
Design and realization of a secure multiplicative homomorphic
encryption scheme for cloud services

Christiana Zaraket1 • Khalil Hariss1 • Sandro Ephrem1
• Maroun Chamoun1 • Tony Nicolas1

Received: 10 January 2022 / Revised: 22 June 2022 / Accepted: 4 July 2022 / Published online: 4 August 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Cloud technology is a modern data storing technique that gives opportunities for outsourcing of storage and computation.

While storing sensitive data (such as medical records) at the cloud side can violate personal privacy, Homomorphic

Encryption (HE) was presented as a special type of encryption that leverages users’ privacy by allowing computation over

cipher-texts at the cloud side. In our prior work, we developed and tested a new additive HE scheme (SAVHO) that has

been proven to be a good competitor for the Paillier scheme. The aim of this paper is to build a new secure and efficient

multiplicative HE scheme competitor for the well-known multiplicative HE scheme ElGamal. The proposed scheme is

called Logarithm Operation for Randomization and Multiplicative Homomorphic Encryption scheme (LORMHE).

Security and performance analyses have proven its high level of security and its efficiency in comparison with ElGamal

scheme and its efficiency for real world applications.

Keywords Cloud technology � Homomorphic Encryption (HE) � Security and performance analyses � Additive HE �
Multiplicative HE

1 Introduction

Cloud computing is a modern technology that has matured

over the recent years. Hence, more and more companies are

expected to migrate to the cloud due to several advantages

provided by the concerned solution [1]. Some major

advantages of such solution are the virtualization, the

scalability, the disaster recovery, the high computation and

storing capabilities, etc. Despite all of these advantages,

some security issues remain a key barrier to organizations

shifting to the cloud. So far, data encryption appears to be a

reasonable answer to this issue. However, at some point,

encrypted data becomes worthless unless it is decrypted. In

other words, if the client needs to apply operations on its

encrypted data stored at the cloud side, he must reveal his

secret parameters to the cloud for making the latter able to

convert the data back into plain-text before performing

computations on it. Then, the result is converted back into

cipher-text. Hence, the latter operation leaves classified

data exposed to non trusted parties. For this reason, com-

panies demand an encryption type that provides scalable,

secure, and practical computation services that can be

employed in order to save and operate securely on the data

at the same time. In this scenario, the encryption type

needed is the HE scheme [2], since it is a technique that

allows applying mathematical operations on encrypted data

without disclosing the initial data contents or the decryp-

tion key, as illustrate in Fig. 1.

There are four types of HE schemes [3] that are pre-

sented as follows: Partially Homomorphic Encryption

(PHE), Somewhat Homomorphic Encryption (SWHE),

Fully Homomorphic Encryption (FHE) and Switchable

Homomorphic Encryption (SHE). PHE is the type that

permits computation of an unlimited number of additions

& Christiana Zaraket

christiana.zaraket@net.usj.edu.lb

Khalil Hariss

khalil.hariss1@usj.edu.lb

Sandro Ephrem

sandro.ephrem@net.usj.edu.lb

Maroun Chamoun

maroun.chamoun@usj.edu.lb

Tony Nicolas

tony.nicolas@usj.edu.lb

1 ESIB, Saint Joseph University, Mar Roukoz, Beirut, Lebanon

123

Cluster Computing (2023) 26:685–699
https://doi.org/10.1007/s10586-022-03693-1(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03693-1&domain=pdf
https://doi.org/10.1007/s10586-022-03693-1

or multiplications on encrypted data, but not both of them

at the same time [4]. SWHE allows a limited number of

additions and multiplications to be done simultaneously on

the encrypted data, beyond which the result of the calcu-

lation returns an erroneous answer [2]. FHE permits an

arbitrary number of additions and multiplications to be

made on the encrypted data [4]. Existing FHE crypto-sys-

tems, on the other hand, have numerous issues, such as

prohibitive performance and storage costs for the bulk of

practical applications. Lastly, SHE, which debuted in 2014,

allows users to profit from the efficiency of PHE schemes

by combining them and obtaining the same property as an

FHE scheme but with greater performance [5]. This paper

is concerned with analyzing PHE schemes, with a focus on

designing a new secure and efficient multiplicative HE

scheme, competitor to ElGamal crypto-system [6], to be

used in cases where multiplication operations are required.

As we mentioned previously, in our prior work we

designed an additive HE scheme that we named SAVHO

[7]. Security and Performance analyses of the SAVHO

scheme have shown its high level of security and its effi-

ciency in implementation, which make him a good com-

petitor for the well known additive Paillier crypto-system

[8]. Thus, our long term goal from designing both the

SAVHO scheme (summarized in Table 12 in Appendix)

and the LORMHE crypto-system (detailed in this paper) is

to combine them together to form a SHE similar to the

work done in [5]. Hence, the resultant scheme should allow

to perform all types of operations over encrypted data

while maintaining simultaneously the security and the

efficiency in implementations.

The remainder of this paper is structured as follows:

• Section 2: a brief overview of previous work is

presented.

• Section 3: an introduction to the HE and the ElGamal

scheme is given.

• Section 4: a new scheme called LORMHE (Logarithm

Operation for Randomization and Multiplicative Homo-

morphic Encryption scheme) is introduced.

• Section 5: the resistance of the LORMHE against

various types of attacks is presented by applying

different security tests and establishing a theoretical

crypt-analysis.

• Section 6: the performance study of LORMHE is

completed by establishing a comparison between

LORMHE and ElGamal schemes in terms of encryp-

tion, decryption and homomorphic behavior execution

time and storage overhead.

• Section 7: conclusion and future work are given.

2 Related work

Since the creation of the HE concept, researchers in aca-

demia as well as in industry have been attempting to

improve in this sector by creating secure and efficient

schemes practical for real-world uses.

Ron Rivest, Adi Shamir, and Leonard Adleman pro-

posed the first HE scheme in the cryptography world in

1978 [9]. The RSA scheme was, in particular, a PHE

scheme that can handle an unlimited number of multipli-

cations over the cipher-texts. Then, in 1982, Shafi Gold-

wasser and Silvio Micali introduced an additive HE

scheme that reached a surprising level of security [10]. The

latter’s shortcoming is that it can only encrypt a single bit.

As a correction, Pascal Paillier devised a successful secure

encryption scheme that was also additive HE [11]. Taher

ElGamal developed and published a new multiplicative HE

scheme a few years later, in 1985, which is still utilized in

many applications today [6]. Until 2009, when Craig

Gentry invented the first FHE [2], all of the schemes that

were created could only handle one of two types of oper-

ations: addition or multiplication. Craig Gentry’s method

Fig. 1 A general framework for

HE schemes

686 Cluster Computing (2023) 26:685–699

123

was built on lattices, which made it complicated and

unsuitable for real-world use. Following Gentry’s work, in

2010, the DGHV scheme was introduced by Dijk et al.

