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Abstract
Cyber Physical System (CPS) plays an important role in industry 4.0 applications such as smart factories, smart energy,

smart transportation, smart buildings, smart healthcare, etc. Similarly, Cyber Physical Sensor System (CPSS) has gained

popularity in recent times and is composed of a computing platform linked to an actuator, sensor, and wireless access point.

In real-time scenarios, CPSS continuously gathers data from physical objects and conducts real-time control events based

on the process algorithm. Then, the gathered data is transferred to the control centre or cloud services via network layer for

further processing. In this scenario, there exists a need to identify the way of utilizing the intellect correctly, by designing

effective data sensing and fusion schemes for CPSS. With this background, the current paper presents a Deep Learning

with Metaheuristics based Data Sensing and Encoding (DLMB-DSE) scheme for CPSS. The aim of the proposed DLMB-

DSE technique is to present a prediction-based data sensing and fusion approach to reduce the quantity of data commu-

nication and maintain maximum coverage by ensuring security. DLMB-DSE technique involves the design of Optimal

Deep Belief Network (DBN) with Adagrad optimizer to primarily predict the data of the succeeding period with minimum

number of data items. It also helps in making the primary predicted value, estimate the actual value, with maximum

accuracy. Besides, Multi-Key Homomorphic Encryption (MKHE) technique is also applied for useful data encoding and

decoding processes, thereby accomplishing security. Moreover, the novelty of the study lies in optimal key generation

process, followed in MKHE technique, using Equilibrium Optimizer (EO). This helps in improving the security. A wide

range of experiments was implemented to validate the better performance of the proposed DLMB-DSE technique. The

experimental results exhibit the promising performance of DLMB-DSE approach over other methods under different

measures.
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1 Introduction

In recent years, the role played by Cyber Physical Systems

(CPS) gained much importance in industry 4.0 applications

namely, smart energy, smart factory, smart cities, smart

healthcare, smart building, and smart transportation. The

emergent CPS is a feedback control system-based perva-

sive sensing method [1]. Therefore, CPS represents a vision

of physical devices that include sensor-enabled mobile

devices, sensors, and actuators that perform feedback

control loops. These actuator devices deliver and receive

data from a control system that performs the given appli-

cations. In general, the physical devices are assumed to be

seamlessly incorporated into day-to-day living objects in

the name of ‘embedded devices or systems’. The existence

of feedback loops, assisted by a pervasive sensing system,

is the general feature of each proposal on CPS [2]. In this

regard, CPS focuses on various problems like realtime

application development that provides customized service

in the context of Internet of Things (IoT) and improvement

of incorporation levels in embedded device. The concep-

tual framework of CPS that can manage physical objects,

consists of four layers such as networking, applications,

security, and Cyber Physical Sensor System (CPSS) [3].
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The network layers provide the links between application

layer and CPSS through distinct IoT transmission systems.

The application layers handle user interface services, data

processing, storage, visualization, and analysis services [4].

CPSS layers consist of actuators, controllers, single chip

computing platforms, and sensors while altogether it

communicates with physical objects. The sensing element

is developed to provide highly reliable outcomes that

require low maintenance cost. Figure 1 illustrates the

framework of CPS technique [5].

CPSS gathers the status about physical objects and

transmits it to the application layer via network layer [6].

All these layers are susceptible and prone to cyberattack,

which creates some disturbance or malfunction that leads

to serious impact [7]. The study considers vulnerabilities,

CPSS function, and security threats while it also provides

feasible solution to the threats found. The data created by

sensors at the time of continuous sensing period generally

consists of higher temporal coherence. Due to this, certain

information exists in the sustaining data sequence which

might be wasting the energy and causing redundant trans-

mission of data. Therefore, prediction was introduced

based on fusion and data sensing systems to process the

original information in sensors and reduce redundant

transmission [8]. In order to attain the objective of

expanding the network lifetime, the proposed scheme takes

full advantage of higher temporal coherence of the sensed

data to reduce unwanted transmission and save the energy

of sensors [9]. Furthermore, some problems including data

leakage at the time of communication remain a major

problem in WSN in terms of data security. The presented

model organized the sensors into clusters of distinct sizes

in a way such that all the clusters can interact with fusion

centre in an interleaved manner [10]. For various data

fusion and sensing network topologies (for example, tree,

chain, and star), the optimum solution is given by deter-

mining the amount of communications for all the nodes.

