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Abstract
In this paper, the learning process of multilayer perceptron (MLP) neural network is boosted using hybrid metaheuristic

optimization algorithms. Normally, the learning process in MLP requires suitable settings of its weight and bias param-

eters. In the original version of MLP, the gradient descent algorithm is used as a learner in MLP which suffers from two

chronic problems: local minima and slow convergence. In this paper, six versions of memetic algorithms (MAs) are

proposed to replace gradient descent learning mechanism of MLP where adaptive b-hill climbing (AbHC) as a local search
algorithm is hybridized with six population-based metaheuristics which are hybrid flower pollination algorithm, hybrid salp

swarm algorithm, hybrid crow search algorithm, hybrid grey wolf optimization (HGWO), hybrid particle swarm opti-

mization, and hybrid JAYA algorithm. This is to show the effect of the proposed MA versions on the performance of MLP.

To evaluate the proposed MA versions for MLP, 15 classification benchmark problems with different size and complexity

are used. The AbHC algorithm is invoked in the improvement loop of any MA version with a probability of Br parameter,

which is investigated to monitor its effect on the behavior of the proposed MA versions. The Br setting which obtains the

most promising results is then used to set the hybrid MA. The results show that the proposed MA versions excel the

original algorithms. Moreover, HGWO outperforms all other MA versions in almost all the datasets. In a nutshell, MAs are

a good choice for training MLP to produce results with high accuracy.
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1 Introduction

The genuine innovation of simulating the neurons in the

human brain is represented in the intelligent mathematical

model of artificial neural networks (ANN). The connection

between neurons empowers the biological system to man-

age the body’s behavior through signal communication [1].

The artificial intelligence research community utilizes the

neurons’ biological behavior as an essential part of solving

machine learning problems such as classifications, clus-

tering, feature extractions, regressions, and predictions.

The base ANN has been categorized into different types

due to their learning process such as convolutional neural

network [2], feedforward neural network (FNN) [3], spik-

ing neural networks (SNN) [4], recurrent neural network

(RNN) [5], and radial basis function (RBF) network [6].

Learning is the capability of gaining knowledge from

experience and training. There are two types of learning:

supervised where the ANN work is assisted by outdoor

feedback and unsupervised where ANNs depend totally on

indoor feedback.

The learning process in each type ofANN is different. The

following is a brief explanation of this process in the most

common ANN structures [7, 8]. The FNN obtains the

information using the input layer. Then, the hidden layer

processes the inputs and produces the desired result in the

output layer. Each layer attempt to learn certain weights to

map the input into the output. This type of network does not

have feedback connections to be returned to the model. The

modification of FNN to have a loop on each hidden layer

would develop the RNN. This loop restriction guarantees the

capturing of sequential information in the input data. Addi-

tionally, the RNN shares the parameters across different timeExtended author information available on the last page of the article
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steps. Lastly, the CNN utilizes filters (i.e., kernels) to obtain

from the input the relevant features by applying the convo-

lution operation. The CNN automatically learns the filters

which assist inwresting relevant features from the input data.

As a result, a feature map is produced.

One of the most popular FNN is multi-layer perceptron

(MLP). It is widely used to solve several types of opti-

mization problems such as feature selection [9], classifi-

cation [10, 11], predictions [12, 13], regressions [14], etc.

The success of the learning process in MLP depends on the

initial value of its parameters (i.e., weights and biases).

These two parameters are optimized during the learning

process using gradient decent optimization algorithm.

However, this type of optimizer has two main shortcom-

ings [15]: slow convergence and local optima. Therefore,

several metaheuristic-based algorithms are adapted for

MLP such as artificial bee colony [16], cuckoo search

algorithm [17], gravitational search algorithm [18], grey

wolf optimizer [19, 20], butterfly optimization algorithm

[21], fish swarm algorithm [22], salp swarm algorithm

[23, 24], glowworm swarm optimisation [25], genetic

algorithm [26], grasshopper optimization algorithm

[27, 28], dragonfly algorithm [16], krill herd algorithm

[29], monarch butterfly optimization [30], social spider

optimization algorithm [31], ant colony optimization [32],

bat algorithm [33], biogeography based optimization [34],

lightning search algorithm [35], ant lion optimizer [36],

organisms search algorithm [37], and whale optimization

algorithm [15].

Generally speaking, metaheuristic-based algorithms are

general optimization frameworks which can be used to

minimize/maximize an optimization problem using smart

operators with the ability to navigate several niches in the

search space [38]. The behavior of its smart operators is

controlled by tuning or adapting parameters that affect the

balance between exploration and exploitation processes. It

is conventionally agreed that the metaheuristic-based

algorithms can be classified into either population-based or

local search algorithms due to their number of initial

solution(s) [39]. The local search algorithms begin with a

single solution. Iteratively, that solution is locally

improved using the neighboring move strategy until the

local minima is obtained. Local search algorithms are very

efficient in navigating the niche of the initial solution, but it

cannot explore several niches at the same time.

Oppositely, the population-based algorithms, such as

evolutionary algorithms (EAs) and swarm intelligence, are

initiated with several solutions stored in the population.

Iteratively, these solutions are recombined and mutated

until the population is maturely or prematurely converged.

These types of algorithms can explore several search space

niches because of their operators, but they cannot dig

deeply in each converged niche as they can stuck in local

optima [38]. Therefore, a new type of algorithm has

recently proved its efficiency in tackling the optimization

problem which is hybrid metaheuristic (or memetic algo-

rithm (MA)) [40, 41].

Memetic Algorithm (MA) is the recent growing trend in

evolutionary computation fields. In MA, the local search

algorithm is hybridized as an operator in the iterative loop

of the population-based algorithm. The main motivation

behind this hybridization is to complement the advantages

of both exploration and exploitation capabilities. The local

search operator speeds up the convergence by concentrat-

ing on good solutions than mutating the solutions [42, 43].

The behaviour of the population-based algorithm in MA is

inspired by Darwinian principles of natural selection as a

gene notation. The meme notation in MA is introduced by

Dawkins [44] which reflects the cultural behavior of the

local search algorithm. Gene and meme units play a vital

role in biological and cultural transmission. It is noted that

the majority of the previous work in the training process of

MLP relies on using the original version of the meta-

heuristic-based algorithm. Since the MLP performance

substantially depends on the optimal value of its initial

parameters which is refined in the later training stages. The

original metaheuristic algorithms can be boosted by MA

concepts.

This paper studies the effect of different MA versions as

an efficient trainer to the MLP. The MLP is chosen as an

efficient version of NN where this model applies feedfor-

ward to the NN. The structure of MLP is simple, easy to

design, and its speed allows its fast evaluation using the

proposed optimizer. Furthermore, this framework can be

generalized to other NN structures. In this case, the MA

algorithm enables finding the optimal configuration of the

MLP to boost its performance by producing more accurate

results. The following are the main contributions of the

current work:

– Six MA versions were introduced which are Hybrid

Flower Pollination Algorithm (HFPA), Hybrid Salp

Swarm Algorithm (HSSA), Hybrid Crow Search Algo-

rithm (HCSA), Hybrid Grey Wolf Optimizer (HGWO),

Hybrid Particle Swarm Optimization (HPSO), and

Hybrid JAYA algorithm (HJAYA).

– The original versions of the six population-based

algorithms are used as a gene unit to refine the global

search while the Adaptive b-hill climbing (AbHC) [45]
is used as a meme unit for the local search process.

– The AbHC is invoked in the iterative loop of any MA

version with Br probability where Br 2 ½0; 1�. The

higher value of Br probability leads to higher usage of

local improvement (AbHC).
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– The mean square error (MSE) is utilized to measure the

results of the proposed MA versions where the MLP is

used for classification purposes.

For evaluation purposes, fifteen classification datasets with

different levels of complexity are used. Initially, the effect

of Br on the behavior of the proposed MA versions is

studied. The comparative analysis is also conducted

between the results of MA versions as well as those of their

base algorithms. Interestingly for any MA version, the

results produced are mostly better than those produced by

the original algorithms. Furthermore, HGWO was able to

produce the best overall results for almost all datasets used

in comparison with the other proposed MA versions. In

conclusion, the MA is a better choice to train MLP to

produce results with high accuracy.

The remaining sections of this paper are arranged in the

following order: the background about MLP and AbHC is

given in Sect. 2. The proposed MA versions are thoroughly

discussed in Sect. 3. The dataset description and the results

discussions are given in Sect. 4. Finally, the conclusion and

possible future expansions are described in Sect. 5.

2 Research background

The background section includes the basic knowledge

about FNNs with a special concern for its variant used in

this research (i.e., Multilayer perceptron (MLP)). There-

after, the fundamentals of the adaptive b-hill climbing

optimizer which is the local search algorithm used in the

proposed MA versions are discussed.

2.1 Feedforward neural networks

Feedforward neural networks (FNN) are supervised learn-

ing algorithms that simulate the fact that the human brain is

organized into a form of network architecture in which

neurons are located in the layers, where there is a direct

connection between each layer and the next one. In FNN

structure design, the neurons are interconnected and

grouped in three layers. The first layer, namely the input

layer, comprises a set of neurons where it is equal to the

number of input features in training data. The middle layer

is known hidden layer and the last layer is known as the

output layer that maps the predicted class labels in a form

of output neurons in the FNN network [46].

