
DRJOA: intelligent resource management optimization through deep
reinforcement learning approach in edge computing

Yifan Chen1,2 • Shaomiao Chen3 • Kuan-Ching Li4 • Wei Liang3 • Zhiyong Li1,2

Received: 20 May 2022 / Revised: 20 September 2022 / Accepted: 26 September 2022 / Published online: 15 December 2022
� Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Mobile edge computing (MEC) can enhance the computation capabilities of smart mobile devices for computation-

intensive mobile applications via supporting computation offloading efficiently. However, the limitation of wireless

resources and computational resources of edge servers often becomes the bottlenecks to realizing the developments of

MEC. In order to address the computation offloading problem in the time-varying wireless networks, the offloading

decisions and the allocation of radio and computation resources need to be jointly managed. Traditional optimization

methods are challenging to deal with the combinatorial optimization problem in complex real-time dynamic network

environments. Therefore, we propose a deep reinforcement learning (DRL)-based optimization approach, named DRJOA,

which jointly optimizes offloading decisions, computation, and wireless resources allocation. The optimization algorithm

based on DRL has the advantages of fast solving speed and strong generalization ability, which makes it possible to solve

combinatorial optimization problems online. Simulation results show that our proposed DRJOA in this study dramatically

outperforms the benchmark methods for offloading decisions and system utility.

Keywords Computation offloading � Deep reinforcement learning � Mobile edge computing � Resource allocation.

1 Introduction

In recent years, the computation capability and energy

efficiency of mobile devices have become extremely

important with the emergence of new mobile applications

(e.g., augmented reality and 3D games) [1–3]. Mobile edge

computing (MEC) can effectively relieve the pressure of

increasing computing demands on mobile devices, reduce

task execution latency, and extend the battery life of ter-

minals by offloading the computationally intensive tasks to

neighboring edge servers [4–6]. However, although task

offloading to edge servers can effectively utilize compu-

tational resources at the server side, the experience quality

of users varies significantly under different task offloading

strategies and network resource allocation states. The rea-

son for this is that both the computation resources of the

edge server and the radio resources in the network are

limited. The computation offloading strategy is not always

practical, and a poor computation offloading decision may

even worsen task processing delay and increase energy

consumption. Therefore, designing a reasonable task

offloading strategy and allocating computational and radio

& Wei Liang

wliang@hnust.edu.cn

& Zhiyong Li

zhiyong.li@hnu.edu.cn

Yifan Chen

cyf176@hnu.edu.cn

Shaomiao Chen

csm123@hnust.edu.cn

Kuan-Ching Li

kuancli@pu.edu.tw

1 College of Computer Science and Electronic Engineering,

Hunan University, Changsha 410082, China

2 Key Laboratory for Embedded and Network Computing of

Hunan Province, Changsha 410082, China

3 School of Computer Science and Engineering, Hunan

University of Science and Technology, Xiangtan 411201,

China

4 Department of Computer Science and Information

Engineering, Providence University, Taichung 43301,

Taiwan

123

Cluster Computing (2023) 26:2897–2911
https://doi.org/10.1007/s10586-022-03768-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03768-z&domain=pdf
https://doi.org/10.1007/s10586-022-03768-z

resources in MEC systems are vital challenges that must be

addressed [7–11].

Many studies deal with optimization problems related to

computation offloading decisions and resource allocation

in MEC systems [7, 12–17]. Considering the presence of

binary offloading variables in these problems, they are

typically categorized as mixed integer nonlinear program-

ming (MINP) problems. Currently, exact approaches such

as branch-and-bound algorithms [18] and dynamic pro-

gramming [19] can be utilized to solve MINP problems;

however, when the problem scales up, these algorithms

will consume massive computation time and are difficult to

scale. In addition, there are approximate approaches, such

as heuristic local search [13, 20, 21] and relaxation algo-

rithms [22, 23]. Compared to the exact approaches, the

approximate approaches can search for a solution within an

acceptable computation time. However, when the problem

becomes complicated, a large number of iterations still lead

to a considerable computation time. Hence, approximation

methods are difficult to be applied to online, real-time

computation offloading optimization problems.

In recent years, with the development of artificial

intelligence technology, deep learning has been widely

used in various fields [24, 25]. In this paper, to solve task

offloading decisions and resource allocation in MEC sys-

tems online, we propose a deep reinforcement learning

(DRL)-based offloading framework that works as an

adaptive scheduler to learn binary offloading decisions.

Edge servers can provide computing services to users,

reducing task execution latency and energy consumption of

mobile devices. Therefore, we use processing latency and

energy consumption as evaluation metrics to analyze the

performance of an MEC system. We define the user’s

utility function as the weighted sum of the improvement

ratios on delay and energy consumption via edge com-

puting compared with local computing. Our study aims to

maximize the system utility, which is defined as the

weighted sum of the utility functions of all users in the

system. The significant contributions of this study are as

follows.

1. We construct a joint optimization problem of compu-

tation offloading, communication, and computational

resource allocation in a time-varying MEC network to

maximize system utility, which is a mixed integer

nonlinear programming (MINP) problem.

2. We propose a DRL-based joint optimization approach

(DRJOA) for each user in a time-varying MEC system

to obtain an optimal offloading strategy and the

corresponding resource allocation. DRJOA converts

the original optimization problem into two subprob-

lems: wireless and computational resource allocation

and computation offloading decision problems. The

proposed DRJOA learns the offloading generation

strategy from past offloading experiences under the

different wireless channels. The computation offload-

ing decision problem uses a deep neural network

(DNN) and K nearest neighbor (KNN) methods to

generate offloading decisions efficiently. Thus, DRJOA

selects the best offloading decision from a limited

decision space, and its computational complexity does

not grow dramatically with the size of the problem.

3. We conduct extensive simulations to evaluate the

performance of our proposed DRJOA algorithm. The

simulation results demonstrate that the system utility of

the proposed solution is near-optimal, and the proposed

DRJOA algorithm significantly improves system

offloading utility compared with benchmark

approaches.

The remainder of this paper is organized as follows. The

related work is introduced in Sect. 2. Sections 3 and 4

describe the system model and problem formulation,

respectively. Section 5 elaborates on the working principle

of DRJOA to solve the optimal resource allocation and

computation offloading problems. Finally, the experimental

results are analyzed in Sect. 6, and conclusions are pro-

vided in Sect. 7.

