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Abstract
Efficient privacy-preserving algorithms are used in internet of things (IoT) applications, virtualization and edge computing

environments to decrease the high data disclosure risk. However, due to the strict security principles of current privacy-

preserving algorithms, they ignore the time consumption. On the other hand, most existing privacy-preserving algorithms

suffer from the overgeneralization problem, creating unnecessary information loss. Thus, two privacy-preserving algorithms

are proposed in this paper for IoT applications in the virtualization and edge computing environment to address this problem

and balance the information loss and disclosure risk.We first propose an overall metric tomeasure the performance of privacy-

preserving algorithms and balance the information loss and disclosure risk. Second, the proposed algorithms can significantly

decrease the time consumption by utilizing cached anonymized datasets.Moreover, the proposed algorithms also optimize the

distribution of anonymized datasets and decrease the information loss by deleting the small equivalent classes. Experimental

results show that our proposed algorithms are relatively fast, only consuming 34.3% operation time of current algorithms.

Next, we tested the usability of anonymized datasets by putting them into an IoT application. The two datasets generate similar

results, indicating that the proposed algorithms can satisfy the information loss requirements of IoT applications.
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Abbreviations
IoT Internet of things

IIoT Industrial internet of things

Inco-Flash Incognito-Flash

Inco-Flash2 Incognito-Flash2

PPDM Privacy-preserving data mining

PPDP Privacy-preserving data publishing

PUF Physical unclonable runction

SVM Support vector machine

PPSVCs Privacy-preserving support vector machine

classifiers

LAPP Lightweight privacy-preserving

PDA Privacy-preserving data aggregation scheme

DL-DOCAD Data OffLoading and CyberAttack detection

ADULT 1994 US census database

MEPS

HC-135G

Medical expenditure panel survey

CDM Information cost metric

J Equivalent class set

|J| Number of equivalent classes

jEGij Equivalent class’es records number

C Normalized information cost metric

N Total records number

Rm Maximum risk metric

pEGi
Probability of data disclosure of equivalent

class EGi

Ra Average risk metric

a; b Importance coeffecients
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1 Introduction

As the extension of edge computing, edge computing

provides high real-time services from devices close to

users. Moreover, virtualization is also used in edge com-

puting environments to simplify the applications’ deploy-

ments [1]. Due to physical constrain, existing internet of

things (IoT) applications are moved to edge computing

devices to improve network performance and service

quality. However, most IoT applications process individ-

uals’ sensitive information, such as medical data, transac-

tion records, and social relationship data [2]. Some

researchers also found that some devices, such as industrial

internet of things (IIoT), are easily attacked [3]. Moreover,

Sweeney [4] found that 87% of the US people could be

recognized based on other open-access datasets. He [5] also

attacked the encrypted prescription dataset in South Korea,

completing the de-anonymization and demonstrating the

vulnerability of current encryption methods.

Above all, IoT applications in virtualization and edge

computing environments need privacy-preserving algo-

rithms to avoid individuals’ sensitive information disclo-

sure. In detail, the privacy-preserving algorithms delete or

generalize part of datasets and generate anonymized data-

sets that satisfy security principles. Therefore, the privacy-

preserving algorithms can ensure that the attackers cannot

infer sensitive information based on the anonymized

datasets.

1.1 Motivations and problems

Some researchers have proposed privacy-preserving algo-

rithms to optimize anonymized datasets’ information loss

[6] and disclosure risk [7]. However, these privacy-pre-

serving algorithms have some drawbacks.

The drawbacks of the current privacy-preser-ving

algorithms:

Firstly, both IoT applications and edge computing

environments have high real-time requirements. However,

current privacy-preserving algorithms focus more on the

disclosure risk [8] and ignore the time consumption. Sec-

ondly, most IoT applications require fine-grained datasets.

However, with too strict security principles, current pri-

vacy-preserving algorithms cannot perfectly balance the

information loss and disclosure risk. Thirdly, most privacy-

preserving algorithms have the overgeneralization problem

[6]. In detail, some records with unique attributes formulate

small equivalent classes, and the privacy-preserving algo-

rithms generalize whole datasets to decrease the disclosure

risk of these small equivalent classes. It causes a terrible

distribution of anonymized datasets and increases

information loss. These drawbacks motivate us to propose

a new privacy-preserving algorithm.

1.2 Contributions

This paper proposes two fast privacy-preserving algo-

rithms, Incognito-Flash (Inco-Flash) and Incognito-Flash2

(Inco-Flash2), to minimize the time consumption and bal-

ance the disclosure risk and information loss. We develop

the proposed privacy-preserving algorithms based on

k-anonymity [9], a widely used privacy-preserving tech-

nology. Compared with an existing privacy-preserving

algorithm, Flash [6], we propose a cache scheme in pro-

posed algorithms to decrease time consumption. Moreover,

unlike Flash, our proposed algorithms focus more on bal-

ancing information loss and disclosure risk. Finally, to

address the overgeneralization problem ignored by Flash,

we proposed the Inco-Flash2 to optimize the distribution of

anonymized datasets. Moreover, to verify the effectiveness

of the proposed algorithms, we design an IoT application

architecture in edge computing environments.

The contributions of our work are summarized as

follows:

• To minimize the time consumption, we propose a cache

scheme for anonymized datasets in our proposed

algorithm, Inco-Flash. Based on this cache scheme,

Inco-Flash caches each attribute’s anonymized datasets

to avoid generalizing the same datasets.

