
A novel deep reinforcement learning scheme for task scheduling
in cloud computing

K. Siddesha1 • G. V. Jayaramaiah1 • Chandrapal Singh2

Received: 6 October 2021 / Revised: 25 March 2022 / Accepted: 17 May 2022 / Published online: 29 June 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recently, the demand of cloud computing systems has increased drastically due to their significant use in various real-time

online and offline applications. Moreover, it is widely being adopted from research, academia and industrial field as a main

solution for computation and storage platform. Due to increased workload and big-data, the cloud servers receive huge

amount of data storage and computation request which need to be processed through cloud modules by mapping the tasks

to available virtual machines. The cloud computing models consume huge amount of energy and resources to complete

these tasks. Thus, the energy aware and efficient task scheduling approach need to be developed to mitigate these issues.

Several techniques have been introduced for task scheduling, where most of the techniques are based on the heuristic

algorithms, where the scheduling problem is considered as NP-hard problem and obtain near optimal solution. But handling

the different size of tasks and achieving near optimal solution for varied number of VMs according to the task configuration

remains a challenging task. To overcome these issues, we present a machine learning based technique and adopted deep

reinforcement learning approach. In the proposed approach, we present a novel policy to maximize the reward for task

scheduling actions. An extensive comparative analysis is also presented, which shows that the proposed approach achieves

better performance, when compared with existing techniques in terms of makespan, throughput, resource utilization and

energy consumption.

Keywords Task scheduling � Cloud computing � Machine learning � Deep reinforcement learning

1 Introduction

During the last decade, we have noticed tremendous

growth in technological advancements. These technical

growths raised the demand for high-performing computing

(HPC) systems to accomplish the tasks. Nowadays, cloud

computing has emerged as a promising solution to facili-

tate, efficient resources for highly complex tasks [1].

Generally, cloud computing is known as a distributed

computing system that consists of a collection of inter-

connected and virtualized computers that are provisioned

dynamically [2]. The newly developed cloud computing

(CC) techniques exploits several advantages over tradi-

tional high performance computing systems such as:

(a) Cloud Computing (CC) techniques facilitate the on

demand resources according to the user request and task

requirement, (b) It reduces the cost of hardware expendi-

ture because it has shared resources which can be used

based on the ‘‘pay-per-use’’ model, (c) It ensures the user

satisfaction because it works under the conditions of ser-

vice level agreement (SLA) which is a negotiation process

between user and service providers and (d) It uses the

virtualization process to create the virtual machine which

improves the resource utilization [3]. Generally, the cloud

computing consists of three service modules such as

infrastructure as service (IaaS) that includes servers, virtual

machines, and storage etc., Platform as a service (PaaS)

that consists database, web server, execution runtime and

& K. Siddesha

siddesha.ec@drait.edu.in

G. V. Jayaramaiah

gvjayaram.ee@drait.edu.in

Chandrapal Singh

chandrapal@xsyssoftwaretechnologies.com

1 Dr. Ambedkar Institute of Technology, Bengaluru, India

2 Xsys Softech, Bengaluru, India

123

Cluster Computing (2022) 25:4171–4188
https://doi.org/10.1007/s10586-022-03630-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6060-4768
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03630-2&domain=pdf
https://doi.org/10.1007/s10586-022-03630-2

development tools etc., and Software as a service (SaaS)

that includes virtual desktops, emails and communication

setups. Figure 1 illustrates the basic architecture of cloud

computing.

The cloud computing techniques are widely adopted by

various organizations and real-time applications due to

numerous applications and significant computing perfor-

mance. Moreover, these techniques play a significant role

in information and communication technology (ICT) and

academic research. Moreover, cloud computing techniques

encompasses sundry functionalities and services such as

advanced security, efficient distribution of large data in the

geographical region, virtualization, resilient computing,

web infrastructure, and various web-related applications.

The cloud computing technology offers several services

such as data processing, storing, computing resources,

virtual desktops, virtual services, web-based deployment

platforms, web services, and databases. It uses the ‘‘pay-as-

you-go’’ model offered by cloud service providers for

specific applications. The cloud computing offers several

benefits such as energy efficiency, cost-saving, flexibility,

faster implementation, and scalability [4–6].

In this field of computing applications, several tech-

niques are being presented based on technological

advancements such as distributed computing, parallel

computing, grid computing, cluster computing, mobile

computing, fog computing, and cloud computing. Due to

the increment in technology such as IoT, sensor networks,

and mobile applications [7], a huge amount of data is

generated and stored on cloud servers. This increased data

requires huge resources and consumes excessive energy

while processing these data. Thus, cloud computing has

emerged as a promising solution to deal with these issues

and offers a virtualization process by creating virtual

computing machines at cloud data centers. These charac-

teristics of cloud computing (CC) considered as a big

breakthrough in green computing. However, minimizing

energy consumption and efficient resource allocation still

remains a challenging task [8–10].

Currently, the green computing has become one of the

hot research topics in high performance computing

systems. During the last decade, the internet-based services

has surged up where cloud computing based systems are

considered as the main cause of increased energy con-

sumption in information and communication technology

(ICT) sector. Recently, a study presented in [11] reported

that the energy consumption by cloud data center is

increasing by 15% annually and energy consumption cost

make up about 42% of the total cost of operating of data

centers. A study presented in [12] reported that around

6000 data centers are present in USA whose approximated

energy consumption was 61 billion kilowatt hours (kWh).

In [13], authors discussed that energy consumption rate

between 2005 and 2010 was growing at the rate of 24%. It

was also reported that data center in US consumed 70

billion kWh power in 2014 which was the 1.8% of the total

power consumption.

Thus, minimizing the energy consumption has become

an important research topic to improve the green comput-

ing systems. Several techniques have been presented to

minimize the energy consumption such as load balancing

[14, 15], task scheduling [16, 17], virtual machine

scheduling [18], VM migration and allocation [19]. Task

scheduling is considered as promising technique to mini-

mize the energy consumption which uses efficient resource

allocation according to the incoming tasks. Efficient

resource allocation for incoming task is a challenging issue

because it has a significant impact on the entire system.

Generally, the task scheduling techniques distribute the

tasks over available resources based on their goals such as

load balancing, increasing the resource utilization, reduc-

ing the waiting time and system throughput. These tasks

can be independent where tasks can be scheduled in any

sequence or dependent where the upcoming tasks can only

be scheduled after completing the ongoing dependent tasks.

The main aim of any novel scheduling algorithm is to

balance different types of conflicting parameters simulta-

neously, such as allocating better resources and maintain-

ing the fair execution time. Several algorithms have been

presented which are based on the meta-heuristic opti-

mization schemes such as particle swarm optimization

(PSO), genetic algorithm (GA), ant colony optimization,

and many more [20]. Similarly, machine learning based

schemes are adopted for this purpose such as Q-learning

with earliest finish time [21], neural network based

approach [22], combination of deep learning and rein-

forcement learning [23], hybrid particle swarm optimiza-

tion and fuzzy theory [24], and neural network with

evolutionary computation [25] etc. Most of the existing

schemes achieve desired performance for a certain limit of

tasks and also performs well with the homogenous tasks.

As the number of tasks increase, the convergence perfor-

mance is affected which leads to increase the execution

time. In this work, we introduce a reinforcement learningFig. 1 Cloud architecture

4172 Cluster Computing (2022) 25:4171–4188

123

based approach which adapts the environment and updates

its working procedure based on the reward and punish

mechanism. Moreover, the reinforcement learning learns

from the complex environment and makes the decision.

This automated adaptive learning helps to minimize the

complexity to process the task when compared with the

traditional algorithms. Thus, the convergence and the

optimization function problem can be solved. Moreover, it

focusses on improving the performance of the overall

system by considering CPU, RAM, Bandwidth and

resource parameters which improve the efficient resource

utilization.