[12]. This scheme is based on integers. It is constructed

based on two steps: SWHE and bootastrapping. Its SWHE

can return an erroneous result in the case of applying a

huge number of additions and multiplications due to noise

increase after each homomorphic operation. Bootstrapping

is a refresh mechanism introduced to make it FHE by

reducing the level of non wanted noise after each homo-

morphic operation while keeping the primitive plain-text

unchanged. Although DGHV permits the application of

additive and multiplicative HE operations simultaneously,

it suffers from high computational complexity and storage

overhead. Following DGHV, several crypto-systems were

developed, each with its own set of issues. Therefore, until

now, existing FHE schemes are unpractical for real world

implementations. Instead of utilizing such FHE techniques,

one can apply the well-known Switchable Homomorphic

Encryption approach (SHE), which was developed in 2014

[5]. The latter is a hybrid of two partially HE crypto-sys-

tems. An additive HE crypto-system may be preferred if

additive operations are required; Otherwise, a multiplica-

tive HE scheme may be better. The SHE method can be

utilized if both of these are necessary. Paillier and ElGamal

were the only two PHE schemes combined by the SHE

technique, as indicated in [5]. Implementation has shown

that these two partially HE schemes combined together

performed better than the existing FHE schemes while

giving the requisite amount of security.

HE schemes, in all their forms, are increasingly being

employed in numerous sectors. Especially those seeking

security while operating on outsourced data.

Paillier’s additive HE crypto-system, for example, was

recently employed in e-voting in 2020, as reported in [13]

by Miaomiao Zhang and Steven Romero. ElGamal multi-

plicative HE scheme was used as well in achieving pri-

vacy-preserving Iris identification as indicated in [14] in

2019. Furthermore, in 2021, a paper titled ‘‘Location Based

Recommendation Services Using Switchable Homomor-

phic Encryption’’ discussed the importance of using SHE

[15].

3 Homomorphic encryption

The term ‘‘homomorphism’’ is derived from the Greek

language. oloc-homos means the same and loq/g-morphe

meaning is structure [16]. As shown in [17], if ðE;HÞ and

ðF; �Þ are two magmas , then a map f from E to F is a

homomorphism from ðE;HÞ to ðF; �Þ if and only if:

8ða; bÞ 2 E � E : f ðaHbÞ ¼ f ðaÞ � f ðbÞ

The definition of a homomorphism has lately been

transferred to the world of cryptography. In particular, in a

HE scheme, the encryption function is the homomorphism.

The spaces of plain-texts P and cipher-texts C, provided

with specific internal composition law, represent the two

magmas being mapped from and to. This paper concen-

trates on using the multiplicative HE crypto-system type

which is a HE scheme that can only handle multiplicative

operations. In other words, it must mathematically validate

the following property: for n plain-texts

ðm1; . . .;mnÞ 2 P � � � � � P:

gðEncKðmiÞÞ ¼ EncK
Yn

i¼1

mi

 !
ð1Þ

where Enc() denotes the encryption function, K the secret

key and g 2 f
Qn

i¼1;
Pn

i¼1g [11].

The fundamental advantage of this homomorphic

property is that any third party (trusted or not), may

compute an encryption of
Qn

i¼1 mi from encrypted mes-

sages without knowing the secret key or the content of the

plain-texts messages mi.

3.1 ElGamal crypto-system

A condensed description of the ElGamal scheme construc-

tion is given in Table 1 as listed in [6].

4 LORMHE scheme

Motivated by the importance of the ElGamal scheme, a

new multiplicative HE scheme (LORMHE) is devised that

is competent to ELGamal in terms of implementation

efficiency and reduced storage overhead.

The construction steps of LORMHE scheme are pre-

sented in details in Sect. 4.1, while the homomorphic

behavior of it will be proven in Sect. 4.3.

4.1 Scheme construction

Three basic functions are used in any HE scheme con-

struction: key generation, encryption and decryption pro-

cesses. Hence, the basic functions of the LORMHE

scheme are listed below:

4.1.1 Key generation

The secret key is made up of a pair of random integers

denoted by (a, g) such that the size of a is 45 bits and the

g’s one is greater or equal to 3000 bits. As will be dis-

cussed in the security analysis given in Sect. 5, these

Cluster Computing (2023) 26:685–699 687

123

constraints are imposed in order to achieve the required

level of security.

4.1.2 Encryption process

The cipher-text c related to a message m 2 N� is given by

the following equation:

c ¼ Encða;gÞðmÞ ¼ glogað
m
l Þ � r ð2Þ

where l and r are picked randomly in N� such that they are

formed of 40 bits.

4.1.3 Decryption process

Theorem 1 Having the secret key parameters (a, g) and

the random parameters l and r, retrieving the plain-text m

could be done by applying the following decryption

function:

Decða;gÞðcÞ ¼ eðlnðcÞ�lnðrÞÞ�lnðaÞ
lnðgÞþlnðlÞ ð3Þ

Lemma 1 The natural logarithmic function ln(x) has the

following properties:

lnða� bÞ ¼ lnðaÞ þ lnðbÞ, for a; b[0,

lnðabÞ ¼ b� lnðaÞ, for a[0,

lnðabÞ ¼ lnðaÞ � lnðbÞ, for a; b[0.

Lemma 2 The function ex has the following property:

elnðaÞ ¼ a, for a[0.

Proof of theorem 1

Decða;gÞðcÞ ¼ eðlnðcÞ�lnðrÞÞ�lnðaÞ
lnðgÞþlnðlÞ

¼ e
ðlnðglogað

m
l
Þ�rÞ�lnðrÞÞ�lnðaÞ

lnðgÞþlnðlÞ

¼ eðlnðg
logaðml ÞÞþlnðrÞ�lnðrÞÞ�lnðaÞ

lnðgÞþlnðlÞ

¼ e
lnðglogað

m
l
ÞÞ�lnðaÞ

lnðgÞþlnðlÞ

¼ elogað
m
l ÞlnðgÞ�

lnðaÞ
lnðgÞþlnðlÞ

¼ e
lnðm

l
Þ

lnðaÞ�lnðaÞþlnðlÞ

¼ elnðmÞ�lnðlÞþlnðlÞ

¼ elnðmÞ

¼ m

4.1.4 Random parameters (l and r) dynamic generation

As given in both Eqs. 2 and 3, the two random parameters

(l, r) that are generated for the encryption procedure,

should be re-used for the decryption procedure. Thus, the

latter mechanism will add additional burden in terms of

storing, managing and sharing the random parametes (l, r)

between the communicating entities especially when

dealing with large number of plain-texts. To overcome the

concerned challenges, a dynamic approach is designed in

order to manage and facilitate the random generation and

the sharing of both l and r. Hence, starting from a plain-text

vector X ¼ ½x1; x2; x3; . . .xN � of size N, the dynamic

mechanism is given by the algorithm below:

An illustration of the dynamic generation of both l and

r is presented Fig. 2.