• We propose an overall metric to measure anonym-ized

datasets’ information loss and disclosure risk. There-

fore, Inco-Flash can effectively balance the information

loss and disclosure risk by selecting the anonymized

dataset with the minimum overall metric.

• To address the overgeneralization problem and decrease

unnecessary information loss, we propose Inco-Flash2

with the recognition and deletion schemes for small

equivalent classes. Therefore, Inco-Flash2 can effec-

tively optimize the distribution of anonymized datasets

and provide fine-grained datasets for IoT applications.

• To verify the usability of the anonymized datasets, we

propose an IoT application architecture and apply the

proposed privacy-preserving algorithms to it. In detail,

we simulate the training process of a binary classifica-

tion application with both anonymized and raw

datasets, an example of IoT applications. In simulation

experiments, the classification results generated by the

anonymized and raw datasets are similar. Therefore,

We ensure that the anonymized datasets are still usable

for IoT applications.

The simulation experiments conducted on open-access

datasets show that the time consumption of our proposed

algorithms, Inco-Flash and Inco-Flash2, is only 34.3% of
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an existing algorithm, Flash [6]. In addition, we analyze the

distribution of anonymized datasets, showing that Incog-

nito-Flash2 solves the overgeneralization problem. In

conclusion, our proposed algorithms consume about 20

seconds for over 30,000 records, which means less than 1

millisecond per record. Therefore, based on the usability of

anonymized datasets and each record’s low average time

consumption, the IoT applications’ Quality of Service

won’t be affected by our proposed privacy-preserving

algorithms.

The article is formed as follows. Section 2 describes

related work on privacy-preserving algorithms and IoT

applications. In Sect. 3, we introduce the design of IoT

application architecture. In Sect. 4, we introduce the model

of the privacy-preserving problem. In Sect. 5, we introduce

the design of Inco-Flash and Inco-Flash2. In Sect. 6, we

measure the performance of these two algorithms in terms

of time consumption and distribution of the equivalent

classes. The performance results are compared with the

Flash. Finally, Sect. 7 summarizes our algorithms and

draws some conclusions.

2 Related work

This section summarizes the research on privacy-prese-

rving, network virtualization, and IoT applications. Table 1

shows abbreviations used in this paper.

2.1 Network virtualization researches

Researchers have proposed several resource detection,

resource management, and intrusion detection method for

network virtualization environments. Samira Rezaei et al.

[10] summarized the classification resource management

method. They found that resource management is a critical

system of virtualization network environment. Guojun

Wang et al. [11] proposed an SDN resource management

method, cTMvSDN, to optimize the response time and

SDN Quality of service. Based on Markov-Process and

Time Division Multiple Access (TDMA) protocol,

cTMvSDN can predict the mapping requests in next time

gaps and adjust the network environment dynamically.

However, they only evaluate cTMvSDN with a simulated

dataset far from the real-world environment. Seyedeh

Maedeh Mirmohseni et al. [12] proposed a resource allo-

cation method based on the Markov Learning Utilization

model to allocate the network resource for the request in

fog computing environments. The proposed method can

effectively reduce the latency and maximize network uti-

lization by predicting the short-term resource requirement.

Nevertheless, they only evaluated the proposed method in a

simulated environment, different from real-world fog

computing environments. Sanaz Kazemi Abharian et al.

[13] proposed an intrusion detection system in cloud

computing environments. The proposed system effectively

extracts the attack pattern from the network state by

selecting correlated features. However, this system can

only detect the attack behavior included by training sets,

and the attacks outside training sets won’t be detected by

this system.

2.2 Privacy-preserving researches

The current privacy-preserving algorithms are widely used

in data analyzing and publishing processes to decrease the

disclosure risk [8]. Traditionally, several researchers

developed privacy-preserving algorithms based on

encryption methods. Pachilakis et al. [14] focus on the

shortage of certificate authorities’ revocation checks of

web browsers. The proposed protocol can significantly

reduce the certificate authorities’ revocation risk and check

latency. However, they didn’t use real-world datasets to

evaluate their protocol, which may have a long distance to

realization. Athanasios et al. [15] focus on the security in

IoT networks. They implement an intrinsic physical

unclonable function (PUF) on IoT devices and evaluate

their security performance. Nevertheless, they didn’t ana-

lyze the deployment condition and reliability of PUF.

Weizhe et al. [16] designed a smartphone privacy-pre-

serving system to detect the operation state of smartphones

and prevent attacks on the smartphone sensors. This system

effectively ensures the privacy of smartphones. However,

Table 1 Abbreviations used in this paper

Abbreviation Meaning

IoT Internet of things

IIoT Industrial internet of things

Inco-Flash Incognito-Flash algorithm

Inco-Flash2 Incognito-Flash2 algorithm

PPDM Privacy-preserving data mining

PPDP Privacy-preserving data publishing

PUF Physical unclonable function

SVM Support vector machine

PPSVCs Privacy-preserving support vector

Machine classifiers

LAPP Lightweight privacy-preserving

PDA Privacy-preserving data aggregation

Scheme

DL-DOCAD Data OffLoading and CyberAttack

Detection

ADULT 1994 US census database

MEPS HC-135G Medical expenditure panel survey
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the attackers may terminate the proposed privacy-preserv-

ing system through system kernel code, increasing the data

leakage risk. [17] further improves the privacy-preserving

on Android. When the smartphones are missing, it locks

these smartphones by the instructions from the servers.