The current research paper presents a Deep Learning

with Metaheuristics based Data Sensing and Encoding

(DLMB-DSE) scheme for CPSS. The aim of the proposed

DLMB-DSE technique is to present a prediction-based data

sensing and fusion approach to reduce the quantity of data

communication and maintain maximum coverage by

ensuring security. In addition, DLMB-DSE technique

involves the design of Optimal Deep Belief Network

(DBN) with Adagrad optimizer to primarily predict the

data of succeeding period with less number of data items.

Furthermore, Equilibrium Optimizer (EO)-based optimal

key generation with Multi-Key Homomorphic Encryption

(MKHE) technique is also applied for useful data encoding

and decoding processes, thereby accomplishing security. In

order to demonstrate the enhanced performance of the

proposed DLMB-DSE technique, a series of simulation

experiments was conducted on benchmark sensor datasets.

Rest of the paper is planned as follows. Section 2 offers

information on related works, Sect. 3 provides the pro-

posed model, Sect. 4 discusses about performance valida-

tion, and Sect. 5 concludes the paper.

2 Related works

In Dai et al. [11], a CPS with remote state assessment was

considered under DoS attacks in infinite time-horizon. The

goal is to frame the policy for selecting local channels in a

certain state, so as to transfer the messages and mitigate the

overall estimate error covariance, due to energy-saving in

an infinite time-horizon. Wu et al. [12], utilized a linear

discrete-time state-space system to describe the proposed

system, in which a sparse vector is adapted later to attack

the models. By collecting sensor measurements and uti-

lizing an iterative model, a novel approach was attained in

descriptor procedure that happens to be the basis for

assessing system state under unknown input circumstance.

Meleshko et al. [13] presented a method for the detec-

tion of anomalous data from sensor nodes in Cyber-Phys-

ical Systems in line with water supply system. The method

depends upon ML and modelling of technical systems. The

basic information for ML was attained on the designed

hardware or software prototypes of the water supply system

with the help of actuators, microcontrollers, and sen-

sors. Liu et al. [14] proposed a Trust-Based Active

Detection (TBAD) system to reduce data redundancy and

improve the consistency of gathering data packets. Fur-

thermore, the assessment trust of the node, stored in data

packet header, would be identified, once the UAV suspects

the storing trust of sensors.

Venkatasubramanian et al. [15] introduced Physiology-

based System-wide Information Security (PySIS) system

that applies generative model concept in which syntheticFig. 1 Sensor-based CPS
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physiological signals are generated to extend PKA so as to

assist end-to-end data privacy in CHMS from sensor nodes

to PHR. Shin et al. [16] presented a smart sensor attack

identification and detection system-based DNN technique,

named ‘DL model’, without the priori knowledge of

deception attack that modifies the sensing data over time.

3 The proposed model

In this study, a novel DLMB-DSE technique is presented

for the prediction of data sensing and fusion approach to

reduce the quantity of data communication and maintain

maximum coverage by ensuring security. The proposed

DLMB-DSE technique involves a series of operations

namely, DBN-based prediction, Adamax-based hyperpa-

rameter tuning, MKHE-based encryption, and EO-based

optimal key generation process. Adamax and EO tech-

niques are used to accomplish improved security and

overall network efficiency. Figure 2 illustrates the working

process involved in the proposed method.

3.1 Predictive model for data sensing and fusion
process

Initially, optimal DBN model is used in the prediction of

data for succeeding period with least number of data items.

This model aims at making the initial predicted value,

estimate the actual value, with maximum accuracy. DBN is

nothing but stacked RBM except the fact that initial RBM

has undirected connection. This network structure consid-

erably decreases the training difficulty and creates possible

DL outcomes. An easy and effective layer-wise trained

technique is presented to DBN by Hinton [17]. It trained

the layer consecutively and greedily by tying the weight of

unlearned layer. In this study, CD was used to learn the

weight of single layer and iterate until every layer gets

trained. Afterward, the network weight was fine-tuned by

following two-pass up-down technique. This technique

almost continuously demonstrated the network learned

with no pre-trained models as this stage performs as ‘reg-

ularizer’ and helps in supervision of the optimized issue.

The energy, limited from the directed method, is computed

with the help of Eq. (1), in which the maximal energy is

upper bounded in Eq. (2). Further, it attains equivalence, if

the network weight is tied. By equal, the derivatives are

equivalent to Eq. (3) and are utilized to resolve the now-

simpler maximized issue.

