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Abstract
Land subsidence has become a widespread engineering geological problem, which can quickly induce many derived

disasters. Over-exploitation of groundwater is one of the main factors of urban land subsidence. There is severe land

subsidence in Jining, mainly induced by groundwater over-extraction. Therefore, the numerical simulation method is used

in this paper to analyze and predict the law of land subsidence in Jining. Combined with the engineering geological and

hydrogeological conditions of Jining City, a three-dimensional fluid–solid coupling model of land subsidence was

established by using COMSOL software. The numerical results were verified using site monitoring data. The article

predicts the land subsidence in the study area in 2030. In 2030, the maximum land subsidence is 224 mm. And this paper

analyzes the land subsidence pattern under different groundwater extraction amounts. The results show that the land

subsidence in the study area is effectively alleviated under the condition of reducing water extraction by 30%. It provides a

basis for preventing and controlling land subsidence in Jining city. It is proved that land subsidence caused by groundwater

extraction positively correlates with the pumping time and amount of water pumped.

Keywords Three-dimensional fluid–solid coupled model � Land subsidence � Groundwater pumping � Numerical

simulation � Prediction

1 Introduction

Land subsidence is a slow-varying engineering geological

problem in which loose underground rock and soil layers

consolidate and compress under the action of natural fac-

tors or human activities, resulting in a reduction of ground

elevation in a certain area [1, 2]. There are many triggering

factors for ground subsidence, such as excessive exploita-

tion of mineral resources such as oil and coal mines and

groundwater [3–6].

Groundwater extraction is increasing due to the high use

of water resources for industrial, agricultural, and other

activities. Over-exploitation of groundwater has become

one of the most critical factors of land subsidence. More

than 200 cities and regions worldwide have severe land

subsidence due to the over-exploitation of groundwater [7].

Land subsidence has been observed in central and south-

central Arizona in the United States, Mexico City, Ban-

dung in Indonesia, Jakarta, and Bangkok in Thailand

[8–11]. Many Chinese cities are also facing land subsi-

dence problems. There are three significant areas of land

subsidence in China: The Yangtze River Delta region,

represented by Shanghai and Suzhou [12, 13]; The North

China Plain, represented by Beijing and Tianjin [14, 15];

Fenwei Basin region, represented by Xi’an and Taiyuan

[16, 17]. Urban ground subsidence caused by groundwater

overdrafts has seriously affected infrastructure develop-

ment and constrained sustainable economic development.

This has had a severe negative impact on the development

of the city.

Land subsidence caused by groundwater extraction has

become a global problem. With the increasing demand for

groundwater, land subsidence has been monitored and

researched worldwide [18–20]. Research tools for land
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subsidence mainly include land subsidence mechanism

research [21, 22], numerical simulation [23, 24] and

intelligent monitoring methods [25, 26]. Numerical simu-

lation can effectively predict urban land subsidence pat-

terns [27–30]. To calculate the land subsidence in the Su-

Xi-Chang region and Shanghai, Shi et al. [31] established a

coupled water flow-settlement model consisting of a three-

dimensional water flow model with variable coefficients

and a one-dimensional settlement model. Tianjin Binhai

New Area is one of the most serious areas of ground

subsidence. Hu et al. [32] predicted the land subsidence of

Tianjin Binhai New Area from 2011 to 2020 by estab-

lishing a numerical model. This provides a scientific basis

for the sustainable development planning of the area. Giao

et al. [33] developed quasi-3D modeling to analyze the role

of artificial recharge in land subsidence control in Bangkok

City. Larson et al. [34] developed an integrated numerical

model of groundwater and land subsidence for the land

subsidence problem in the Los Banos-Kettleman City area.

This article analyzes the land subsidence pattern under the

current pumping capacity and determines the optimal

pumping capacity for the area. A numerical simulation is

an effective tool for studying the land subsidence changes

caused by groundwater over-extraction.

Land subsidence has become a common engineering

geological problem, which can easily induce many sec-

ondary disasters. Jining is facing severe land subsidence,

which has seriously affected the city’s development. At

present, there are few pieces of research on land subsidence

in Jining. Therefore, this paper uses numerical simulation

to study the land subsidence in Jining.