However, this privacy-preserving method can only operate

on Android devices, limiting the performance of other IoT

devices. Sengupta et al. [18] focus more on the path vali-

dation in the networks. They address that path validation

should satisfy two privacy principles: path and index pri-

vacy. Therefore, they propose a privacy-preserving net-

work path validation protocol named PrivNPV, satisfying

these two principles. Nevertheless, they ignore the disclo-

sure risk, and attackers may extract sensitive information

from the transmitted dataset. Xueqiao et al. [19] proposed a

searchable encryption scheme to encrypt the datasets with

low latency in a distributed system. The proposed

encryption scheme can resist keyword guessing attacks,

efficiently securing the datasets. However, the proposed

encryption scheme creates extra communication costs,

decreasing the service quality.

Considering the limitations of encryption methods in the

privacy-preservation algorithms, some researchers adopt

data segmentation to protect the relationships between

different datasets. [20] conducted a camouflage method to

hide the relationships between data subsets, which pro-

tected the privacy of an open dataset in the data analysis.

However, the proposed method cannot protect the infor-

mation of heavy-tailed distributed datasets well. [21] pro-

posed an information decomposition algorithm for set-

valued data that helps with the set-valued data

anonymization process. Nevertheless, they ignore the

usability of anonymized datasets in data processing

applications.

Moreover, some researchers utilized probability theory

and statistics to design privacy-preserving algorithms.

Kengpei et al. [22] proposed a privacy-preserving Support

Vector Machine (SVM) classifiers (PPSVCs). The authors

verified the robustness and classification accuracy of

PPSVCs under attacks. However, they didn’t consider the

equivalent classes’ distribution of PPSVCs, which may

cause high information loss. Mohamed et al. [23, 24]

compared the present third-party auditor models’ perfor-

mance. They proposed a lightweight privacy-preserving

(LAPP) method in a cloud environment to reduce the

auditing time and increase the confidence level of the

anonymized dataset. Nevertheless, they ignore auditing

accuracy and performance of each user, influencing the

service fairness.

Yao et al. [25] proposed a clustering algorithm with

different security requirements, Diff-BIRCH. Diff-BIRCH

inserts the Laplace noise in the datasets, making the cluster

results unable to be easily accessed. However, they ignored

the time consumption of the proposed algorithm. Yuan and

Sheng [26] designed a privacy-preserving algorithm for

neural networks based on AdaBoost.M2. This algorithm

operates on distributed neural networks and divides the

dataset for each neural network to prevent disclosure.

Based on the control of pseudo-loss, this algorithm can

ensure that the anonymization won’t influence the classi-

fication ability of neural networks. However, they ignored

the disclosure risk that happened in data transmission.

Bettahally et al. [7] proposed a privacy-preserving associ-

ation rule mining method based on genetic algorithm to

find the global association rules and preserve datasets’

privacy. Nevertheless, the proposed algorithm may create

an overgeneralization problem.

Khondker et al. [27] focused on the privacy disclosure

problem in the social network datasets. They proposed a

privacy-preserving method to extract the patterns of data-

sets and anonymize the datasets. However, they only

focused on the privacy-preserving demands of part users,

and too many users may consume more operation time.

Xiang et al. [28] realized a privacy-preserving platform for

medical data collection, transmission, and sharing,

MNSSp3. MNSSp3 utilizes IoT devices to transmit and

anonymize partial datasets. However, they didn’t evaluate

the performance of the proposed platform. On the dis-

tributed neural network LEARNAE, Spyridon and Ioannis

[29] designed a distributed filesystem, IPFS, for data

transmission and a decentralized network, IOTA, based on

IoT devices. Based on the system they designed, they

realized the privacy-preserving of LEARNAE, which also

maintained the utilization of LEARNAE. Nevertheless, the

attackers may recover the raw datasets based on the

anonymized dataset transmitted by IOTA. Waranya

Mahanan et. al. [30] propose a data privacy-preservation

heuristic algorithm, extended-OIGH, on Identical Gener-

alization Hierarchy datasets. Based on the structure of

Identical Generalization Hierarchy datasets, extended-

OIGH can prune part of the unnecessary anonymization

process to decrease the algorithm time consumption.

Nevertheless, extended-OIGH can only be applied in

Identical Generalization Hierarchy datasets.

Moreover, some researchers focus on the privacy dis-

closure risk of database query results. Stephan Kessler et.

al. [31] propose a privacy-preserving middleware in SAP

High-performance ANalytic Appliance system to general-

ize each query results. Moreover, the proposed middleware

keeps the new records that satisfy the k-anonymity prin-

ciple and hides the non-anonymous ones. However, they

ignored the optimization of information loss and disclosure

risk. Shuai et al. [32] proposed a privacy-preserving data

aggregation scheme (PDA) for cloud computing environ-

ments. The proposed scheme prices and packs the sensitive

dataset, which keeps a small encrypted dataset size and a
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low overhead. However, the time consumption of the

proposed scheme is not evaluated in their experiments.

Moreover, Pang et al. [33] proposed a similarity-based

text retrieval privacy-preserving scheme to anonymize the

query results of unauthorized users. This scheme avoids

attackers accessing the raw datasets based on recovering

queries and documents. However, the ranking of the query

results may be crippled by the proposed scheme, decreas-

ing the usability of query results. Palanisamy Balaji et al.

[34] proposed a framework to provide anonymized datasets

for different users. The authors calculated the information

loss and the disclosure risk in a large graph dataset.

However, the proposed anonymization framework only

focuses on graph datasets, unsuitable for other datasets.

Jianwei Qian et. al. [35] applied the knowledge graphs to

infer the sensitive information. They deanonymize over

60% of anonymized records of two real-world social net-

work datasets. However, the knowledge graphs are gener-

ated based on generalization trees, which cannot be

satisfied by some real-world datasets.