E x0; h0
� �

¼ � logp h0
� �

þ logp x0jh0
� �� �

ð1Þ

logpðx0Þ�
X

8h0
Qðh0jx0Þðlogpðh0Þ þ logpðx0jh0ÞÞ

�
X

8h0
Qðh0jx0ÞlogQðh0jx0Þ

ð2Þ

ologpðx0Þ
onn;m

¼
X

8h0Q h0jx0
� �

logp h0
� �

ð3Þ

After iteratively learning the weight of networks, the up-

down technique fine-tunes the weight of the network. The

wake-sleep technique is an unsupervised technique which

is used for training NN from two stages: the ‘wake’ stage is

executed on feed-forward path to compute the weight

whereas ‘sleep’ stage is implemented on feed-back path.

The up-down technique was implemented in the network to

reduce the under-fit that is generally detected as greedily-

trained network [18]. Especially, in the primary stage (up-

pass) of this technique, the weight on directed connection

is called ‘generative weight’ while the parameters are

altered by computing wake-phase probability, sampling of

the states, and updating the weight using CD. On the other

hand, the secondary phase (down-pass) stochastically

stimulates the previous layer with top-down connections

named after inference weight/parameter. This sleep-phase

probability computed the states that are sampled and the

resultant was evaluated.

In order to enhance the training efficiency of DBN

approach, Adamax optimizer is utilized in this study to

adjust the hyperparameter value of DBN technique [19]. It

can be an altered version of Adam optimizer in which the

distributed variance is proposed to be 1. Also, the maxi-

mized weights are defined through Eq. (4):

wi
t ¼ wi

t�1 �
g

vt þ �
� bmt ð4Þ

where:

bmt ¼
mt

1� bt1
ð5Þ

Fig. 2 Process involved in the Proposed Model
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vt ¼ maxðb2 � vt�1; jGtjÞ ð6Þ
mt ¼ b1mt�1 þ ð1� b1ÞG ð7Þ
G ¼ rwC wtð Þ ð8Þ

where g implies the learning rate, wt stands for weight at

step t; C :ð Þ denotes the cost function, and rwC wtð Þ sig-
nifies the gradient of weight parameter wt x and equal label

y. bi is utilized to selecting the data required for old

upgrade, where bi 2 ½0; 1�: mt and vt are referred to as 1st

and 2nd moments.

3.2 Data encoding and decoding process

Once the data is sensed, the next stage is to encode the

sensed data to ensure ‘secure data transmission process’.

An encryption system Eðk; xÞ for a key k and an input x is

named as homomorphic if, for the encryption method E

and operation f , there is an effective method G. Thus,

E k; f x1; . . .; xnð Þð Þ ¼ G k; f E x1ð Þ; . . .;E xnð Þð Þð Þ ð9Þ

The above formula only holds for addition or multipli-

cation while the system is named partially as ‘homomor-

phic encryption’. It is known as Fully Homomorphic

Encryption (FHE), whether it holds for addition or multi-

plication. Multi-Key Homomorphic Encryption (MKHE)

enables multiple participants to employ distinct keys for

encryption [20]. The aggregated ciphertext, attained after

conducting polynomial operation on many individual

ciphertexts, can only be decrypted together by integrating

the corresponding secret keys, related to this ciphertext.

While homomorphic multiplication is not involved in

federated learning method, the study proposed an additive

homomorphism of MKHE. MKHE is a Ring Learning with

Errors (RLWE)-based homomorphic encryption system.

R ¼ Z½X�=ðXn þ 1Þ ð10Þ

where n represents the power of 2D, Z½X� denotes the

polynomial ring with integer coefficient and the element in

R satisfies Xn ¼ �1: Rq ¼ Zq½X�=ðXn þ 1Þ denotes the

residue ring of R with coefficient modulo, an integer q. For

parameter ðn; q; v;w, assume polynomial of the forms

ða; b ¼ s � aþ eÞ 2 R2
q, the b is computationally indistin-

guishable from uniform random elements of Rq whereas a

is randomly selected from Rq; s denotes the key distribution

v over Rq, and e represents the error distribution w over R:

MKHE assumes Common Reference String (CRS) due to

which each device shares a random polynomial vector

a UðRd
qÞ, now Uð�Þ is drawn from uniform distribution.

Consider ski ¼ ð1; siÞ represents the secret key si; sk ¼
ð1; s1; . . .sNÞ for the concatenation of different secret keys.