Multilayer perceptron (MLP) is a variant of the FNN

model, where its network architecture is organized by

interconnected neurons distributed in the layers. The

information is transferred through these connections in one

way. An example of MLP network structure embeds of the

single hidden layer is shown in Fig. 1. MLPs mathematical

model is constructed from three parameters: input data,

weights, and biases. These parameters are fed into three

equation steps to compute the output of MLPs as follows:

(1) Initially, for each input in MLPs network structure, a

weighted sum score is linked with them, where it is

computed by using Eq. 1.

Sj ¼
Xn

i¼1
ðwij:XiÞ � bj; j ¼ 1; 2; :::; h ð1Þ

where n refers to the number of input nodes in the

network, wij refers to the weight vector that connects

the input node i with hidden node j, Xi is the ith

input, and bj is the bias of the jth hidden node.

(2) In this step, the weighted vector output is fed into the

activation function, called Sigmoid, and then the new

output vector is transferred to the next layer as

follows.

Sj ¼ SigmoidðSjÞ ¼
1

1þ expð�SjÞ
; j ¼ 1; 2; :::h

ð2Þ

where Sj is the weighted sum score is the node

j while h is the number of neurons in the hidden

layer.

(3) Eventually, the final output of the network is

calculated as follows:

ŷk ¼
Xm

i¼1
wkjfi þ bk ð3Þ

where wjk refers to the connection weight from hidden node

j to the output node k, and bk refers to the bias of the output

node k.

It should be noted that the most significant factors in the

estimation of the final output in MLPs are weight and bias

vectors as demonstrated in Eqs. 1 and 3. Finding the proper

values of weights and biases vectors play a vital role in

generating a robust and accurate MLPs model [20].

2.2 Adaptive b-hill climbing optimizer

The b-hill climbing (bHC) optimizer is a recent local

search-based algorithm proposed by Al-Betar [47]. Since

its establishments, bHC has been successfully tailored to

tackle several optimization algorithms such as feature

selection [48, 49], classification problems [50], economic

dispatch problems [51], examination timetabling problems

[52], multiple-reservoir scheduling [53], generating sub-

stitution-Boxes [54], and sudoku game [55]. In specific, the

bHC is hybridized with other population-based algorithms

to improve their exploitation power. For example, the bHC
is hybridized with bat algorithm for gene selection in [56],
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while it hybridized with cuckoo search for test optimization

function in [57], and hybridized with polynomial harmony

search algorithm [58]. Similarly, the bHC is hybridized

with salp swarm optimization for text documents clustering

problem [59]. The bHC is integrated within the flower

pollination algorithm for person identification using EEG

channel selection [60]. The bHC is hybridized with the

artificial bee colony algorithm for test optimization func-

tions in [61]. In another study, the adaptive bHC is com-

bined within the grey wolf optimization for solving the

non-convex economic load dispatch problem in [62]. The

adaptive bHC is integrated within slime mould algorithm

for solving numerical optimization problems [63], Finally,

adaptive bHC is hybridized with salp swarm optimization

for stock market prediction [64].

The main reasons behind using bHC optimizer are their

features in which it is simple in concepts, easy-to-use,

powerful in local refinement, speedy in convergence, and

powerfully avoiding local optima. bHC optimizer has three

main operators to improve the solution N -operator, b-op-
erator, and S-operator. The first operator is responsible for

neighbouring search controlled by N parameter where

N 2 ½0; 1�. The second operator is responsible for the

random search which is controlled by b parameter where

b 2 ½0; 1� (i.e., similar to a uniform mutation in Genetic

Algorithm). The last operator is the greedy selection pro-

cess to replace the current solution with the new one, if

better. Recently, An adaptive version of bHC optimizer is

proposed to yield a parameter-free bHC [45]. In Adaptive

bHC (i.e., AbHC), the two parameters of bHC optimizer

(i.e., N and b) are updated during the search. Algorithm 1

shows the pseudo-code of AbHC.
As illustrated in the Algorithm 1 in the initialization step

of AbHC, the values of bmin ¼ 0:001, bmax ¼ 0:6, and K ¼
20 parameters are assigned as suggested in [45] to

determine how the parameters will be updated during the

search. The initial solution x ¼ ðx1; x2; . . .; xdÞ is generated
randomly such as xi ¼ lbi þ ðubi � lbiÞ � Uð0; 1Þ, 8i ¼
1; 2; . . .; d where ubi and lbi are the upper and lower bound

of variable xi, respectively and U(0, 1) generates a random

uniform value between 0 and 1. The ultimate objective is to

minimize f ðxÞ such that x 2 X where X 2 ½lb; ub�. The

three operators of improvement step in AbHC can be

thoroughly discussed as follows:

N -operator: The values of the current solutions x is

modified by moving to its neighbouring solution x0 as

follows: x0i ¼ xi � Uð0; 1Þ �N ðtÞ where N ðtÞ is the

distance bandwidth in iteration t. In AbHC, N ðtÞ is

adapted during searching as provided in Eq. (4).

N ðtÞ ¼ 1� CðtÞ ð4Þ

Note that C(t) is calculated at time t as shown in Eq. (5).

CðtÞ ¼ t
1
K

Max t
1
K

ð5Þ

where K has a constant value reduced gradually to a

value close to 0. Max t is the maximum iterations.

b-operator: The value of the decision variable xi is

randomly regenerated such as x00i ¼ lbi þ ðubi � lbiÞ �
Uð0; 1Þ with a probability of b where b 2 ½0; 1�. In

AbHC, this parameter is automatically adapted during

the improvement step as formulated in Eq. (6).

bðtÞ ¼ bmin þ t � bmax � bmin
Max t

ð6Þ

where bðtÞ represents the b value at iteration t. bmin,
bmax are the minimum and maximum value of b set in

advance, respectively.

Fig. 1 Network structure of

MLPs with only single one

hidden layer
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S-operator: The selection operator works in a greedy

strategy where the neighbouring solution x00 replaces the
current one x, if fitter (i.e., (f ðx00Þ � f ðxÞ)).

Algorithm 1 Adaptive β–hill climbing pseudo-code
1: Initialize βmin, βmax, and K
2: xi = lbi + (ubi − lbi) × U(0, 1), ∀i = 1, 2, . . . , d {The initial solution x}
3: Calculate(f(x))
4: t = 0
5: while (t ≤ Max t) do
6: x′ = x

7: C(t) = t
1
K

Max t
1
K

8: N (t) = 1 − C(t) {Adaptive N}
9: RndIndex ∈ (1, d)
10: x′

RndIndex = x′
RndIndex ± N (t)

11: x′′ = x′

12: β(t) = βmin + t × βmax−βmin
Max t {Adaptive β}

13: for i = 1, · · · , d do
14: if (U(0, 1) ≤ β(t) then
15: x′′

i = lbi + (ubi − lbi) × U(0, 1)
16: end if
17: end for
18: if (f(x′′) ≤ f(x) then
19: x = x′′

20: f(x) = f(x′′)
21: end if
22: t = t + 1
23: end while

3 MA versions for MLP training

As aforementioned, the MLP has two main dilemmas affect

its performance: slow convergence and local optima. The is

occurred due to the stochastic configuration of its param-

eters (i.e., weight and biases). In order to find the proper

values of its initial parameters, the MA versions for MLP

are proposed in this section.

In general, the population-based algorithms have a

sequence of commonly known steps: the first step is the

initialization step where the optimization problem shall be

defined in a Genotype form. The objective function to

evaluate the solution, as well as the value range for each

variable, shall be defined. Furthermore, the population

initialization where a set of solutions are randomly gener-

ated, and their evaluation functions are computed. The

second step is the improvement step where iteratively, the

population undergoes refinements using different operators

controlled by tuned or adapted parameters until a stopping

criterion is met. The final step is collecting and filtering the

final results where the genotype representation of the best-

obtained solution is transformed to phenotype representa-

tion. These steps, as visualized in Fig. 2, are thoroughly

discussed for each MA version proposed with the appli-

cation as a trainer for MLP as follows:

3.1 Initialization step

The MLP as a version of FNN is mostly used to tackle the

classification problems. Each classification solution is

normally represented as a vector of weights and biases such

as x ¼ ðx1; x2; . . .; xdÞ where the variables in the classifi-

cation solution x is divided into two consecutive groups:

weights w ¼ ðw1; . . .;wnÞ of n weights and biases b ¼

ðb1; . . .; bmÞ of m biases in which d ¼ nþ m. There is no

direct formula for calculating the number of hidden layers

in MLP [65]. As a result, the MA-MLP applied a fixed

structure MLP [15, 66] based on the classification data, the

value of n and m can be calculated as in Eq. (7):

h ¼ 2� K þ 1

n ¼ K � hþ h� o

m ¼ hþ o

ð7Þ

Where the number of neurons h in MLP should be calcu-

lated based on the number of features K in the classification

data. The number of output o resulting from MLP should

be determined.