2.3 IoT deep learning applications researches

The current IoT applications use deep learning models to

realize the data sets’ classification, clustering, regression,

etc. Most deep learning models take a long time for the

model training process. And the trained deep learning

models can quickly output the result with high accuracy. Di

Zhu et al. [36] proposed a location classification model

based on the graph convolution network. It uses the

pedestrian moving trajectory and street view image to

classify the places’ functional characteristics. They evalu-

ate this model in a real urban dataset, and the experiment

results show that the model has high accuracy in predicting

place function characteristics. This network is trained in a

centralized framework, creating a high disclosure risk.

In addition, Fei Chen et al. [37] propose an IoT frame-

work based on a deep learning model to predict and

diagnose the faults of wind power generation. This

framework effectively predicts the fault types to help the

engineers manage the wind power generations. However,

the security problem is ignored in this framework.

Masoumeh Etemadi et al. [38] propose an auto-scaling

mechanism based on a deep learning model to manage the

fog servers’ resources required by IoT devices. This

mechanism optimizes network workload and network

latency, increasing resource utilization. Nevertheless,

datasets collected by IoT devices are not protected. Anwer

Mustafa Hilal et al. [39] propose a data offloading and

cyberattack detection (DL-DOCAD) technique for edge

computing environments. DL-DOCAD can maximize the

throughput and detect network attacks for edge computing

environments. However, the computing resources require-

ments may exceed the IoT devices’ hardware conditions.

In conclusion, these related works have some critical

limitations:

• IoT applications usually have high real-time require-

ments. Most existing methods only focus on the data

disclosure risk of anonymized datasets, ignoring the

time consumption.

• The researchers develop and train IoT applications

based on fine-grained datasets. The privacy-preserving

algorithm should balance information loss and disclo-

sure risk.

• Some researchers use global association rules to

anonymize and recover datasets quickly. This method

creates the overgeneralization problem and increases

information loss.

3 Details of IoT application architecture

Before the privacy-preserving problem definition and sol-

vation in IoT applications, we propose an IoT application

architecture in edge computing environments to simulate

the operation of privacy-preserving algorithms. The IoT

application architecture can be divided into the cloud, edge,

and end layers. The cloud layer consists of the cloud dat-

acenter and mainly focuses on the IoT applications’

developments [40]. The cloud layer periodically collects

the anonymized dataset from the edge layer, and the IoT is

developed based on the collected datasets. Because the IoT

is developed with up-to-date datasets, it can extract the

features from the present environment with high accuracy

and quality.

The edge layer consists of the edge servers near the

users. The IoT applications are operated in each edge

server to provide the data processing service. Most IoT

applications are high real-time applications, which can

quickly extract features from the datasets.

The end layer consists of all the end devices, such as

sensors and mobile devices. These devices collect the raw

datasets from the environment and require the data pro-

cessing results [41].

The data disclosure happens in the datasets transmission

between end and edge layers. The attackers may hijack

network connections, end devices, or even edge servers to

access sensitive information. Therefore, only protecting

IoT applications is not efficient in this architecture. The

privacy-preserving algorithm is needed in the end layer to

protect sensitive information. The detailed architecture is

shown in Fig. 1.
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4 Model of privacy-preserving problem

This section introduces the privacy-preserving problem

model and the anonymized dataset’s performance metrics.

Table 2 shows the notations used in this paper.

4.1 Definition of k-anonymity principle

K-anonymity [9], the most widely used privacy-preserving

principle, can effectively avoid the sensitive information

disclosure of open datasets. For any k (k[ 1), if the

anonymized dataset satisfies k-anonymity, any possible

attribute combinations must have at least k number of

different records. Therefore, the anonymized datasets

ensure that the attackers cannot distinguish any record from

more than k � 1 other records.
The k-anonymity principle effectively decreases dis-

closure risk, but most dataset generalization plans are not

optimal. Although generalization makes the dataset satisfy

the k-anonymity principle, it also causes dataset informa-

tion loss. The lower the disclosure risk, the greater the

information loss. Therefore, most k-anonymity privacy-

preserving algorithms aim to find the optimal generaliza-

tion plan.

To formulate the problem model of privacy-preserving

algorithms, we build a generalization tree to provide a basis

for privacy-preserving algorithms. For example, Fig. 2 is a

generalization tree for Marital-Status. Marital-Status can be

divided into Married-Civ-Spouse, Divorced, Never Mar-

ried, etc. These marital statuses can be generalized into two

states: Spouse Present and Spouse Not Present. Finally,

these two states are generalized to the � value, which is the

most ambiguous.

Then, we construct the solution space for the privacy-

preserving problem and formulate a new search strategy.

We combine the generalization plans of each attribute and

Fig. 1 System architecture of edge computing deep learning

application

Table 2 Notations used in this paper

Notation Meaning

CDM Information loss

J Equivalent class set

|J| Number of equivalent classes

EG Equivalent class

jEGij Records number of equivalent class

C Normalized information loss

N Total records number

pEGi
Probability of data disclosure

Ra average disclosure risk

a; b Importance parameters

Fig. 2 Generalization tree of marital status
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formulate the anonymity lattice, including all possible

generalization plans. For example, we take three attributes

whose maximum generalization levels are 1, 2, and 4. The

detailed anonymity lattice of these three attributes is shown

in Fig. 3. The numbers in nodes represent the generaliza-

tion level of the attributes. Moreover, the level of a node is

the sum of the generalization levels of all attributes. The

bottom node (0, 0, 0) represents the raw dataset, meaning

that all attributes’ generalization levels are 0. In addition,

the highest generalization state node (1, 2, 4) is located at

the 7th level of the anonymity lattice.