According to the engineering geological and hydroge-

ological data of the Jining urban area, the fluid–structure

coupling model of land subsidence is established by

COMSOL software. The model reenacts historical changes

in land subsidence in the Jining study area and predicts

land subsidence change patterns to 2030. This paper

establishes the land subsidence model under different

extraction amounts. And the land subsidence law under

30% increase and 30% decrease of pumping volume is

analyzed. This paper proposes engineering measures to

control land subsidence, laying the foundation for pre-

venting and controlling land subsidence in the Jining

demonstration area.

The rest of the paper is organized as follows: Sect. 2

describes the geological and hydrological conditions of the

study area. Section 3 introduces the theoretical basis and

the establishment of the numerical model and verifies the

numerical model. In Sect. 4, the numerical results are

compared and analyzed. Section 5 is the conclusion of this

paper.

2 Geological and hydrogeological
conditions

Jining City is located in the southwestern part of Shandong

Province, combining four provinces: Jiangsu, Shandong,

Henan, and Anhui. Jining city planning area extended by

2.5 km as the scope of the survey area. The area of this

study is about 207km2, which is the primary groundwater

exploitation area in the urban area of Jining.

The study area is a warm-temperate semi-humid mon-

soon climate zone with four distinct seasons during the

year. The interannual climate is characterized by spring

droughts, summer floods, and late autumn droughts. The

multi-year average precipitation from 1980 to 2019 is

668.1 mm, with an average annual maximum of

1088.67 mm and an average annual minimum of

397.72 mm. The main rivers in the district are Guangfuhe

and Beijing-Hangzhou Canal, which flow through the dis-

trict from north to south and are injected into Nanyanghu.

These belong to the Nansihu water system in the Huaihe

River Basin.

The groundwater-bearing rock group in the area is the

loose rock type pore water-bearing rock group, followed by

the Carbonate fractured karst water-bearing rock group

(Fig. 1a). Loose rock type pore water-bearing rock group is

stored in the alluvial and alluvial sand layers of the new

tertiary-quaternary loose rock formation. The aquifer

mainly consists of coarse sand, medium sand, and fine

sand. The carbonate fractured karst water-bearing rock

group consists of Cambrian-Ordovician carbonate rocks.

Affected by geological structure and stratum lithology, the

development of fissure karst is not uniform, and the water-

richness varies greatly.

The survey area is flat and open, with various landforms

such as low hills, plain depressions, and lakeside depres-

sions. The regional stratigraphy belongs to the North China

stratigraphic region. The stratigraphic age from old to new

mainly includes Paleozoic Ordovician, Carboniferous-

Permian, Mesozoic Jurassic, and Cenozoic Quaternary

(Fig. 1b).

The thickness of the Neoproterozoic-Quaternary loose

layer in Jining City reaches 220–300 m, and the lithology

is the alternate accumulation of clayey soil and sandy soil.

The topsoil layer is a loose clayey layer of the Quaternary

Holocene, with a thickness of 2–10 m. It is underlain by an

alternating accumulation of clay, sand, and gravel layers of

the Pleistocene Quaternary, during which 4–7 layers of

water-bearing sands have developed. The water-bearing

sand layer is vertically concentrated in two relatively

enriched sand layers below 10–40 m and 60 m burial

depth. They constitute two aquifer groups: shallow pore
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diving—micro-pressurized water and deep pore pressur-

ized water.

3 Numerical models and theoretical
foundations

3.1 Biot consolidation settlement theory

Soil consolidation occurs when the water inside a soil body

slowly seeps out under load and gradually decreases in

volume. This consolidation phenomenon causes the soil to

compress and deform and causes the strength of the soil to

grow gradually. In 1941, Biot derived a three-dimensional

consolidation equation reflecting the interrelationship

between pore pressure dissipation and soil skeleton defor-

mation[22]. This equation lays the theoretical foundation of

flow-solid coupling in porous media.

In the coupled model of groundwater flow and porous

media, Biot derived a three-dimensional consolidation

equation for the mean total stress of the soil with time by

considering the mutual coupling relationship between pore

water pressure dissipation and skeletal deformation during

water loss consolidation soil. The stress–strain principal

structure relationship can be expressed as a tensor.

r ¼ C : e�aBpf I ð1Þ

Fig.1 Hydrological and geological map of Jining city (a hydrogeological subdivision map; b geological map)
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where r is the stress tensor; e is the strain tensor. The

symbol ‘‘: ’’ indicates the second-order tensor product. aB
is the Biot-Willis coefficient; pf is fluid pore pressure. C is

the fourth-order elastic tensor obtained by measuring the

stress–strain variation relationship in a soil body under

constant pore water pressure. I is the unit matrix.