2 Related work

In MEC networks, jointly optimizing computation

offloading decisions and resource allocation have been

extensively studied in academia and industry [14]. Many

related studies [12, 13, 22, 23, 26, 27] have defined it as an

MINP problem. For example, [26] presents a branch-and-

bound method based on a reconstruction linearization

technique to obtain optimal or suboptimal results by setting

the accuracy of the solution. Considering that the com-

plexity of this method was not guaranteed, the authors

further designed a greedy heuristic algorithm to solve the

MINP problem by reducing it into a convex problem. In

[12], the authors decomposed the original MINP problem

in a single-cell multi-user scenario into a resource alloca-

tion subproblem and a task offloading decision subprob-

lem. The closed-form solution of the resource allocation

subproblem was obtained via convex and quasi-convex

optimization techniques, transforming the MINP problem

into an integer programming problem; the offloading

solution was obtained via a heuristic algorithm. In [13], the

authors studied a joint optimization problem of resource

allocation and computational offloading in a multi-cell

multi-user system and solved the problem using a heuristic

algorithm. In [27], the authors focused on optimizing the

offloading decisions of all users, computing access points,

2898 Cluster Computing (2023) 26:2897–2911

123

and communication and computation resource allocation to

minimize the weighted sum of energy costs, computation,

and maximum delay among all users. They proposed a

heuristic algorithm based on semi-definite relaxation and a

novel randomization mapping method to solve the prob-

lem. However, applying these algorithms to real-time MEC

systems still faces many challenges. The primary reason is

that MEC systems are highly real-time systems wherein the

channel changes rapidly. The heuristic algorithms men-

tioned above require numerous iterations to obtain the local

optimum; thus, they do not meet real-time requirements.

To solve this problem, we introduce the DRL algorithm

in the MEC system, which can use DNNs to learn the best

mapping of state space to action space. At present, studies

have been conducted on computation offloading methods

based on DRL in MEC systems [28–33]. In order to min-

imize the overall cost in terms of time and energy for all

users, a scheme based on Deep Q-Networks (DQN) is

proposed in [28] to optimize computation offloading and

resource allocation jointly. Without prior knowledge of the

network dynamics, [29] presents a computation offloading

algorithm based on a dual DQN that learns the optimal

strategy. To address the problem of DQN-based methods

for selecting actions by exhaustive search, [30] proposed a

new DRL framework that maximizes the weighted sum of

computation rates in wirelessly powered MEC networks.

Specifically, in each iteration, only a tiny fraction of can-

didate offloading actions are considered in [30], leading to

near-optimal offloading actions. Based on the advantages

and disadvantages of the prior studies, the current work

considers a DRL-based scheme with an action space that

contains just a limited quantity of offloading decisions to

solve the joint optimization problem of computation

offloading and wireless and computational resource allo-

cation in single-cell MEC networks.

3 System model

In this section, we introduce the system model. For easy

reading and understanding, some notations frequently used

in this paper and their corresponding descriptions are listed

in Table 1.

We consider a single-cell MEC system, as shown in

Fig. 1. The system is composed of a base station s and

multiple mobile users N ¼ f1; . . .;Ng, and users commu-

nicate with the base station through wireless channels. The

base station is equipped with an edge server, which uses its

powerful computing resources to provide computing ser-

vices to mobile users. Mobile devices have different

computing capabilities due to various limitations, such as

physical size, battery capacity, and functionality. Each

mobile device is assumed to have computational tasks that

must be processed, and these tasks can be handled locally

by the device or offloaded to the edge server.

3.1 Task model

We assume that each user Di has a computationally

intensive task J i, di;wið Þ to be processed. Here, di is the

size of the input data of task J i, and wi indicates the

number of CPU cycles required to complete the task.

Information about di and wi can be obtained using the

program analysis methods presented in [34, 35].

Tasks are supposed to be indivisible and cannot be

decomposed into multiple subtasks. When user Di has a

task to perform, it first sends a message to the base station

containing information about that task. Then, it waits for an

offloading decision from the base station. There are two

offloading decisions in total, one is offloading to the edge

server, and the other is local processing. Due to their

varying computing capabilities, the energy and time

required to process the same task differ between mobile

devices and the edge server. The base station considers the

computation task requirements of all users and ultimately

determines the offloading policies for all users. The

offloading decision of user Di is denoted as ai 2 f0; 1g. If
the base station determines that the computational tasks of

user Di are processed locally at the user’s device, then

ai ¼ 0; conversely, ai ¼ 1.

3.2 Communication model

The base station s manages users’ uplink and downlink

communications in the network. Mobile devices are

assumed to access the network via orthogonal frequency

division multiplexing. The channel is divided into several

orthogonal sub-channels for communication between a

mobile device and the base station s. Various devices

occupy different communication sub-channels for their

respective transmission to eliminate intra-cell interference

[36]. If the offloading decision of user Di is ai ¼ 1, then the

uplink rate ri pið Þ at which user Di transmits data at power

pi can be expressed as

ri pið Þ ¼ B log2 1þ pigi
BN0

� �
; ð1Þ

where B is the bandwidth for each orthogonal sub-channel,

gi represents the wireless channel gain of user Di, and N0

denotes the Gaussian noise power spectral density at the

receiver of base station s. The total system bandwidth is W.

Therefore, the total number of mobile users in the network

that can simultaneously access base station s cannot exceed

M ¼ bW=Bc. In accordance with (1), mobile user Di can

Cluster Computing (2023) 26:2897–2911 2899

123

Table 1 Description of Key

Notations
Notation Description

N , N Set/number of mobile device users

J i Computation task of mobile device user Di

di Input data size of task J i

wi CPU cycles required for processing computation task J i

cli Local computation capacity of user Di

cs Computation capacity of the edge server

qi Percentage of computing resources allocated to user Di

tli Local execution time of computation task J i

tesi Delay for mobile user Di in mobile edge cloud computing

tes;ti
Transmission delay of mobile user Di for offloading task J i

tes;ei Processing delay of task J i at the MEC server

eli Energy consumption for mobile user Di in local computing

eesi Energy consumption for user Di in edge computing

ei Energy consumption coefficient

ri Transmission rate of user Di for computation offloading

W System bandwidth

B User bandwidth

pi Transmission power of user Di

pmax Maximum permissible transmission power

gi Channel gain between BS s and user Di

N0 Gaussian noise power spectral

ai ai ¼ 1 if task J i is offloaded; otherwise, ai ¼ 0

a ¼ ða1; a2; :::; aIÞ; decision profile of all users

kti Weights on computation time

kei Weights on energy consumption

N s Set of offloading users

Fig. 1 A single-cell multi-user

MEC system

2900 Cluster Computing (2023) 26:2897–2911

123

change the uplink transmission rate ri pið Þ by adjusting its

upload power pi. Assuming that the maximum value of the

upload power pi is pmax, the uplink transmission rate ri pið Þ
varies within the range of ð0;B log2 1þ pmaxgi=BN0ð Þ�.