The anonymity lattice has some properties that can

simplify the search process. As shown in Fig. 3, if the node

(1, 2, 0) does not meet the k-anonymity principle, node

(1, 2, 0)’s predecessors also cannot meet the k-anonymity

principle. Therefore, the red background nodes are non-

anonymous, and we do not need to verify them. If it has

been verified that node (1, 0, 3) is a node that meets the

k-anonymity principle, all successors of (1, 0, 3) are

anonymous nodes.

Privacy-preserving algorithms aim to find an optimal

generalization plan in the anonymity lattice. This optimal

generalization plan should meet the k-anonymity principle

and keep the information loss as low as possible.

4.2 Performance measurement of anonymity
scheme

While satisfying the k-anonymity principle, each anony-

mous node has information loss and disclosure risk. We

need effective metrics to compare anonymous nodes’

information loss and disclosure risk. Moreover, the optimal

generalization plan should balance the information loss and

disclosure risk. For the information loss metric, we use the

information cost metric [42] to evaluate the information

loss. The anonymized datasets have equivalent classes,

including at least k number of the same records. The more

equivalent classes are, the more data processing tools can

extract the details in the datasets, and the lower the infor-

mation loss is. Then, the detailed metric is as follows.

CDM ¼
X

J
jEGij2; ð1Þ

where J represents the equivalent class set, and jEGij
represents the number of records contained in the equiva-

lent class EGi. Moreover, we normalize the information

cost metric as follows.

C ¼
P

J jEGij2

N2
; ð2Þ

where N represents the total records number of the dataset.

After normalization, the value of information loss will be

between 0-1.

Then, we use the average risk metric [43] to calculate

the disclosure risk. The average risk metric is calculated by

the weighted summation of the equivalent classes’ disclo-

sure risks. The details are as follows.

Ra ¼
1

N

X
J
jEGijpEGi

¼ 1

N

X
J
jEGij

� 1

jEGij
¼ 1

N

X
J
1 ¼ jJj

N
;

ð3Þ

where |J| is the number of equivalent classes. p is the

probability of data disclosure in the equivalent class EGi.

Finally, we propose an overall metric of the generalization

plans, including information loss and disclosure risk. Here,

we use the weighted summation method, which uses two

variables, a and b, to control the importance of the two

measurement methods and aþ b ¼ 1. The details are as

follows.

Value ¼ a� C þ b� Ra: ð4Þ

The overall metric can effectively balance the information

loss and disclosure risk in IoT applications based on a; b.
For example, when a ¼ 1; b ¼ 0, the privacy-preserving

algorithm will only focus on information loss and ignore

the disclosure risk. Furthermore, if a ¼ 0; b ¼ 1, it will

only focus on disclosure and ignore the other. In the fol-

lowing experiments, we set a ¼ b ¼ 0:5, which means that

we see the importance of information loss and disclosure

risk is equal.Fig. 3 Anonymity lattice

Cluster Computing (2023) 26:1495–1510 1501

123



5 The improvement of the anonymization
algorithm

Florian Kohlmayer et al. [6] proposed the privacy-pre-

serving algorithm named Flash. The process of Flash has

the following steps: First, it finds a longest path and then

checks whether the node at ½1
2
path:size� 1� meets the

k-anonymity principle. Second, it performs a binary search

to find the local optimal generalization plan on this path

and adds all non-anonymous nodes into a minimum heap.

Third, a new path is formed from the nodes in the mini-

mum heap and repeats the first and second steps until all

nodes are checked. Flash [6] decreases the time con-

sumption, but it still has some shortcomings.

• Flash can only use the predecessors’ anonymized

datasets in the current node check process. However,

most cached anonymized datasets are useless to Flash.

• Flash consumes much time to find a better generaliza-

tion plan than the local optimal. It is an unnecessary

waste for IoT applications with high real-time

requirements.

• Small equivalent classes in anonymized datasets cause

overgeneralization problems.

Therefore, we propose the privacy-preserving algorithms,

Inco-Flash and Inco-Flash2, to solve these problems based

on a cache scheme. We cached the anonymized datasets at

each level. Therefore, the nodes in the same levels can use

the cached anonymized datasets to save time consumption.

5.1 The procedure of Inco-Flash

Like Flash, Inco-Flash checks each node based on the

properties of anonymity lattice, including five parts: path

find, node check, data cache, path check and outer loop.

The detailed procedure of each part is shown as follows.

The path find algorithm is a depth-first search from the

inputted node to the top node, which constructs a path

composed of unchecked nodes. It searches the longest path

with unchecked nodes from the inputted starting node to

the bottom node. Then, this longest path will be checked by

node check and path check algorithms.

In node check and path check algorithms, the data cache

algorithm stores the anonymized datasets and generate

cacheList. In detail, for each anonymized dataset, the data

cache algorithm caches the anonymous ones. For the non-

anonymous datasets, the data cache algorithm will record

that their nodes are non-anonymous. Finally, the path

check algorithm will access the data cache record before

calling the node check algorithm. If cacheList has the

dataset that needs to check, the path check algorithm will

directly use the cached anonymized datasets in the fol-

lowing process.

The node check algorithm is responsible for the

k-anonymity principle check of each node. It generalizes

each attribute and divides the raw dataset into several

equivalent classes based on the node’s value. Algorithm 1

shows the process of the node check algorithm.