Where cti ¼ ðcdi0 ; c
di
1 Þ represents the ciphertext of plaintext

mi from remote device di; i ¼ 1; . . .;N:
For a variable k, set the RLWE dimension n, ciphertext

modulus q, key distribution v; and error distribution w over

R. Create a random vector a UðRd
qÞ. Return the public

variable ðn; q; v;w; aÞ. A remote device di generates a

Algorithm 1: Pseudocode of AdaMax

: Rate of Learning 

1, 2 ∈ [0, 1): Exponential decompose value to moment candidate

( ): The cost function with parameter 

0: Primary variable vector

0 ← 0

0 ← 0

← 0 (Apply time step)

while doesn’t converge do

← + 1

← 1 ∙ −1 + (1 − 1) ∙ ( )

← max ( 2 ∙ −1, | ( )|)

+1 ← − ( /(1 − 1)) ∙ /

end while

show (end parameter)
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secret key si  v, and computes the public key as

bi ¼ �si � aþ ei 2 R2
q, now ei represents the error vector

derived from error distribution w through R: Fig. 3

demonstrates the process involved in MKHE technique.

3.3 Encoding and decoding

Before encryption, a complex number is initially extended

into a vector and then encrypted as a polynomial of ring R

based on complex canonical embedding map. Decryption

process changes the polynomial into a complex vector after

decoding. After encoding a message vector into a plain-

textmi, viz. an element of a cyclotomic ring ; di encrypt mi

as a ciphertext cti ¼ ðcdi0 ; c
di
1 Þ in which cdi0 ¼ vi � bi þ mi þ

edi0 ðmodqÞ andc
di
1 ¼ vi � aþ edi1 ðmodqÞ. Now a ¼ a½0� and

bi ¼ bi½0�; vi  v and edi0 ; e
di
1  w. A small error is injec-

ted to guarantee the security and is detached by the

rounding process after running homomorphic operation. In

MKHE, an additive ciphertext related to N distinct parties

are expressed as

Cd
sum

def

=
ð
XN

i¼1c
di
0 ; c

d1
1 ; cd21 ; . . .; cdN1 Þ 2 RNþ1

q :

In the decoding method, di calculates a dot product of

ski ¼ ð1; siÞ and cti ¼ ðcdi0 ; c
di
1 Þ

\cti; ski [ ðmodqÞ ¼ cdi0 þ cdi1 � siðmodqÞ
¼ vi � bi þ mi þ edi0 þ vi � a � si þ edi1 � siðmodqÞ
¼ vi � �si � aþ eið Þ þ mi þ edi0 þ vi � a � si þ edi1 � si modqð Þ
¼mi þ vi � ei þ edi0 þ edi1 � siðmodqÞ
�mi

ð11Þ

Additive homomorphism. where cti ¼ ðcdi0 ; c
di
1 Þ and

ctj ¼ ðcdj0 ; c
dj
1 Þ represents two ciphertexts of plaintext

message mi and mj from remote devices, di and dj. The

amount of the ciphertexts is Cd
sum

def

= ðc
di
0 þ c

dj
0 ; c

di
1 ; c

dj
1 Þ. It is

decoded by calculating a dot product of Csum and

sk ¼ ð1; si; sjÞ:

\Csum;sk[; modqð Þ¼ cdi0 þc
dj
0

� �
þcdi1 �siþc

dj
1 �sj modqð Þ

¼ðcdi0 þc
di
1 �siÞþðc

dj
0 þc

dj
1 �sjÞðmodqÞ

�miþmj

ð12Þ

Decoding of the sum. The distributed decoding-based

noise flooding is presented in MKHE, because it is not

acceptable to consider that any party holds different secret

keys. Decryption process contains two processes such as

merge and partial decryption.

MK� CKKS:PartDecðcdi1 ; siÞ: Assumed a polynomial

cdi1 and a secretsi, sample an error e�i  u and return

li ¼ cdi1 � si þ e�i ðmodqÞ.
MK� CKKS:Mergeð

PN
i¼1c

di
0 ; flig1� i�NÞ: Calculate

and return

¼
PN

i¼1c
di
0 þ

PN
i¼1li modqð Þ �\CSum; sk[ ðmodqÞ.

Here, e�i is created from error distribution u that has large

variances, when compared to standard error distribution, w:

3.4 Optimal Key generation process

In order to improve the efficiency of MKHE technique, an

optimal set of keys is generatedwith the help ofEO algorithm.

