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Abstract
Federated Learning (FL) is a technology that facilitates a sophisticated way to train distributed data. As the FL does not

expose sensitive data in the training process, it was considered privacy-safe deep learning. However, a few recent studies

proved that it is possible to expose the hidden data by exploiting the shared models only. One common solution for the data

exposure is differential privacy that adds noise to hinder such an attack, however, it inevitably involves a trade-off between

privacy and utility. This paper demonstrates the effectiveness of image augmentation as an alternative defense strategy that

has less impact of the trade-off. We conduct comprehensive experiments on the CIFAR-10 and CIFAR-100 datasets with

14 augmentations and 9 magnitudes. As a result, the best combination of augmentation and magnitude for each image class

in the datasets was discovered. Also, our results show that a well-fitted augmentation strategy can outperform differential

privacy.

Keywords Federated learning � Model inversion attack � Image augmentation � Defensive augmentation �
Differential privacy

1 Introduction

Deep learning is being used in diverse areas including the

medical field, engineering, fraud detection, and so on. As

the purpose of deep learning is to learn about the huge

amount of information to perform the task, collecting

enough amount of data is an essential task to guarantee the

performance of deep learning. However, collecting the data

for training purposes has inherent risks as the data may

contain sensitive information, so it may cause serious pri-

vacy infringement if not used properly or attacked. To deal

with the given privacy issues, the Google AI team intro-

duce a new training concept called Federated Learning,

which enables participants to perform the learning process

collaboratively without exposing their data that might

include sensitive information [1]. In the Federated Learn-

ing process, a baseline model is distributed to participants,

and the participants perform training with their data. The

trained model parameter or the gradient is collected for the

update of the given model when the training is completed,

and the process repeats until the model returns satisfactory

results. Federated learning is considered a relatively safe
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method against privacy issues because it only collects the

trained model parameters instead of data itself.

A few recent studies proved that stealing the hidden data

from the trained model is not an impossible task. For

example, Shokri et al. introduced a membership inference

attack that figures out whether certain information is

included in a training data or not [2], and Fredrikson et al.

introduced a model inversion attack that extracts the target

information from the model parameters [3]. The attackers

have a significant advantage in stealing data especially

when the training model is open to the public, such as when

the developers utilize machine learning as a service

(MaaS). Differential privacy is a widely used solution that

protects sensitive data from attackers. The main idea of

differential privacy is to protect sensitive data from attacks

by perturbing the queries with randomly distributed noise,

so the adversary cannot find if the target information is

included in the dataset or not. However, a few issues exist

regarding the deployment of differential privacy. As the

deployment of differential privacy requires the usage of

noise to defend intrusive queries from attackers, it inevi-

tably involves the trade-off between utility and privacy

caused by the noise. Also, the complicated background of

differential privacy impedes the optimized implementation

even for professionals.

To overcome the inherent issues of differential privacy,

we introduce a new defense strategy against the proposed

privacy attacks based on the augmentation of data. The

original purpose of data augmentation is to facilitate the

feature extraction process of the training model by

increasing the amount of data through alterations or syn-

thesis of new data, therefore the model could return better

performance. The idea of this research is based on the

observations that image data is often significantly modified

when some types of augmentations are applied to it, so it

might be used like the randomized noise deployed in dif-

ferential privacy-based defense strategies that protect the

sensitive data.

This paper provides meaningful results by performing

comprehensive experiments, which demonstrates the

effectiveness of the augmentation strategies as a potential

way to defend the attacks while preserving enough utility.

Our experiments utilize CIFAR-10 and CIFAR-100 data-

sets with 14 different augmentations and the magnitude

range of 1 to 9, and as a result, we could find the optimized

augmentation strategies for each label of the dataset that

outperforms the result of differential privacy-based defense

strategy. In the case of the CIFAR-10, for example, the

solarize augmentation that inverts the pixels above

threshold shows 16% and 11.6% better performance in

model accuracy and attack accuracy with magnitude 7,

which inverts approximately 78% of pixels from an image.