First, in Line (2), the node check algorithm checks if the

attribute that needs to be checked exists in cacheList. Then,

if it exists, the node check algorithm will return the

anonymized dataset in Line (2)–(4). Moreover, in Line (6),

if the anonymized dataset in cacheList is non-anonymous,

the node check algorithm will record that the node is non-

anonymous. Conversely, if the attribute does not exist in

cacheList, the node check algorithm will generalize the

dataset and check whether each equivalent class meets the

k-anonymity principle in Line (8)–(13). Finally, in Line

(14), the node check algorithm marks the node as anony-

mous when each attribute is checked.

Furthermore, we design the path check algorithm based

on the node check and data cache algorithm. The path

check algorithm is responsible for checking whether the

nodes on the path are anonymous. It checks the node in the

middle of the path and then performs a binary search.

When the node is non-anonymous, the path check algo-

rithm adds it into the minimum heap because the prede-

cessors of this node are non-anonymous. Therefore, the

following search is in the successors, and the path check
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algorithm sets low to mid þ 1. If the node is anonymous,

the current node is set to the possible local optimal solu-

tion. The successors of the anonymous node must also be

anonymous. Only the successors need to be checked to find

the optimal generalization plan. Therefore, the algorithm

sets high to mid � 1. Finally, the path check algorithm

repeats the above process until all nodes in the path are

checked.

The outer loop algorithm traverses the anonymity lattice

and finds the optimal node. The specific algorithm flow is

shown in Algorithm 2.

To introduce Inco-Flash clearly, we process Inco-Flash

in Fig. 3 as an example. Inco-Flash starts from the 0th level

and traverses all levels in the anonymity lattice. Firstly,

Inco-Flash finds a path from node (0, 0, 0), which is

ð0; 0; 0Þ ! ð1; 0; 0Þ ! ð1; 1; 0Þ ! ð1; 2; 0Þ !
ð1; 2; 1Þ ! ð1; 2; 2Þ ! ð1; 2; 3Þ ! ð1; 2; 4Þ, as shown in

Line(4). Then, in Line (5), Inco-Flash uses the path check

algorithm to find the optimal node. Inco-Flash firstly

checks node (1, 2, 0). If (1, 2, 0) is non-anonymous, the

nodes before (1, 2, 0) will be non-anonymous. Therefore,

Inco-Flash adds the non-anonymous nodes to the minimum

heap and checks the path from (1, 2, 1) to (1, 2, 4).

Otherwise, the nodes after (1, 2, 0) will be anonymous.

Then, Inco-Flash checks the path from (0, 0, 0) to (1, 1, 0)

to find the optimal anonymous node. When each node in

this path is marked, the top node in the minimum heap is

inputted into the path find algorithm to generate a new path

in Line (8)–(11). Moreover, Inco-Flash inputs the new path

into the path check algorithm and updates the optimal node

in Line (12). If the minimum heap is empty, Inco-Flash will

traverse the next level, generate a new path and check the

node of this path. Finally, when all nodes are checked,

Inco-Flash will return the optimal node as the optimal

generalization plan in Line (13).

In addition, Inco-Flash always calls the node check

algorithm from the middle level of the anonymity lattice.

Moreover, half of the nodes inputted into the node check

algorithm have cached anonymized datasets, and Inco-

Flash can skip the check process of these nodes. Therefore,

Inco-Flash can be seen as a binary search algorithm whose

time complexity is oðm � n � log lÞ. In detail, m is the

number of records, n is the number of attributes, and l is the

summation of attributes generalization level. In addition,

the space complexity of Inco-Flash is oðm � n � lÞ, meaning

each generalized attribute is cached by Inco-Flash.

5.2 The procedure of Inco-Flash2

In the anonymized dataset, we found that the distribution of

equivalent classes is highly uneven. The biggest equivalent

classes are 73.3% of the anonymized dataset. It means that

the dataset has been overgeneralized to satisfy the

k-anonymity principle. Therefore, most of the sizes of the

equivalent classes are much larger than k. To solve the

overgeneralization problem, we further propose Inco-

Flash2. In the node check algorithm of Inco-Flash2, the

k-anonymity principle is appropriately relaxed. If the sum

of the equivalent classes with sizes smaller than k does not

exceed half of all equivalent classes, Inco-Flash2 will

delete these equivalent classes. In addition, considering the

high real-time requirements of IoT applications, the pri-

vacy-preserving algorithm does not need to find the global

optimal generalization plan. A local optimal generalization

plan that meets the requirement of overall metric is enough

for IoT applications. Therefore, we add a termination

mechanism to Inco-Flash2. In the case of meeting the

requirement of overall metric, Inco-Flash2 directly termi-

nates to reduce the time consumption.

First, the node check algorithm of Inco-Flash2 is shown

in Algorithm 3.

In Line (2)–(7), same as Inco-Flash, the node check

algorithm of Inco-Flash2 accesses the cacheList and returns

the cached anonymized datasets. Then, it generalizes the

datasets and gets the equivalent classes in Line (9). For

each equivalent class, if its size is smaller than k, Inco-

Flash2 will see it as a small equivalent class. Moreover, if

the number of small equivalent classes is smaller than half

of the raw datasets, Inco-Flash2 will delete these small

equivalent classes in Line (10)–(12). Otherwise, Inco-

Flash2 marks the node as non-anonymous in Line (14)–

(16).