The equilibrium equation of porous media material

under self-weight load is:

�r � r ¼ qavg ¼ ðqf ep þ qdÞg ð2Þ

where qav, qf , qd represent the average density, fluid

density, and dry density, respectively. ep is the porosity, g

is the gravitational acceleration.

The geometric equation for the deformation of porous

media materials is:

e ¼ 1

2
ruþ ðruÞT
� �

ð3Þ

where u is displacement tensor.

The flow field equations in the porous medium model

can be established by combining Darcy’s law and the fluid

mass conservation equation for fluid motion.

qf S
opf
ot

þr � qf � k

l
ðrpf þ qf grDÞ

� �
¼ �qf aB

o

ot
evol

ð4Þ

S ¼ ep
Kf

þ ðaB � epÞ
1� aB
Kd

ð5Þ

where evol=t is the volumetric strain rate of the porous

matrix. The storage term S is calculated by Eq. 5. The term

to the right of the equal sign can be interpreted as the

expansion rate of the pore space. k is the permeability; l is

the dynamic viscosity; D is the water head; Kf is the

hydraulic conductivity of fluid; Kd is the hydraulic con-

ductivity of dry.

3.2 Numerical calculation model

This paper uses COMSOL software to simulate land sub-

sidence caused by groundwater mining. The stratum of the

study area is the Quaternary loose topsoil layer, depth

0 * -200 m. The model generalizes the topsoil layer into

seven layers (Fig. 2), and the stratigraphic parameters are

shown in Table 1.

The Jining study area has 125 water source pumping

wells, mainly concentrated in Suzhuang, Shaokanghu,

Chengbei, Fenghuangtai, and Chengnan. Water source

pumping wells have the characteristics of high pumping

flow and concentration of pumping wells. Pumping flows

include 2400 m3/d, 2880 m3/d, 3000 m3/d, and 1500 m3/d.

In addition, there are a large number of self-contained

urban wells, rural single centralized water supply source

wells, and agricultural irrigation water. These wells are

widely distributed, with scattered pumping wells and small

pumping flows. Based on the measured pumping infor-

mation and the extraction well information sheet, the

location of the well sites and the extraction volume of each

extraction well are obtained (Fig. 3). The pumping level is

the second compression layer group.

3.3 Model feasibility analysis

The model modeled the actual pumping wells according to

the geological and hydrological data statistics. The initial

state of land subsidence in Jining in 1990 is used as the

initial state, and the extraction is calculated according to

the actual amount of water pumped. Numerical simulation

can realistically simulate the land subsidence caused by

groundwater mining in Jining.

The land subsidence at nine measurement points from

1991 to 1998 was selected as a validation object to verify

the accuracy of the numerical calculation model. The

locations of the monitoring points are shown in Fig. 3. The

model calculation results were compared and analyzed

with their actual measured values (Fig. 4). Due to the

limited measured data, the selected monitoring points are

mainly located in the middle of the model. The difference

between the calculated and monitored results at point m04

is the largest, with a difference of 6.3 mm. There are six

monitoring points with a difference of 5 mm or less. The

point with the largest error value is point m03, with an

error value of 7.5%. Seven points have an error of less than

5%.

Here is a comprehensive analysis of the reasons for

errors in the monitoring points. In the 3D numerical cal-

culation process, land subsidence is caused entirely by

groundwater extraction without considering other factors.

Numerous influencing factors exist in practice, and mea-

surement errors cannot be excluded. The calculated sub-

sidence trend and the amount of subsidence agreed with the

actual measured values considering errors. The margin of

error is within 7.5%.

The establishment of the numerical model and the error

analysis of the numerical results are analyzed. It has been

proved that the numerical model can better reproduce theFig. 2 Numerical model
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historical process of subsidence caused by groundwater

extraction in the study area of Jining. And the model can be

used to predict land subsidence.