The posterize augmentation presents approximately 4.47%

and 12.42% better model and attack accuracy when it

reduces 7-bit from each RGB channel. In the case of the

CIFAR-100, we separately sampled 10 labels from the

dataset that returns notable performance and the other 10

labels that returns limited performance compared to dif-

ferential privacy-based defense strategies. The difference

between the accuracy of conventional differential privacy

and our augmentation-based defense strategy is provided as

a form of the advantage score. Finally, we discuss future

research that finds the optimized augmentation strategies

for the given image type through deep reinforcement

learning. In addition to the results, how augmentations

applied to image data modifies, and how it successfully

defends the leakage of training data are discussed.

2 Literature review

2.1 Model inversion attack

Fredrikson et al. proposed the first model inversion attack

method against neural network in 2014 [3]. The research

showed that the adversary can infer the genotype of the

victim from a linear regression model with black-box

access and some non-sensitive attributes. Fredrikson et al.

published extended research of model inversion attack that

recovers the image data from facial recognition system, but

it could not reconstruct recognizable object from the setting

[4]. Hidano et al. introduced an enhanced model of

Fredrikson’s research [3] that does not require non-sensi-

tive attributes by injecting the malicious data that adversary

possesses to modify the target model [5]. In 2019, Zhu

et al. showed that private data can be leaked from shared

gradients by minimizing the difference between original

gradient and dummy gradient [6]. Zhao et al. made con-

tinuous research that discovers the ground-truth image with

improved optimization performance and less number of

iterations [7]. However, the attacks proposed by Zhu et al.

and Zhao et al. were only tested on a shallow neural net-

work model and could not retrieve the big image data. The

continuous research in model inversion attack method with

notable reconstruction quality was introduced by Geiping

et al. [8]. The research showed that neural networks can be

attacked regardless its depth or image size. The authors

also showed that they can perform multi-image recon-

struction from model parameters at the same time.

2.2 Differential privacy

In previous model inversion research, many authors men-

tioned that differential privacy could be a solution for

diverse attacks against privacy including model inversion

attack [3, 9, 10]. The core concept of differential privacy is

350 Cluster Computing (2023) 26:349–366

123



based on the usage of Laplacian and Gaussian noises based

on l1 norm and l2 norm, which were introduced by Dwork

et al. and mcsherry et al. [11, 12]. The recent researches

adopted the idea of differential privacy for secure deep

learning [13–16]. Shokri and Shmatikov introduced dis-

tributed selective stochastic gradient descent (DSSGD) that

injects Laplacian noise into the optimization process for

collaborative deep learning [13]. Abadi et al. proposed an

improved strategy that utilizes Gaussian noise and

moments account called differentially private stochastic

gradient descent (DPSGD) to control the amount of

injected noise, therefore enabling tracking the amount of

privacy spent [14]. Phan et al. has increased the efficiency

of training throughout the adaptive controlling of noise

amount in the optimization process based on the impor-

tance of features [15]. Mironov proposed an enhanced

differential privacy concept called Rényi Differential Pri-

vacy (RDP) based on Rényi divergence of order a, which
measures the divergence between two adjacent datasets

[16]. Truex et al. showed that differential privacy can be

used in federated learning by adding a local differential

privacy module that guarantees the privacy of sensitive

data before sending parameters to a centralized server [17].

Girgis et al. proposed a stochastic gradient descent algo-

rithm that inputs the sampled clients and the data points of

chosen clients to the shuffler, therefore guaranteeing pri-

vacy by hiding which clients were chosen in a federated

environment [18].