After using the dynamic generation algorithm given

above in Algorithm 1, there is no need to store the different

values of l and r. In this case, the two communicating

parties (one performs the encryption and the other performs

the decryption) need to store for each encryption session

only the specified triple (g, a, k). Thus, using (g, a, k) it is

possible to generate the same vectors Rp and Lp and per-

form the different cryptographic operations when needed.

4.2 Symmetric or asymmetric HE scheme?

Symmetric encryption techniques are crypto-systems that

use the same key for both encryption and decryption.

While the asymmetric encryption system, commonly

known as public key encryption, employs mathematically

linked public and private keys pairs to encrypt and decrypt

[18].

Table 2 summarizes the key differences between these

two types of encryption schemes.

Our crypto-system is classified as symmetric encryption

scheme since the same pair of keys (a, g) is used to encrypt

and decrypt a given message. These systems can be utilized

in a variety of real-world applications, including:

688 Cluster Computing (2023) 26:685–699

123

• Payment applications, such as card transactions, where

personally identifiable information (PII) must be safe-

guarded to avoid identity theft or fraudulent charges

• Validations to confirm that the sender of a message is

who he claims to be

• Random number generation or hashing [21]

However, our primary goal of creating the symmetric

crypto-system LORMHE is to merge it with SAVHO [7]

via SHE technique [5]. SHE is reliant on two separate

clouds. The user is required to divide and then transfer his

private keys to the two clouds in order to do a partial

decryption while operating on cipher-texts. In other words,

whether the system is symmetric or asymmetric is irrele-

vant. As a result, we opt to profit from the symmetric

schemes features while creating our scheme LORMHE.

4.3 Homomorphic behavior

Theorem 2 To be considered as a multiplicative HE

scheme, LORMHE crypto-system must verify Eq. 1.

Remark 1 To facilitate the calculation in the proof of

theorem 2, the computation of Eq. 1 has been done on two

cipher-texts, namely by checking that

Decða;gÞðc1:c2Þ equals m1m2.

Proof of theorem 2 Let c1 ¼ Encða;gÞðm1Þ ¼ g
logaðm1

l1
Þ � r1

and c2 ¼ Encða;gÞðm2Þ ¼ g
logaðm2

l2
Þ � r2 be two different

cipher-texts obtained from applying LORMHE encryption

function respectively on two plain-texts m1 and m2.

Therefore,

Fig. 2 L and R dynamic

generation

Table 1 ElGamal scheme

Key generation G: a cyclic group of order q with generator g where q is a prime number x: a random value in Zq h: h ¼ gx Public Key:

pk ¼ ðG; q; g; hÞ Secret Key: sk ¼ x

Encryption procedure For a given message m 2 G, and a random number r 2 Zq, the cipher-text is given by: c ¼ EncpkðmÞ ¼ ðc0; c1Þ where

c0 ¼ gr and c1 ¼ hrm

Decryption function DecskðcÞ ¼ c1=c
x
0

Homomorphic

multiplication
For two plain-texts m1 and m2, c1 ¼ Encpkðm1Þ ¼ ðgr1 ; hr1m1Þ c2 ¼ Encpkðm2Þ ¼ ðgr2 ; hr2m2Þ c1 � c2 ¼
ðgr1þr2 ; hr1þr2 ðm1:m2ÞÞ ¼ Encpkðm1:m2Þ

Crypt-analysis Theoretical Security: ElGamal scheme is indistinguishable under chosen-plain-text attack (IND-CPA) under the

decisional Diffie–Hellman (DDH) assumption over G. Security by Implementation: As given in [6], ElGamal

recommends minimum 3072 bits for the q’s size to be considered secure.

Cluster Computing (2023) 26:685–699 689

123

c1:c2 ¼ g
logaðm1

l1
Þ � r1 � g

logaðm2
l2
Þ � r2

¼ g
logaðm1

l1
Þþlogaðm2

l2
Þ � r1 � r2

¼ g
logaðm1m2

l1 l2
Þ � r1 � r2

Decrypting this result yields the following:

Decða;gÞðc1:c2Þ

¼ e½ðlnðc1:c2Þ�lnðr1Þ�lnðr2ÞÞlnðaÞlnðgÞþlnðl1Þþlnðl2Þ�

¼ e½ðlnðg
logað

m1m2
l1 l2

Þ
�r1�r2Þ�lnðr1Þ�lnðr2ÞÞlnðaÞlnðgÞþlnðl1Þþlnðl2Þ�

¼ e½ðlnðg
logað

m1m2
l1 l2

Þ
Þþlnðr1Þþlnðr2Þ�lnðr1Þ�lnðr2ÞÞlnðaÞlnðgÞþlnðl1Þþlnðl2Þ�

¼ e
½logaðm1m2

l1 l2
ÞlnðgÞlnðaÞ

lnðgÞþlnðl1Þþlnðl2Þ�

¼ e
½logaðm1m2

l1 l2
ÞlnðaÞþlnðl1Þþlnðl2Þ�

¼ e
½
lnðm1m2

l1 l2
Þ

lnðaÞ �lnðaÞþlnðl1Þþlnðl2Þ�

¼ e½lnðm1m2Þ�lnðl1l2Þþlnðl1Þþlnðl2Þ�

þ þ ¼ e½lnðm1m2Þ�lnðl1Þ�lnðl2Þþlnðl1Þþlnðl2Þ�

¼ e½lnðm1m2Þ�

¼ m1m2

Applying the same steps to a tuple of cipher-texts leads

to verifying Eq. 1. Hence, This result ensures that the

LORMHE scheme fulfills the multiplicative HE feature for

a tuple of cipher-texts.

5 LORMHE security analysis

This section investigates the robustness of the LORMHE

scheme against various types of attacks. Such investiga-

tions are carried out in two ways:

1. Theoretically: a deep mathematical analysis of its

algebraic structure is performed that studies its resis-

tance to known plain-text/cipher-text attacks.

2. Practically: specific security tests are applied over the

new scheme as listed [23] that highlight its robustness

in defending the statistical and the related key attacks

and its verification to some mandatory properties.

5.1 Theoretical crypt-analysis: resistance
to known plain-text/cipher-text attacks

As mentioned in [7], a scheme’s resistance to known plain-

text/cipher-text assaults is investigated by assuming the

presence of an attacker with a tuple pairs of known plain-

texts and their associated cipher-texts. This attacker is

attempting to disclose the secret key of the scheme in

question.