4 Results and discussion

4.1 Land subsidence development trend

COMSOL Multiphysics is a mathematical approach to

solving real-world physical phenomena by solving partial

differential equations or systems of partial differential

equations for the simulation of real physical phenomena

based on the finite element method. In this paper, a fluid–

solid coupling model is constructed based on COMSOL

software. The model includes 57,487 domain cells, 20,431

boundary cells and 3194 edge cells. The model is solved

using parallel computation of sparse linear systems.

Based on this model, calculations were performed to

simulate the historical process of land subsidence induced

by groundwater mining in the study area of Jining. Figure 5

shows the land subsidence cloud map in the study area. In

the early days of the study, pumping wells in Jining were

mainly concentrated in urban areas, primarily urban self-

provided wells. In 2000, land subsidence areas were mainly

concentrated in urban locations, away from the five pri-

mary water sources (Fig. 6). The maximum urban land

subsidence is 154.5 mm. The largest land subsidence

among the five primary water sources is about 60 mm at

the Chengbei water source. As the city grows, urban water

consumption increases. Jining has added water sources in

the Chengbei, Chengnan, Shaokanghu, and Suzhuang. In

2010, the maximum urban land subsidence was 195.5 mm.

The land subsidence of the Chengbei water source has

increased significantly, with land subsidence of about

120 mm. The laying of water wells in urban areas has

substantially increased urban land subsidence. To ensure

urban water and reduce ground subsidence, Jining has

increased water wells in three primary water sources:

Fenghuangtai, Shaokanghu, and Suzhuang, far from urban

areas. In 2020, the maximum land subsidence in the study

area was 217.4 mm. Shaokanghu and Suzhuang water

sources experienced significant land subsidence. Compared

to 2010, land subsidence increased significantly, with a

maximum value of about 180 mm.

The land subsidence caused by groundwater extraction

is positively correlated with the time and amount of

pumping. The location with high pumping capacity and

long pumping time produces significant land subsidence. In

1990, many self-provided wells were used in the city of

Jining. Groundwater extraction over a long period has

resulted in widespread land subsidence in the city of Jining.

Table 1 Table of stratigraphic parameters

Stratigraphic Thickness

m

Young’s modulus

MPa

Poisson’s ratio Density

kg/m3
Porosity Permeability coefficient

m/s

Topsoil layer 5 120 0.3 1950 0.47 1e-6

The first compression

Layer group

13 60 0.3 2000 0.45 1e-10

The first aquifer group 32 150 0.35 2100 0.4 6e-5

The second compression

Layer group

25 65 0.3 2030 0.45 1e-10

The second aquifer group 35 180 0.35 2150 0.4 1e-5

Semi-cemented layer 40 200 0.35 2150 0.4 1e-5

Clay layer 50 60 0.2 2100 0.45 1e-10

Fig. 3 Distribution of pumping wells
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Land subsidence is influenced by the amount of water

pumped per unit time. After 2008, many additional water

wells were installed in the Suzhuang and Shaokanghu

areas. The two primary water sources with large numbers

and density of pumping wells have significantly increased

the amount of water pumped. In 2020, the area experienced

severe land subsidence with a maximum of about 180 mm.

Therefore, it is necessary to lay pumping wells reasonably,
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Fig. 5 Land subsidence development
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control the amount of water pumped from a single well,

and reduce the density of pumping well distribution. These

methods can effectively reduce land subsidence and lower

the peak land subsidence within acceptable limits.

4.2 Land subsidence prediction

The numerical calculation is carried out to predict the land

subsidence change rule in the study area in 2030 by

keeping the pumping amount unchanged (Fig. 7). The land

subsidence in the study area gradually increases with time.

In 2030, the maximum land subsidence will be 224 mm

(Fig. 7b). From 2020 to 2030, there will be less change in

land subsidence in urban areas of Jining. The land subsi-

dence rate gradually decreases. The maximum land subsi-

dence increased by 7 mm in ten years. The land subsidence

of the Shaokanghu and Suzhuang water sources is further

developed, with a maximum of 210 mm.

Before 2030, the land subsidence in Shaokanghu, Suz-

huang, and Fenghuangtai water sources is still developing.