The basic concept of single objective EO was established in

2020. EO depends upon a dynamic mass balance on a control

volume where it utilizes a mass balance formula. In terms of

eligibility as a fine-tuned technique, EO has several advan-

tages. This attribute has the capability for maintaining a bal-

ance between detection and exploitation, for executing them

rapidly, and for retaining the flexibility amongst individual

solutions.Thus the outcomewhich addressed the optimization

issues with many single objectives, started dealing with real

Fig. 3 Process involved in MKHE

Cluster Computing (2023) 26:2245–2257 2249

123



world issues after which it gained popularity [21]. In the

subsequent three stages, the mathematical method of single

objectiveEO technique is explained.During initialization,EO

utilizes a specific group, whereas all the particles explain the

vector of focus that contains solutions to the problems. A

primary focus vector is arbitrarily established using a subse-

quent equation from search spaces.

Yinitial
j ¼ lbþ randj ub� lbð Þ; j ¼ 0; 1; 2; 3; . . .; n ð13Þ

where, Yinitial
j refers to vector focus on jth particle, ub and lb

imply the upper and lower limits of the variables, randj
signifies a arbitrary number between 0 and 1and n stands

for the amount of particles. EO technique chases the sys-

tem equilibrium state. But, after attaining the equilibrium

state, EO attains near-optimal solutions. It does not rec-

ognize the count of concentration, which gains the equi-

librium state. So, it allocates equilibrium candidates to four

optimum particles from the populations and one more that

is composed of average of four optimum particles. During

exploitation as well as exploration techniques, these five

equilibrium candidates assist EO. The four primary can-

didates seek optimum exploration, while the 5th candidate

with average value seek alteration from exploitation. These

five candidates retain a vector named as ‘equilibrium pool’.

C
!

eq;pool ¼ C
!

eq 1ð Þ; C
!

eq 2ð Þ; C
!

eq 3ð Þ; C
!

eq 4ð Þ; C
!

eq aveð Þ

n o
ð14Þ

The upgrade of concentration permits EO to balance the

exploration as well as exploitation equally.

F
!¼ e� k

!
ðt�t0Þ ð15Þ

where k
!

implies the arbitrary vector that is assumed

between 0 and 1, permitting turnover rate fluctuation on a

time period, and t has decreased as the iteration count

improves as per Eq. (16).

t ¼ ð1� It

Max�it
Þ a2

It
Max� itð Þ ð16Þ

It and Max�it correspond to present and maximal

amount of iterations, and a2 implies the constants to control

the capacity for exploitation. Another variable a1 is utilized

for improving combined of exploration and exploitation

and is determined as:

t~¼ 1

k~
ln a1 sign r~� 0:5ð Þ 1� e�k

~t
��!� �	 


þ t ð17Þ

The generation rate has demonstrated as G that increases

exploitation and is defined as:

G
!¼ G

!
0e
� l
!
ðt�t0Þ ð18Þ

where, l
!

signifies the arbitrary vector between zero and

one, and the primary generation rate named as G
!

0 is

expressed as follows.

G
!

0 ¼ GC
!
P C
!

eq � k
!

C
!� �

ð19Þ

GC
!
P ¼ 0:5r1; r2�GP

0; r2\GP

�
ð20Þ

where the arbitrary numbers are demonstrated as r1 and r2

which differbetween 0 and 1. The vector GC
�!

P stands for

generation rate control parameter which controls if the rate

of generation is implemented to upgrade the phase or not.

Eventually, EO is upgraded utilizing in Eq. (21).

C
!¼ C

!þ C
!� C

!
eq

� �
:F
!þ G

!

k
!
V

1� F
!� �

ð21Þ

The value of V is equivalent to 1.

4 Experimental validation

This section validates the performance of the proposed

DLMB-DSE technique on 3 real-word data namely, tem-

perature data, humidity data, and light data. The results were

inspected under varying user threshold values in terms of

Successful Prediction Rate (SPR) and Average Error Rate

(AER). Figure 4 shows the predictive analysis results

accomplished by DLMB-DSE technique on temperature

data. The figure demonstrates that the proposedDLMB-DSE

technique effectively predicted the values which were

almost closer to the actually sensed temperature data.