1.1 Motivation

Load balancing is a promising technique which helps to

distribute the workload evenly among the available virtual

machines and computing resources. Its main aim is to

facilitate continuous support to the cloud systems by effi-

cient utilization. Moreover, load balancing is the promising

technique which minimizes response time for tasks and

improves the resource utilization performance. Load bal-

ancing also strives to offer scalability and flexibility for

applications that may grow in size in the future and demand

additional resources, as well as to prioritize operations that

require immediate execution above others. Load balanc-

ing’s other goals include lowering energy usage, mini-

mizing bottlenecks, bandwidth utilization, and meeting

QoS criteria for better load balancing. Workload mapping

and load balancing approaches that account various metrics

are required. However, the current researches need to be

improved by developing the fast and responsive scheduling

process to accomplish the task requirement. Due to several

challenges present in the existing techniques of task

scheduling in cloud computing, we focused on the devel-

opment of a novel scheme for energy efficient task

scheduling. The main aim of the proposed approach is to

allocate resources efficiently, on time task completion, task

scheduling and minimizing the energy consumption.

1.2 Work contribution

In this work, first of all, we present a system model where

we describe the architecture of cloud computing, which

includes user, cloud broker, VM allocator, VM provisioner,

VM scheduler and processing elements. In the next step,

we present the problem formulation for task scheduling and

minimizing the energy consumption. We define the task

model and components of task scheduling. In order to

achieve the objective of scheduling and minimizing the

energy consumption, we present a deep reinforcement

learning model. Finally, a comparative analysis is pre-

sented to describe the robustness of the proposed approach.

The rest of the article is arranged in four sections, where

Sect. 2 presents a brief description about existing tech-

niques of task scheduling, Sect. 3 presents proposed deep

reinforcement learning based model for task scheduling,

Sect. 4 presents the comparative analysis based on the

obtained performance using proposed approach and finally,

Sect. 5 presents the concluding remarks about this

approach.

2 Literature survey

This section presents the literature review study about

existing techniques of task scheduling and resource alloca-

tion in cloud computing. Currently, the energy consumption

in cloud data centers has increased drastically. Thus, several

researches have been presented to diminish the energy con-

sumption. Most of the traditional techniques are not suit-

able for the dynamic loads, thus iterative optimization

schemes are also widely adopted. Pradeep et al. [1] reported

that the efficient task scheduling can be obtained by jointly

optimizing the cost, makespan and resource allocation.

Based on this, authors presented a hybrid scheduling

approach which is a combination of cuckoo search and

harmony search algorithm. However, the overall perfor-

mance of these systems can be improved by optimizing the

number of parameters, thus a multi-objective optimization

function is presented which considers cost, energy, memory,

credit and penalty as the function parameters.

Ebadifard et al. [2] discussed that dynamic task

scheduling is a nondeterministic polynomial time (NP)

hard problem which can be solved by optimization

schemes. Thus, authors developed a PSO based scheduling

which considers the tasks as non-preemptive and inde-

pendent. This approach, focus on the load balancing, where

it formulates the resource vector by considering CPU,

storage, RAM and bandwidth, whereas several traditional

techniques only consider the CPU based resources. This

fitness function is designed based on makespan and average

utilization. Similarly, Chhabra et al. [6] also considered the

task scheduling problem as NP-hard problem and sug-

gested that it can be tackled by meta-heuristic approaches.

Thus, authors adopted cuckoo search optimization scheme,

but it is identified that the tradition cuckoo-search approach

suffer from inaccurate local search, lack of diversity

solution and slow convergence problem. These issues

cause complexity in load balancing scenarios. To overcome

these issues, authors developed a combined approach

which uses opposition based learning, cuckoo-search, and

differential evolution algorithm to optimize the energy and

makespan of incoming loads. The opposition based learn-

ing (OBL) generates the optimal initial population. Then,

an adaptive mechanism is used to switch between cuckoo-

Cluster Computing (2022) 25:4171–4188 4173

123

search (CS) and differential evolution (DE) approaches. In

[24] Mansouri et al. presented a hybrid approach which

uses a combination of modified particle swarm optimiza-

tion and fuzzy logic theory. In first phase, a new method is

presented to update the velocity and roulette wheel selec-

tion is used to improve the global search capability. In the

next phase, it applies crossover and mutation operators to

deal with the local optima issue of PSO. Finally, a fuzzy

logic based inference system is applied to compute the

overall fitness of the system. In order to compute the fitness

function, authors used task length, CPU speed, RAM, and

execution time. The designed fitness function minimizes

the executing time and resource wastage. Sulaiman et al.

[26] focused on developing the energy efficient and low

complexity scheduling approach. In order to achieve this

objective, authors developed hybrid heuristic and genetic

algorithm based approach. This approach improves the

quality of initial population generated by the genetic

algorithm.

On the other hand, the machine learning based approa-

ches are also widely adopted in this field. Tong et al. [21]

presented a combined approach which uses Q-learning and

heterogeneous earliest finish time (HEFT) approach. The

Q-learning approach uses a reward mechanism which is

improved by incorporating the upward rank parameter

from HEFT approach. Moreover, the self-learning process

of Q-learning helps to update the Q-table efficiently. The

complete process is divided into two phases, where first of

all Q-learning is applied, which sorts the tasks to generate

the optimal task order for processing and later earliest

finish time strategy is applied to allocate the tasks to most

suitable virtual machine (VM).

Sharma et al. [22] focused on energy efficient task

scheduling using machine learning techniques. In this

work, authors presented a neural network based approach

to achieve the reduced makespan, minimized energy con-

sumption, computation overhead and number of active

racks, which can improve the overall performance of the

datacenters. This is a supervised learning scheme which

considers the historical task data and predicts the most

suitable available resources for numerous tasks.

Currently, deep learning techniques have gained huge

attention from research community, industries and academic

field because of their significant nature of pattern learning.

Based on this assumption, Rjoub et al. [23] adopted deep

learning scheme for cloud computing scenario and combined

it with reinforcement learning scheme to perform the load

balancing. Specifically, this work presents four different

schemes which are reinforcement learning (RL), deep Q

networks, recurrent neural network long short-term memory

(RNN-LSTM), and deep reinforcement learning combined

with LSTM (DRL-LSTM).

Machine learning techniques are categorized as super-

vised and unsupervised learning. The supervised learning

schemes classify the data based on the pre-labelled dataset,

which is trained based on the historical features whereas

unsupervised schemes generate the groups of similar data.

Based on this concept, Negi et al. [25] presented a hybrid

approach which uses artificial neural network (ANN) as

supervised learning, clustering as unsupervised learning

and type 2 fuzzy logic as soft computing technique for load

balancing. The complete approach is divided into two

phases, where first of all it includes ANN based load bal-

ancing which clusters the virtual machines into under

loaded and overloaded VMs with the help of Bayesian

optimization and improved K-means approach. In next

phase, the multi-objective TOPSIS-PSO algorithm is pre-

sented to perform the load balancing.

Ding et al. [30] authors developed a Q-learning based

energy efficient task schedule for cloud computing module,

this scheme is carried out into two states: in first phase, a

centralized dispatcher is used for M/M/S queuing model

which helps to assign the incoming user requests to suit-

able server on cloud. In next phase, a Q-learning based

scheduler is applied to prioritize the tasks by continuously

updating the policy to assign tasks to virtual machines.

Hoseiny et al. [31] introduced internet based distributed

computing called as volunteer computing which is based

on the resource sharing paradigm. The volunteers with

extra resources share the available extra resources to han-

dle the large-scale tasks. However, the power consumption,

computation cost and latency are the well-known issues in

distributed computing systems. To overcome these issues,

authors considered this as NP-hard task scheduling prob-

lem and developed, two mechanisms namely Min-CCV

(computation-communication-violation) and Min-V

(Violation).

Abualigah et al. [32] considered task scheduling as a

critical challenge in cloud computing. To achieve the

minimum makespan and maximum resource utilization,

authors developed an optimization scheme with elite based

differential evolution approach called as MALO (Multi-

objective Antlion optimizer). This technique is able to

tackle the multi-objective task scheduling problem. The

MALO simultaneously minimize the makespan and

improves the resource utilization.