2.3 Data augmentation

The studies in data augmentation have been made with the

development of image vision by exploring various meth-

ods, including but not limited to traditional augmentations,

Generative Adversarial Network (GAN), reinforcement

learning, and automated machine learning. A few innova-

tive augmentation strategies were made, such as Cutout

[19], and Random Erasing [20], which arbitrarily deter-

mines the area of an image to be masked out. In addition to

that, Wu et al. introduced multiple color augmentation

strategies that adjust color pixels to diversify input features

[21]. Unlike the traditional augmentation strategies that

modify the given input, Generative Adversarial Networks

(GAN) creates the whole new data that is similar to the

original image through the synthesis of given data. GAN-

based augmentations can be utilized in classification

[22, 23], privacy de-identification [24], synthesis of high

resolution image [25, 26] and so on. A few recent resear-

ches adopted automated machine learning to find optimized

augmentations based on reinforcement learning [27],

Bayesian optimization [28], differentiation of policy search

[29], and grid search [30].

3 Preliminaries

3.1 Federated learning

The purpose of Federated Learning is to facilitate the usage

of data stored in distributed data centers. The idea of

Federated Learning introduced by Mcmahan et al. does not

require the data sharing between the centralized server and

participants, but enables collaborative learning as a feder-

ation [1]. The formal description of Federated Learning is

as follows: The centralized server distributes the model

Wk
1 ;W

k
2 ; . . .;W

k
n to n local clients, and the clients train the

received model Wk with their dataset. Then the local

updates U :¼ Wk
i �Wk made by clients are aggregated for

the averaging process. Using the gradient descent, the

globally updated model Wkþ1 ¼ Wk � gU0 is made by the

server, where g denote as learning rate and U
0 ¼ 1

n

P
Ui.

Then W
0
is distributed to clients repeatedly for continuous

updates. Figure 1 visualizes the overall process of feder-

ated learning.

3.2 Differentially private stochastic gradient
descent

The concepts of differential privacy proposed by Dwork

et al. [31] is as follows: given two datasets that has at most

one different element denoted by DðD1;D2Þ� 1, a ran-

domized computation F gives ðe; dÞ-privacy if

Pr½FðD1Þ 2 S� � ee � Pr½FðD2Þ 2 S� þ d; ð1Þ

where F means query and noise added to the query, S

means all probable output of F, e means the maximum

distance between the same queries on D1;D2 that means

privacy loss, and finally, d means the probability of acci-

dental information leakage. The additive noise for differ-

ential privacy is generated based on the Laplace

mechanism or Gaussian mechanism. In deep learning,

adopting the Gaussian mechanism has a few advantages

Fig. 1 Federated learning
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over the Laplace mechanism: that is, it allows using either

l1 sensitivity or l2 sensitivity depending on its purpose

while the Laplace mechanism only allows the usage of l1

sensitivity, therefore it guarantees flexibility in adopting

differential privacy. Also, it requires less amount of noise

and a privacy budget when the Gaussian mechanism fol-

lows l2 sensitivity, which is significantly lower than l1

sensitivity followed by the Laplace mechanism. As the

amount of noise significantly impacts the performance of a

neural network that consists of a series of weights, [14]

adopted Gaussian mechanism for differentially private

deep learning in their study, which is denoted as follows:

given optimizer as Stochastic Gradient Descent, a gra-

dient gtðxiÞ ¼ rhLðh; xiÞ from randomly selected small

batches fx1; x2; :::; xng is computed, and each gradient is

clipped with clipping threshold C, which is denoted by

gtðxiÞ=maxð1; gtðxiÞk k
C Þ . Then the Gaussian noise N ð0; r2Þ

is injected, where N ð0; r2Þ means Gaussian distribution

with variance r2.