Table 1 and Fig. 5 offers SPR analysis results accom-

plished by DLMB-DSE technique with recent methods

under distinct threshold values. The experimental results

report that the proposed DLMB-DSE technique enhances

Fig. 4 Predictive analysis results of DLMB-DSE technique on

temperature data
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SPR values and indicates better predictive performance. For

instance, with a threshold value of 0.2, DLMB-DSE tech-

nique offered a high SPR of 37.02%, whereas GM, GM_O-

P_ELM,GM_LSSVM, and GM_KRLS techniques obtained

the least SPR values such as 10.62%, 22.30%, 23.06%, and

31.18% respectively. Meanwhile, with a threshold value of

2.2, the proposed DLMB-DSE approach obtained a maxi-

mum SPR of 96.41%, whereas GM, GM_OP_ELM,

GM_LSSVM, and GM_KRLS methods obtained the least

SPR values such as 79.66%, 86%, 87.27%, and 92.60%

correspondingly. Eventually, with a threshold value of 3.8,

the proposed DLMB-DSE approach offered a superior SPR

of 96.92%, whereas GM, GM_OP_ELM, GM_LSSVM, and

GM_KRLS systems achieved minimum SPR values such as

88.29%, 91.08%, 92.60%, and 93.62% correspondingly.

A detailed AER analysis was conducted between

DLMB-DSE technique and recent techniques under various

threshold values and the results are shown in Fig. 6. The

results indicate that the proposed DLMB-DSE technique

attained minimal AER values under all thresholds. For

instance, with a threshold value of 0.2, DLMB-DSE

technique demonstrated the least AER of 0.0225%,

whereas GM_OP_ELM, GM_LSSVM, and GM_KRLS

techniques exhibited increased ARR values such as

Table 1 SPR analysis results of

DLMB-DSE technique under

distinct threshold on

temperature data

User’s threshold GM GM_OP_ELM GM_LSSVM GM_KRLS DLMB-DSE

0.2 10.62 22.30 23.06 31.18 37.02

0.6 49.46 64.18 66.46 77.38 82.71

1.0 62.40 77.12 77.63 85.75 92.86

1.4 72.30 81.18 82.45 89.05 95.40

1.8 76.36 84.23 84.74 90.57 95.90

2.2 79.66 86.00 87.27 92.60 96.41

2.6 81.18 87.02 88.29 93.11 96.92

3.0 82.96 88.04 90.07 93.37 96.92

3.4 87.27 89.05 90.07 93.62 97.17

3.8 88.29 91.08 92.60 93.62 96.92

Fig. 5 SPR analysis of DLMB-DSE technique on temperature data
Fig. 6 AER analysis results of DLMB-DSE technique on temperature

data

Fig. 7 Predictive analysis results of DLMB-DSE technique on

humidity data
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0.0454%, 0.0368%, and 0.0311% respectively. Along with

that, with a threshold value of 0.325, DLMB-DSE algo-

rithm demonstrated the least ARR of 0.1368%, whereas

GM_OP_ELM, GM_LSSVM, and GM_KRLS method-

ologies exhibited improved ARR values such as 0.1965%,

0.1873%, and 0.1562% correspondingly.

Figure 7 illustrates the predictive analysis results

accomplished by DLMB-DSE technique on humidity data.

The figure shows that DLMB-DSE approach outperformed

the existing methods in terms of predicting the values and it

is almost closer with actually sensed data in humidity data.

Table 2 and Fig. 8 offers SPR analysis results accom-

plished by DLMB-DSE technique and other recent methods

under varying threshold values. The experimental results

reported thatDLMB-DSE approach reached a enhanced SPR

value and indicates better predictive performance. For

instance, with a threshold value of 0.2, the proposed DLMB-

DSE technique achieved a superior SPR of 12.74%, whereas

GM algorithm, GM_OP_ELM system, GM_LSSVM

approach, and GM_KRLS techniques obtained less SPR

values such as 4.76%, 8.86%, 9.32%, and 9.09%

correspondingly. In the meantime, with a threshold value of

2.2, the proposed DLMB-DSE technique offered a high SPR

of 83.41%, whereas GM algorithm, GM_OP_ELM system,

GM_LSSVMapproach, and GM_KRLS systems gained low

SPR values such as 53.32%, 74.06%, 76.57%, and 78.17%

correspondingly. At last, with a threshold value of 3.8, the

proposed DLMB-DSE technique offered a high SPR of

87.29%, whereas GM algorithm, GM_OP_ELM system,

GM_LSSVM approach, and GM_KRLS methods obtained

the least SPR values such as 73.15%, 83.41%, 85.23%, and

85.92% correspondingly.