3.3 Computation model

This section analyzes the computational overhead of

completing a task using both local and edge computing

approaches. The computational overhead is mainly related

to the time and energy consumed to complete the task.

3.3.1 Local computing

For the local computing method, mobile user Di processes

its task J i by using its computational resources. Let cli be

the local computation capability of mobile user Di. Then,

the time required to process the task locally for user Di is

tli ¼
wi

cli
: ð2Þ

The energy consumption of user Di is

eli ¼ eiwi; ð3Þ

where ei is the energy consumption factor that represents

the energy consumed per CPU cycle. In accordance with

[37, 38], ei is a superlinear function of computation capa-

bility and denoted as

ei ¼ z � cli
� �b

; ð4Þ

where z denotes the parameter related to the device chip

architecture, and b is typically set to 2.

3.3.2 Edge computing

The tasks are processed on the edge servers for the edge

computing method. The complete offloading process con-

sists of the following three parts.

• Device Di sends task-related data to the base station

over a wireless channel. Then, the base station forwards

this information to the edge server.

• The edge server allocates appropriate computation

resources to execute the task.

• After the task is processed, the output is returned to

device Di.

Similar to [12, 39], for many applications (e.g., face

recognition), the output data size of the task is much

smaller than the input data size, so we ignore the overhead

incurred by transmitting the output data back to the user.

The transmission time tes;ti pið Þ and energy consumption

eesi pið Þ of user Di for offloading input data di to the edge

server can be computed as

tes,ti pið Þ ¼ di
ri pið Þ ¼

di
B log2 1þ pigi=BN0ð Þ ð5Þ

and

eesi pið Þ ¼pi � tes,ti pið Þ ¼ pi �
di

ri pið Þ

¼pi �
di

Blog2 1þ pigi=BN0ð Þ :
ð6Þ

After the task J i of device Di is offloaded to the edge

server, the edge server will handle this task. Let cs repre-

sent the computational capacity of the edge server and qi
be a percentage indicating the computational resources

assigned to task J i by edge server s. The processing time

tes;ei qið Þ for task J i of device Di by edge computing is

given by:

tes,ei qið Þ ¼ wi

qics
: ð7Þ

Hence, the total time overhead tesi pi; qið Þ of processing task

J i using edge computing method consists of transmission

time and edge processing time, which can be expressed as

tesi pi; qið Þ ¼tes,ti pið Þ þ tes,ei qið Þ

¼ di
Blog2 1þ pigi=BN0ð Þ þ

wi

qics
:

ð8Þ

4 Problem formulation

In an MEC system, regardless of whether the task is pro-

cessed locally (ai ¼ 0) or at the edge server (ai ¼ 1), the

execution delay of task J i can be written as

ti ¼ 1� aið Þtli þ ait
es
i

¼ 1� aið Þwi

cli
þ ai

di
ri pið Þ þ

wi

qics

� �
:

ð9Þ

Similarly, the energy consumption for task J i can be

expressed as

ei ¼ 1� aið Þeli þ aie
es
i

¼ 1� aið Þeiwi þ aipi �
di

ri pið Þ :
ð10Þ

We define the utility of user Di, ui ai; pi; qið Þ as

Cluster Computing (2023) 26:2897–2911 2901

123

ui ai; pi; qið Þ ¼kti
tli � ti

tli
þ kei

eli � ei

eli

¼ai kti
tli � tesi

tli
þ kei

eli � eesi
eli

� �
;

ð11Þ

where kei 2 ½0; 1� and kti 2 ½0; 1� denote mobile device user

Di’s preferences for energy consumption and computation

time, respectively. Considering that the time and energy

metrics differ, we need to perform a normalization opera-

tion. Furthermore, since we need to compare the perfor-

mance of local and edge computing, we use ðtli � tiÞ=tli and
ðeli � eiÞ=eli to eliminate the effect of different metrics.

ðtli � tiÞ=tli and ðeli � eiÞ=eli represent the performance

improvement in the time and energy consumption of task

J i executed via edge computing compared with that by

local computing. The higher the utility function of mobile

device user Di is, the lower the cost of completing task J i

is; moreover, the better service user Di receives from the

MEC system. To analyze the computing services provided

by the system to all mobile device users, we define the

system utility as

Rða; p; qÞ ¼
XN
i¼1

jiui ai; pi; qið Þ

¼
XN
i¼1

jiai kti
tli � tesi

tli
þ kei

eli � eesi
eli

� �
;

ð12Þ

where ji denotes the system preference for mobile device

user Di. ji can be set based on user type and the urgency of

the computing task (e.g., tasks of first responders and

police officers should be set higher priority with a high ji).
In addition, ji is related to the price users pay for com-

puting services.

All users’ offloading decisions and allocating commu-

nication and computational resources to the users for the

MEC system are defined as a joint optimization problem.

The optimization goal is to maximize the system utility so

that the computing resources of the edge server can be fully

utilized. Taking the constraints of offloading decision,

transmission power, server computing capability, and

wireless channel into consideration, we formulate this

optimization problem as follows:

max
a;p;q

Rða; p; qÞ

s:t: C1 : ai 2 f0; 1g; 8i 2 N ;

C2 : 0\pi � pmax;8i 2 N s;

C3 : qi [0; 8i 2 N s;

C4 :
P

i2N s
qi � 1;

C5 :
P

i2N ai �M;

ð13Þ

where a, p, and q denote the computation offloading

decision vector, transmission power vector, and resource

allocation percentage vector of all users, respectively. N s

is the set of users who choose edge computing.

Constraint C1 states that each user can choose only one

between local computing or edge computing. Constraint C2

specifies the valid transmission power range for each user.

Constraint C3 ensures that the edge server must allocate

computing resources to the users who choose edge com-

puting. Constraint C4 ensures that the total computing

resources provided by the edge server to the users who

choose edge computing cannot exceed its maximum

available computing resources. Constraint C5 guarantees

that the total number of users choosing edge computing

simultaneously cannot be larger than the maximum number

of subchannels M.