We recall that LORMHE’s secret key is given by (a, g)

and its encryption function is given by

c ¼ Encða;gÞðmÞ ¼ glogað
m
l Þ � r. Hence, a attack model can

be presented as given in the upcoming section

5.1.1 Oracle model

Starting with an attacker that has a t tuple pairs of cipher-

texts/plain-texts denoted by ðm1; c1Þ; . . .; ðmt; ctÞ, in order

to reveal the secret key and parameters of the scheme, he

can do the following steps:

1. Building a System Using the Known Pairs of Plain-

text/Cipher-text ðmi; ciÞð1� i� tÞ: the attacker is able to

construct the following system

c1 ¼ g
logað

m1

l1
Þ
� r1

c2 ¼ g
logað

m2

l2
Þ
� r2

..

.

ct ¼ g
logað

mt

lt
Þ
� rt

ð4Þ

2. Linearizing the Obtained System: the attacker can

linearize the system given Eq. in 4 by applying the

Table 2 Symmetric vs asymmetric encryption schemes [19, 20]

Key differences Symmetric encryption Asymmetric encryption

Size of cipher-

text

Smaller cipher-text compares to original plain-text Larger cipher-text compares to original plain-text

Data size Used to transmit big data Used to transmit small data

Key lengths 128 or 256-bit key size RSA 2048-bit or higher key size

Security Less secured due to use a single key for encryption and

decryption

Much safer as two keys are involved in encryption and

decryption

Speed Symmetric encryption is a fast technique Asymmetric encryption is slower in terms of speed

690 Cluster Computing (2023) 26:685–699

123

natural logarithm function to each cipher-text as

follows: 8i 2 ½1; t�;

lnðciÞ ¼ lnðgÞlogað
mi

li
Þ þ lnðriÞ ¼ lnðgÞ lnðmiÞ � lnðliÞ

lnðaÞ þ lnðriÞ

. In order to make the prior system’s writing easier, the

attacker can assume that 8i 2 ½1; t�, Ai ¼ lnðciÞ,
Bi ¼ lnðmiÞ, X ¼ lnðgÞ, Y ¼ 1

lnðaÞ, Zi ¼ lnðliÞ and

Ti ¼ lnðriÞ. Therefore, the new linear version of the

system is given as follows:

A1 ¼ XYðB1 � Z1Þ þ T1

A2 ¼ XYðB2 � Z2Þ þ T2

..

.

At ¼ XYðBt � ZtÞ þ Tt

8
>>>><

>>>>:

ð5Þ

where, 8i 2 ½1; t�, X, Y, Zi and Ti are the unknown

values while Ai and Bi are the known ones. As a result,

the attacker is confronted with a system that has t

equations and 2t þ 2 unknowns.

3. Mathematical Problem Formulation: the attacker is

working with a system with infinite solutions, and

disclosing the secret key is not feasible. As a conclu-

sion, the security of the concerned scheme is based on

the mathematical hardness of solving an indeterminate

linear system [22].

5.2 Security tests

In this section, the immunity of the LORMHE

scheme against attacks is investigated by implementation.

Different security tests are implemented as given in [23] in

order to determine the required level of the security

parameters sizes for achieving a secure implementation

that can resist against related key attacks and statistical

attacks and assures the presence of avalanche effect.

Security tests were implemented under Mathematica on a

machine having the following technical specifications

(Table 3):

A dynamic Graphical User Interface (GUI) was devel-

oped on Mathematica. This GUI allows the user to change

the different security parameters sizes and to instantly

evaluate their effects on the tests values. These values were

found to be most optimal around a fixed value of the size of

a, l and r, and getting closer to their ideal values for an

increasing size of g (we recall that g is a part of the secret

key and used during the encryption procedure given in

Eq. 2). As result, the a, l and r values were easily identified

and set, as illustrated in Table 4. Then, the main purpose of

the following security tests is to determine the required size

of the parameter g in order to achieve a secure imple-

mentation for the LORMHE scheme.

5.2.1 Resistance against related key attacks

The Key Sensitivity (KS) test is used to evaluate the resi-

lience of a given scheme against related key attacks. This

test permits to measure the percentage of change at the bit

level that may be made on a cipher-text owing to a slight

change in the secret key while retaining the same plain-

text. The following formula is used to calculate the KS test

:

KSm ¼ 1

T

XT

i¼1

EKðmÞi 	 EK0 ðmÞi ð6Þ

Where K represents the original key parameter and K 0 the

new one obtained by flipping the least significant bit (LSB)

of one random byte of the original key. The KS test ideal

value is 50%, indicating an important change as a reaction

to the slight perturbation. In Table 5, the mean KS values

for the LORMHE scheme are calculated through Eq. 6, for

10,000 iterations by varying the size of the security

parameter g from 100 to 4000 bits. According to Table 5,

the KS value has gotten close to the ideal one and more

stable starting size of g ¼ 3000 bits, with a mean value of

48.1898%. Consequently, the KS test demonstrates that the

LORMHE scheme is resistant against related key attacks at

g size
 3000 bits.

5.2.2 Presence of avalanche effect

The avalanche effect is an advantageous characteristic for

any encryption scheme. It describes a significant change in

a system’s output when only a slight modification in the

input is made. A way to evaluate the avalanche effect in an

encryption scheme is the Plain-text Sensitivity (PS) test.

The formula used in such types of tests is given as follows :

Table 3 Machine specification

Component Specification

CPU Intel(R) Core(TM) i7-8550U

CPU clock speed 1.99 Ghz

CPU cores 8

RAM size 16 GB

Operating system Windows 10 Pro

Table 4 Security parameters

size in bits
Parameter Size in bits

a 45

l 40

r 40

Cluster Computing (2023) 26:685–699 691

123

PSm ¼ 1

T

XT

i¼1

EKðmÞi 	 EKðm0Þi ð7Þ

Where K is the key parameter, m is the original plain-text

message and m0 the new plain-text message, obtained by

flipping one random bit of m. The PS is the bit-wise dif-

ference of the two differently obtained cipher-texts. To

reach a high level of security, a scheme must have around

50% as PS value. The result of applying the PS test,

through Eq. 7, for 10,000 iterations on the LORMHE

scheme according to the variation of the g size from 100 to

4000 bits is shown in Table 6. An analysis of the presented

table shows that starting at g size equal to 3000 bits, the PS

value approaches 50%, with a mean value of 48.7488%.

Consequently, the PS test ensures that the LORMHE

scheme presents the avalanche effect for size of g
 3000

bits.

5.2.3 Resistance against statistical attacks

In order to ensure a high level of resistance against sta-

tistical attacks, a scheme must satisfy the two following

properties given below:

1. Uniformity: tested by the entropy and the distribution

tests.

2. Independence: tested by the correlation and the differ-

ence tests.

Hence, in order to validate the two properties highlighted

above, different security tests are implemented as follows:

1. Entropy test: the entropy value quantifies the level of

uncertainty in a random variable. The entropy of a

given message m is defined by the following formula :

HðmÞ ¼ �
X2M�1

i ¼ 0

PðxiÞ 6¼ 0

PðxiÞlog2ðPðxiÞÞ
ð8Þ

where pðxiÞ is the probability of occurrence of symbol

xi, and 2M the total number of states of information.