Hoseiny et al. [33] developed a novel scheduling algo-

rithm in fog-cloud computing named as PGA (Priority

Genetic Algorithm). The main aim of the PGA approach is

to improve the overall performance of the system through

scheduling, by considering computation time, energy

requirement and task deadlines. In order to achieve this,

genetic algorithm based optimization scheme is presented

to prioritize the tasks which can be assigned further for

processing according to VMs capacity.

4174 Cluster Computing (2022) 25:4171–4188

123

This section described several related works to improve

the energy performance of cloud computing systems with

the help of energy aware task scheduling, resource allo-

cation, VMs scheduling and many more. Table 1 shows the

comparative analysis of these techniques. The complete

study focused on the optimization and machine learning

process to perform the task scheduling. The optimization

techniques suffer from the convergence issues and machine

learning based methods suffer from the appropriate train-

ing, data labeling and clustering errors etc.

3 Proposed model

This section presents the proposed solution for energy

aware task scheduling based on self-learning approach for

heterogeneous cloud computing environment. In these

scenarios, the cloud data centers receive numerous tasks

where identifying the correct execution order and then

allocating the task to the best suitable virtual machine

(VM) plays an important role. This can be obtained by a

decision making strategy. Moreover, the tasks are hetero-

geneous and loaded randomly to the servers, thus a self-

learning mechanism can be a promising solution for these

scenarios. Based on these assumptions, we present an

energy aware task scheduling approach based on rein-

forcement learning.

3.1 System model

We consider a cloud computing based task scheduling

framework as depicted in below given Fig. 2. As men-

tioned before, the cloud data centers receive computa-

tionally intensive tasks which cannot be performed at local

devices thus, the cloud centers create virtual machines with

different configuration and tasks are allocated to these

machines. In this work, we mainly focus on the task

scheduling and its resources. We assume that the cloud

datacenter has several virtual machines and a task sched-

uler which has complete information about incoming tasks

Table 1 Comparative analysis of existing techniques

Article Work contributions Advantages Remarks

Pradeep

et al. [1]

Heuristic optimization for NP hard Reduced cost and execution

time

A hybrid algorithm achieves near optimal

solution and convergence is faster

Ebadifard

et al. [2]

PSO based load balancing approach Reduced make-span and

response time

Compatibility of input user requests is checked

and a new fitness function is defined

Chhabra

et al. [6]

Optimization based scheme Optimal population, better-

searching efficiency, avoiding

the trap of local optima

Effective switching between cuckoo search and

differential evolution

Tong et al.

[21]

Q-learning with earliest time finish time

scheduling

Reduced cost and average

response time

This scheme sorts the tasks into two categories

as processor allocation and optimal order of

processors

Sharma

et al.

[22]

Back propagation neural network training on

the data generated by genetic algorithm for

scheduling

Performance improved in terms

of throughput, energy

consumption, overhead for

static data

ANN based rack and ANN based task scheduler

model is presented for selection

Rjoub

et al.

[23]

A combination of deep learning, LSTM, and

Q learning is presented

Optimizing the RAM usage and

CPU utilization cost

Efficient prediction of VMs for allocation of

upcoming task. Further, true metrics for

reward function is expected to incorporate for

selection of best VMs based on their behavior

Mansouri

et al.

[24]

Hybrid scheduling with the combination of

Fuzzy Logic and PSO

Execution time, efficiency,

better initial population leads

to minimize the convergence

issue

Fuzzy rules are designed based on task length,

CPU speed, bandwidth, and fitness

Negi et al.

[25]

Bayesian optimization-based

enhanced K-means with ANN is used to

obtain the scheduling via clustering

Selection of optimal number of

VMs helps to improve the

execution time, transmission

time,

and CPU utilization

Type-2 fuzzy logic clustering along with

K-means is presented to achieve the solution

for multi-objective problem

Sulaiman

et al.

[26]

Genetic algorithm based hybrid heuristic

algorithm is presented, a heterogeneous

scheduling prioritization model (HSIP) is

used for tasks

Running time, makespan

performance improved

however, dynamic scheduling

is not considered

Improved evolutionary scheme which uses two

chromosomes in initial population to increase

the convergence and speed

Cluster Computing (2022) 25:4171–4188 4175

123

and capacity details of other virtual machines which

includes task size, computation speed in million instruc-

tions per second (MIPS), expected time to complete the

tasks and waiting time for the task in the queue. The

scheduler observes this information and generates the

scheduling decision which includes where and when to

schedule the task based on their start time, end time and

bandwidth requirement. Below given Fig. 2 depicts the

working process of a cloud computing system. For sim-

plicity, we consider that real-time tasks are characterized

by start time si, deadline di and task length li.

In the first phase, the cloud user submits real-time tasks

at time si to a cloud computing (CC) environment. After

submission of real-time tasks, the user has an assurance

that the outcome of these tasks will be received by the

deadline di. Similarly, the cloud computing (CC) envi-

ronment is further divided into multiple VMs which are

characterized by their processing capacities. The VM unit

contains a processing element (PE) which require power to

accomplish the assigned tasks. Further, VM allocator

search for the host where the VM can find its required

resources to complete the task. The VM allocator also

considers that the total maximum MIPS of all VMs allo-

cated to host should not exceed the maximum power of the

host. Further, these hosts use VM provisioner to map the

PEs of a host selected by VM allocator. Finally, the VM

schedulers facilitate the processing power of PEs to each

VM based on their requirement to complete the task.

The main aim of our work is to increase the task com-

pletion rate in the given time duration without wasting the

resources. Thus, for a known resource provisioning d and a

scheduling plan b, the first objective function is defined as

maximizing [34] the successful task completion rate

(STCR) given as:

STCR ¼ max
Ti2T

tFi d; bð Þ
� �

ð1Þ

where tFi denotes the task completion time of task i which

is allocated to VMj.

Further, we consider the power consumption issue by

PEs to complete the task. Let us consider that static and

dynamic power consumption of host is given as:

P ¼ Pstatic þ Pdynamic ð2Þ

Fig. 2 Schematic of cloud

computing model

4176 Cluster Computing (2022) 25:4171–4188

123

The static power denotes the power consumed by the

host when it is in idle mode and it remains unchanged when

the host is turned on. Thus, the static power is denoted as:

Pstatic ¼ aPmax ð3Þ

where a denotes the ratio of static power and maximum

power of host and Pmax is the maximum power consumed

by the host. Similarly, the dynamic power consumption can

be expressed as [35]:

Pdynamic uð Þ ¼ Pmax � Pstaticð Þu2 ð4Þ

where u denotes the utilization of a host at a specific time.

The computing power of a host at a given time is related

to its efficiency. Thus, the energy required by host to

deliver maximum efficiency is denoted as:

Emax ¼
Z tmax

0

Pmaxdx ¼ Pmaxtmax ð5Þ

where tmax is the time, where the host operates at maximum

power to complete the certain types of instructions. Let us

consider the power used by the system is P uð Þ, then the

energy consumption can be expressed as:

E ¼
Z tmax

u

0

P uð Þdt ð6Þ

Thus, the overall energy consumption of host to com-

plete the tasks can be expressed as:

E ¼ aþ 1� að Þu2
� �Pmaxtmax

u
ð7Þ

Thus, minimizing the power consumption becomes our

second objective. The overall objectives of this work are:

Min
XJ

j¼1

XN

n¼1

XM

m¼1

E T j
n jð Þ

� �� �
(

s:t:
XJ

j¼1

XN

n¼1

T j
n mð Þ

�� ���mslot

s:t:Tw � Tidle ¼ 0

ð8Þ

According to this equation, the energy consumption

should be minimized, moreover, the waiting time Tw and

idle slots Tidle also should be avoided which improves the

efficiency of the overall resource utilization.