Then, the outer loop of Inco-Flash2 is shown in Algo-

rithm 4.
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In Line (1)–(6), same as Inco-Flash, Inco-Flash2 uses

the path find and path check algorithms to mark the nodes

and find the optimal node. Then, Inco-Flash2 calculates the

overall metric value of the optimal node in Line (7). If the

overall metric value exceeds requirements, Inco-Flash2

will end the search process and return the present optimal

node in Line (8)–(9). Finally, in Line (10)–(17), Inco-

Flash2 searches the nodes in the minimum heap and applies

the same termination condition for the optimal nodes.

In addition, considering the worst-case scenario, Inco-

Flash2 will search the whole anonymity lattice without

triggering the termination mechanism. Therefore, the time

complexity of Inco-Flash2 is the same as Inco-Flash, which

is oðm � n � log lÞ. In real-world datasets, Inco-Flash2

could have lower time consumption than Inco-Flash

because of the termination mechanism. Moreover, Inco-

Flash2’s space complexity is also oðm � n � lÞ.

6 Experiment

6.1 Dataset

This article uses three open-access datasets: the 1994 US

census database (ADULT), the medical expenditure panel

survey (MEPS), and the T-Drive trajectory data sample (T-

Drive) [44, 45]. ADULT simulates a real IoT application

dataset for evaluating privacy-preserving algorithms.

MEPS is used to evaluate the privacy-preserving algo-

rithms in short-term data. T-Drive includes a trajectory of a

vehicle within a week, which is used to evaluate the pri-

vacy-preserving algorithms in vehicular IoT applications.

Moreover, all generalization levels of these datasets’

attributes are between 2 and 6.

6.2 Experimental environment

This paper uses a personal PC to conduct the experiments

to simulate the edge computing devices with limited

computing resources. We use an i7-8750H, a 2.2GHz Intel

Core, and the system was a 64-bit Window10 professional

2004. Moreover, we use Python3.8 to realize Flash, Inco-

Flash and Inco-Flash2. We use different k (2� k� 10)

values for these algorithms and each dataset. The following

experimental results are the average of the ten experiments.

In terms of procedure cache, we stored anonymized data in

the memory. The specific experimental results are as

follows.
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6.3 The total time consumption comparison
of the Flash and Inco-Flash

As shown in Fig. 4, the total time consumption of Flash is

more than 1 minute, and the total time consumption of

Inco-Flash is within 25 seconds. Moreover, the total con-

sumption of Inco-Flash is only 34.3% of that of Flash.

Flash needs to generalize whole datasets to check whether

the node satisfies the k-anonymity principle, resulting in

high time consumption in node check and path check

algorithms. In addition, Flash cannot use cached anon-

ymized datasets in the node check algorithm. As a result,

the total time consumption of Flash is much higher than

Inco-Flash. Inco-Flash applies the generalization plan to

each attribute during the node check algorithm to save

time. Moreover, Inco-Flash uses more anonymized datasets

than Flash, decreasing time consumption. In addition, as

shown in Figs. 5 and 6, the time consumption of Flash and

Inco-Flash on both MEPS and T-Drive. It means that Inco-

Flash can also optimize the time consumption in short-term

data.

6.4 The overall metric comparsion of Flash
and Inco-Flash

This section evaluates the overall metric value of Inco-

Flash and Flash in ADULT. As shown in Fig. 7, Inco-Flash

and Flash have the same overall metric value when

k ¼ 2; 7; 8; 9; 10. The optimal anonymized datasets gener-

ated by Inco-Flash with these k values are the same as

Flash’s. However, when k ¼ 3; 4; 5; 6, Inco-Flash has a

lower overall metric than Flash. It is because that Flash

only focuses on the disclosure risk but ignores the infor-

mation loss. In conclusion, the optimal anonymized data-

sets generated by Inco-Flash have the better or same

overall metric as that of Flash. Furthermore, compared with

Flash, Inco-Flash can effectively balance the information

loss and disclosure risk.
Fig. 4 Total running time of Flash and Inco-Flash on ADULT

Fig. 5 Total running time of Flash and Inco-Flash on MEPS

Fig. 6 Total running time of Flash and Inco-Flash on T-Drive

Fig. 7 Overall metric value of Flash and Inco-Flash on ADULT
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6.5 Details of the algorithm time consumption

We also recorded the time consumption of each part of

Flash and Inco-Flash, including the path find, node check,

data cache, and path check algorithms. In detail, the path

check algorithm calls the node check and data cache

algorithms. So the time consumption of the path check

algorithm includes that of the node check and data cache

algorithms. Moreover, the path find and data cache algo-

rithms have fewer calls and low time complexity, so their

time consumption is low. Therefore, we will hide the time

consumption of data cache and path find algorithm in the

following experimental results. Figure 8 is the time con-

sumption of each algorithm on the ADULT dataset. Fig-

ure 9 is the time consumption of each algorithm on the

MEPS dataset.

Experimental results of the ADULT dataset show that

most time of Flash and Inco-Flash is spent on the node

check algorithm. Moreover, the time consumption of the

node check algorithm is close to the total time consump-

tion. It is because the node check algorithm operates many

times and the time consumption of the path find algorithm

is low. In addition, the time consumption of the node check

algorithm and path check algorithm is close, meaning that

the path check algorithm consumes most operation time on

node check and the time consumption of data cache and

minimum heap operations is low. Therefore, the time

consumption of the node check algorithm always accounts

for more than 80% of the total time consumption of Flash

and Inco-Flash. In addition, since the path check algorithm

calls the node check algorithm, its time consumption is the

sum of the time consumption of the node check and path

find algorithms. Moreover, in MEPS dataset, Flash and

Inco-Flash consumed almost all the time on the node check

algorithm. Therefore, we find that the number of attributes

impacts the path check process, but the records number

only affects the time consumption of the node check

algorithm.