The objective function used to evaluate the classification

solution is the mean square error (MSE) function. The

MSE computes the distance between the actual classifica-

tion value (i.e., y) and the predicted classification value

(i.e., ŷ) found by MA-based MLP algorithm of all training

instances. MA-based MLP will iteratively minimize the

MSE based on the optimized weight-biases vector repre-

sented by the classification solution. In Eq. (8).

MSE ¼
XT

t¼1

Po
i¼1 ðyti � ŷtiÞ

2

T
ð8Þ

where T refers to the total number of used instances in the

Fig. 2 The Steps of the proposed MA versions
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training dataset. The small t is the training instance. The

ultimate objective function is formulated in Eq. (9).

min f ðxÞ ¼ MSE ð9Þ

3.1.1 Initialize parameters of MA versions

In the initial step of the population-based algorithm, there

are common algorithmic parameters which are population

size (N) and the maximum number of iterations Mt. The

control parameters are normally different from one algo-

rithm to another. The population-based algorithm used are

FPA, SSA, CSA, GWO, PSO, and JAYA. Note that most of

the control parameters of the population-based algorithms

used in the proposed MA versions are adaptively updated

during runs such as FPA, SSA, GWO, and JAYA where no

control parameter shall be initialized. There are two pop-

ulation-based algorithms used in MA versions that should

tune their parameters such as Awareness probability (AP)

and Flight length (fl) in the CSA and intra-weight (w),

acceleration coefficients (c1 and c2) in PSO. For all MA

versions, there is a control parameter called Br where Br 2
½0; 1� determines the volume of invoking the AbHC in the

improvement loop of the population-based algorithm used.

3.1.2 Initialize the population

The population-based algorithms are normally initiated

with a population of random solutions. These solutions are

stored in a matrix of size d � N as shown in Eq. (10). In

MAP matrix, Each row represents a solution while each

column represents a decision variable. The value range of

each decision variable xi 2 ½lbi; ubi� where lbi is the lower

bound and ubi is the upper bounds of variable xi (i.e., MLP

weights and biases acceptable range).

MAP ¼

x11 x12 � � � x1d
x21 x22 � � � x2d

..

. ..
.
� � � ..

.

xN1 xN2 � � � xNd

2

66664

3

77775
: ð10Þ

The objective function values of the whole populations are

calculated using Eq. (9). Among the solutions stored in

MAP, the best solution (i.e., xb), the worst solution (i.e., xw)

are usually defined and updated during the improvement

step. In PSO, the local best (i.e., xlb) and global best (i.e.,

xgb) are distinguished in which xlb is defined every iteration

while xgb is the overall best solution found in the whole

iterations. In GWO, the three best solutions are defined

where the best solution is xa, second-bast is xb, and third-

best is xd.

3.2 Improvement step

In general, each population-based algorithm has an

improvement loop based on intelligence operators guided

by control parameters. This is an iterative process where

the current population is updated. The main difference

between the population-based algorithms is the behaviour

of the operators during their exploration and exploitation

processes. Therefore, the operators in the improvement

loop of population-based algorithms used in the proposed

MA versions and the AbHC as a new operator are dis-

cussed in the following subsection.

3.2.1 The improvement step in hybrid flower pollination
algorithm (HFPA)

Yang [67] proposed a new algorithm inspired by the plants

blooming behavior which is called flower pollination

algorithm (FPA). In FPA, there are three essential operators

to update each solution. In the proposed HFPA, each

generated solution is passed to AbHC algorithm as a new

local refinement operator with a probability of Br. The

flowchart of HFPA is given in Fig. 3. The operators of

HFPA are discussed as follows:

Operator#1: Global Search (biotic)

In each iteration (say t), any solution xiðtÞ in the

population will be updated using biotic operator with

probability of p as formulated in Eq. (11)

xiðt þ 1Þ ¼ xiðtÞ þ Lðxgb � xiðtÞÞ ð11Þ

Note that the xiðtÞ represents the solution vector xi at

iteration t. The best solution in the current iteration is

xgb. The L parameter identify the step size. In order to

mimic the step size, the Levy distribution is modelled in

Eq. (12).

Fig. 3 Flowchart of the proposed HFPA
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L� kCðkÞsinðpk=2Þ
p

1

s1þk
; ðs[ [ s0 [ 0Þ ð12Þ

where L[0, and CðkÞ is the standard gamma function,

and s[ 0 is the big steps that help in reaching the

desired distribution. Note that the commonly used k
value is 1.5 [68].

Operator#2: Local Search of FPA (abiotic)

With probability range of 1� p, each solution xiðtÞ is
updated using abiotic operator as shown in Eq. (13).

xiðt þ 1Þ ¼ xiðtÞ þ �ðxjðtÞ � xkðtÞÞ ð13Þ

where xjðtÞ and xkðtÞ are two selected randomly

neighbouring solutions to the current solution. The main

motivation behind abiotic operator is to emulate the

restricted neighborhood of the flower constancy. � is

randomly selected from the range [0,1].

Operator#3: AbHC local search

To boost the exploitation capability of HFPA, each

solution generated by the original operator of FPA is

passed with a probability of Br. The discussion of AbHC
is mentioned in Sect. 2.

Operator#4: Update population

Each updated solution xiðt þ 1Þ is evaluated to

confirm if it is fitter than its current solution xiðtÞ to be

replaced such as xiðtÞ ¼ xiðt þ 1Þ where

f ðxiðt þ 1ÞÞ� f ðxiðtÞÞ.

3.2.2 The improvement step in hybrid salp swarm
algorithm (HSSA)

The salp swarm algorithm (SSA) is a population-based

technique introduced to simulate the salp swarming as a

unique fish behaviour in which the salps move in the sea in

form of a transparent barrel-shaped body [69]. In the

original version of SSA, there are three essential operators

to reconstruct each solution in the population (i.e., leader

rule, follower rules, and Update population). In the pro-

posed HSSA, each reconstructed solution is passed to

AbHC algorithm as a new local refinement operator. The

flowchart of HSSA is given in Fig. 4. These four operators

are discussed as follows:

Operator#1: Leader rule

The global best solution (i.e., xgb) is used to generate

the decision variables of the group leader solution (i.e.,

x1) in which each decision variable ( x1i ) is generated as

shown in Eq. (14)

x1i  
xgbi þ r1ððubi � lbiÞr2 þ lbiÞ r3	 0:5

xgbi � r1ððubi � lbiÞr2 þ lbiÞ r3\0:5

(
ð14Þ

where xgbi is the decision variable i value in the global

best solution. r2 and r3 values are two random values

within the range [0,1]. The value of r1 is calculated using

Eq. (15) which used to find the suitable trade-off

between exploration and exploitation.

r1 ¼ 2e�
4t
Mt
ð Þ2 ð15Þ

Recall that in Eq. (15), t is the current iteration while Mt

is the maximum number of iteration.

Operator#2: Follower rules

In this operator, the other solutions in the population

are called followers. The decision variable values of the

follower solutions are updated based on updated New-

ton’s law of motion as shown in Eq. (16).

xijðt þ 1Þ ¼ 1

2
xijðtÞ þ xi�1j ðtÞ

� �
ð16Þ

where i	 2 and xijðtÞ shows the solution xi follower in

jth dimension.

Operator#3: AbHC local search

In order to boost the exploitation capability of HSSA,

each solution generated by the original operator of SSA

is passed with a probability of Br. The discussion of

AbHC is given in Sect. 2.

Operator#4: Update population

Each solution xiðtÞ is replaced by updated solution

xiðt þ 1Þ, if better (i.e., f ðxiðt þ 1ÞÞ� f ðxiðtÞÞ).

3.2.3 The improvement step in hybrid crow search
algorithm (HCSA)

Crow Search Algorithm (CSA) is a population-based

algorithm that imitates the natural phenomenon where the

crows keep their excess food in hiding places in which the

food is retrieved when needed [70]. In the original version

of CSA, there are two essential operators to reconstruct

each solution in the population (i.e., generate a new

Fig. 4 Flowchart of the proposed HSSA
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position and update the population). In the proposed

HCSA, each reconstructed solution is passed to AbHC
algorithm as a new local refinement operator. The

flowchart of HCSA is given in Fig. 5. The HCSA operators

will be discussed as follows:

Operator#1: Generate new positions

In order to update the position of the solutions in the

current population, the Eq. (17) is utilized. Two param-

eters are used to control the CSA (i.e., AP and fl). The

parameter AP is used to control the updating positions of

the current solution based on either neighbouring

solution or generating a random solution (i.e., xr). The

parameter AP is normally initialized with a set of values

as many as population size (N) which takes very small

values between 0 and 1. In most cases, AP ¼ 0:05. The

parameter fl determines the effect of local search or

global search. large values of fl leads more to exploration

while small value of fl leads to exploitation. As shown in

Eq. (17), for any solution xi, a random solution xk from

the population is selected. The updated positions are

affected by the different between the current solution xi

and the random solution xk.

xiðt þ 1Þ ¼ xiðtÞ þ r1 � fliðtÞ � ðxkðtÞ � xiðtÞÞ r2	APiðtÞ
xr r2\APiðtÞ

�

ð17Þ

Note that r1 and r2 are two values generated from a

uniform random distribution between 0 and 1.