The ideal value of entropy, equal to M, is encountered

when the random variable satisfies the uniformity

property. In this case, the ideal value that should be

encountered is 8 (28 ¼ 256). In Table 7, the mean

entropy values for the LORMHE scheme are calculated

through Eq. 8, for 10,000 iterations by varying the size

of the security parameter g from 100 to 4000 bits. By

examining Table 7, it is obvious that the mean entropy

value approaches the ideal value 8 starting from g size

equals to 3000 bits with a mean value of 7.86275 and

continues to grow reaching a maximal value of

7.89824. As a result, the entropy test shows that the

Table 5 KS mean values variation according to g size in bits

Size of g (in bits) KS test Standard deviation

100 44.5533 0.398091

400 45.9923 0.327308

700 47.897 0.376824

1000 48.8514 0.403112

1200 47.6211 0.374563

1400 47.2786 0.476707

1600 48.2459 0.395617

1800 47.9673 0.514739

2000 48.8253 0.430068

2200 48.7609 0.380718

2400 48.0016 0.440969

2600 48.6763 0.414523

2800 48.2091 0.42613

3000 48.1898 0.463203

3200 49.052 0.474593

3400 48.9634 0.333262

3600 49.242 0.468724

3800 49.0586 0.494062

4000 49.3066 0.626656

Table 6 PS mean values variation according to g size in bits

Size of g (in bits) PS test Standard deviation

100 44.3227 0.189231

400 47.4448 0.21161

700 46.9989 0.187662

1000 46.9177 0.256999

1200 47.0588 0.208095

1400 47.0438 0.200046

1600 47.7795 0.186868

1800 47.6773 0.177178

2000 48.4738 0.28389

2200 48.4866 0.275553

2400 47.7509 0.169353

2600 47.3986 0.150028

2800 47.0364 0.193498

3000 48.7488 0.20586

3200 48.9309 0.222752

3400 48.4948 0.184889

3600 48.1875 0.190877

3800 48.5284 0.191281

4000 48.2725 0.19753

692 Cluster Computing (2023) 26:685–699

123

LORMHE scheme verifies the uniformity property for

size of g
 3000 bits.

2. Difference test: the difference test quantifies the bit-

level percentage difference between the plain-texts and

their corresponding cipher-texts. The difference test

values are obtained using the following formula:

Dðm; cÞ ¼ 1

T

XT

i¼1

mi 	 ci ð9Þ

where (m, c) denotes a plain-text message and its

matching cipher-text c, and T is their bit length. To be

considered secure, a scheme must get around 50% as

result in this type of test. Such result indicates that

there is no clear relationship at the bit level between

cipher-texts and plain-texts. In Table 8, the mean dif-

ference values for the LORMHE scheme are calculated

through Eq. 9, for 10,000 iterations by varying the g

size as done in the previous tests. Table 8 shows that

for g size equal to or greater than 3000 bits, the dif-

ference value approaches the ideal one, with a mean

value of 49.365%. Thus, the difference test demon-

strates that the LORMHE scheme verifies the inde-

pendence property for size of g
 3000 bits.

3. Correlation test : in order to be secure, an encryption

scheme must present a low correlation between the

plain-texts and their matching cipher-texts as there

should be no clear relation that can be used to deduce

one from the other. The correlation value is obtained

using the following equation :

qX;Y ¼ covðX; YÞffi
DðXÞ � DðYÞ

p ð10Þ

where covðX; YÞ ¼ E½ðX � EðXÞÞðY � EðYÞÞ�,

EðXÞ ¼ 1

n

Xn

k¼0

xk and DðXÞ ¼ 1

n

Xn

k¼0

½xk � EðXÞ�2. The

ideal value of correlation is 0 and it is encountered

when there’s no linear relationship between the two

variables X and Y, namely the plain-texts and their

corresponding cipher-texts. In Table 9, the mean cor-

relation values for the LORMHE scheme are calculated

through Eq. 10, for 10,000 iterations by varying the

size of the security parameter g from 100 to 4000 bits.

By analyzing Table 9, it is clear that all the correlation

values are near to zero, regardless of g size. Therefore,

the LORMHE scheme ensures low correlation between

its plain-texts and cipher-texts.

As conclusion, the LORMHE scheme provides resistance

to statistical attacks as long as the g size is equal or greater

than 3000 bits. To validate the LORMHE scheme’s resi-

lience to statistical attacks for g size
 3000, distribution

test is implemented while taking g size equal to 3000 as

follows:

Distribution test: the distribution test is based on

examining the distribution of cipher-text byte values

Table 7 Entropy mean values variation according to g size in bits

Size of g (in bits) Entropy test Standard deviation

100 7.50457 0.0049004

400 7.65458 0.00508553

700 7.71679 0.00537651

1000 7.757 0.00590522

1200 7.77149 0.00619845

1400 7.78281 0.00527091

1600 7.81018 0.00549545

1800 7.81645 0.0052038

2000 7.82715 0.00619482

2200 7.83685 0.00498642

2400 7.8484 0.00537628

2600 7.84697 0.00492603

2800 7.85868 0.00498562

3000 7.86275 0.00622701

3200 7.87968 0.00507043

3400 7.87995 0.00462881

3600 7.87912 0.00548008

3800 7.89071 0.00569883

4000 7.89824 0.00677862

Table 8 Difference mean values variation according to g size in bits

Size of g (in bits) Difference test Standard deviation

100 44.7356 0.194872

400 46.9036 0.219269

700 47.7236 0.321364

1000 47.783 0.164255

1200 46.4988 0.21326

1400 48.4669 0.233102

1600 48.7972 0.181802

1800 48.9061 0.240816

2000 49.6077 0.186999

2200 47.6616 0.222265

2400 47.7825 0.268626

2600 48.3809 0.198188

2800 48.6269 0.167038

3000 49.365 0.220737

3200 49.4472 0.167383

3400 49.9223 0.224698

3600 49.68 0.190333

3800 49.8475 0.20918

4000 50.4255 0.188776

Cluster Computing (2023) 26:685–699 693

123

frequency counts. Such distribution should be uniform to

guarantee that the cipher-texts will never leak information

on the plain-texts distribution and therefore deduce that the

scheme in question is secure. Figure 3 depicts the fre-

quency counts form of a message before and after the

LORMHE method is applied to it. As a result, for a 10,000

Bytes plain-texts message length generated using a Gaus-

sian distribution (mean: = 128, standard deviation: = 32),

one can see that the frequency counts distribution of the

corresponding cipher-texts (after taking the security

parameter g ¼ 3000 as required for achieving a secure

level of security) has a peak at a byte value of around 65.

Further investigations and calculations revealed that this

was caused by the double precision representation on 64

bits of the cipher-texts using the IEEE 754 standard.