3.2 Task and scheduling model

In this section, we present the heterogeneous incoming task

model and their scheduling process. In this model we

assume that heterogeneous and computationally intensive

tasks are arriving at the cloud server which are classified

into K categories as J ¼ j1; j2; ::; jKf g. The tasks which

belong to same category have the same characteristics such

as million instructions (MI), task start time, finish time and

bandwidth. The task i which belong to K category can be

represented as:

ji;k ¼ hai:zi; li; dii ð9Þ

where ai denotes the task arriving time, li is the size of task,

di is the expected delay of task and zi is the bandwidth.

The cloud computing servers are configured with several

heterogeneous virtual machines as V ¼ v1; v2; . . .; vMf g.
Task scheduler plays important role by deciding the task

scheduling order and selection of most suitable VM.

Generally, these types of mechanism follow a queuing

process, where before scheduling the task, it is placed in

the waiting slot which is later vacated after successful

scheduling of task and another task is placed in the empty

waiting queue. The response time of tasks after scheduling

is obtained by including the waiting time and execution

time. Thus, the expected time of scheduling task i in jth VM

can be computed as:

ei;j ¼
li
vj

ð10Þ

Let us consider that task start time si;j and finish time f i;j
of task i on jth VM. The starting time of other incoming

tasks depends on the finish time of previously scheduled

task. Thus, the starting time for incoming tasks can be

denoted as si;j ¼ max f i;j; ai
� �

and task finish time can be

expressed as f i;j ¼ si;j þ ei;j, where ei;j represents the time

required by VM to process the task. Similarly, the response

time for task i can be computed with the help of waiting

time and execution time. The response time can be

expressed as:

ti;j ¼ wi;j þ ei;j ð11Þ

where wi;j, denotes the waiting time. If the task which is in

queue is processed immediately then there is no waiting

period, otherwise the gap between starting time and

arriving time can be given as wi;j ¼ si;j � ai. Based on these

parameters, the successful task completion rate (STCR) can

be computed as:

gi;j ¼
i

ti;j
ð12Þ

where denotes the expected latency value and g is the

successful task completion rate. To accomplish this, we

present reinforcement learning based approach which helps

to improve the performance of task scheduling mechanism.

3.3 Proposed scheduling model using deep
reinforcement learning

Generally, the main concept of reinforcement learning is to

design an agent based system, which can adapt the change

Cluster Computing (2022) 25:4171–4188 4177

123

in the environment and behave in that environment

accordingly. In this work, we apply Q-learning based

approach to optimize the scheduling scheme based on the

decisions and evaluating the feedback from cloud envi-

ronment. Let us consider that total T tasks as T ¼
t1; t2; t3; . . .; tnf � are submitted to cloud sever which con-

tains total V virtual machines as V ¼ v1; v2; . . .; vmf g. This
learning scheme works in three phases by computing state

space, action space and rewards. Let us consider that st
denotes the task scheduler state in state space S at time t,

and at denotes the action in the action space A at time t

with probability P s1js;ð Þ ¼ P stþ1 ¼ s1jst ¼ s; t ¼½ �, whereP
s12S P s1js;ð Þ ¼ 1. In this model, we consider a cloud

scheduler policy as p jsð Þ, which is used for mapping the

states to actions. Table 2 shows the notations used in this

work.

The reward of the action at in state st is denoted by rt.

The main aim of this scheduler is to obtain the optimal

scheduling policy to minimize the cost for all available

VMs and tasks. The states, actions and rewards of the

reinforcement learning can be considered as follows:

• State space: In our model, at each time t the state space

st represents the present scheduling of the tasks on the

VMs, where each VM is characterized based on its

available resources such as CPU, RAM, bandwidth and

storage space.

• Action space: In current state space, the action state at
denotes the scheduling action at time t for all the tasks

scheduled on the VMs. Specifically, for each task, this

action is denoted as 0 or 1, which is a decision process,

represents whether the task is scheduled to VM or not.

• Reward: The reward function denotes the efficiency of

the task scheduling process. Let us assume that, task ti
is assigned to the VM vj then, we define the execution

cost as fi;j which is considered as an immediate reward

for this action. Similarly, the overall reward for all the

scheduling actions can be obtained by adding the

execution cost for each task. The reward for individual

task is defined in terms of CPU, bandwidth, RAM and

storage as follows:

fi;j ¼ wi;j þ wi;j

� �
� Pj ð13Þ

where wi;j denotes the waiting time for task ti to be

assigned to its corresponding VM, Pj denotes the price for

virtual machine, and wi;j is the execution time of task on

assigned VM. In this approach, we focus on optimizing the

scheduling model with the help of Q-learning which

evaluate the feedback from cloud environment. This

feedback model improves the decision making process.

Once all the rewards are collected, mean Q value of an

action a in state s with policy p can be denoted as Qp s;ð Þ
and the optimal function can be expressed as:

Q� s; að Þ ¼ minpQp s;ð Þ ð14Þ

This expression can be re-written in the form of transi-

tion probability from one state to another state, which is

given as:

Q� s; að Þ ¼
X

s1

! s1js; að Þ r þ cmin
a1

Q� s1; a1ð Þ
	

ð15Þ

where ! represents the transition probability of moving

from current state s to next state s1 based on the action and

c represents discount parameter of rewards. Here, we

assume the requirement of resources for the execution of a

Table 2 Main notations used in this work

T Tasks

V Virtual machines

tF Task completion time

Pstatic Static power consumption

Pdynamic Dynamic power consumption

Pmax Maximum power consumption

a Ratio of static and maximum power

tmax Maximum required duration to complete the task

P uð Þ Power consumed by a system at an instance

u Utilization of host

j Cloud servers

K Total categories

ai Task arriving time

l Size of task

d Delay

z Bandwidth

s Start time

f Finish time

e Expected time to accomplish the task

w Waiting time

S State space

A Action space

P Probability of switching

p Policy

P Price for virtual machine

w Execution time

R Resource matrix

W Weight matrix

Q Queued tasks

w Size of waiting slot

A Action corresponding to the current state

A/ Invalid action

Aw Valid action set

m Virtual machine

4178 Cluster Computing (2022) 25:4171–4188

123

task is identified after the arrival of task and before

assigning the task to any VM, meanwhile the following

resource conditions need to be satisfied such as:

KCPU
i �CPUt

j

KRAM
i �RAMt

j

KBW
i �BWt

j

KStorage
i � Storagetj

ð16Þ

where KCPU
i , KRAM

i , KBW
i and KStorage

i represents CPU,

memory, bandwidth and storage required for the task

respectively and CPUt
j, RAM

t
j, BW

t
j, Storage

t
j represents

current resource availability status of the VM. Now, the

scheduler considers the policy and evaluates the Qp s; að Þ
for the current policy. Thus, the policy updating process

can be expressed as:

p1 ¼ argmin
a
Qp s; að Þ ð17Þ

Further this process focuses on obtaining the optimal

policy p� which can decrease the reward in each state s as:

min
p�

E Qp� s; að Þ½ � ð18Þ

In order to obtain the optimal task scheduling, we

redesign the state space, action space and state transition.

At this stage, we consider cloud server as the environment

and task scheduler is considered as the agent which inter-

acts with the environment.

Let us consider that the system is in current state s 2 S

which provides the information as resource matrix, weight

matrix and queued tasks. Thus, the state of system can be

expressed as:

S ¼ SjS ¼ R;W; Qj jð Þf g ð19Þ

where R denotes the resource matrix, W denotes the

weight matrix, and Q is the queued tasks. The resource

matrix shows the state of various VMs including their

processing capacity and availability for the next task. The

upcoming tasks are stored in two parts, first is waiting slot

and queue. The tasks which are present in the waiting slot

have higher priority for scheduling. Moreover, these tasks

only can be scheduled in each time stamp. For this sce-

nario, the waiting slot can be represented as:

W ¼ w1;w2; . . .;wO½ � ð20Þ

where wi denotes the size of waiting slot where O denotes

the total tasks which can be present in the waiting slot.