5 DRL-based approach: DRJOA

Since there are three variables that need to be determined

in Problem (13) defined above, namely, a, p and q, where a

is a binary vector, p and q are continuous vectors. Besides,

the objective function Rða; p; qÞ in (13) is nonlinear.

Therefore, Problem (13) is a MINP problem, which is NP-

hard. It is known that there is no efficient way to solve NP-

hard problems. To solve Problem (13), we first rewrite

Problem (13) as P:

P :max
a

max
p;q

Rða; p; qÞ

s:t: C1;C2;C3;C4; and C5:
ð14Þ

Suppose that offloading decision a is fixed, Problem P can

be rewritten as:

P1 :max
p;q

Rða; p; qÞ

s:t: C2;C3; and C4:
ð15Þ

Hence, we decompose Problem P into two subproblems.

1. Optimal resource allocation subproblem. This sub-

problem is Subproblem P1, which involves optimiza-

tion variables p and q and can be solved by convex and

quasiconvex optimization methods [12].

2. Computation offloading subproblem. The computa-

tional offloading subproblem is a combinatorial opti-

mization problem. Due to the fast-changing wireless

channel, a fast policy response is required, and the

traditional numerical optimization methods are difficult

to achieve online offloading decisions. Thus, we use a

DRL-based method to address the online optimization

problem of computation offloading.

2902 Cluster Computing (2023) 26:2897–2911

123

5.1 Optimal resource allocation subproblem

Substituting (12) into (15), the objective function of P1 can

be written as

max
p;q

X
i2N s

ji k
t
i þ kei

� �
�
X
i2N s

ji k
t
it
es
i =t

l
i þ kei e

es
i =e

l
i

� �
: ð16Þ

The first term of (16) is constant for a particular offloading

decision and independent of the resource allocation vari-

ables p and q. Therefore, we can transform objective

function (16) into

min
p;q

X
i2N s

ji k
t
it
es
i =t

l
i þ kei e

es
i =e

l
i

� �

.

Based on the above analysis and (1)-(8), we can trans-

form Problem P1 into its equivalent problem as follows:

P
0

1 :min
p;q

X
i2N S

uic
l
i

qi
þ di þ nipi
log2 1þ pigi=BN0ð Þ

s:t: C2;C3; and C4;

ð17Þ

where ui ¼ jik
t
i=cs, di ¼ jik

t
idi= Btli
� �

, and

ni ¼ jik
e
i di= Beli

� �
. Following Problem P

0
1, we notice that

the power assignment pi and computational resource allo-

cation qi are mutually independent in terms of both the

objective function and the constraints. We transform the

original Problem P
0
1 into two subproblems: optimal com-

putational resource allocation and transmission power

allocation. In the following, we solve these two subprob-

lems separately.

5.1.1 Computational resource allocation

Using the first term of the objective function in (17) as the

new objective function, the computational resource allo-

cation problem is decoupled from Problem P
0
1 and can be

expressed as:

P2 :min
q

X
i2N S

uic
l
i

qi
s:t: C3 and C4:

ð18Þ

Let f ðqÞ ¼
P

i2N S
uic

l
i=qi. Each term in the Hessian matrix

of f ðqÞ can be written as

o2f

oqioqj
¼ 2uic

l
i=q

3
i ; if i ¼ j;

0; otherwise :

�
ð19Þ

From (19), we observe that all the diagonal elements of the

Hessian matrix are positive, and the other elements are

zero. Thus, the Hessian matrix of f ðqÞ is positive definite.

In addition, the domain of f ðqÞ is convex. Therefore, f ðqÞ
is a convex function.

Problem P2 can be addressed by applying Lagrange

multiplier approaches. We define the Lagrange function

Lðq; l; sÞ related to Problem P2 as

Lðq; l; sÞ ¼
X
i2N S

uic
l
i

qi
þ l

X
i2N S

qi � 1

 !
�
X
i2N S

qisi;

ð20Þ

where l and si are the Lagrange multipliers for Constraints

C4 and C3. Based on the Karush-Kuhn-Tucker conditions,

the optimal q�i , l
�, and s�i need to satisfy the conditions

below:

oL

oq�i
¼ �uic

l
i

q�i
2
þ l� � s�i ¼ 0; 8i 2 N S;

l�
P

i2N s
q�i � 1

� �
¼ 0;

q�i s
�
i ¼ 0; i 2 N S;

s�i � 0; q�i [0; i 2 N S; l� 0;

8>>>>>>><
>>>>>>>:

ð21Þ

By solving (21), we derive an optimal q�i in closed form,

and it is formulated as

q�i ¼
ffiffiffiffiffiffiffiffi
uic

l
i

p
P

i2N s

ffiffiffiffiffiffiffiffi
uici

p l
: ð22Þ

5.1.2 Transmission power allocation

The transmission power allocation problem is defined by

P3 :min
p

X
i2N s

di þ nipi
log2 1þ pigi=BN0ð Þ

s:t: C2 : 0\pi � pmax; 8i 2 N S:
ð23Þ

Each term in the objective function of Problem P3 (i.e.,
diþnipi

log2 1þpigi=BN0ð Þ) is positive and independent of one another.

Thus, Problem P3 can be transformed into a set of Problem

P4, which is defined as follows:

P4 :min
pi

di þ nipi
log2 1þ pigi=BN0ð Þ

s:t: C2 : 0\pi � pmax; 8i 2 N S:
ð24Þ

Problem P4 is quasi-convex and can be addressed utilizing

a bisection method [12].

5.2 Computation offloading subproblem

Based on the analysis in the previous sections, we know

that given an offloading decision a, the optimal uplink

power p� and computational resource allocation q� can be

obtained. We also get the optimal system utility with

respect to the offloading decision a, denoted as

Cluster Computing (2023) 26:2897–2911 2903

123

F �ðaÞ ¼max
p;q

Rða; p; qÞ

¼
X
i2N s

ji k
t
i þ kei

� �
� hðq�Þ �

X
i2N s

gðp�i Þ;
ð25Þ

where hðq�Þ ¼
P

i2N S

uic
l
i

q�i
can be calculated by substituting

(22) into (18), and gðp�i Þ ¼
diþnip

�
i

log2 1þp�i gi=BN0ð Þ. Subsequently,

we need to search for the optimal computation offloading

decision via solving the following problem:

max
a

X
i2N s

ji k
t
i þ kei

� �
� hðq�Þ �

X
i2N s

gðp�i Þ

s:t: C1; and C5:
ð26Þ

Problem (26) is a combinatorial optimization problem. We

use a DRL-based method to solve Problem (26) to obtain

real-time offloading decisions.