Operator#2:AbHC local search

In order to boost the exploitation capability of HSSA,

each solution generated by the original operator of SSA

is passed with a probability of Br. The discussion of

AbHC is given in Sect. 2.

Operator#3:update the population

Each solution xiðtÞ is replaced by updated solution

xiðt þ 1Þ, if better (i.e., f ðxiðt þ 1ÞÞ� f ðxiðtÞÞ).

3.2.4 The improvement step in hybrid grey wolf optimizer
(HGWO)

Grey Wolf Optimizer (GWO) is a population-based algo-

rithm stimulated by how grey wolf packs lead and hunt

[71]. In the proposed HGWO there are four essential

operators to update each solution and the updated solution

will be passed to AbHC algorithm as a new local refine-

ment operator with a probability of Br. The flowchart of

HGWO is presented in Fig. 6. These four operators will be

discussed as follows:

Operator#1: Social hierarchy

The grey wolf packs have a social hierarchy in which

the three wolves with the highest fitness in x are choosed

in the hope of obtaining the global optimal solution. The

best, second best, and third best solutions are xa, xb, xd,

respectively. Note that other solutions are symbolized as

xx. In each iteration the group of wolves in xx are pulled

to xa, xb, xd location.

Operator#2: Encircling prey

The intelligent hunting behaviour will be observed

after settling the social hierarchy of the grey wolf packs.

It includes three steps: (1) The packs track, chase and

approach the prey; (2) They encircle and harass the prey

to exhaust it; (3) The packs attack the prey. These steps

are symbolized mathematically as follows:

xiðt þ 1Þ ¼ xiðtÞ � A� D ð18Þ

Note that the wolf next position is denoted by xiðt þ 1Þ ,
the current position is xiðtÞ, the coefficient matrix is A

and the vector D depends on the prey position (xp) which

is calculated as follows:

D ¼ C � xpðtÞ � xiðtÞ
�� �� ð19Þ

Fig. 5 Flowchart of the proposed HCSA Fig. 6 Flowchart of the proposed HGWO
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C ¼ 2� r2 ð20Þ

where r2 is a vector that is generated randomly in the

range [0,1].

Operator#3: Attacking prey

As mentioned before, the fittest three solutions are

denoted as xa, xb, xd. These solutions will be guiding

other wolves to update their locations as follows:

xiðt þ 1Þ ¼ 1

3
x1 þ

1

3
x2 þ

1

3
x3 ð21Þ

where x1 and x2 and x3 are computed using Eq. (22).

x1 ¼ xiaðtÞ � A1 � Da

x2 ¼ xibðtÞ � A2 � Db

x3 ¼ xidðtÞ � A3 � Dd

ð22Þ

Da, Db and Dd are computed by applying Eq. (23).

Da ¼ C1 � xa � xj j

Db ¼ C2 � xb � x
�� ��

Dd ¼ C3 � xd � xj j

ð23Þ

Operator#4: AbHC local search

The HGWO exploitation is enhanced by iterating

through each developed solution of GWO with Br

probability. The discussion of AbHC is mentioned in

Sect. 2.

3.2.5 The improvement step in hybrid particle swarm
optimization (HPSO)

Particle swarm optimization (PSO) is inspired by the

flocking birds’ behavior when they search for the source of

adequate food [72]. In HPSO, there are three essential

operators to update each solution and the generated solu-

tion will be passed to AbHC algorithm as a new local

refinement operator to improve the generated solution. The

flowchart of HPSO is illustrated in Fig. 7. These three

operators are as follows:

Operator#1:update local best and global best solutions

At each iteration, the local best solution (i.e., xlb)

which is the best solution obtained in the current

iteration must be determined. Furthermore, the global

best solution (i.e., xgb) is updated.

Operator#2:update the positions

Before each position in any solution is updated, the

velocity vector viðtÞ is initially updated as shown in

Eq. (25).

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � r1ðtÞ � xlb � xiðtÞ
� �� �

þ c2 � r2 � xgb � xiðtÞ
� �� �

ð24Þ

where wðtÞ ¼ ðwmax � tÞ � ðwmax � wminÞ=Mt represents

the inertia weight parameter that decreases linearly

within the range 0.9 to 0.4. Furthermore, the particles

velocities are embedded in this parameter. Also, the

acceleration coefficients c1 and c2 are user defined

parameters that can be set as follows: 0� c1� 2 and

0� c2� 2. Finally, r1 and r2 are random values in the

range [0,1] that are utilized to update the velocity.

Thereafter, based on the updated velocity viðt þ 1Þ,
the positions of the new solution is updated as shown in

Eq. (25):

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð25Þ

Operator#3: AbHC local search

The HPSO exploitation is enhanced by iterating

through each developed solution of PSO with Br

probability. The discussion of AbHC is mentioned in

Sect. 2.

3.2.6 The improvement step in hybrid JAYA algorithm
(HJAYA)

JAYA is a Sanskrit term that means victory. The JAYA

algorithm is a population-based optimization technique that

applied the principle of ‘‘survival of the fittest’’ [73]. The

solutions generated by JAYA are moving towards the

global best solutions while moving away from the worst

solutions. The algorithm is considered easy to utilize as it

does not have specific parameters. The proposed HJAYA

algorithm uses three essential operators to update each

solution and the generated solution. The developed solu-

tions are then passed to AbHC algorithm as a new local

Fig. 7 Flowchart of the proposed HPSO
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refinement operator to improve the generated solution with

a probability of Br. The flowchart of HJAYA is presented

in Fig. 8. These three operators will be discussed as

follows:

Operator#1: JAYA Evolution process

The evolution process of JAYA is conducted using

Eq. (26).

xijðt þ 1Þ ¼ xijðtÞ þ r1 � ðx1j ðtÞ � jxijðtÞjÞ � r2 � ðxNj ðtÞ � jxijðtÞjÞ

ð26Þ

where the new updated solution is xiðt þ 1Þ, and the

current solution is xiðtÞ. The random value in the range

of [0,1] is denoted as r1 and r2. These values are used to

obtain the equilibrium between exploration and

exploitation. Also, the decision variable j in the best

solution is symbolized as xijðtÞ and the decision variable j

in the worst solution is symbolized as xNj ðtÞ.
Operator#2: AbHC local search

The HJAYA exploitation is enhanced by iterating

through each developed solution of JAYA with Br prob-

ability. The discussion of AbHC is mentioned in Sect. 2.

Operator#3:update population

At each iteration the fitness value of the new solution

xiðt þ 1Þ is computed. The new solution xiðt þ 1Þ will
replace the current solution xiðtÞ if

f ðxiðt þ 1ÞÞ� f ðxiðtÞÞ.

4 Experiments and results

In this section, the proposed hybridized adaptive b-hill
climbing (AbHC) on the six MA versions for MLP is

evaluated. The proposed MA versions are hybrid flower

pollination algorithm (HFPA), hybrid salp swarm algo-

rithm (HSSA), hybrid crow search algorithm (HCSA),

hybrid grey wolf optimization (HGWO), hybrid particle

swarm optimization (HPSO), and hybrid JAYA algorithm

(HJA) by utilizing 15 datasets with different sizes and

number of classes. The datasets details are presented in

Sect. 4.1. The configuration of the experiments is portrayed

in Sect 4.2. The performance of the different proposed MA

versions on training MLP is explained Sect.4.3.

4.1 Test datasets

In this section, the performance of proposed hybrid meth-

ods, which are HCSA, HFPA, HSSA, HGWO, HJA, and

HPSO, is investigated and evaluated using 15 benchmark

classification optimization problems. Such optimization

problems are provided by UCI Machine Learning Reposi-

tory [74]. All datasets characteristics, including the number

of classes, features, instances, hidden layers, and MLP

structures are presented in Table 1. These datasets are

selected due to their different class labels; i.e., two, three,

four, six, and ten labels, to investigate the proposed

methods efficiently.

This study utilises min-max normalization for all data-

sets to minimize the features’ effect with different diffi-

culty levels. Features difficulty levels are mathematically

formalized as follow:

xnor ¼
xi � Fmin

Fmax � Fmin
ð27Þ

where xnor denotes the normalized value of xi in the range

½Fmin;Fmax�. Fmin and Fmax are the minimum and maximum

values of the features, respectively.

The number of hidden layers can be calculated on the

basis of various methods. Accordingly, this study calcu-

lates neurons number in each hidden layer using the

method utilized in [75, 76]. The utilized method is math-

ematically formulated as follow:

h ¼ 2� N þ 1; ð28Þ

where h denotes the neurons number in the hidden layer

and N is the number of features in the dataset. Accordingly,

the input-hidden-output form is presenting the complete

MLP structure of each dataset. For instance, the MLP

structure is 8-17-10 for the Yeast dataset, 8, 17, and 10

denote the number of input features, hidden layers, and

output class labels, respectively.