The land subsidence is stable in the Chengbei and

Chengnan water sources and urban locations. The land

subsidence rate gradually decreases, and the stratum

gradually stabilizes after a long period of groundwater

extraction. The new additional pumping wells will cause

further land subsidence development and increase the

subsidence rate. And this will create new subsidence cen-

ters in the vicinity of the pumping wells. Therefore,

appropriate deployment of pumping wells can effectively

control land subsidence and ensure urban water use. The

land subsidence center can be artificially interfered with by

changing the area where the pumping wells are deployed.

4.3 Prediction of land subsidence
under different pumping conditions

The amount of mining at the water source was modified to

verify the effect of different mining on land subsidence.

The change in pumping volume is timed to 2020. The

pumping wells modified in this paper are fourteen wells at

the Suzhuang water source, nineteen wells at the

Fenghuangtai water source, and twenty wells at the Shao-

kanghu water source. This paper calculates two working

conditions: a 30% increase and a 30% decrease in mining

volume.

Keeping the amount of water pumped constant (Fig. 8a),

the center of land subsidence in Jining will gradually

develop towards the north and west of the study area in the

coming years due to additional wells. The study area will

form the Shaokang Lake, Suzhuang subsidence center, and

Fenghuangtai subsidence center. The maximum subsidence

is 35 mm in Suzhuang and Shaokanghu during the ten

years. The maximum subsidence in the Fenghuangtai area

is about 20 mm.
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Fig. 7 Cloud map of land subsidence prediction
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When groundwater extraction is reduced by 30%, there

is a significant change in the land subsidence pattern in the

study area (Fig. 8b). When pumping decreases, the land

subsidence decreases accordingly. In 2020–2030, the

maximum land subsidence value is 15.2 mm, located at the

water source of Fenghuangtai. The ground rebounded at the

Suzhuang water source. In 2030, the study area will form

two types of centers: the Fenghuangtai-Shaokanghu land

subsidence center and the Suzhuang land resilience center.

The land subsidence patterns of the three primary water

sources are different, related to the pumping time of the

pumping wells. The Suzhuang water source began pump-

ing water mainly in 2014. Keeping the pumping volume

constant, the rate of land subsidence gradually decreases

with time. When pumping is significantly reduced, the land

surface will rebound due to groundwater recharge of the

aquifer. The water source of Fenghuangtai and Shaokanghu

started pumping water mainly in 2019 and 2020. The land

subsidence decreases due to reduced pumping.

When the pumping volume is increased by 30%, the

land subsidence pattern is unchanged (Fig. 8c). And the

value of land subsidence increases significantly. In

2020–2030, the maximum value of the land subsidence is

64.6 mm, located near the water source of Suzhuang and

Shaokanghu. The land subsidence increased by nearly

30 mm compared to under regular pumping. The land

subsidence at the Fenghuangtai water source also increased

relatively, with land subsidence of about 30 mm.

The amount of water pumped is one of the main factors

influencing land subsidence. When groundwater extraction

increases, the land subsidence increases accordingly. Under

the premise of ensuring urban water use, appropriate

reduction of pumping can effectively reduce land subsi-

dence. With the groundwater recharge of the aquifer, the

ground will rebound, which can effectively alleviate the

land subsidence problem.

5 Conclusion

This paper establishes a flow-solid coupling model by

COMSOL software and analyzes the land subsidence law

caused by water pumping in Jining. And the article predicts

the change of land subsidence pattern by 2030. The fol-

lowing conclusions were obtained.

(1) Land subsidence caused by groundwater extraction

positively correlates with pumping time and the

amount of water pumped. Prolonged and high flow

pumping will result in significant land subsidence.

(2) This paper predicts the land subsidence pattern in the

study area of Jining by 2030. Before 2030, the land

subsidence is still in development in Shaokanghu,

Suzhuang, and Fenghuangtai water sources. The land

subsidence is stable at the location of Chengbei,

Chengnan water sources, and the urban area.

(3) The article predicts the land subsidence pattern with

different pumping amounts. Under the condition of

reducing 30% of pumping water, the study area

forms the land subsidence center of Fenghuangtai-

Shaokanghu and the ground rebound center of

Suzhuang. Under the condition of increasing 30%

of pumping water, the study area forms the

Shaokanghu-Suzhuang subsidence center and the

Fenghuangtai subsidence center.
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