Effectively, as all cipher-text were in more or less the same

range, resulting in a more or less constant exponent value.

This exponent being coded on 11 bits will result in one or

two bytes in the cipher-text having a low variance, hence, a

peak in that distribution. This is not a security problem as it

reveals no specific information about the plain-texts, only

the exponent of the cipher-texts which does not limit the

search space enough to be exploited in case of possible

attack. Disregarding that peak, the distribution of byte-

values frequency is close to a uniform distribution.

Therefore, the scheme can be seen satisfying the uniformity

property.

5.3 Analysis and conclusion

To summarize, all of the security tests driven in the pre-

vious sections ensure that the newly created HE

scheme LORMHE is highly secure for particular sizes of

the security parameters a, g, l, and r shown in the Table 10.

6 Performance analysis

The performance analysis of the LORMHE crypto-system

is presented and explained in this section. It is accom-

plished by comparing the execution timings of its various

functions and storage overhead to those of the ElGamal

Table 9 Correlation test mean values according to g size in bits

Size of g (in Bits) Correlation test Standard deviation

100 - 0.104726 0.0121138

400 0.0625372 0.0181244

700 0.0501442 0.0103746

1000 0.041004 0.0125713

1200 0.0457267 0.0117055

1400 0.0396739 0.00977117

1600 0.0357391 0.0103434

1800 0.0222172 0.0131584

2000 0.0343072 0.0105156

2200 0.0224815 0.0109613

2400 0.0288109 0.0126543

2600 0.0229197 0.0124308

2800 0.013325 0.0106455

3000 0.0197972 0.0128093

3200 0.0179161 0.0119241

3400 0.0204749 0.0128511

3600 0.0130659 0.0125206

3800 0.00953406 0.012797

4000 0.0149596 0.010473

Fig. 3 Distribution test: a Plain-texts, b LORMHE cipher-texts

694 Cluster Computing (2023) 26:685–699

123

scheme. The two schemes are securely implemented in the

latter part as follows:

• LORMHE scheme : as discussed in Sect. 5, a secure

implementation of the LORMHE crypto-system is

obtained when the secret key parameter size of g is

equal to or greater than 3000 bits, the a size is 45 bits

and the l and r sizes are 40 bits.

• ElGamal scheme : as mentioned in Sect. 3.1, a secure

implementation for this scheme requires minimum 3072

bits for the key size q.

6.1 Implementation performance study
and comparison

Different implementations are done using the same work-

ing environment described in Sect. 5.2 (Table 3). Various

comparisons and analyses are carried out by changing the

plain-text message size from 10 bytes to 100 bytes in steps

of 10, and determining the mean metric of each imple-

mentation for 50 iterations as follows:

6.1.1 Cryptography functions

The encryption and decryption procedures are the two

major cryptography functions for both the LORMHE and

ELGamal schemes.

Figures 4 and 5 provide a comparison of the mean

execution times for the encryption and decryption func-

tions for both the LORMHE and ElGamal schemes using

logarithmic scales. After examining the two figures, it is

apparent that the LORMHE crypto-system is quicker than

the ElGamal scheme. As a result, our new multiplicative

HE scheme outperforms the ElGamal crypto-system.

Table 10 Security parameters size in bits

Security parameter Size in bits

a 45

g
 3000

l 40

r 40

10 20 30 40 50 60 70 80 90 100

Plain-text message size (bytes)

10-2

10-1

100

101

102

103

E
nc

ry
pt

io
n

tim
e

(s
)

Mean Encryption Time in Seconds in log scale

LORMHE (g=3072)
El Gamal (key=3072)

Fig. 4 Comparison of mean encryption execution time between

LORMHE and ElGamal schemes

10 20 30 40 50 60 70 80 90 100

Plain-text message size (bytes)

10-1

100

101

102

D
ec

ry
pt

io
n

tim
e

(s
)

Mean Decryption Time in Seconds in log scale

LORMHE (g=3072)
El Gamal (key=3072)

Fig. 5 Comparison of mean decryption execution time between

LORMHE and ElGamal schemes

10 20 30 40 50 60 70 80 90 100

Plain-text message size (bytes)

10-4

10-3

10-2

10-1

H
om

om
or

ph
ic

 m
ul

tip
lic

at
io

n
tim

e
(s

)

Mean Homomorphic Multiplication Time in Seconds in log scale

LORMHE (g=3072)
El Gamal (key=3072)

Fig. 6 Comparison of mean homomorphic multiplication execution

time between LORMHE and ElGamal schemes

Cluster Computing (2023) 26:685–699 695

123

6.1.2 Multiplication on encrypted data

Figure 6 represents the mean execution time for the

homomorphic multiplication property applied to both

schemes using logarithmic scale. It is clear that the

LORMHE scheme is also, in this case, faster than the

ELGamal crypto-system.

6.1.3 Storage overhead

The evolution of storage overhead for both encryption

schemes in terms of the length of the plain-text messages is

shown in the logarithmic scale in Fig. 7 below. After a deep

examination of this graph, it is clear that the LORMHE

scheme’s storage overhead outperforms the ELGamal

scheme’s.

6.2 Results analysis

In this section, the LORMHE and ElGamal schemes were

implemented and represented in their secure condition

((g, a, r, l) sizes equal respectively to (3072,45,

40,40) bits for LORMHE and q size equals to 3072 bits

for ElGamal). Analyzing the results shows that the

LORMHE scheme performing is better than the ElGamal

scheme in terms of execution time for encryption,

decryption and homomorphic multiplication property.

Furthermore, the LORMHE was proven to be more storage

efficient as it presented a lower storage overhead compared

to ElGamal. In conclusion, the LORMHE scheme is a

strong rival to the well-known HE ElGamal scheme. In

Table 11 listed below, the minimum (for Mess Leng ¼ 10

Bytes) and maximum (for Mess Leng ¼ 100 Bytes) values

of each implementation’s mean metric are listed.