In the next phase, we focus on the action space, where

task scheduling process performs two actions which

includes determining the task execution order and finding

the optimal virtual machine to allocate the task. At this

phase, processing two types of action require large action

space which causes complexity in learning mechanism. For

this scenario, the action for vm to schedule the task jn can be

presented as:

A ¼ AejAef ¼ vm; jnð Þjm 2 �1; 1; 2; . . .;Mf g
n 2 �1; 1; 2; . . .;Of g ð21Þ

where �1 denotes that the invalid task is selected.

Finally, the reward mechanism is presented, which

evaluates the scheduling process, whether it is achieving

the goal of optimal policy p ¼ p ajsð Þ. For a valid action,

the reward is assigned by taking the ratio of response time,

energy and latency requirement, whereas for invalid action,

the reward is assigned as zero. This reward function can be

expressed as:

r ¼ wj; a 2 A/

0; a 2 Aw

�
ð22Þ

where Aw is the set of invalid action and Aw is the set of

tasks which are selected under valid action. Similarly, this

policy is updated for each incoming task until the all tasks

are allocated efficiently.

The novelty of the proposed approach is laid down in

reinforcement learning paradigm. Unlike conventional

approaches, we characterize the optimal scheduling by

incorporating multiple parameters during reward mecha-

nism such as CPU, RAM, Bandwidth resource and storage

resource. This leads to commencement of a robust rein-

forcement learning model. Furthermore, this configuration

of RL scheme is able to handle the variations in job sizes

by efficiently utilizing its resources. However, deep

learning based approaches are considered as computation-

ally complex algorithms. In order to minimize the com-

plexity, we adopt reinforcement learning which doesn’t

require multiple trainings as dataset size increase. In this

work, we have trained the model for small size of the

dataset and the same model is amalgamated during further

training process, whereas traditional machine learning

algorithms require multiple trainings which affects the

performance of the system. In the worst case scenario

(where the task is not finished in a given time), the system

complexity is reported as OðN 02Þ where N0 is the total

number of offloaded tasks.

4 Results and discussion

This section presents the experimental analysis of proposed

energy efficient task scheduling. We compare the obtained

performance with various existing schemes. The proposed

approach is implemented by using MATLAB and Python 3

running with Pytorch installed on windows platform. The

system is equipped with 16 GB RAM, and 6 GB of

NVDIA 2060 RTX graphical memory card unit. In the

experiments, we have considered the discount factor as

Cluster Computing (2022) 25:4171–4188 4179

123

0.99, waiting slot is fixed at 5 s and backlog queue is fixed

as 10 s.

4.1 Dataset description

In this scheme our aim is to develop a robust scheme for

task scheduling which schedules the tasks efficiently to

virtual machines. For this experiment, we have considered

Google Cloud Jobs dataset (GoCJ). The main advantage of

using this dataset over the synthetic dataset is, it is a real-

time dataset which shows the actual behavior of user

requests. These datasets are collected from Google cluster

traces and MapReduce logs obtained from the M45

supercomputing cluster. This dataset repository contains a

group of datasets which are stored in the form of text files

which contains the specific number of tasks [27]. We have

divided the dataset as mentioned in [28]. Below given

Table 3 shows the description of the dataset in the form of

job size and MI.

Given Fig. 3 depicts the distribution of jobs based on

their size in the complete dataset. According to the Fig. 3,

the complete dataset contains five groups of tasks which

include small, medium, large, extra-large and huge tasks.

The small, medium, large, extra-large and huge job group

contains 20%, 40%, 30%, 4% and 6% portion of the total

jobs.

In this experiment, total number of jobs in small number

of jobs are 15,000–55,000, medium number of jobs are

59,000–99,000, large number of jobs are 101,000–135,000,

extra-large number of jobs are 150,000–337,500, and huge

number of jobs are 525,000–900,000.

In this work, we divide the dataset into two groups as

regular size dataset, and big size dataset. For each group,

we measured the performance in terms of makespan,

throughput and resource for fixed and varied number of

VMs.

4.2 Experimental analysis

In this section, we present the performance of proposed

reinforcement learning for task scheduling. First of all, we

describe the performance for regular-size dataset for fixed

and varied number of virtual machines.

4.2.1 Performance analysis for regular-size dataset

In this scenario of regular size dataset, we consider number

of jobs 100, 200, 300, 400, 500 and 600. For these groups

of tasks, we measure the performance in terms of make-

span, throughput, and resource utilization.

• Performance analysis for fixed VMs

In this experiment, we have applied the proposed

approach on regular size dataset, where tasks are ranging

from 100 to 600. The number of VMs are fixed as 50 VMs

with the MI ranging from 100 to 4000.

(a) Makespan performance analysis: The makespan

time is measurement of time taken by processor or

virtual machine to complete the task. Minimum

value of makespan time is always considered as best

computing performance. Below given Table 4 shows

the comparative analysis in terms of average

makespan.

Fig. 3 Distribution of jobs

Table 3 Job description
Task Group Number of tasks

Regular 100

200

300

400

500

600

Big 700

800

900

1000

1100

Table 4 Average makespan performance for regular size dataset and

fixed VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 224.10 187.75 187.23 150.55

200 439.42 453.52 387.64 345.28

300 672.11 661.05 542.92 508.15

400 817.67 782.12 768.51 720.11

500 1124.70 1085.16 875.41 820.81

600 1304.06 1286.73 1099.06 980.56

4180 Cluster Computing (2022) 25:4171–4188

123

Below given Fig. 4 shows the graphical represen-

tation of this comparative analysis. According to this

experiment, the average makespan performance is

obtained as 763.67 s, 742.72 s, 643.46 s and

587.57 s using PSO [28], MVO (Multi-Verse Opti-

mizer) [28], EMVO (Enhanced Multi-Verse Opti-

mizer) [28], and Proposed approach.

The average makespan of proposed approach is

decreased by 23.05% when compared with PSO,

20.88% when compared with MVO and 8.68% when

compared with EMVO techniques. The decreased

makespan shows that the proposed approach exe-

cutes tasks faster.

(b) Throughput performance analysis: Generally, the

throughput parameter is measured by computing the

rate of data transfer from one point to another point.

In this work, we consider the speed of task allocation

from scheduler to VMs and one VM to another VMs.

The quick response of the proposed approach for task

allocation shows that the proposed approach is

capable to handle the incoming tasks faster, which

improves the performance of the system when

compared with existing schemes. Below given

Table 5 shows the comparative analysis in terms of

throughput for regular sized dataset.

For this experiment, given Fig. 5 depicts the

graphical comparative analysis of obtained through-

put for varied number of jobs. The average through-

put is obtained as 45.69, 47.76, 54.33, and 73.96

using PSO [28], MVO [28], EMVO [28] and

proposed approach, respectively. This comparative

analysis shows that the performance of proposed

approach is improved by 61.87%, 54.85%, and

36.13% when compared with PSO [28], MVO [28],

and EMVO [28]. From this study, we can conclude

that scheduling speed of the proposed approach is

faster than the existing schemes.

(c) Resource utilization analysis: Resource utilization

is a measurement of efficient use of available

computing resources in such a way that task can be

completed on time, without wasting the resources.

Generally, maximum utilization of available

resources shows the better performance. Below

given Table 6 shows the comparative analysis in

terms of resource utilization.

Given Fig. 6 depicts the graphical comparative

analysis in terms of resource utilization for regular

size dataset. The average resource utilization perfor-

mance is obtained as 93.13, 95.2, 94.66, and 96.30

using PSO [28], MVO [28], EMVO [28] and

Proposed approach.

The comparative analysis shows that the perfor-

mance of proposed approach is improved by 3.40%,

Fig. 4 Makespan performance for regular size dataset and fixed VMs

Fig. 5 Throughput performance for regular size dataset and fixed

VMs

Table 6 Resource performance for regular size dataset and fixed VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 78 81.60 80.80 93.55

200 92.80 97.60 95.60 94.60

300 96.40 98.00 98.00 95.50

400 96.80 98.00 97.60 97.2

500 96.80 98.00 98.00 98.5

600 98.00 98.00 98.00 98.5

Table 5 Throughput performance for regular size dataset and fixed

VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 44.62 53.26 53.41 65.85

200 45.51 44.10 51.59 66.28

300 44.64 45.38 55.26 74.21

400 48.92 51.14 52.05 75.51

500 44.46 46.08 57.12 79.55

600 46.01 46.63 54.59 82.36

Cluster Computing (2022) 25:4171–4188 4181

123

1.15%, and 1.79% when compared with PSO [28],

MVO [28], and EMVO [28], respectively.