For testing and training, all datasets are divided into

30% and 70%, respectively. The stratified way is used to

split each dataset [77]. This technique calculates each

class’s ratio and then meets the train/test split rate based on

the calculated ratio for each dataset. The use of this strat-

egy helps preserve the share of every class in the data split

and increases the representation of the classes of minori-

ties. As a result, a balanced number of classes will be

assigned for the train/test portions.

Fig. 8 Flowchart of the proposed HJAYA
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4.2 Experimental settings

The proposed six MA versions CSA, HFPA, HSSA,

HGWO, HJA, and HPSO are compared using the same

datasets. The specifications of the machine used for

experimental results are presented in Table 2. The settings

for the parameters of some MA versions are summarized in

Table 3. Note that the Br parameter values used are studied

in the following section for all MA versions.

The algorithms are implemented for each data set over

30 independent runs. The number of epochs is a parameter

that defines the total number of iterations the learning

algorithm will run through the training dataset [78]. The

number of epochs is 250. It is selected based on what was

previously used in the literature [75, 76] which reduces the

error from the model when used on similar datasets.

4.3 Comparison results

The performance of the different proposed MA versions

(i.e., HCSA, HGWO, HSSA, HPSO, HFPA, and HJAYA)

on training MLP are tested in this section. These

Table 1 Benchmark datasets’ characteristics

No 1 2 3 4 5

Dataset Monk Baloon Cancer Heart Vertebral

#Classes 2 2 2 2 2

#Features 6 4 9 22 6

#Instances 556 20 699 80 310

#Hidden layers 13 9 19 45 13

MLP structure 6–13–2 37,503 9–19–2 22–45–2 6–13–2

No 6 7 8 9 10

Dataset Blood Ionosphere German Titanic Parkinson

#Classes 2 2 2 2 2

#Features 4 33 24 3 22

#Instances 748 351 1000 2201 195

#Hidden layers 9 67 49 7 45

MLP structure 37,503 33–67–2 24–49–2 37,440 22–45–2

No 11 12 13 14 15

Dataset Iris Seeds Vehicle Glass Yeast

#Classes 3 3 4 6 10

#Features 4 7 18 9 8

#Instances 150 210 846 214 1484

#Hidden layers 9 15 37 19 17

MLP structure 37,868 7–15–3 18–37–4 9–19–6 8–17–10

Table 2 Initial parameters of the comparative algorithms

Name Setting

Hardware

CPU Intel R Xeon Silver 1.8 GHz

RAM 6 GB

Hard Drive 200 GB

Software

Language MATLAB version 9.7.0

Cloud service Microsoft Azure server

Table 3 Initial parameters of the comparative algorithms

Algorithm Parameter Settings

All algorithms Population size 30

Maximum iterations 250

Runs 30

HCSA Awareness probability (AP) 0.05

Flight length (fl) 2

HPSO Maximum inertia weight (wmax) 0.9

Minimum inertia weight (wmin) 0.4

Acceleration coefficient (c1) 2

Acceleration coefficient (c2) 2
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algorithms are utilized to evolve the weights of networks as

well as to select the optimal number of hidden neurons.

Remarkably, each of the proposed MA versions is designed

by hybridizing the original version of the population-based

algorithm with an adaptive b-hill climbing optimizer

(AbHC). Recall that the parameter settings of these algo-

rithms are given in Sect. 4.2, while the characteristics of

the datasets used for evaluation purposes are provided in

Sect. 4.1.

Table 4 illustrates the results of running the proposed

MA versions on 15 datasets using different settings of the

Br parameter. These results are summarized in terms of the

mean, the standard deviation (STD), and the best-obtained

classification accuracy. From Table 4, it can be seen that

each of the proposed MA versions had four versions based

on the value of the Br parameter. The Br parameter is

studied using different settings (Br= 0, Br= 0.01, Br= 0.1,

and Br= 0.3). The higher value of Br parameter leads to a

higher rate of calling the AbHC algorithm in the popula-

tion-based algorithm, and thus a higher rate of exploitation

during the search process. For instance, when the value of

the Br is equal to zero, this means that the AbHC is

neglected, and thus the original versions of these algo-

rithms (i.e., CSA, HWO, SSA, PSO, FPA, and JAYA). It

should be noted that the best results are highlighted in bold

font.

The experimental results shown in Table 4 are analyzed

and discussed in two phases: I) comparing the results

obtained by the different four versions of each MA, and II)

comparing the best results obtained by all of the proposed

MA versions. In general, it can be seen from the results

recorded in Table 4 that the accuracy is gradually enhanced

when the value of Br is increased. Furthermore, the per-

formance of the algorithm is worse than the other versions

of the same algorithm (i.e., the hybrid version) when the

value of Br ¼ 0 (i.e., using the original algorithm).

From Table 4, it can be seen that the performance of the

HCSA with Br ¼ 0:3 outperforms three other versions of

the same MA by obtaining the best results on 9 datasets in

terms of the mean of the results, and in 10 datasets in terms

of best results. On the other hand, the HCSA with Br= 0.3

failed to obtain the best results for any of the datasets in the

terms of mean results, while it got the best results on 2

datasets (i.e., Baloon, and Iris) in terms of best results.

These two datasets are the easiest datasets where the

Baloon dataset has 4 features, 9 samples, and 2 classes,

while the Iris dataset has 4 features, 9 samples, and 3

classes. However, the HCSA with Br= 0.01 achieved the

best results on 2 datasets (i.e., Cancer, and Heart) in terms

of the mean of the results, and 5 datasets in terms of best

results. While the HCSA with Br= 0.1 get the best results

on 5 and 6 datasets in terms of mean and best results

respectively.

Similarly, the results of studying the impact of the Br

parameter on the performance of the proposed HGWO

algorithm are recorded in Table 4. Apparently, the per-

formance of the HGWO is gradually enhanced, when the

value of the Br is increased based on the mean of the

accuracy. Whereas, the HGWO with Br= 0.3, HGWO with

Br= 0.1, HGWO with Br= 0.01, and HGWO with Br= 0.01

algorithms are got the best results in terms of the mean of

accuracy on 7, 5, 4, and 2 datasets respectively. On the

other hand, the effect of the Br parameter on the perfor-

mance of the HHWO algorithm in terms of best results is

limited. This is because all versions of HGWO achieved

almost the same number of the best results. The HGWO

with Br= 0.3, HGWO with Br= 0.1, HGWO with Br= 0.01,

and HGWO with Br= 0.01 algorithms are obtained the best

results in terms of best accuracy on 5, 6, 7, and 5 datasets

respectively. In addition, it can be observed from Table 4

that the HGWO with Br= 0.3 is more robust than the three

other versions of HGWO by getting the lowest STD values

for all datasets.

The influence of the Br parameter on the performance of

the proposed HSSA is studied using four different values.

The results of running the HSSA are recorded in Table 4.

Clearly, the performance of the HSSA with Br= 0.3 is

better than the three other versions of HSSA by getting the

best results on 8 datasets in terms of the mean of accuracy.

Furthermore, the HSSA obtained the best results on 7

datasets in terms of the best accuracy. On the other hand,

the performance of the HSSA with Br= 0 performs better

than the other three versions of HSSA by obtaining the best

results on 4 datasets (i.e., Baloon, Cancer, Titanic, and

Parkinson) in terms of the mean of the accuracy. While the

HSSA with Br= 0 is achieved the best results on 3 datasets

(i.e., Baloon, Glass, and Vehicle) in terms of the best

accuracy. The HSSA with Br= 0.01 outperforms the three

other versions of HSSA on 2 datasets (i.e., Heart, and

Blood) and 4 datasets (i.e., Baloon, Iris, Cancer, and

Blood) in terms of mean and best accuracy. While the

results of the HSSA with Br= 0.1 are better than those of

the three other versions of the HSSA on 3 datasets (Baloon,

Iris, and Seeds)and 5 datasets (i.e., Baloon, Iris, Heart,

Seeds, and Parkinson) in terms of the mean and the best

accuracy. Based on the above discussion, it can be

observed that the proposed HSSA with Br= 0.3 performs

better than the three other versions of HSSA on the hardest

datasets with the highest number of classes like Yeast,

German, Ionosphere, Glass, Vertebral, and Monk datasets.

