc. In every subset of the input

dataset, two similarity values were obtained and averaged.

Figure 3b illustrates the relation between the degree of

similarity and the number of context attributes. Every point

on the plot represents one subset of the policies in the input

data set, which have equal numbers of context attributes.

As shown in Fig. 3b, an increase in the number of context

attributes decreases the degree of similarity between two

policies, which is explained by the difference in the values

of context attributes in the first policy. If increased, this

difference would increase the distance and decrease simi-

larity. In this experiment, too, if yk in Eqs. (17) and (18)

differ from the first to the second policy, the number of

dissimilar values will increase, which in turn will increase

the distance. As a result, the increased distance would

decrease similarity.

5.4 The effect of threshold value on distance

We run another experiment to measure the effect of

threshold value of symmetric uncertainty on distance. Here,

the first 60 policies of the DS2_Xacml3 dataset were used.

This dataset includes multiple policy sets, each with poli-

cies with an equal number of context attributes. XACSim

takes each of these policy sets as a separate dataset and

calculates the average distance between pairs of policies.

The reason is that the difference in number of context

attributes in these policy sets will affect our calculations.

Table 3 Specification of synthetically generated datasets

Name #Policies #Rules Type Version

DS1_Xacml3 100 300 Categorical Xacml3

DS2_Xacml3 100 300 Categorical-

Numerical

Xacml3

DS3_Xacml3 100 100 Categorical Xacml3

DS4_Xacml2 100 100 Categorical Xacml2

Fig. 3 Effect of the number of context attributes on distance and

similarity of policies. The results were obtained based on an

experiment conducted on the DS1_Xacml3 dataset. Every point on

the plots represent the average distance/similarity of policy pairs with

equal number of context attributes
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Therefore, policies with identical context attributes were

evaluated separately.

Figure 4 illustrates distance for a range of different

threshold values. Each column represents the distance

between two policies with the specified number of attri-

butes on the x axis. The experiments was repeated for three

different threshold values, namely, 0.1, 0.6, and 0.75. An

increase in the number of attributes raises the distance for

all threshold values. This increase in the distance is

explained by the increase in the number of context attri-

butes in each policy pair. The more the threshold value

increases the more the distance decreases. In fact, with an

increase in the threshold value, the number of context

attributes will decrease. Only attributes that are most rel-

evant to their target attribute will be selected as context

attributes.

As shown in Fig. 4, the number of context attributes is

increased by the increase in the number of attributes. On

the other hand, the increased threshold value will reduce

the number of context attributes, as indicated by equa-

tion (15). Overall, a change in the number of context

attributes depends on the distribution of attributes values.

Recall that an attribute with SU values greater than the

threshold value is selected as a context attribute. According

to equation (15), with an increase in the threshold value

and in the number of attributes with larger SU, the number

of context attributes will increase and, as indicated by

Fig. 3a, the distance will increase.

5.5 The relation between distance and similarity

This section describes the results of an experiment that

seeks to measure the effect of distance on similarity by

using DS1_Xacml3. It separately calculates the similarity

of policies in pairs, i.e. SðP1;P2Þ, SðP3;P4Þ, and the dis-

tances between pairs of policy, i.e. DðP1;P2Þ, and

DðP3;P4Þ. Next, in every subset of the input data set, two

similarity values (two distance values) are obtained and

averaged. These average values together specify a point on

the plot in Fig. 5 (config-1). In other words, every point

on the plot signifies a pair of policies with identical context

attributes, and the similarity and distance of the point on

the plot refer to the average of similarity and distance

calculated for the two policies. The figure also shows the

effect of varying the weight of different components on the

similarity score computation.

Figure 5 illustrates the inverse correlation that exists

between distance and the degree of similarity. An increase

in the distance would decrease the degree of similarity. The

reason behind this reduction is that, when the number of

context attributes with different values increases, the target

attributes will be related to numerous attributes, which

means that the entropy and scattering of the attributes are

relatively high in the input data set and, therefore, no

particular semantic attribute can be found. This is

explained by Eqs. (19) and (20). An increase in distance

will reduce similarity, which is indicative of the inverse

relationship between distance and similarity.