• Performance analysis for varied VMs

In this section, we consider the regular-size dataset

and varied number of virtual machines. We have con-

sidered the same simulation setup as used in previous

experimental analysis. Below given Table 7 shows the

number of virtual machines used for varied number of

tasks.

(a) Makespan performance: First of all, we measure

the makespan performance for regular task sets

where virtual machines are ranging from 10 to 60 as

mentioned in Table 7. The obtained performance is

presented in Table 8.

The comparative analysis for this experiment is

depicted in below given Fig. 7 which shows the

robustness of proposed approach.

According to this experiment, the average make-

span performance is obtained as 976.17 s, 904.53 s,

764.66 s, and 473.37 s by using PSO [28], MVO

[28], EMVO [28], and Proposed approach respec-

tively. This experiment shows that makespan per-

formance of proposed approach is improved by

51.53%, 47.70%, and 38.14% when compared with

aforementioned techniques.

(b) Throughput performance analysis for regular-

size data and varied VMs: In this experiment, we

have measured the throughput performance as mea-

sured in previous experiment. However, this exper-

iment is conducted based on varied number of virtual

machines. Given Table 9 presents the numerical

comparative analysis.

Below given Fig. 8 depicts the throughput com-

parison for varied number of virtual machines for

each task group. The average performance is

obtained as 34.70, 36.29, 43.5, and 60.72 using

PSO [28], MVO [28], EMVO [28] and Proposed

approach respectively.

Fig. 6 Resource utilization performance for regular size dataset and

fixed VMs

Fig. 7 Makespan performance for regular size data and varied

number of VMs

Table 7 Varied VMs for

different sets of regular size

dataset

Tasks Virtual machines

100 10

200 20

300 30

400 40

500 50

600 60

Table 8 Makespan performance for regular size data and varied VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 641.68 608.52 551.05 330.25

200 791..47 789.24 653.9 395.7

300 923.54 853.48 845.94 426.8

400 978.65 908.5 828.51 510.6

500 1086.1 1098.35 826.17 556.8

600 1250.88 1169.14 882.4 620.1

Table 9 Throughput performance for regular-size data and varied

VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 15.58 16.43 18.15 36.50

200 25.27 25.34 30.59 52.30

300 32.48 35.15 35.46 60.85

400 40.87 44.03 48.28 65.55

500 46.04 45.52 60.52 73.58

600 47.97 51.32 68 75.58

4182 Cluster Computing (2022) 25:4171–4188

123

Based on this experiment, we obtained that the

performance of proposed approach is improved by

74.98%, 67.31%, and 39.58% when compared with

PSO [28], MVO [28], and EMVO [28] respectively.

(c) Resource utilization analysis: Generally, the tradi-

tional algorithms mainly focused on the resource

utilization, thus the existing techniques are also

capable to obtain the better resource utilization.

However, due to frequent load variations, these

techniques fail to achieve the desired performance.

For this varied number of VMs scenario, we present

a comparative study as mentioned in Table 10.

Below given Fig. 9 shows a comparative analysis

of resource utilization. According to this experiment,

we obtained the average resource utilization perfor-

mance as 95.24, 95.91, 95.91, and 97.065 by using

PSO [28], MVO [28], EMVO [28], and Proposed

approach respectively.

According to this experiment, the resource uti-

lization performance of proposed approach is

improved by 1.91%, 1.20% and 1.20% when com-

pared with aforementioned techniques.

4.2.2 Performance analysis for big-size dataset

In this subsection, we present the experimental analysis for

big size dataset and measured the performance for fixed

and varied number of virtual machines. Similar to previous

experiment, we measure the performance in terms of

resource utilization, makespan and throughput.

• Performance analysis for fixed VMs: In this exper-

iment, we have considered the task group which

contains 700 to 1000 number of tasks. These tasks are

tackled by the fixed number of virtual machines which

are considered as 100.

(a) Makespan performance: First of all, we measure

the performance in terms of makespan. Given

Table 11 presents the comparative analysis in terms

of makespan.

Below given Fig. 10 depicts the comparative

analysis in term of makespan. In this analysis, we

obtained the average makespan as 1231.11 s,

1095.26 s, 971.36 s, and 852.89 s using PSO [28],

MVO [28], EMVO [28], and Proposed approach

respectively.

The makespan of proposed approach is reduced by

30.72%, 22.12%, and 12.19% when compared with

aforementioned existing techniques.

(b) Throughput performance: Here, we present the

throughput performance analysis for big-size dataset

where we have considered 100 number of virtual

machines. The obtained throughput is compared with

other existing techniques as mentioned in Table 12.

Fig. 8 Average throughput performance for varied virtual machines

Fig. 9 Resource utilization performance

Table 11 Makespan performance for big size data and fixed VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

700 975.17 908.26 823.73 780.55

800 1153.63 1038.64 933.17 820.04

900 1369.82 1158.42 969.77 860.77

1000 1425.85 1275.73 1158.77 950.20

Table 10 Resource utilization performance for regular size dataset

and varied VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

100 90 90 90 93.58

200 95 95 95 96.10

300 94.67 96.66 96.66 97.20

400 96.50 97.50 97.50 98.11

500 97.60 98 98 98.5

600 97.67 98.33 98.33 98.90

Cluster Computing (2022) 25:4171–4188 4183

123

Given Fig. 11 depicts the throughput performance

for big-size task dataset. The average throughput

performance is obtained as 69.25, 77.5, 87.5, and

94.53 by using PSO [28], MVO [28], EMVO [28]

and Proposed approach, respectively.

From this experiment, we conclude that the

throughput performance of proposed approach

improved by 36.53%, 22%, and 8.05%, respectively.

(c) Resource utilization performance: Further, we

measure the performance in terms of resource

utilization. A comparative performance is presented

in below given Table 13.

Given Fig. 12 depicts the resource utilization

performance for big-size task dataset. The average

throughput performance is obtained as 98.4, 98.9,

98.95, and 99.075 by using PSO [28], MVO [28],

EMVO [28] and Proposed approach, respectively.

From this experiment, we conclude that the

resource utilization performance of proposed

approach improved by 0.68%, 0.17%, and 0.12%

when compared with PSO [28], MVO [28], and

EMVO [28], respectively.

• Performance analysis for varied VMs: In this exper-

iment, we have considered the task group which

contains 700 to 1000 number of tasks. These tasks are

tackled by the varied number of virtual machines. The

considered set of virtual machines is presented in below

given Table 14. Based on these parameters, we measure

the performance in terms of makespan, throughput and

resource utilization.

(a) Makespan Performance: First of all, we measure

the makespan performance for big-size task data,

Fig. 10 Makespan performance for varied number of jobs for fixed

VM (100 VMs)
Fig. 11 Throughput performance for varied number of jobs for fixed

VM (100 VMs)

Table 13 Resource utilization performance for big size data and fixed

VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

700 98.4 98.6 99 99

800 98.6 99 99 99.2

900 98 99 98.80 99.1

1000 98.6 99 99 99

Fig. 12 Resource utilization performance for big-size task and fixed

VMs

Table 12 Throughput performance for big size data and fixed VMs

Jobs PSO [28] MVO [28] EMVO [28] Proposed

700 72 77 85 92

800 69 77 86 94.5

900 66 78 93 95.85

1000 70 78 86 95.8

Table 14 Varied VMs for dif-

ferent sets of regular size dataset
Tasks Virtual machines

700 70

800 80

900 90

1000 100

4184 Cluster Computing (2022) 25:4171–4188

123

where we have considered different set of virtual

machines to process these tasks. Below given

Table 15 shows the comparative makespan perfor-

mance.