This proves the efficiency of using the AbHC as a local

search algorithm within the SSA algorithm to enhance the

exploitation capability of the HSSA and thus guide the

search process of the HSSA to achieve better results for the

hardest datasets.
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Table 4 The accuracy results of the HCSA, HGWO, HSSA, HPSO, HFPA, and HJAYA algorithms on 15 datasets (Bold is the best)

Algorithm Monk Baloon Iris Cancer Heart

Mean STD Best Mean STD Best Mean STD Best Mean STD Best Mean STD Best

HCSA (Br= 0) 74.02 3.24 80.72 91.67 10.50 100.00 85.63 13.68 97.78 94.70 0.77 96.17 64.03 7.13 75.00

HCSA (Br= 0.01) 77.21 4.12 83.73 93.33 13.56 100.00 94.00 1.67 95.56 95.87 0.93 97.61 72.50 8.38 87.50

HCSA (Br= 0.1) 82.99 5.20 93.98 100.00 0.00 100.00 96.44 1.11 97.78 94.67 0.73 95.69 66.39 6.74 83.33

HCSA (Br= 0.3) 86.75 5.40 96.39 100.00 0.00 100.00 96.81 1.39 97.78 95.61 1.02 98.09 57.64 5.48 66.67

HGWO (Br= 0) 94.72 5.71 100.00 100.00 0.00 100.00 91.78 2.81 95.56 94.51 1.11 96.65 63.19 5.02 70.83

HGWO (Br= 0.01) 96.14 5.59 100.00 100.00 0.00 100.00 96.89 1.25 100.00 95.74 0.65 97.13 54.03 5.63 66.67

HGWO (Br= 0.1) 97.49 4.37 100.00 100.00 0.00 100.00 99.93 0.41 100.00 96.01 1.06 98.09 65.56 7.33 83.33

HGWO (Br= 0.3) 99.38 0.11 99.40 100.00 0.00 100.00 95.33 0.68 95.56 95.81 0.60 97.13 59.58 6.49 75.00

HSSA (Br= 0) 81.00 7.83 98.19 100.00 0.00 100.00 87.93 12.08 97.78 97.26 0.88 98.56 60.69 7.06 75.00

HSSA (Br= 0.01) 75.96 7.32 95.18 77.22 26.80 100.00 91.11 5.60 100.00 96.28 1.11 99.04 67.64 7.56 79.17

HSSA (Br= 0.1) 87.31 5.89 99.40 100.00 0.00 100.00 98.74 1.39 100.00 95.15 0.53 96.17 67.22 7.95 83.33

HSSA (Br= 0.3) 97.75 2.28 100.00 100.00 0.00 100.00 97.78 0.00 97.78 96.75 0.67 97.61 56.39 6.54 75.00

HPSO (Br= 0) 93.69 7.64 100.00 100.00 0.00 100.00 92.52 5.07 97.78 96.83 0.97 98.56 63.89 7.45 79.17

HPSO (Br= 0.01) 95.82 5.19 100.00 82.22 16.91 100.00 96.00 0.90 97.78 96.70 0.98 98.56 65.28 9.11 79.17

HPSO (Br= 0.1) 88.61 8.92 100.00 100.00 0.00 100.00 97.93 0.81 100.00 97.21 0.87 98.56 70.97 6.33 83.33

HPSO (Br= 0.3) 93.88 6.14 100.00 81.11 16.80 100.00 96.89 1.11 97.78 96.56 0.83 99.04 55.42 8.70 66.67

HFPA (Br= 0) 66.22 3.73 75.30 94.44 12.63 100.00 87.11 6.94 97.78 94.82 0.85 96.17 64.58 9.65 79.17

HFPA (Br= 0.01) 69.48 4.14 77.71 84.44 15.74 100.00 93.48 4.81 100.00 96.76 0.74 98.09 70.69 7.13 83.33

HFPA (Br= 0.1) 70.82 4.33 79.52 96.11 12.13 100.00 94.44 2.59 100.00 97.53 0.77 99.04 68.33 7.94 79.17

HFPA (Br= 0.3) 78.19 3.33 84.34 100.00 0.00 100.00 95.78 2.50 100.00 96.30 0.55 97.13 62.50 7.42 75.00

HJAYA (Br= 0) 68.25 3.49 74.70 91.67 12.18 100.00 89.93 3.81 97.78 97.07 0.78 98.56 62.50 8.19 79.17

HJAYA (Br= 0.01) 66.43 4.95 78.92 93.33 10.36 100.00 90.96 5.02 97.78 97.18 0.66 98.56 70.56 8.88 91.67

HJAYA (Br= 0.1) 69.72 3.75 77.71 96.67 10.17 100.00 95.26 3.18 100.00 96.28 0.51 97.13 61.81 6.20 75.00

HJAYA (Br= 0.3) 70.72 5.52 78.92 95.56 11.52 100.00 96.81 2.78 100.00 95.42 0.82 96.65 65.83 8.29 83.33

Algorithm Vertebral Blood Seeds Glass Ionosphere

Mean STD Best Mean STD Best Mean STD Best Mean STD Best Mean STD Best

HCSA (Br= 0) 86.67 2.66 90.32 76.00 1.06 78.13 81.16 12.12 93.65 41.93 10.66 57.81 84.06 3.92 91.43

HCSA (Br= 0.01) 82.51 2.07 87.10 78.82 0.67 79.91 91.48 7.57 96.83 49.38 5.31 57.81 86.29 3.74 95.24

HCSA (Br= 0.1) 88.14 1.80 91.40 79.61 0.55 80.80 94.50 1.99 96.83 56.88 6.72 65.63 86.98 3.07 91.43

HCSA (Br= 0.3) 86.67 1.80 90.32 80.25 0.62 81.25 87.72 2.39 92.06 62.29 3.75 70.31 91.08 2.83 97.14

HGWO (Br= 0) 87.28 1.83 90.32 78.59 0.61 79.46 95.24 0.83 96.83 58.23 7.92 68.75 95.02 1.60 98.10

HGWO (Br= 0.01) 80.39 1.34 82.80 82.99 0.76 84.38 95.13 1.31 98.41 61.56 4.81 70.31 89.87 2.24 94.29

HGWO (Br= 0.1) 82.22 1.29 83.87 80.24 0.55 80.80 96.30 1.58 100.00 55.26 3.47 62.50 89.81 3.05 95.24

HGWO (Br= 0.3) 89.32 1.44 91.40 81.44 0.70 83.04 96.19 1.36 98.41 66.30 4.76 73.44 92.00 2.13 94.29

HSSA (Br= 0) 81.40 2.08 84.95 78.72 0.55 79.46 83.07 7.10 90.48 55.94 10.28 71.88 88.22 3.03 94.29

HSSA (Br= 0.01) 84.19 1.85 87.10 80.91 0.62 81.70 89.68 3.14 93.65 54.48 7.55 67.19 87.78 2.75 93.33

HSSA (Br= 0.1) 85.05 2.00 88.17 77.41 0.46 78.57 94.29 1.70 96.83 56.72 5.54 65.63 87.65 2.93 94.29

HSSA (Br= 0.3) 89.35 0.99 90.32 76.10 0.72 77.23 91.11 1.42 93.65 60.42 3.02 65.63 92.16 2.13 95.24

HPSO (Br= 0) 85.91 1.79 89.25 79.29 0.79 80.36 83.33 10.37 92.06 47.76 9.13 62.50 86.95 3.17 92.38

HPSO (Br= 0.01) 86.42 1.58 88.17 80.58 0.59 81.25 93.12 2.81 98.41 53.85 7.22 64.06 87.97 3.20 93.33

HPSO (Br= 0.1) 82.69 2.35 86.02 78.50 0.84 80.36 90.11 2.52 95.24 60.73 9.31 71.88 88.67 3.80 94.29

HPSO (Br= 0.3) 83.44 2.05 88.17 78.68 1.29 81.25 92.70 1.85 95.24 52.34 6.95 64.06 84.35 3.34 88.57

HFPA (Br= 0) 78.85 2.19 83.87 78.11 0.60 79.02 87.99 4.58 93.65 45.31 3.74 53.13 86.10 3.66 92.38

HFPA (Br= 0.01) 79.85 1.69 83.04 82.15 1.80 86.02 89.42 2.51 93.65 45.83 5.37 57.81 84.44 3.02 91.43

HFPA (Br= 0.1) 82.29 1.80 86.02 77.32 0.97 79.91 94.60 2.45 100.00 53.49 6.89 64.06 85.71 3.63 93.33

HFPA (Br= 0.3) 86.42 1.34 89.25 80.61 0.83 83.04 91.32 2.82 96.83 56.35 4.30 64.06 84.41 4.16 91.43
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Table 4 illustrates the results of running the proposed

HPSO with different configurations of Br parameter.

Remarkably, the proposed HPSO with Br= 0.1 outperforms

the three other versions of HPSO by obtaining the best

results on 7 and 10 datasets in terms of the mean and the

best accuracy respectively. While the HPSO with Br= 0,

HPSO with Br= 0.01, and HPSO with Br= 0.3 are achieved

the best results in terms of the mean accuracy on 2, 4, and 3

datasets respectively. Furthermore, the HPSO with Br= 0,

HPSO with Br= 0.01, and HPSO with Br= 0.3 are got the

best results in terms of the best accuracy on 5, 4, and 6

datasets respectively. Notably, all versions of HPSO

achieved the same best results in terms of the best accuracy

for Monk and Baloon datasets. From Table 4, it can be seen

that the proposed HPSO with Br= 0.3 can obtain the best

results in terms of the mean of accuracy for the hardest

datasets with a higher number of classes like German,

Titanic, and Vehicle. While the HPSO with Br= 0.3 fails to

obtain the best results for any of the easiest datasets like

Baloon. This leads us to conclude that the higher rate of the

Br parameter is useful for the hardest dataset, while the Br

parameter with considerable value is useful for solving the

easiest datasets.