Combined with the above analysis on the resource

allocation subproblem, we propose a DRL-based online

offloading optimization framework called DRJOA, as

shown in Fig. 2. In the framework, DRJOA comprises four

modules: DNN, KNN, offloading decision selection (ODS),

and data caching module. The proposed DRJOA aims to

approximate a function h that yields an output fa�; p�; q�g
when the system takes the channel gain g as the input.

System utility R�ða�; p�; q�Þ acts as the reward. For sim-

plicity, function h can be given by:

h : g 7!a�: ð27Þ

In the following, we will introduce the DNN, KNN,

ODS, and data caching modules.

5.2.1 DNN module

DNN has a powerful feature representation capability.

Taking advantage of this feature, DRJOA adopts DNN to

adapt to offloading decisions. DNN in DRJOA is used to

generate an N-dimensional vector a
0

c, which can be repre-

sented by function h1, as follows:

h1 : g 7!a
0

c: ð28Þ

The input of this DNN is a vector g composed of the

channel gains of N users, and its output is an N-dimen-

sional vector a
0

c. Besides, there are also two hidden layers

in the DNN module. Therefore, the number of both input

and output neurons is N. For the two hidden layers, the

number of neurons is specified as 120 and 80, and the

rectified linear unit (ReLU) is employed as the activation

function, wherein the relationship between the output y of a

neuron and its input x is y ¼ maxfx; 0g. For the output

layer, we use the sigmoid function y ¼ 1= 1þ e�xð Þ as the
activation function, such that each element ac;i

0
in the

output vector a
0
c satisfies ac;i

0 2 ð0; 1Þ.

5.2.2 KNN module

We use the KNN method to transform a
0

c into K binary

offloading decisions. The function of the KNN module can

be represented in mathematical terms as

h2 : a
0

c 7! ak j ak 2 f0; 1gN ; k ¼ 1; � � � ;K

 �

; ð29Þ

where K is an integer within the interval ½1; 2N �. With

larger K, the higher the computational complexity of the

DRJOA algorithm, the closer the solution is to the optimal

one, and vice versa. Here, we set the value of K to N.

In DRJOA, KNN selects K nearest binary vectors to

vector a
0
c by calculating the distance between a

0
c and each

binary vector from the 2N N-dimensional binary vectors. A

simple example is provided below to help understand how

the KNN module works. Assume that a
0

c ¼ ½0:1; 0:2; 0:3;

Fig. 2 DRJOA framework

2904 Cluster Computing (2023) 26:2897–2911

123

0:4� and K ¼ 4. The distance between binary vectors

[0, 0, 0, 0], [0, 0, 0, 1], ..., [1, 1, 1, 1] and vector a
0

c

(a
0
c ¼ ½0:1; 0:2; 0:3; 0:4�) is computed. The distances are

0.5477, 0.7071, 0.8367, 0.9487, 0.9487, 1.0488, 1.1402,

1.2247, 1.0488, 1.1402, 1.2247, 1.3038, 1.3038, 1.3784,

1.4491, and 1.5166. Therefore, the four nearest vectors to

vector a
0
c are a1 ¼ ½0; 0; 0; 0�, a2 ¼ ½0; 0; 0; 1�, a3 ¼ ½0; 0;

1; 0�, and a4 ¼ ½0; 0; 1; 1�.

5.2.3 ODS module

In the ODS module, the optimal resource allocation p, q for

each offloading decision is analyzed in detail above, and

the corresponding reward R�ða; p; qÞ can be computed.

Then, the offloading decision that corresponds to the

maximum value from these rewards is selected as the

optimal offloading decision a� when the input is g, that is,

a� ¼ argmaxRðak; p�; q�Þ. Finally, the optimal offloading

decision a� and the corresponding resource allocation

policies p�, q� obtained via the ODS module constitute the

output of the system. The optimal resource allocation

scheme is described in detail in Sect. 5.1.

5.2.4 Data caching module

The data is collected to train the DNN module to enable

DRJOA to make better offloading decisions. The network

stores the input g and the output offloading decision a� for
each time slot t as data samples in the data memory.

Suppose the data memory size is L. If the memory is

complete, the freshly obtained state-action pair fg; a�g will

be added to replace the oldest stored data. A batch of data

is used to train the DNN by extracting data from the data

storage every D time slot. During the training process, we

use the Adam algorithm [40] to update the parameters of

the DNN to decrease the average cross-entropy loss, as

L htð Þ ¼

� 1

Stj j
X
s2St

a�s
� �>

log fht gsð Þ þ 1� a�s
� �>

log 1� fht gsð Þð Þ
� �

;

Cluster Computing (2023) 26:2897–2911 2905

123

where St is the training data set extracted from the data

storage, and Stj j is the number of samples in the set. The

Adam algorithm is an improved type of gradient descent

method that adaptively adjusts the learning rate of gradient

descent. Thus, it can converge more efficiently and avoids

manual adjustment of the learning rate.

The proposed DRJOA algorithm is provided in Algo-

rithm 1. Initially, the parameters h1 in the DNN are set

randomly, and the data memory is empty. Then, the algo-

rithm goes through the KNN, ODS, and data caching

modules. The DNN parameters are continuously improved

through learning, thus improving the offloading strategy.

6 Simulations

In this section, to analyze the performance of DRJOA, we

compare DRJOA with the following benchmark schemes.

� Local computing (LC): The tasks of all mobile device

users are processed locally on their own devices.

� Enumeration (Enum): We enumerate all task

offloading policies to find the global optimal solution.

� All edge computing (AEC): The offload decisions for

all users are ai ¼ 1; 8i 2 N . However, considering the

limited bandwidth of the system, users who do not have

acquired bandwidth resources can only handle their tasks

on their devices.

� Random computing (RC): Offloading decisions are

made randomly.

6.1 Experiment setup

All simulation experiments are performed in a network

with a hexagonal region whose side length is 288 m. In the

center of the region, there is a base station equipped with

an edge server. Users are randomly distributed in the net-

work. For wireless communication, the system bandwidth

is assumed to be W ¼ 8 MHz, and user bandwidth is set to

B ¼ 1 MHz. As a result, at most eight users are allowed to

send data simultaneously. According to the wireless

channel interference model in [41], the channel gain is

gi ¼ d�a
i;s , where di;s denotes the distance between user Di

and base station s, and a denotes the path loss exponent.