Given Fig. 13 depicts the comparative analysis in

terms of makespan for varied number of virtual

machines. The average performance for this exper-

iment is obtained as 1407.27 s, 1251.82 s, 1131.45 s,

and 1006.8 s using PSO [28], MVO [28], EMVO

[28], and Proposed approach, respectively.

(b) Throughput Performance: Here, we present the

throughput performance analysis for big-size dataset,

where we have considered varied number of virtual

machines based on the different sets of tasks. The

obtained throughput is compared with other existing

techniques as mentioned in Table 16.

Given Fig. 14 depicts the comparative analysis of

throughput. The average throughput is obtained as

69.24, 77.54, 87.45 and 93.79 using PSO [28], MVO

[28], EMVO [28], and Proposed approach, respec-

tively.

This experiment shows that, the throughput per-

formance of proposed approach is improved by

35.45%, 20.95%, and 7.24% when compared with

aforementioned existing techniques.

(c) Resource utilization Performance: Here, we pre-

sent the comparative analysis for resource utilization

for different virtual machines. Below given Table 17

shows the comparative analysis in terms of resource

utilization.

Given Fig. 15 depicts the resource utilization

performance. The average resource utilization per-

formance is obtained as 98.40, 98.80, 98.40, and

99.28 using PSO [28], MVO [28], EMVO [28], and

Proposed approach, respectively.

The resource utilization performance of proposed

approach is improved by 0.89%, 0.48%, and 0.89%

when compared with PSO [28], MVO [28] and

EMVO [28].

Finally, we present the comparative study in terms

of energy consumption for varied number of tasks

and virtual machines scenarios. Below given Fig. 16

depicts the energy consumption performance for

varied number of tasks, where we have considered

the total number of tasks as 200 to 1000. The

obtained performance is compared with several

scheduling schemes mentioned in [29].

Fig. 13 Makespan performance for big-size task and varied VMs

Table 16 Throughput performance for big size task and varied VMs

Tasks PSO [28] MVO [28] EMVO [28] Proposed

700 71.78 77.07 84.98 90.51

800 69.35 77.02 85.73 92.30

900 65.70 77.69 92.81 95.55

1000 70.13 78.39 86.30 96.80

Fig. 14 Throughput performance for big-size task and varied VMs

Table 17 Resource utilization performance for big size task and

varied VMs

Tasks PSO [28] MVO [28] EMVO [28] Proposed

700 97.43 98.57 97.43 99.10

800 98.75 98.75 98.75 99.25

900 98.44 98.89 98.44 99.3

1000 99 99 99 99.50

Table 15 Makespan performance for big size task and varied VMs

Tasks PSO [28] MVO [28] EMVO [28] Proposed

700 1360.21 1279.65 1003.89 920.50

800 1420.56 1182.01 1042.09 980.65

900 1464.19 1303.51 1221.39 1020.25

1000 1384.15 1242.11 1258.43 1105.80

Cluster Computing (2022) 25:4171–4188 4185

123

In this experiment, we obtained the average

energy consumption as 4.48 J, 6.48 J, 5.7 J, 5.22 J,

4.58 J, 5.14 J, 5.34 J, 5.24 J, 4.34 J and 3 J by using

MCT, SJFP, LJFP, Min–Min, Max–Min, PSO, SJFP-

PSO, LJFP-PSO, MCT-PSO, and Proposed

approach, respectively. Similarly, we measure the

performance for varied number of virtual machines

as depicted in Fig. 17.

The average energy consumption is obtained as

3.64 J, 5.48 J, 4.81 J, 4.44 J, 3.88 J, 3.56 J, 5.06 J,

4.46 J, 3.36 J, and 2.14 J by using MCT, SJFP,

LJFP, Min–Min, Max–Min, PSO, SJFP-PSO, LJFP-

PSO, MCT-PSO, and Proposed approach for 40, 80,

120, 160, and 200 number of virtual machines,

respectively. The experimental results show that, as

the number of tasks, increasing along with the VMs,

then the proposed approach balances load efficiently

and utilizes resources efficiently. Moreover, this

efficient utilization of resources and scheduling helps

to minimize the energy consumption.Fig. 15 Resource utilization for big-size task and varied VMs

Fig. 16 Energy consumption

performance for varied number

of tasks

Fig. 17 Energy consumption

performance for varied number

of virtual machines

4186 Cluster Computing (2022) 25:4171–4188

123

In these experiments, we obtained improved perfor-

mance of makespan, throughput, resource utilization and

energy consumption. The initial two parameters i.e.,

makespan and throughput satisfies the faster computing

scenario which leads to complete the task in given dead-

line. The efficient task completion helps to minimize the

energy consumption. Similarly, the better resource uti-

lization reduces the resource wastages which lead towards

the improving Quality of Service. Thus, the proposed

approach is capable to reduce the energy consumption and

improves overall performance of the cloud computing

model.

5 Conclusion

In this work, we have focused on the energy consumption

and task scheduling related issues of cloud computing.

Task scheduling plays an important role in this field of

cloud computing, which helps to obtain the efficient task

allocation and minimizes the energy consumption. Several

techniques have been presented in this field such as soft

computing, optimization and machine learning, but the

existing techniques suffer from various challenges. Thus, to

overcome these issues, we present a novel scheme of task

scheduling which adopts the reinforcement learning and a

new solution is presented for reward mechanism and

designing the policy. The experimental study shows that

proposed approach achieves better performance when

compared with existing task scheduling algorithms.

Funding None.

Data Availability The data that support the findings of this study are

available from the corresponding author, upon reasonable request.

Declarations

Conflict of interest None.

References

1. Pradeep, K., Jacob, T.P.: A hybrid approach for task scheduling

using the cuckoo and harmony search in cloud computing envi-

ronment. Wirel Pers. Commun. 101(4), 2287–2311 (2018)

2. Ebadifard, F., Babamir, S.M.: A PSO-based task scheduling

algorithm improved using a load-balancing technique for the

cloud computing environment. Concurr. Comput. 30(12), e4368
(2018)

3. Singh, P., Dutta, M., Aggarwal, N.: A review of task scheduling

based on meta-heuristics approach in cloud computing. Knowl.

Inf. Syst. 52(1), 1–51 (2017)

4. Madni, S.H.H., Abd Latiff, M.S., Abdullahi, M., Abdulhamid,

S.I.M., Usman, M.J.: Performance comparison of heuristic

algorithms for task scheduling in IaaS cloud computing envi-

ronment. PLoS ONE 12(5), e0176321 (2017)

5. Shafiq, D.A., Jhanjhi, N.Z., Abdullah, A., Alzain, M.A.: A load

balancing algorithm for the data centres to optimize cloud com-

puting applications. IEEE Access 9, 41731–41744 (2021)

6. Chhabra, A., Singh, G., Kahlon, K.S.: Multi-criteria HPC task

scheduling on IaaS cloud infrastructures using meta-heuristics.

Clust. Comput. 24(2), 885–918 (2021)

7. Gani, A., Nayeem, G.M., Shiraz, M., Sookhak, M., Whaiduzza-

man, M., Khan, S.: A review on interworking and mobility

techniques for seamless connectivity in mobile cloud computing.

J. Netw. Comput. Appl. 43, 84–102 (2014)

8. Ab-Rahman, N.H., Choo, K.K.R.: A survey of information

security incident handling in the cloud. Comput. Secur. 49, 45–69
(2015)

9. Khan, S., Ahmad, E., Shiraz, M., Gani, A., Wahab, A.W.A.,

Bagiwa, M.A.: Forensic challenges in mobile cloud computing.

Computer, Communications, and Control Technology (I4CT),

2014 International Conference on; 2014: IEEE.

10. Iqbal, S., Kiah, M.L.M., Dhaghighi, B., Hussain, M., Khan, S.,

Khan, M.K., et al.: On cloud security attacks: a taxonomy and

intrusion detection and prevention as a service. J. Netw. Comput.