The results of studying the impact of the Br parameter

on the performance of the HFPA are also illustrated in

Table 4. It can be seen from the results that the

Table 4 (continued)

Algorithm Vertebral Blood Seeds Glass Ionosphere

Mean STD Best Mean STD Best Mean STD Best Mean STD Best Mean STD Best

HJAYA (Br= 0) 81.83 2.94 87.10 77.98 1.11 79.91 83.39 5.60 92.06 47.03 5.23 54.69 81.33 4.90 87.62

HJAYA (Br= 0.01) 82.40 3.41 89.25 78.99 1.74 82.14 88.62 6.61 96.83 46.61 5.69 59.38 80.79 3.57 87.62

HJAYA (Br= 0.1) 79.25 2.02 83.87 79.78 1.73 83.48 92.80 2.59 96.83 48.33 6.25 64.06 82.41 3.41 87.62

HJAYA (Br= 0.3) 78.78 3.07 84.95 80.01 1.60 82.59 90.16 2.65 95.24 51.51 6.18 64.06 84.70 3.50 90.48

Algorithm German Titanic Vehicle Parkinson Yeast

Mean STD Best Mean STD Best Mean STD Best Mean STD Best Mean STD Best

HCSA (Br= 0) 80.79 1.96 84.00 79.42 0.20 79.85 34.80 9.51 55.34 83.79 3.09 89.66 36.48 4.26 44.49

HCSA (Br= 0.01) 81.44 2.62 85.67 78.01 0.57 78.64 39.00 8.92 53.75 85.86 3.98 93.10 40.43 6.16 48.54

HCSA (Br= 0.1) 79.47 2.03 84.33 80.38 0.21 80.91 45.76 10.48 58.50 87.13 2.85 93.10 44.66 3.78 53.48

HCSA (Br= 0.3) 82.91 1.25 85.67 78.48 0.00 78.48 50.97 7.30 62.85 86.15 3.77 91.38 48.68 3.89 56.63

HGWO (Br= 0) 84.83 1.87 88.33 77.10 0.48 77.58 60.59 8.08 72.73 84.71 2.55 91.38 40.06 3.94 49.66

HGWO (Br= 0.01) 85.29 1.48 88.33 78.80 0.25 78.94 53.70 8.00 70.75 90.34 3.28 96.55 43.21 4.90 54.38

HGWO (Br= 0.1) 83.90 1.52 87.00 78.42 0.31 79.24 59.41 7.62 71.94 89.77 3.13 96.55 43.66 3.76 52.13

HGWO (Br= 0.3) 84.27 1.45 86.67 80.87 0.21 81.21 61.38 6.51 71.54 89.08 2.61 93.10 45.59 3.85 55.06

HSSA (Br= 0) 81.42 2.18 85.67 79.87 0.14 80.00 50.61 8.21 70.75 86.72 2.23 91.38 37.51 3.33 44.04

HSSA (Br= 0.01) 78.86 1.96 83.67 79.03 0.12 79.09 43.82 7.95 57.31 83.05 2.94 87.93 39.40 4.19 48.09

HSSA (Br= 0.1) 83.72 1.53 87.00 77.12 0.00 77.12 51.12 6.59 59.29 83.16 3.75 93.10 48.48 3.80 53.71

HSSA (Br= 0.3) 85.93 1.71 88.67 79.72 0.11 80.30 57.69 5.62 64.03 84.66 2.73 89.66 50.55 3.23 55.73

HPSO (Br= 0) 81.87 1.88 86.67 77.76 0.27 77.88 43.39 8.77 62.45 87.01 3.64 94.83 36.02 3.62 42.47

HPSO (Br= 0.01) 81.00 1.89 84.33 77.23 0.47 77.58 40.87 10.36 57.71 86.38 2.91 91.38 37.46 3.47 44.04

HPSO (Br= 0.1) 83.63 1.46 86.67 78.62 0.49 79.55 44.28 8.23 60.47 86.78 2.88 94.83 39.05 3.41 46.52

HPSO (Br= 0.3) 84.28 1.45 86.67 79.00 0.47 79.39 46.64 6.52 65.61 85.00 3.21 89.66 37.97 3.86 45.84

HFPA (Br= 0) 79.40 2.48 83.67 78.99 0.47 80.15 31.42 6.67 42.69 82.93 3.77 87.93 33.45 2.77 37.53

HFPA (Br= 0.01) 78.17 1.97 82.00 80.10 0.63 81.21 33.48 8.45 47.43 85.80 2.99 91.38 34.07 3.17 40.45

HFPA (Br= 0.1) 77.70 1.63 80.33 78.81 0.35 79.39 39.58 5.88 49.41 81.67 3.40 87.93 34.88 4.20 43.15

HFPA (Br= 0.3) 79.82 2.02 83.33 79.32 0.23 79.39 46.77 4.60 57.31 85.06 2.65 89.66 39.21 4.19 46.07

HJAYA (Br= 0) 77.81 2.54 80.67 78.72 0.64 79.39 34.49 5.99 45.06 84.89 3.22 91.38 31.26 3.01 36.85

HJAYA (Br= 0.01) 79.32 2.61 84.67 77.92 0.74 79.09 34.35 5.39 47.43 86.55 2.09 89.66 31.11 2.81 39.55

HJAYA (Br= 0.1) 82.09 2.12 85.00 77.21 0.41 77.88 38.80 7.09 50.20 85.63 4.73 93.10 32.99 3.06 38.43

HJAYA (Br= 0.3) 80.27 1.91 83.67 77.07 0.52 77.88 40.28 4.10 45.85 85.69 4.75 94.83 33.20 3.19 39.78
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performance of the HFPA with Br= 0.3 is better than the

three other versions of HFPA by getting the best results in

terms of accuracy mean on 8 datasets. In addition, it

obtained the best results in terms of best accuracy on 7

datasets. The HFPA with Br= 0 got the best results in terms

of the mean of the accuracy for the Ionosphere dataset,

while it obtained the best results in terms of the best

accuracy on Baloon, and German datasets. Furthermore,

the performance of the HFPA with Br= 0 is worse than the

three other versions of HFPA by getting the worst results

for the remaining datasets. This is due to the fact that the

value of the Br parameter is equal to zero, and thus the

calling the AbHC is neglected during the search. The

HFPA with Br= 0.01 obtained the best results in terms of

the mean of the accuracy on 4 datasets (i.e., Heart, Blood,

Titanic, and Parkinson), while it achieved the best results in

terms of the best of the accuracy on 6 datasets. Finally, the

HFPA with Br= 0.1 got the best results in terms of the

mean of the accuracy on Cancer and Seeds datasets. In

addition, the HFPA with Br= 0.1 obtained the best results

in terms of the best accuracy on 6 datasets. From another

perspective, it can be seen that the performance of the

HFPA with Br= 0.3 is more robust than the three other

versions of HFPA by obtaining the smallest STD values for

almost all datasets.

From Table 4, it can be shown that the proposed HJAYA

with Br= 0 is obtained the best results in terms of the mean

of the accuracy on the Titanic dataset, and it is got the best

results in terms of the best of the accuracy on 3 datasets. In

contrast, the HJAYA with Br= 0 performs worse than the

three other versions of HJAYA for the remaining datasets.

The HJAYA with Br= 0.01, HJAYA with Br= 0.1, and

HJAYA with Br= 0.3 achieved the best results in the terms

of the mean of the accuracy on 4, 3, and 7 datasets

respectively. in addition, the HJAYA with Br= 0.01,

HJAYA with Br= 0.1, and HJAYA with Br= 0.3 are got the

best accuracy results on 6, 7, and 7 datasets. Clearly, no

difference in the performance of the HJAYA algorithms

when the value of the Br parameter is bigger than zero in

the terms of the best accuracy. Furthermore, the perfor-

mance of the HJAYA Br= 0.3 is better than the other

versions of HJAYA, while the HJAYA Br= 0.1 is more

robust than the other versions of HJAYA in almost all

datasets. This is because the higher value of the Br

parameter leads the HJAYA to converge quickly and thus

get stuck in the problem of local optima in the early stages

of the search process.

Figure 9 illustrates the behavior of the proposed HCSA,

HGWO, HSSA, HPSO, HFPA, and HJAYA algorithms

using different settings of the Br parameter on navigating

the search space of the Monk and Vehicle datasets. It

should be noted that these datasets are different in the

number of features, samples, and classes to visualize the

differences between the behavior of the different versions

of each algorithm in solving these datasets. The x-axis and

y-axis represents the correlation between the fitness values

(MSE) and the iteration number. The slope of the curves

represents convergence rates. Apparently, the convergence

of the proposed MA versions when the value of the Br [ 0

is faster than the convergence of them with Br ¼ 0. In

addition, the convergence of hybrid-based algorithms with

Br= 0.3 is better than the other versions of each algorithm

in almost all cases when it is used to solve Monk and

Vehicle datasets. However, it can be seen that the behavior

of the HJAYA with Br= 0.01 is better than the three other

versions of HJAYA in solving the Monk dataset. This is

because the three other versions of the HJAYA algorithms

converge fast and thus get stuck in local optima in the early

stages of the search process. The convergence of the HCSA

with Br= 0.1 is gradually enhanced till the last stages of the

search process when it is utilized to solve the Monk and

Vehicle datasets. Finally, the convergence of the HPSO

with Br= 0.1 is better than the other versions of HPSO

when it is applied to solving the Vehicle dataset.