A brief AER analysis was conducted between DLMB-

DSE algorithm and recent techniques under various thresh-

old values and the results are shown in Fig. 9. The outcomes

designate that the proposed DLMB-DSE technique obtained

minimal AER values under all the thresholds. For instance,

with a threshold value of 0.025, the proposed DLMB-DSE

technique achieved a minimum ARR of 0.0756%, whereas

GM_OP_ELM approach, GM_LSSVM system, and

GM_KRLS techniques achieved high ARR values such as

0.1355%, 0.0939%, and 0.0956% correspondingly. In

Table 2 SPR analysis results of

DLMB-DSE technique under

distinct threshold on humidity

data

User’s threshold GM GM_OP_ELM GM_LSSVM GM_KRLS DLMB-DSE

0.2 4.76 8.86 9.32 9.09 12.74

0.6 22.09 37.36 41.92 41.01 45.34

1.0 32.57 54.46 58.79 57.65 63.81

1.4 40.55 65.40 67.22 67.22 73.15

1.8 46.71 70.64 72.24 73.38 79.31

2.2 53.32 74.06 76.57 78.17 83.41

2.6 59.93 76.12 78.62 81.13 86.37

3.0 63.12 79.76 81.13 83.18 86.37

3.4 66.77 81.59 82.95 85.46 87.74

3.8 73.15 83.41 85.23 85.92 87.29

Fig. 8 SPR analysis results of DLMB-DSE technique on humidity data Fig. 9 AER analysis results of DLMB-DSE technique on humidity

data
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addition, with a threshold value of 0.325, the proposed

DLMB-DSE technique demonstrated the least ARR of

0.1685%, whereas GM_OP_ELM method, GM_LSSVM

system, and GM_KRLS techniques portrayed maximum

ARR values such as 0.2423%, 0.2033%, and 0.1981%

correspondingly.

Figure 10 portrays the predictive analysis results

achieved by DLMB-DSE system on light data. The fig-

ure exhibits that the proposed DLMB-DSE approach pre-

dicted the values effectively and it is almost closer with

actually sensed data in light data.

Table 3 and Fig. 11 provides the SPR analysis results

accomplished by DLMB-DSE technique and other recent

methods under distinct threshold values. The experimental

outcomes infer that the proposedDLMB-DSE technique gained

high SPR values indicating better predictive performance. For

instance, with a threshold value of 0.2, DLMB-DSE method

offered a maximum SPR of 35.43%, whereas GM approach,

GM_OP_ELM technique, GM_LSSVM methodology, and

GM_KRLS techniques obtained the least SPR values such as

27.36%, 30.35%, 29.44%, and 32.95% correspondingly.

Besides, with a threshold value of 2.0, the proposed

DLMB-DSE technique presented a high SPR of 64.20%,

whereas GM system, GM_OP_ELM algorithm,

GM_LSSVM approach, and GM_KRLS methodologies

obtained low SPR values such as 42.07%, 50.79%, 57.69%,

and 59.77% correspondingly. Finally, with a threshold

value of 4.0, the proposed DLMB-DSE technique accessed

a high SPR of 72.66%, whereas GM methodology,

GM_OP_ELM system, GM_LSSVM approach, and

GM_KRLS techniques reached minimum SPR values

namely, 49.75%, 59.38%, 68.10%, and 70.97%.

A detailed AER analysis was conducted between

DLMB-DSE technique and recent approaches under dif-

ferent threshold values and the results are portrayed in

Fig. 12. The results infer that the proposed DLMB-DSE

Table 3 SPR analysis results of DLMB-DSE technique under distinct

threshold on light data

User’s

threshold

GM GM_OP

_ELM

GM_

LSSVM

GM_

KRLS

DLMB-

DSE

0.2 27.36 30.35 29.44 32.95 35.43

0.5 31.65 38.42 39.72 42.46 45.58

1.0 36.08 44.15 48.57 50.79 54.69

1.5 38.68 47.92 53.26 55.21 59.90

2.0 42.07 50.79 57.69 59.77 64.20

2.5 45.06 54.56 60.81 63.81 67.97

3.0 46.88 54.82 63.02 66.80 70.18

3.5 48.18 58.34 66.54 69.53 71.75

4.0 49.75 59.38 68.10 70.97 72.66

Fig. 11 SPR analysis of DLMB-DSE technique on light data

Fig. 12 AER analysis results of DLMB-DSE technique on light data

Fig. 10 Predictive analysis results of DLMB-DSE technique on light

data
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approach obtained the least AER values under all thresh-

olds. For instance, with a threshold value of 0.5, the pro-

posed DLMB-DSE technique demonstrated the least ARR

of 3.1786%, whereas GM_OP_ELM system, GM_LSSVM

approach, and GM_KRLS techniques demonstrated high

ARR values such as 6.4742%, 4.0483%, and 3.8881%

respectively. Followed by, with a threshold value of 4.0,

the proposed DLMB-DSE system achieved a minimal ARR

of 4.2542%, whereas GM_OP_ELM algorithm,

GM_LSSVM method, and GM_KRLS techniques demon-

strated the maximum ARR values namely, 6.8404%,

5.1010%, and 4.9179%.