During the simulation, we consider face detection and

recognition as tasks. The size of the input data is di ¼ 420

KB. The total amount of CPU cycles required to process

this computational task is wi ¼ 1000 MCycles. The

parameters employed in the simulation are summarized, as

shown in Table 2.

The proposed DRJOA algorithm is implemented in

python based on TensorFlow. In the DRJOA algorithm, we

use a fully connected DNN with one input layer, two

hidden layers, and one output layer, where the number of

neurons in two hidden layers is 120 and 80, respectively.

We set the training interval to 10, the batch size of training

data to 128, the size of data memory L = 1024, and the

learning rate of the Adam optimizer to 0.01.

6.2 Convergence performance

We assume that the system time is divided into several

consecutive time frames of equal length, which are set to

be less than the channel coherence time. Also, the channel

is assumed to remain unchanged within a time frame but

may differ in different time frames. Figure 3 shows the

variation of the training loss with the time frame for the

DRJOA algorithm. The DRJOA algorithm has a much

higher training loss in the initial training phase than in the

later training phase. In order to be able to show the vari-

ation of training loss in one figure, we replace the training

loss greater than 1 with 1 in the plotting process. During

the initial phase of training, the training loss fluctuates

significantly. As the number of iterations increases, the

training loss gradually decreases. Consequently, the train-

ing loss curve tends to be smooth, and the model converges

to the optimal offloading strategy.

Figure 4 shows how the normalized utility changes as

the time frame increases. The normalized utility Rnða; p; qÞ
is defined as

Rnða; p; qÞ ¼
R�ða; p; qÞ

maxa02f0;1gN R
� a0; p; qð Þ ; ð30Þ

where the denominator in (30) denotes the optimal utility

obtained by finding the optimal policy by searching the

entire offloading space and computing the corresponding

optimal resource allocation policy, the numerator denotes

the utility obtained by the DRJOA algorithm. Evidently,

Rnða;p; qÞ 2 ½0; 1�; and the larger the value of Rnða; p; qÞ
is, the closer the policy obtained by the DRJOA algorithm

is to the optimal one.

In Fig. 4, the blue curves indicate the average of the

normalized utility Rnða; p; qÞ over the last 50 time frames,

while the light blue shade indicates the maximum and

minimum values of Rnða; p; qÞ over the last 50 time frames.

As the time frame increases, the normalized utility

Rnða;p; qÞ obtained by the DRJOA algorithm gradually

converges to the optimal solution.

6.3 Offloading decision

In this subsection, we evaluate the offloading decision

accuracy of different algorithms through simulation

experiments. Offloading decision accuracy is measured as

2906 Cluster Computing (2023) 26:2897–2911

123

the ratio of correctly predicted samples to the total amount

of samples tested. Obviously, the higher the ratio, the more

accurate the algorithm prediction is and the closer it is to

the system’s best performance.

Figure 5 shows the offloading decision accuracy

obtained by different offloading schemes. Accuracy varies

widely among different methods. Thus, we present two

different scales, as shown in Fig. 5. We observe that the left

Y-axis in Fig. 5 indicates an accuracy interval from 0 to 1.1,

and the right Y-axis indicates an accuracy interval from 0 to

0.005, with a minimum scale of 0.0005. The offloading

policy obtained by the Enum algorithm is optimal; hence,

accuracy is set to 1. The offloading decision accuracy of

algorithms LC, RC, AEC, and our proposed DRJOA is

0.00, 0.0011, 0.0016, and 0.8870, respectively. The

offloading decision accuracy of our proposed DRJOA

algorithm outperforms those of other offloading schemes.

6.4 System utility

Figure 6 compares the average normalized utility obtained

by different offloading schemes. The average normalized

utility results from averaging the normalized utility

obtained during the testing phase. Given that the Enum

algorithm obtains the optimal utility, the average normal-

ized utility value is set as 1. From Fig. 6, the average

normalized utility obtained by algorithms LC, RC, AEC,

and our proposed DRJOA are 0.00, 0.2988, 0.2479, and

0.9800, respectively. The average normalized utility of our

proposed DRJOA is considerably better than those of the

other methods.

7 Conclusion

This study proposes a DRL-based online optimization

approach DRJOA for computation offloading and resource

allocation in single-cell networks. In particular, we first

introduce the system model, which includes the task,

Fig. 3 Training loss of the

DRJOA algorithm varies with

the time frame

Table 2 Simulation data parameter

Parameter Numerical value Unit

N 10 –

W 8 MHz

B 1 MHz

z, b z ¼ 5	 10�27, b ¼ 2 –

a 4 –

pmax 1 w

N0 10�16 –

di 420 KB

wi 1000 MCycles

cli 0.5-1.5 GHz

cs 20 GHz

kti , k
e
i 0.5, 0.5 –

ji 1 –

Cluster Computing (2023) 26:2897–2911 2907

123

communication, and computation models. Then, we

establish the optimization problem to maximize system

utility by jointly considering computation offloading and

wireless and computational resource allocation. After that,

we propose a DRL-based algorithm, i.e., DRJOA, to obtain

a near-optimal solution rapidly for the optimization prob-

lem. In DRJOA, we use convex and quasi-convex opti-

mization techniques to solve the wireless and

computational resource allocation problem and construct a

DRL method to handle the computation offloading prob-

lem. The results confirm that DRJOA outperforms other

benchmark algorithms under the evaluation metrics of

offloading decision accuracy and system utility. The results

also demonstrate that the algorithm converges.

Author contributions YC conceived the presented idea. YC and SC

designed the model and the computational framework, and analyzed

the problem models and design algorithms. YC conducted simulation

experiments and analyzed the results. YC and SC wrote the

Fig. 5 Comparison of offloading decision accuracy

Fig. 4 Normalized utility vs. time frame

Fig. 6 Comparison of the average normalized utility obtained using

different offloading schemes

2908 Cluster Computing (2023) 26:2897–2911

123

manuscript with input from all authors. KL, WL and ZL conceived

the study and were in charge of overall direction and planning.

Funding This work was partially supported by National Key

Research and Development Program of China (No. 2018YF

B1308604), National Natural Science Foundation of China (Nos.

U21A20518, 61976086, 61906065), State Grid Science and Tech-

nology Project (No. 5100-202123009A), Special Project of Foshan

Science and Technology Innovation Team (No. FS0AA-KJ919-4402-

0069), and Hunan Natural Science Foundation (No. 2020JJ5200).