In order to highlight which method has the best per-

formance, the performance of the proposed MA versions

(i.e., HCSA, HGWO, HSSA, HPSO, HFPA, and HJAYA)

are compared against each other in Table 4. Firstly, the

comparison in terms of the mean of the accuracy, it can be

seen that the performance of the proposed HGWO per-

forms better than the other comparative methods by

obtaining the best results on 9 datasets. In addition, the

performance of the HGWO is similar to some of the other

comparative methods by obtaining the optimal results on

Baloon datasets. The performance of the HSSA is better

than the other algorithms on 3 datasets (i.e., Vertebral,

German, and Yeast), while it is similar to other algorithms

on the Baloon dataset. The HFPA obtains the best results

on two datasets (i.e., Cancer, and Baloon). The HCSA

performs similarly to or better than the other algorithms by

obtaining the best results on Heart and Baloon datasets.

The HPSO yields the best results on the Baloon dataset,

while the HJAYA failed to obtain the best result for any of

the datasets. The algorithms comparison in terms of the

best accuracy shows that the proposed HGWO outperforms

other algorithms on 4 datasets (i.e., Glass, Ionosphere,

Vehicle, and Parkinson), while the performance of the

HGWO is similar to some algorithms on 6 datasets (i.e.,

Titanic, Seeds, Vertebral, Iris, Baloon, and Monk). The

HCSA performs better than other algorithms on Yeast

datasets, while the performance of the HCSA is similar to

some of the other algorithms on two datasets (i.e., Baloon,

and Vertebral). The performance of the HPSO is similar to

other algorithms by getting the same best results on four

datasets (i.e., Monk, Baloon, Iris, and Cancer). The HSSA

performs better than other algorithms on the German
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dataset, while its performance is similar to some of the

other algorithms on 4 datasets (i.e., Monk, Baloon, Iris, and

Cancer). The HJAYA yields the best results on the Heart

dataset, while the performance of the HJAYA is similar to

other algorithms on two datasets (i.e., Baloon, and Iris).

The HFPA performs better than the other algorithms on the

Blood dataset, while it obtains the same best results as the

other algorithms on 5 datasets (i.e., Baloon, Iris, Cancer,

Seeds, and Titanic). Based on the above discussions, we

can conclude that the performance of the hybrid-based

algorithms is better than the performance of the original

versions of the algorithms. Furthermore, the performance

of the proposed HGWO is better than the performance of

the other hybrid-based algorithms on almost all of the

datasets. This is since the GWO algorithm utilizes the three

fittest solutions in the current population at each iteration to

guide the search process. That leads to the solutions in the

population following the fittest solutions and thus produces

fast convergence.

Figure 10 illustrates the notched boxplot that is used to

visualize the distributions of the MSE results for running

the proposed MA versions, as well as the original versions

of the algorithms on all datasets. It should be noted that the

smallest distance between the best, median, and worst of

the MSE results demonstrates the robustness of the

algorithm.

4.3.1 Friedman’s statistical test

This section provides a statistical study based on Fried-

man’s statistical test that shows the average rankings of all

compared methods and their MA versions, including

Fig. 9 Convergence results of HGWO, HSSA, HJAYA, HFPA, HPSO, and HCSA on Monk and Vehicle datasets
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Fig. 10 Boxplot charts of MSE results of CSA, HCSA, GWO, HGWO, SSA, HSSA, PSO, HPSO, FPA, HFPA, JAYA, and HJAYA
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GWO, HGWO, SSA, HSSA, JAYA, HJAYA, FPA, HFPA,

PSO, HPSO, CSA, and HCSA. Such average rankings are

calculated using the results provided in Table 4. In Fried-

man’s statistical test, the null hypothesis (H0) and alter-

native hypothesis (H1) are used to investigate the behavior

of the compared methods. H0 implies that the comparative

methods’ behaviors are similar, whereas H1 indicates that

the comparative methods’ behaviors are different. In

addition, the p-value term is used to investigate whether a

significant difference in the compared methods’ results,

where a significant difference exists between the methods

if p-value � 0.05. Otherwise, no significant difference.

Figure 11 shows the average rankings of all compared

methods. The figure proves the robust performance of

HGWO in addressing the problem, where it obtained the

lowest average rankings. However, JAYA and FPA

achieved the worst results by obtaining the highest average

rankings. In addition, significant differences between the

comparative algorithms are proved, where the p-value

obtained by Friedman’s test is less than 0.05. Accordingly,

the H0 is rejected.

The Holm and Hochberg procedures are then used as

post-hoc techniques to demonstrate whether the controlled

method’s results are significantly different from other

methods’ results based on the adjusted q-value. Figure 11

shows that the controlled method is HGWO, as it achieves

the lowest average rankings among all compared methods.

Holm’s procedure rejects the null hypothesis H0 when the

q-value � 0:0125, while Hochberg’s procedure rejects the

null hypothesis H0 when the q-value � 0:01. The differ-

ence between the HGWO method and seven other methods

(FPA, JAYA, CSA, HJAYA, PSO, SSA, and GWO) is

significant, as shown in Table 5. Conversely, the difference

between the HGWO method and four other methods

(HFPA, HPSO, HCSA, and HSSA) is not significant. This

section demonstrates that the HGWO algorithm is a new

alternative that can solve such problems successfully.

The proposed memetic computing framework can be

used as a general structure for enhancing the performance

of population-based optimization algorithms by distilling

local search techniques. This improvement can empower

the efficiency of MLP and thus produce more accurate

results when utilized in different MLP-based applications.

By means of hybridization of local search with the popu-

lation-based optimization algorithm. The trade-off between

local exploitation and global exploration can be achieved

during the search.

Fig. 11 Average rankings of the

comparative algorithms using

Friedman’s statistical test

Table 5 Holm/Hochberg results

between the HGWO algorithm

and other algorithms

Order Algorithm Holm/Hochberg Adjusted q-value Null Hypotheses H0

11 FPA 0.0045 4.958E-9 Rejected

10 JAYA 0.005 5.771E-9 Rejected

9 CSA 0.0055 1.901E-8 Rejected

8 HJAYA 0.0062 9.657E-5 Rejected

7 PSO 0.0071 1.788E-4 Rejected

6 SSA 0.0083 3.241E-4 Rejected

5 GWO 0.01 0.0072 Rejected

4 HFPA 0.0125 0.0276 Not rejected

3 HPSO 0.01666 0.1106 Not rejected

2 HCSA 0.025 0.2762 Not rejected

1 HSSA 0.05 0.3359 Not rejected
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5 Conclusion and future work

Using local-based search algorithms to hybridize popula-

tion-based algorithms can boost their performance in terms

of exploitation capability. This can help population-based

search algorithms to have a balance between exploration

and exploitation while examining the problem search

space. In this paper, adaptive b-hill climbing (AbHC) is

utilized as a local search refinement to hybridize six pop-

ulation-based metaheuristics for training MLP such as

hybrid crow search algorithm (HCSA), hybrid flower pol-

lination algorithm (HFPA), hybrid salp swarm algorithm

(HSSA), hybrid grey wolf optimization (HGWO), hybrid

JAYA algorithm (HJA), and hybrid particle swarm opti-

mization (HPSO). The algorithms are exploring the search

space to find the optimal values of MLP weights and

biases.

The performance of the proposed six MA versions is

evaluated using 15 datasets with different sizes and with a

different number of classes. These datasets are normalized

and then split into test and train sets 30% and 70%

respectively. A stratified way is applied when splitting the

dataset to ensure the presence of small classes when

training MLPs. Each dataset is trained using MLP config-

ured with a different number of inputs, hidden, and output

neurons.

The tuning of the Br parameter of AbHC shows that the

accuracy results obtained by the proposed MA versions are

gradually enhanced when this parameter value increases.

This is because it empowers the exploitation capability of

the algorithm. The obtained results show that all of the

hybridized algorithms outperform the original version of

the algorithms. In addition, the HGWO excels all other MA

versions. Based on the statistical analysis results the fol-

lowing algorithms show competitive results as well for

HFPA, HPSO, HCSA, and HSSA.

As a future direction, the proposed algorithm will be

utilized to tackle real-world applications that have more

complex search space. The proposed algorithms can be

refined to have other local search techniques to improve

their exploitation abilities. Several researchers investigated

the sensitivity of the MLP to the number of added layers.

For example, Zeng and Yeung [79] investigated ten MLPs

with different layers starting with 2-1 and each time add a

layer with two neurons into the previous MLP. In the

future, the upper bounds for the number of layers in MLP

can be investigated.
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