Finally, Computation Time (CT) analysis was conducted

between DLMB-DSE technique and recent methods on

three datasets and the results are given in Table 4. The

experimental results infer that the proposed DLMB-DSE

technique required the least CT over other methods. For

instance, with temperature data, DLMB-DSE technique

required a minimal CT of 0.0314 s, whereas GM_O-

P_ELM system, GM_LSSVM method, and GM_KRLS

techniques required the maximum CT such as 0.0672 s,

0.0554 s, and 0.0830 s respectively.

Besides, with humidity data, the proposed DLMB-DSE

approach required a low CT of 0.5824 s, whereas

GM_OP_ELM algorithm, GM_LSSVM method, and

GM_KRLS techniques demanded maximal CT such as

1.1073 s, 1.0364 s, and 1.5328 s correspondingly. In

addition, with light data, DLMB-DSE technique required a

less CT of 0.0711 s, whereas GM_OP_ELM technique,

GM_LSSVM system, and GM_KRLS methodologies

required high CT such as 0.1184 s, 0.0987 s, and 0.1184 s

correspondingly. From the above discussed tables and

figures, it is evident that DLMB-DSE technique has the

ability to outperform other methods on three real world

datasets namely temperature data, humidity data, and light

data. The enhanced performance is due to the utilization of

Adamax and EO optimizers which helped in accomplished

improved security and overall network efficiency.

5 Conclusion

In this study, a novel DLMB-DSE technique has been

presented for the prediction of data sensing and fusion

approach so as to reduce the quantity of data communi-

cation and maintain maximum coverage by ensuring

security. The proposed DLMB-DSE technique involves a

series of operations namely, DBN-based prediction, Ada-

max-based hyperparameter tuning, MKHE-based encryp-

tion, and EO-based optimal key generation process. The

utilization of Adamax and EO optimizers helped in

accomplishing improved security and overall network

efficiency. In order to demonstrate the enhanced perfor-

mance of the proposed DLMB-DSE technique, a series of

simulations was conducted on benchmark sensor datasets.

The experimental results exhibit the promising perfor-

mance of DLMB-DSE technique over other methods under

different measures. Therefore, DLMB-DSE technique can

be used to accomplish effective data sensing and fusion

approach for CPSS with maximum security. In future,

resource allocation and task scheduling approaches can be

designed to improve the performance of CPSS.

Author contributions AAE and MK—Conceptualization. MK,

SAK—Data curation and Formal analysis. SAK, RFM—Investigation

and Methodology. RFM and DG—Project administration and

Resources: Supervision. UD and KKK—Validation and Visualiza-

tion. AAE—Writing—original draft. AAE and EFM—Writing—re-

view and editing. All authors have read and agreed to the published

version of the manuscript.

Funding Taif University Researchers Supporting Project number

(TURSP-2020/154), Taif University, Taif, Saudi Arabia.

Data availability Data sharing not applicable to this article as no

datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest. The manuscript was written through contributions of all

authors. All authors have given approval to the final version of the

manuscript.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Not applicable.

References

1. Wang, W., Harrou, F., Bouyeddou, B., Senouci, S.M., Sun, Y.: A

stacked deep learning approach to cyber-attacks detection in

industrial systems: application to power system and gas pipeline

systems. Clust. Comput. 25(1), 561–578 (2022)

Table 4 Computation time

analysis results of DLMB-DSE

technique and existing

approaches under three datasets

Methods GM_OP_ELM GM_LSSVM GM_KRLS DLMB-DSE

Temperature 0.0672 0.0554 0.0830 0.0314

Humidity 1.1073 1.0364 1.5328 0.5824

Light 0.1184 0.0987 0.1184 0.0711

2254 Cluster Computing (2023) 26:2245–2257

123



2. Ammi, M., Adedugbe, O., Alharby, F.M., Benkhelifa, E.: Lev-

eraging a cloud-native architecture to enable semantic intercon-

nectedness of data for cyber threat intelligence. Clust. Comput.

24, 1–12 (2022)

3. Vangala, A., Das, A.K., Chamola, V., Korotaev, V., Rodrigues,

J.J.: Security in IoT-enabled smart agriculture: architecture,

security solutions and challenges. Clust. Comput. 16, 1–24 (2022)
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