Data availability The datasets generated and analyzed during the

current study are available from the corresponding author on rea-

sonable request.

Declarations

Conflict of interest The authors declared that they do not have any

commercial or associative interest that represents a conflict of interest

in connection with the work submitted.

Human and animal rights This work did not include humans or

animal participants.

References

1. Li, K.: A game theoretic approach to computation offloading

strategy optimization for non-cooperative users in mobile edge

computing, IEEE Trans. Sustain. Comput. pp. 1–1 (2018)

2. Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: Become:

blockchain-enabled computation offloading for iot in mobile edge

computing. IEEE Trans. Ind. Inform. 16(6), 4187–4195 (2020)

3. Arthur Sandor, V.. K., Lin, Y., Li, X., Lin, F., Zhang, S.: Efficient

decentralized multi-authority attribute based encryption for

mobile cloud data storage. J. Netw. Comput. Appl. 129, 25–36
(2019)

4. Long, C., Cao, Y., Jiang, T., Zhang, Q.: Edge computing

framework for cooperative video processing in multimedia IOT

systems. IEEE Trans. Multimed. 20, 1126–1139 (2018)

5. Liu, C., Li, K., Liang, J., Li, K.: COOPER-MATCH: Job

offloading with a cooperative game for guaranteeing strict

deadlines in mec. IEEE Trans. Mobile Comput. pp. 1–1 (2019)

6. Yi, C., Cai, J., Su, Z.: A multi-user mobile computation

offloading and transmission scheduling mechanism for delay-

sensitive applications. IEEE Trans. Mobile Comput. 19(1), 29–43
(2020)

7. Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation

offloading and resource allocation in wireless cellular networks

with mobile edge computing. IEEE Trans. Wirel. Commun.

16(8), 4924–4938 (2017)

8. Chen, M., Hao, Y.: Task offloading for mobile edge computing in

software defined ultra-dense network. IEEE J. Sel. Areas Com-

mun. 36(3), 587–597 (2018)

9. Zhao, J., Li, Q., Gong, Y., Zhang, K.: Computation offloading

and resource allocation for cloud assisted mobile edge computing

in vehicular networks. IEEE Trans. Veh. Technol. 68(8),
7944–7956 (2019)

10. Zhou, W., Chen, L., Tang, S., Lai, L., Xia, J., Zhou, F., Fan, L.:

Offloading strategy with PSO for mobile edge computing based

on cache mechanism. Clust. Comput. 25(4), 2389–2401 (2022)

11. Bacanin, N., Antonijevic, M., Bezdan, T., Zivkovic, M.,

Venkatachalam, K., Malebary, S.: Energy efficient offloading

mechanism using particle swarm optimization in 5g enabled edge

nodes, Clust. Comput. pp. 1–12 (2022)

12. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task

offloading and resource optimization in proximate clouds. IEEE

Trans. Veh. Technol. 66, 3435–3447 (2017)

13. Tran, T.X., Pompili, D.: Joint task offloading and resource allo-

cation for multi-server mobile-edge computing networks. IEEE

Trans. Veh. Technol. 68, 856–868 (2019)

14. Du, J., Yu, F.R., Chu, X., Feng, J., Lu, G.: Computation

offloading and resource allocation in vehicular networks based on

dual-side cost minimization. IEEE Trans. Veh. Technol. 68(2),
1079–1092 (2019)

15. Li, H., Xu, H., Zhou, C., Lü, X., Han, Z.: Joint optimization

strategy of computation offloading and resource allocation in

multi-access edge computing environment. IEEE Trans. Veh.

Technol. 69(9), 10214–10226 (2020)

16. Zhang, D., Tang, J., Du, W., Ren, J., Yu, G.: Joint optimization of

computation offloading and ul, dl resource allocation in mec

systems. In: IEEE 29th annual international symposium on per-

sonal. Indoor Mobile Radio Commun. (PIMRC), pp. 1–6 (2018)

17. Huang, P.-Q., Wang, Y., Wang, K., Liu, Z.-Z.: A bilevel opti-

mization approach for joint offloading decision and resource

allocation in cooperative mobile edge computing. IEEE Trans.

Cybern. 50(10), 4228–4241 (2020)

18. Narendra, P., Fukunaga, K.: A branch and bound algorithm for

feature subset selection. IEEE Trans. Comput. 26, 917–922

(1977)

19. Bertsekas, D.: Dynamic programming and optimal control (1995)

20. Bi, S., Zhang, Y.: Computation rate maximization for wireless

powered mobile-edge computing with binary computation

offloading. IEEE Trans. Wirel. Commun. 17, 4177–4190 (2018)

21. Li, Z., Chen, S., Zhang, S., Jiang, S., Gu, Y., Nouioua, M.: FSB-

EA: fuzzy search bias guided constraint handling technique for

evolutionary algorithm. Expert Syst. Appl. 119, 20–35 (2019)

22. Guo, S., Xiao, B., Yang, Y., Yang, Y.: Energy-efficient dynamic

offloading and resource scheduling in mobile cloud computing.

In: IEEE INFOCOM 2016—the 35th Annual IEEE International

Conference on Computer Communications, pp. 1–9 (2016)

23. Dinh, T.Q., Tang, J., La, Q., Quek, T.Q.S.: Offloading in mobile

edge computing: task allocation and computational frequency

scaling. IEEE Trans. Commun. 65, 3571–3584 (2017)

24. Liang, W., Li, Y., Xie, K., Zhang, D., Li, K.-C., Souri, A., Li, K.:

Spatial-temporal aware inductive graph neural network for c-its

data recovery. In: IEEE Transactions on Intelligent Transporta-

tion Systems, pp. 1–12 (2022)

25. Diao, C., Zhang, D., Liang, W., Li, K.-C., Hong, Y., Gaudiot, J.-

L.: A novel spatial-temporal multi-scale alignment graph neural

network security model for vehicles prediction. In: IEEE Trans-

actions on Intelligent Transportation Systems, pp. 1–11 (2022)

26. Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by

jointly allocating radio and computational resources for mobile

edge computing. IEEE Access 5, 11255–11268 (2017)

27. Chen, M.-H., Dong, M., Liang, B.: Joint offloading decision and

resource allocation for mobile cloud with computing access point.