Table 4 shows the weight of different components and

Fig. 5 illustrates the effect of these weights on the degree

of similarity. As shown in the figure, an increase in the

difference between the weights of the components in each

configuration will increase the difference between the

degrees of similarity obtained by different configurations.

In Fig. 5, for example, due to the closeness of weights in

config-1 and config-2, the degrees of similarity

Fig. 4 The effect of threshold values on distance Fig. 5 The effect of different weights

Table 4 Weight Assignments

for policy elements
Config-# wt wp wd

Config-1 0.33 0.33 0.33

Config-2 0.25 0.375 0.375

Config-3 0.5 0.25 0.25

Config-4 0.75 0.125 0.125
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obtained by these configurations are also close to each

other. Also, according to Table 4, the weights belonging to

config-4 have a greater difference, and a larger weight is

allocated to the component wt; therefore, the plot of this

configuration appears to be significantly different from the

other three plots in Fig. 5.

5.6 Comparison of XACSim with SPDP and PSM

This section seeks to compare XACSim with PSM and

SPDP. The data set used to compare XACSim, and SPDP

was DS3_Xacml3, and the number of requests was the

product of the domain of attributes. Also, the data set used

to compare the method with PSM was DS4_Xacml2.

Figure 6 shows the comparison results between the

proposed method SPDP and PSM. The horizontal axis in

this figure shows the similarity values calculated by SPDP.

The vertical axis represents the similarity as calculated by

PSM and XACSim. Every point in this figure indicates

similarity for the first and second policy ðP1;P2Þ as cal-

culated by the three methods.

As can be seen in Fig. 6, all three mechanisms estimate

similarity in the same way and with only a small amount of

error for each policy pair. As SPDP uses a request evalu-

ator to calculate the similarity between policies, it is used

as a basis for comparing our results against PSM. In Fig. 6,

given the bisector y ¼ x, the degrees of similarity calcu-

lated by the proposed method are closer than PSM to the

similarity calculated by SPDP. This is indicative of the

accuracy and validity of our approach to calculate

similarity.

5.7 Efficiency of the proposed method

Our last experiment run over DS2_Xacml3 to measure the

execution time of each method (cf. Fig. 7).

The figure shows the elapsed time for evaluation of the

policies based on the number of context attributes in each

policy pair. The horizontal axis represents policies with

different number of context attributes. It is observed that an

increase in the number of context attributes will increase

the execution time which is the sum of the elapsed times

for calculation of the similarity and the distance between

two policies. Every point on the plot shows the number of

context attributes. This increase in time is explained by the

increase in the number of context attributes. Overall, the

execution time for a dataset with a large number of cate-

gorical attributes remains quite reasonable (fewer than

1 min) for both XACSim and PSM. However, PSM

slightly outperforms our approach due to the hierarchical

complex structure of the XACML 3.0 standard on which

our mechanism is based.

6 Conclusions

We proposed a hierarchical algorithm to calculate the

similarity of two XACML 3.0 policies. To this end, simi-

larity measure is calculated at four levels, i.e., value,

attribute, rule, and policy. The similarity of two policies is,

then, an normalized aggregate of the similarity degree at all

four levels. More importantly, we developed XACSim tool

based on our proposed mechanism and evaluated its

effectiveness by using different XACML datasets. Results

and comparisons show that our tool is able to efficiently

calculate the similarity score between two XACML

policies.

As a future work, we plan to use this composite simi-

larity measure mainly for clustering policies. Although

clustering may accelerate the evaluation of requests

received by the PDP engine, a large number of policies in a

cluster may prevent the engine from efficient analysis and

turn it into a bottleneck. As a possible solution, we can

define a range X-MIDD [39] for the policies in each cluster

of the tree and facilitate the process of request evaluation.
Fig. 6 Comparing XACSim vs. PSM: XACSim obtains scores closer

to SPDP

Fig. 7 The elapsed time for evaluation of similarity between policies
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