Appl. 74, 98–120 (2016)

11. Han, S., Min, S., Lee, H.: Energy efficient VM scheduling for big

data processing in cloud computing environments. J. Amb. Intell.

Hum. Comput. 14, 1–10 (2019)

12. Kurp, P.: Green computing. Commun. ACM 51(10), 11–13

(2008)

13. https://www.computerworld.com/article/3089073/cloud-computing-

slows-energy-demand-us-says.html

14. Zhang, J., Yu, F.R., Wang, S., Huang, T., Liu, Z., Liu, Y.: Load

balancing in data center networks: a survey. IEEE Commun.

Surv. Tutor. 20(3), 2324–2352 (2018)

15. Afzal, S., Kavitha, G.: Load balancing in cloud computing: a

hierarchical taxonomical classification. J. Cloud Comput. 8(1),
1–24 (2019)

16. Arunarani, A.R., Manjula, D., Sugumaran, V.: Task scheduling

techniques in cloud computing: a literature survey. Futur. Gener.

Comput. Syst. 91, 407–415 (2019)

17. Alworafi, M. A., Dhari, A., El-Booz, S. A., Nasr, A. A., Arpitha,

A., & Mallappa, S.: An enhanced task scheduling in cloud

computing based on hybrid approach. In: Data Analytics and

Learning (pp. 11–25). Springer, Singapore (2019)

18. Liu, L., & Qiu, Z.: A survey on virtual machine scheduling in

cloud computing. In 2016 2nd IEEE International Conference on
Computer and Communications (ICCC) (pp. 2717–2721). IEEE.
(2016)

19. Zakarya, M.: An extended energy-aware cost recovery approach

for virtual machine migration. IEEE Syst. J. 13(2), 1466–1477
(2018)

20. Alkayal, E. S., Jennings, N. R., & Abulkhair, M. F.: Survey of

task scheduling in cloud computing based on particle swarm

optimization. In 2017 International Conference on Electrical and
Computing Technologies and Applications (ICECTA) (pp. 1–6).
IEEE. (2017)

21. Tong, Z., Deng, X., Chen, H., Mei, J., Liu, H.: QL-HEFT: a novel

machine learning scheduling scheme base on cloud computing

environment. Neural Comput. Appl. 15, 1–18 (2019)

22. Sharma, M., Garg, R.: An artificial neural network based

approach for energy efficient task scheduling in cloud data cen-

ters. Sustain. Comput. 26, 100373 (2020)

23. Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.:

Deep and reinforcement learning for automated task scheduling

in large-scale cloud computing systems. Concurr. Comput. 15,
5919 (2020)

Cluster Computing (2022) 25:4171–4188 4187

123

https://www.computerworld.com/article/3089073/cloud-computing-slows-energy-demand-us-says.html
https://www.computerworld.com/article/3089073/cloud-computing-slows-energy-demand-us-says.html

24. Mansouri, N., Zade, B.M.H., Javidi, M.M.: Hybrid task

scheduling strategy for cloud computing by modified particle

swarm optimization and fuzzy theory. Comput. Ind. Eng. 130,
597–633 (2019)

25. Negi, S., Rauthan, M.M.S., Vaisla, K.S., Panwar, N.: CMODLB:

an efficient load balancing approach in cloud computing envi-

ronment. J Supercomput. 12, 1–53 (2021)

26. Sulaiman, M., Halim, Z., Lebbah, M., Waqas, M., Tu, S.: An

evolutionary computing-based efficient hybrid task scheduling

approach for heterogeneous computing environment. J. Grid

Comput. 19(1), 1–31 (2021)

27. https://data.mendeley.com/datasets/b7bp6xhrcd/1

28. Shukri, S.E., Al-Sayyed, R., Hudaib, A., Mirjalili, S.: Enhanced

multi-verse optimizer for task scheduling in cloud computing

environments. Expert Syst. Appl. 15, 114230 (2020). https://doi.

org/10.1016/j.eswa.2020.114230

29. Alsaidy, S. A., Abbood, A. D., & Sahib, M. A.: Heuristic ini-

tialization of PSO task scheduling algorithm in cloud computing.

J. King Saud Univ. Comput. Inform. Sci. (2020)

30. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., Zeng, J.:

Q-learning based dynamic task scheduling for energy-efficient

cloud computing. Futur. Gener. Comput. Syst. 108, 361–371

(2020)

31. Hoseiny, F., Azizi, S., Shojafar, M., Tafazolli, R.: Joint QoS-

aware and cost-efficient task scheduling for fog-cloud resources

in a volunteer computing system. ACM Trans. Internet Technol.

(TOIT) 21(4), 1–21 (2021)

32. Abualigah, L., Diabat, A.: A novel hybrid antlion optimization

algorithm for multi-objective task scheduling problems in cloud

computing environments. Clust. Comput. 24(1), 205–223 (2021)

33. Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., & Tafazolli,

R.: PGA: a priority-aware genetic algorithm for task scheduling

in heterogeneous fog-cloud computing. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS) (pp. 1–6). IEEE. (2021)

34. Calzarossa, M.C., Della Vedova, M.L., Massari, L., Nebbione,

G., Tessera, D.: Multi-objective optimization of deadline and

budget-aware workflow scheduling in uncertain clouds. IEEE

Access 9, 89891–89905 (2021)

35. Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A.: A tax-

onomy and survey of energy-efficient data centers and cloud

computing systems. In Advances in computers (Vol. 82,

pp. 47–111). Elsevier (2011).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

K. Siddesha received his Bach-

elor degree (B.E) and Master

degree (M.Tech.) in Electronics

and Communication Engineer-

ing from Visvesvaraya Techno-

logical University, Belagavi,

Karnataka, India in 2007 and

2012 respectively. He is cur-

rently pursuing the Ph.D. degree

with the Department of Elec-

tronics and Communication

Engineering, Visvesvaraya

Technological University,

Belagavi, Karnataka, India. He

is also working as Assistant

Professor with the Department of Electronics and Communication

Engineering, Dr. Ambedkar Institute of Technology, Bengaluru,

India. His research interests include Power optimization in Comput-

ing systems, Embedded systems design, Real time operating systems,

and Communication systems.

G. V. Jayaramaiah was born in

Tumkur, Karnataka, India. He

received his Ph.D. degree from

Indian Institute of Technology,

Bombay, India in 2008. Since

then, in his vast academic

experience, he is contributing to

technical education in most of

the capacities. He is having a

teaching experience of 30

Years. He is currently serving as

Professor and Head in the

Department of Electrical and

Electronics engineering, Dr.

Ambedkar Institute of Technol-

ogy, Bengaluru, Karnataka, India. His research interests include

Power electronics, Renewable energy and Embedded systems. He has

published many research papers on his area of interest. He is a life-

time member of FIE (I), MISTE, and IEEE.

Chandrapal Singh received his

M.Tech. degree in Electronics

and Communication Engineer-

ing from SVIT (VTU), Banga-

lore, Karnataka, India in 2014.

He has published over twelve
research papers in journals,

international and national con-

ferences. His research interests

include almost all aspects of

networks such as wireless com-

munications, MIMO systems,

underwater networks and Cloud

computing. He is currently

working as Research Analyst in

R&D Section of Xsys Softech, Bengaluru, India.

4188 Cluster Computing (2022) 25:4171–4188

123

https://data.mendeley.com/datasets/b7bp6xhrcd/1
https://doi.org/10.1016/j.eswa.2020.114230
https://doi.org/10.1016/j.eswa.2020.114230

	A novel deep reinforcement learning scheme for task scheduling in cloud computing
	Abstract
	Introduction
	Motivation
	Work contribution

	Literature survey
	Proposed model
	System model
	Task and scheduling model
	Proposed scheduling model using deep reinforcement learning

	Results and discussion
	Dataset description
	Experimental analysis
	Performance analysis for regular-size dataset
	Performance analysis for big-size dataset

	Conclusion
	Data Availability
	References