6.6 The total time consumption comparison
of Inco-Flash and Inco-Flash2

Inco-Flash2 needs an overall metric requirement for the

termination mechanism. Therefore, we calculated the

overall metric values of the local optimal generated by the

Inco-Flash algorithm on ADULT. Figure 10 shows the

specific distribution of the overall metric values.

We take the 90% quantile (0.0309) in the overall metric

values as the overall metric requirement of the Inco-Flash2

algorithm. It means that the anonymized dataset generated

by Inco-Flash2 is at least better than 90% of other gener-

alization plans. Then, we conduct experiments on Inco-

Flash2 on the ADULT dataset and compare it with Inco-

Flash. As shown in Fig. 11, the time consumption of Inco-

Flash2 is within 4 seconds. When k ¼ 2 and k ¼ 3, Inco-

Flash2 only searches 9 anonymous nodes. Moreover, when

k[ 3, Inco-Flash2 only searches for 6 anonymous nodes,

reducing the time consumption. Finally, the timeFig. 8 Time spent in each part of Flash and Inco-Flash on ADULT

Fig. 9 Time spent in each part of Flash and Inco-Flash on MEPS
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consumption of Inco-Flash2 is less than 25% of that of

Inco-Flash.

6.7 The equivalent class distributions of Inco-
Flash and Inco-Flash2

To verify the solvation of the overgeneralization problem,

we record the equivalent class distribution of Inco-Flash on

the ADULT dataset when k ¼ 10. The distribution of the

equivalent classes is shown in Fig. 12.

As shown in Fig. 12, the biggest equivalent class

accounts for 73.3% of the anonymized dataset. It means the

overgeneralization problem appears in Flash and Inco-

Flash. Figure 13 is the equivalent class distribution of the

anonymized dataset generated by Inco-Flash2. The equiv-

alent class distribution in this anonymized dataset is more

balanced than that generated by Inco-Flash and Flash. In

detail, most of the equivalent classes’ sizes are close to the

k value. Therefore, the overgeneralization problem is

solved by Inco-Flash2.

Fig. 10 Distribution of overall metrics on the ADULT dataset

Fig. 11 Total time consumption of Inco-Flash and Inco-Flash2

Fig. 12 Equivalent class distribution of Inco-Flash and Flash

Fig. 13 equivalent class distribution of Inco-Flash2
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6.8 The accuracy of IoT application trained
by Inco-Flash2 generated dataset

The deep learning models are widely used in IoT appli-

cations, such as big data analysis and environment per-

ception [46]. Therefore, we also validate the usability of

the proposed algorithms in a deep neural model to simulate

the IoT applications’ environment. The deep neural model

has 50 hidden neurons, and its activation function is relu.

We use the ADULT anonymized dataset generated by

Inco-Flash2 to classify the individuals’ incomes. If the

income of a record is smaller than 50k, the model’s output

is 0. Otherwise, the output of it is 1. Then we use the

Pytorch to realize this model and train it for 300 epochs.

Moreover, each dataset used in the training process is

randomly divided by 20% and 80%, in which 20% is the

validation dataset, and 80% is the training dataset. We

compare the accuracy of the trained model with the

anonymized dataset and the raw dataset, which is the ratio

between the number of correct classification results and the

number of records. The detailed accuracies are shown in

Fig. 14.

As shown in Fig. 14, the accuracies of these two models

are similar, and the differences between them are below

6%. Therefore, the information loss of Inco-Flash2 is

controlled in an acceptable range, ensuring the usability of

the dataset for IoT applications. Moreover, the model

trained by the anonymized dataset has higher accuracy than

the one trained by the raw dataset. It means that the small

equivalent classes deleted by Inco-Flash2 include abnormal

records. In raw datasets, the classification model sees these

abnormal records as noise, which may decrease the clas-

sification accuracy. Therefore, by deleting small equivalent

classes, Inco-Flash2 can effectively filter out abnormal

records and improve the accuracies of IoT applications. In

addition, the models trained by anonymized datasets with

different k values have the same accuracy, which is

83.15%. It further indicates that Inco-Flash2 generalizes

the attributes unrelated to the individuals’ incomes, sim-

plifying the classification problem. So that the classifica-

tion model can easily converge to the point with a higher

accuracy based on all anonymized datasets with different

k values.

7 Conclusion

This article focuses on the privacy-preserving algorithms

for IoT applications in virtualization and edge computing

environments. To satisfy the real-time and fine-grained

datasets requirements, we propose two Inco-Flash and

Inco-Flash2 to balance the disclosure risk and information

loss. Based on procedure cache and small equivalent

classes deletion scheme, Inco-Flash and Inco-Flash2

effectively decrease the time consumption and ensure the

quality of the datasets. The experiments demonstrate that

Inco-Flash only consumes 34.3% time of Flash. Moreover,

the overgeneralization problem is solved by Inco-Flash2.

However, our privacy-preserving algorithms still need

generalization trees to construct the anonymity lattice,

which some IoT applications cannot satisfy. In addition,

the performance of proposed algorithms isn’t evaluated in

real virtualization and edge computing environments.

Therefore, one promising future direction is implementing

a generalization trees generation method in our privacy-

preserving algorithms and evaluating our algorithms for

real IoT applications in virtualization and edge computing

environments.
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