In: 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3516–3520 (2016)

28. Li, J., Gao, H., Lv, T., Lu, Y.: Deep reinforcement learning based

computation offloading and resource allocation for mec. In: 2018

IEEE Wireless Communications and Networking Conference

(WCNC), pp. 1–6 (2018)

29. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M.: Opti-

mized computation offloading performance in virtual edge com-

puting systems via deep reinforcement learning. IEEE Internet

Things J. 6, 4005–4018 (2019)

30. Huang, L., Bi, S., Zhang, Y.: Deep reinforcement learning for

online computation offloading in wireless powered mobile-edge

Cluster Computing (2023) 26:2897–2911 2909

123

computing networks. IEEE Trans. Mobile Comput. 19,
2581–2593 (2020)

31. Zhan, Y., Guo, S., Li, P., Zhang, J.: A deep reinforcement

learning based offloading game in edge computing. IEEE Trans.

Comput. 69, 883–893 (2020)

32. Du, J., Yu, F.R., Lu, G., Wang, J., Jiang, J., Chu, X.: MEC-

assisted immersive VR video streaming over terahertz wireless

networks: A deep reinforcement learning approach. IEEE Internet

Things J. 7(10), 9517–9529 (2020)

33. Mustafa, E., Shuja, J., Bilal, K., Mustafa, S., Maqsood, T.,

Rehman, F. et al.: Reinforcement learning for intelligent online

computation offloading in wireless powered edge networks.

Clust. Comput. pp. 1–10 (2022)

34. Cuervo, E., Balasubramanian, A., ki Cho, D., Wolman, A., Sar-

oiu, S., Chandra, R., Bahl, P.:MAUI: making smartphones last

longer with code offload, in: MobiSys ’10, (2010)

35. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A

framework for partitioning and execution of data stream appli-

cations in mobile cloud computing. In: 2012 IEEE Fifth Inter-

national Conference on Cloud Computing pp. 794–802 (2012)

36. Sesia, S., Toufik, I., Baker, M.: LTE-the UMTS long term evo-

lution: From theory to practice. (2011)

37. Wen, Y., Zhang, W., Luo, H.: Energy-optimal mobile application

execution: taming resource-poor mobile devices with cloud

clones. In: 2012 Proceedings IEEE INFOCOM. pp. 2716–2720

(2012)

38. Miettinen, A. P. , Nurminen, J.: Energy efficiency of mobile

clients in cloud computing. In: HotCloud (2010)

39. Chen, X.: Decentralized computation offloading game for mobile

cloud computing. IEEE Trans. Parall. Distrib. Syst. 26, 974–983
(2015)

40. Kingma, D., Ba, J.: Adam: A method for stochastic optimization.

In: International Conference on Learning Representations

41. Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge com-

puting empowered energy efficient task offloading in 5G. IEEE

Trans. Veh. Technol. 67(7), 6398–6409 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Yifan Chen received the M.Sc.

degree in the College of Com-

puter Science and Electronic

Engineering from Hunan

University, Changsha, China, in

2015. She is currently pursuing

the Ph.D. degree with the Col-

lege of Computer Science and

Electronic Engineering, Hunan

University, China. Her current

research interests include Inter-

net of Things, distributed com-

puting, game theory, and mobile

edge computing.

Shaomiao Chen received the

MSc and Doctoral degree in

Computer Science and Tech-

nology from Hunan University,

Changsha, China, in 2014 and

2018. He is currently a lecturer

at School of Computer Science

and Engineering, Hunan

University of Science and

Technology, Xiangtan, China.

His research interests include

Intelligent Computing and Big

Data Computing Systems.

Kuan-Ching Li is currently

appointed as Distinguished

Professor at Providence

University, Taiwan. He is a

recipient of awards and funding

support from several agencies

and high-tech companies, as

also received distinguished

chair professorships from uni-

versities in several countries. He

has been actively involved in

many major conferences and

workshops in program/general/

steering conference chairman

positions and as a program

committee member, and has organized numerous conferences related

to high performance computing and computational science and

engineering. Besides publication of journal and conference papers, he

is the co-author/co-editor of several technical professional books

published by CRC Press, Springer, McGraw-Hill, and IGI Global. His

topics of interest include parallel and distributed computing, Big

Data, and emerging technologies. He is a Member of the AAAS, a

Senior Member of the IEEE, and a Fellow of the IET.

Wei Liang is currently a Profes-

sor at the School of Computer

science and Engineering, Hunan

University of Science and

Technology, China. He received

his Ph.D. degree at Hunan

University in 2013 and was a

postdoctoral scholar at Lehigh

University, USA, during

2014-2016. He served as

Application Track Chair of

IEEE Trustcom 2015, a Work-

shop Chair of IEEE Trustcom

WSN 2015 and IEEE Trustcom

WSN 2016. He has published

more than 110 journal/conference papers such as IEEE Transactions

on Industrial Informatics, IEEE Transactions on Emerging Topics in

Computing, and IEEE Internet of Things Journal. His research

interests include Blockchain security technology, Networks Security

Protection, embedded system and Hardware IP protection, Fog

computing, and Security management in WSN. He is a Member of the

IEEE.

2910 Cluster Computing (2023) 26:2897–2911

123

Zhiyong Li (M’14) received the

M.Sc. degree in system engi-

neering from the National

University of Defense Technol-

ogy, Changsha, China, in 1996,

and the Ph.D. degree in control

theory and control engineering

from Hunan University, Chang-

sha, in 2004. Since 2004, he has

been with the College of Com-

puter Science and Electronic

Engineering, Hunan University,

where he is currently a Full

Professor. He has authored over

100 papers in international

journals and conferences. His research interests include intelligent

perception and autonomous moving body, machine learning and

industrial big data, and intelligent optimization algorithms with

applications. He is a member of the China Computer Federation and

the Chinese Association for Artificial Intelligence.

Cluster Computing (2023) 26:2897–2911 2911

123

	DRJOA: intelligent resource management optimization through deep reinforcement learning approach in edge computing
	Abstract
	Introduction
	Related work
	System model
	Task model
	Communication model
	Computation model
	Local computing
	Edge computing

	Problem formulation
	DRL-based approach: DRJOA
	Optimal resource allocation subproblem
	Computational resource allocation
	Transmission power allocation

	Computation offloading subproblem
	DNN module
	KNN module
	ODS module
	Data caching module

	Simulations
	Experiment setup
	Convergence performance
	Offloading decision
	System utility

	Conclusion
	Author contributions
	Funding
	References