� ¼ highest value

lowest value
values are also supplied to show

10 20 30 40 50 60 70 80 90 100

Plain-text message size (bytes)

102

103

104

105

S
to

ra
ge

 o
ve

rh
ea

d
Mean Storage Overhead in log scale

El Gamal (key=3072)
LORMHE (g=3072)

Fig. 7 Comparison of storage overhead between LORMHE and

ELGamal schemes

Table 11 Implementations minimum and maximum mean metrics in linear scale

Scheme LORMHE ELGamal � Interpretation

Minimum Encryption

Execution Times in (s)

0.0179688 11.4219 11:4219
0:0179688

¼635.6518 The LORMHE scheme encrypts a 10 Bytes message about

636 times faster than the ELGamal scheme

Maximum Encryption

Execution Times in (s)

0.185938 124.188 124:188
0:185938

¼ 667.90005 The LORMHE scheme encrypts a 100-Byte message about

668 times quicker than the ELGamal method

Minimum Decryption

Execution Times in (s)

0.120313 14.2031 14:2031
0:120313

¼118.05125 The ELGamal scheme decrypts a 10 Bytes message about 118

times slower than the LORMHE scheme

Maximum Decryption

Execution Times in (s)

1.24453 147.266 147:266
1:24453

¼118.33061 The ELGamal scheme decrypts a 100-Byte message about

118 times slower than the LORMHE scheme

Minimum Homomorphic

Multiplicative Execution

Times in (s)

0.000217188 0.0049373 0:0049373
0:000217188

¼
22.73284

For 10-Byte messages, multiplying homomorphically using

LORMHE is about 23 times quicker than using ELGamal

Maximum Homomorphic

Multiplicative Execution

Times in (s)

0.00228906 0.0466464 0:0466464
0:00228906

¼20.377972 Multiplying homomorphically with LORMHE takes 20 times

as long as ELGamal for 100-Byte messages

Minimum Storage

Overhead in (Bytes)

80 3840 3840
80

¼48 The amount of storage required for a 10-Byte message

encrypted by ELGamal is approximately 48 times greater

than that required for a 10-Byte message encrypted by

LORMHE

Maximum Storage

Overhead in (Bytes)

800 38400 38400
800

¼48 The amount of storage required for a 100-byte message

encrypted by ELGamal is roughly 48 times larger than that

required for a 100-byte message encrypted using LORMHE

696 Cluster Computing (2023) 26:685–699

123

numerically the efficacy of the LORMHE scheme in

comparison to ELGamal’s cryptosystem.

7 Conclusion and future work

The interest for HE is at the moment at its peak. It enables

data analysis while keeping its content securely encrypted.

One of the biggest challenge in this sector is the design of a

scheme that will be at the perfect intersection of security

and efficiency. In this paper, a new multiplicative HE

scheme, called LORMHE, has been designed. A crypt-

analysis study of the latter proved that it is secure and

resistant against several types of attacks. Furthermore,

performance study has revealed that the new scheme is a

good substitute for the well-known ELGamal crypto-

system.

Future work resides in exploiting the SAVHO and the

LORMHE scheme homomorphic properties in order to

design a new secure and efficient SHE scheme competent

to the Paillier/ElGamal ones as well to existing and well

known FHE crypto-systems like the BGV scheme [24].

Appendix: An overview of the SAVHO
crypto-system

See Table 12.

References

1. Gajbhiye, A., Shrivastva, K.M.P.: Cloud computing: need,

enabling technology, architecture, advantages and challenges. In:

2014 5th International Conference-Confluence The Next Gener-

ation Information Technology Summit (Confluence), IEEE,

pp. 1–7 (2014)

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D.

thesis. Stan-ford University.crypto.stanford.edu/craig (2009)

3. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on

homomorphic encryption schemes: theory and implementation.

ACM Comput. Surv. (2018). https://doi.org/10.1145/3214303

4. Morris, L.: Analysis of Partially and Fully Homomorphic

Encryption. Rochester Institute of Technology, pp. 1–5 (2013)

5. Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure

arithmetic computation using switchable homomorphic encryp-

tion. IACR Cryptol. ePrint Arch. 2014, 539 (2014)

6. ElGamal, T.: A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31,

469–472 (1985)

7. Zaraket, C., Hariss, K., Chamoun, M., Nicolas, T.: Cloud based

private data analytic using secure computation over encrypted

data. J. King Saud Univ. (2021). https://doi.org/10.1016/j.jksuci.

2021.06.014

8. Paillier, P.: Public-key cryptosystems based on composite degree

residuosity classes. In: Advances in Cryptology - EUROCRYPT

99, pp. 223–238. Springer, Heidelberg (1999)

9. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining

digital signatures and public-key cryptosystems. Commun. ACM

21, 120–126 (1978). https://doi.org/10.1145/359340.359342

10. Gururaja, H.S., Seetha, M., Koundinya, A.K., Shashank, A.M.,

Prashanth, C.A.: Comparative study and performance analysis of

encryption in RSA, ECC and Goldwasser-Micali cryptosystems.

Int. J. Appl. Innov. Eng. Manag. 3, 111–118 (2014)

Table 12 SAVHO scheme

Encryption parameters 1. The dimension of the cipher-text, denoted by n, is considered as a security parameter 2. The secret key is given

by a n� n random invertible matrix denoted by P ¼ ðpi;j 2 ZÞ
Encryption function For a given message m 2 Z, decomposed into S ¼ ½S0; . . .; Sn�1� 2 Zn such that

Pn�1
i¼0 Si ¼ m, and two random

vectors R and N 2 Zn generated such that ðNi þ SiÞ[0 and ðNi þ Si
2
Þ[0 ði 2 ½0; n� 1�Þ the cipher-text vector

elements is given by: ci ¼
Pn�1

j¼0 pijðNjSj þ RjÞ where 0� i� n� 1

Decryption Function
Retrieving m is based on applying the following formulas: 1. Si ¼

ffi
2ð
Pn�1

j¼0 qijcj � RiÞ þ N2
i þ S2

i

q
� Ni 2. m ¼

Pn�1
i¼0 Si Remark: 0� i� n� 1 and Q ¼ ½qij 2 Z� represents the inverse matrix of the secret key P.

Homomorphic addition and

average
As demonstrated in [7], SAVHO scheme validates the following formulas: For L cipher-texts ci ¼ ½cij� (1� i� L

and 0� j� n� 1) cadd ¼
Pi¼L

i¼1 c
i and cAverage ¼

Pi¼L
i¼1 c

i

L

Crypt-analysis Theoretical Security: SAVHO scheme is resistant against known plain-text/cipher-text attacks. Security by

Implementation: As given in [7], SAVHO recommends n
 400 to be considered secure.

Cluster Computing (2023) 26:685–699 697

123

https://doi.org/10.1145/3214303
https://doi.org/10.1016/j.jksuci.2021.06.014
https://doi.org/10.1016/j.jksuci.2021.06.014
https://doi.org/10.1145/359340.359342

11. Zaraket, C., Chamoun, M., Nicolas, T.: Calculating the average

using Paillier’s cryptosystem. In: BDCSIntell, CEUR-WS,

pp. 113–117 (2019)

12. Hariss, K., Chamoun, M., Samhat, A.E.: On DGHV and BGV

fully homomorphic encryption schemes. In: 2017 1st Cyber

Security in Networking Conference (CSNet), pp. 1–9 (2017).

https://doi.org/10.1109/CSNET.2017.8242007

13. Zhang, M., Romero, S.: Design and implementation of an

e-voting system based on Paillier encryption. In: Arai, K.,

Kapoor, S., Bhatia, R. (eds) Advances in Information and Com-

munication. FICC 2020. Advances in Intelligent Systems and

Computing, vol 1129. Springer, Cham. https://doi.org/10.1007/

978-3-030-39445-5-59 (2020)

14. Ding, Y., Tian, L., Han, B., Wang, H., Wang, Y., Zheng, J. X.

(2019). Achieving privacy-preserving iris identification via El

Gamal. Comput. Mater. Continua 61(2), 727–738 (2019)

15. Jain, M., Singh, P., Raman, B.: SHELBRS: location based rec-

ommendation services using switchable homomorphic encryption

(2021). arXiv preprint arXiv:2105.14512

16. Sarton, G.: A Greek-English Lexicon. Henry George Liddell,

Robert Scott, Henry Stuart Jones, Roderick McKenzie. IACR

Cryptol. ePrint Arch. (1926)

17. Pierce, R.S.: The associative algebra. In: Associative Algebras,

pp. 1–20. Springer (1982)

18. Simmons, G.J.: Symmetric and asymmetric encryption. ACM

Comput. Surv. 11(4), 305–330 (1979)

19. Parms, J.: Symmetric vs. Asymmetric Encryption-What are dif-

ferences?. SSL2BUY Wiki-Get Solution for SSL Certificate

Queries (2020)

20. Hariss, K., Noura, H.: Towards a fully homomorphic symmetric

cipher scheme resistant to plain-text/cipher-text attacks. Mul-

timed. Tools Appl. 81, 14403–14449 (2022). https://doi.org/10.

1007/s11042-022-12043-7

21. Smirnoff, P., Turner, D.M.: Symmetric Key Encryption-why,

where and how it’s used in banking. Accessed 20 Nov 2019

22. Shukla, K.N.: The linear indeterminate equation-a brief historical

account. Hist. Math. 15, 83–94 (2015)

23. Noura, H., Chehab, A., Sleem, L., Noura, M., Couturier, R.,

Mansour, M.M.: One round cipher algorithm for multimedia IoT

devices. Multimed. Tools Appl. 77, 18383–18413 (2018). https://

doi.org/10.1007/s11042-018-5660-y

24. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully

homomorphic encryption without bootstrapping. In: Proceedings

of the 3rd Innovations in Theoretical Computer Science Con-

ference, Association for Computing Machinery, New York, NY,

USA, pp. 309–325 (2012). https://doi.org/10.1145/2090236.

2090262

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

Christiana Zaraket is currently

an instructor at Saint Joseph

University of Beirut. She

received her Ph.D degree in

Computer Engineering and

Telecommunications at Saint

Joseph University in 2021. Her

main research interest is in

Homomorphic Encryption (HE)

and Applied Mathematics. Cur-

rently, she is focusing on

designing new secure and per-

formant Fully Homomorphic

Encryption (FHE) schemes for

Cloud Services.

Khalil Hariss is currently an

instructor at Université Saint-

Joseph in Beirut (ESIB, Faculty

of Engineering). He received his

Ph.D degree in Cryptography at

both Université Saint-Joseph

and Université Libanaise. His

main research interest is in

Homomorphic Encryption (HE)

and Blockchain technology.

Currently, he is focusing on

designing new HE schemes that

provide simultaneously the

required efficiency and level of

security, Implementing HE in

real-world applications, and finally integrating blockchain technology

with HE in order to achieve a fully secure system especially for cloud

environments.

Sandro Ephrem graduated with

an engineering degree in Soft-

ware Engineering from Ecole

Supérieure d’Ingénieurs de

Beyrouth (ESIB), Saint Joseph

University of Beirut in 2021. He

has worked as a data scientist

with multiple startups mainly on

machine learning in fraud

detection, health, and finance.

His mains interests and research

fields are deep learning, cryp-

tography, and finance.

698 Cluster Computing (2023) 26:685–699

123

https://doi.org/10.1109/CSNET.2017.8242007
https://doi.org/10.1007/978-3-030-39445-5-59
https://doi.org/10.1007/978-3-030-39445-5-59
http://arxiv.org/abs/2105.14512
https://doi.org/10.1007/s11042-022-12043-7
https://doi.org/10.1007/s11042-022-12043-7
https://doi.org/10.1007/s11042-018-5660-y
https://doi.org/10.1007/s11042-018-5660-y
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262

Maroun Chamoun is a professor

at the Faculty of Engineering of

Saint Joseph University (USJ) in

Beirut. He holds a degree in

Computer Engineering from

Saint Joseph University and a

Master in Intensive Calculus

from the joint program between

the Lebanese University (UL)

and Saint- Joseph University of

Beirut. He holds a PhD in

‘‘Computer Science and Net-

works’’ from Telecom Par-

isTech in Paris. He teaches

‘‘ethical hacking’’, ‘‘Malware

Analysis’’, ‘‘operating systems’’, and ‘‘language theory and compil-

ers’’. He is a member of the research center CIMTI (Center for

Computer Science, Modeling and Information Technologies) where

he was the director between 1998 and 2015. His research interests

include Cybersecurity mainly in Virology and Threat Detection,

Cryptography mainly Homomorphic Schemes, Operating Systems

mainly in scheduling and system protection, Compilers and Computer

Languages mainly in correctness proof of compilers. He has more

than 20 journal and conference publications in the domain of

Cybersecurity. Beside Cybersecurity, he is interested in detection

problems using Machine and Deep Learning as well as Natural

Language Processing (NLP) such as Arabic cyberbullying detection

and detection of information related to crime from Arabic texts.

Tony Nicolas is an Associate

professor at the Faculty of

Engineering of Saint Joseph

University (USJ) in Beirut. He

holds a Master in Parallel

Computing from Joseph Fourier

University (France). He holds a

PhD in ‘‘Applied Mathematics’’

from Rouen University

(France). He is a member of the

research center CIMTI (Center

for Computer Science, Model-

ing and Information Technolo-

gies). Recently, his research

interests include Cryptography

mainly Homomorphic Schemes. He has more than 10 journal and

conference publications in the domain of Acoustic Control and Par-

allel Computing.

Cluster Computing (2023) 26:685–699 699

123

	Design and realization of a secure multiplicative homomorphic encryption scheme for cloud services
	Abstract
	Introduction
	Related work
	Homomorphic encryption
	ElGamal crypto-system

	LORMHE scheme
	Scheme construction
	Key generation
	Encryption process
	Decryption process
	Random parameters (l and r) dynamic generation

	Symmetric or asymmetric HE scheme?
	Homomorphic behavior

	LORMHE security analysis
	Theoretical crypt-analysis: resistance to known plain-text/cipher-text attacks
	Oracle model

	Security tests
	Resistance against related key attacks
	Presence of avalanche effect
	Resistance against statistical attacks

	Analysis and conclusion

	Performance analysis
	Implementation performance study and comparison
	Cryptography functions
	Multiplication on encrypted data
	Storage overhead

	Results analysis

	Conclusion and future work
	Appendix: An overview of the SAVHO crypto-system
	References