3.3 Exploitation of model for data
reconstruction

The purpose of the model inversion attack is to extract the

training data that is not open to the public. The proposed

attack model for data reconstruction introduced in [8] steals

significant information by exploiting model parameters

shared in federated learning. The proposition is as follows:

The participants are given the initial model parameter hk

from a centralized server and train it with their data xi and

label yi, then send back the gradient rLðxi; yiÞ to have the

server update the model parameter to hkþ1. The adversary

can extract the data from rLðxi; yiÞ as the angle between

two data points in gradient descent steps provides infor-

mation that changes prediction. Previous researches [6, 7]

minimizes the difference between the gradients from

dummy data ðx0i; yiÞ and real data ðxi; yiÞ by computing

Euclidean distance:

jjrLðx0i; yiÞ � rLðxi; yiÞjj2: ð2Þ

However, due to its inefficiency of computation and ini-

tialization issue against practical architectures used in

recent studies, Geiping et al. minimizes gradient difference

through cosine similarity that computes the similarity

between gradient vectors [8]. The idea is denoted as

follows:

rLðxi; yiÞ � rLðx0i; yiÞ
maxðjjrLðxi; yiÞjj � jjrLðx0i; yiÞjj; eÞ

; ð3Þ

where e refers to a small value that prevents division by

zero. As the gradient of the image always includes sig-

nificant information that can be extracted through cosine

similarity, the adversary can always extract the training

data even from pre-trained models. Figure 2 visualizes how

the gap between gradient vectors is minimized.

3.4 Data augmentation

The purpose of data augmentation is to facilitate the

extraction of input features by increasing the amount of

training data D ¼ ðx1; x2; :::; xtÞ throughout the modifica-

tion or the synthesis of data. As the amount of data

increases from D to D00 ¼ Dþ D0, where

D0 ¼ ðx01; x02; :::; x0tÞ, the training model can have better

regularization performance, so overfitting issue can be

mitigated. In general, augmentation applied to training data

generally consists of geometric transformation and color

space augmentation [32]. The geometric transformation

includes various types of affine transformations that adjust

the geometric location of an image while preserving the

colinearity after transformation, and color space augmen-

tation converts the RGB value of image pixels variously to

remove biases in training data. Depending on the level of

modification, applying data augmentation can significantly

expand the size of training data with different features.

4 Materials and methods

4.1 System settings

In this section, we define the attack model introduced in [8]

to compare the performance of differential privacy-based

and augmentation-based defense strategies. The proposed

attack model exploits the model parameters of the neural

network to reconstruct the hidden training data. Unlike the

attack models with limited performance introduced in

previous research [6, 7], the proposed attack model works

well for a realistic environment that utilizes a deep neural

Fig. 2 Model Inversion Attack
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network and pretrained model. We conducted reconstruc-

tion experiments with Adam optimizer, learning rate 0.1,

and set the maximum iteration to 4,000. As the number of

model parameters affects the reconstruction time and

quality, the model chosen for this experiment is the VGG-

11 without the fully connected layers that balanced

reconstruction time and quality. The customed VGG-11

model has approximately 9.23M parameters. In the

reconstruction process, we reconstruct one image in each

run to guarantee the highest quality of reconstructed ima-

ges. Two datasets are used in this experiment: CIFAR-10

and CIFAR-100 where the number indicates the number of

labels included in the dataset. Both datasets include 60,000

32�32 sized images equally separated in each label. In this

experiment, we targeted reconstructing 30% of randomly

sampled test data from each label to present reliable clas-

sification results. Two different types of accuracy called

model accuracy and attack accuracy will be provided in

this paper to compare the performance of conventional

differential privacy-based defense strategy and our aug-

mentation-based defense strategy. Model accuracy is the

accuracy of the data before reconstruction and Attack

accuracy is the accuracy of the reconstructed data. A total

of 8 RTX-2080 GPUs was used to reconstruct 780,000

images, 390,000 for CIFAR-10 and CIFAR-100 each.

4.2 Differential privacy settings

Based on the idea of differential privacy that utilizes noise

to perturb adversarial queries, we implemented a DP-SGD

optimizer that stochastically scatters noise during the

optimization process to compare its performance as a

conventional defense strategy. The followings are the

default hyperparameter settings: first, the clipping thresh-

old that bounds the maximum gradient norm is set to 1,

denoted by C ¼ 1. We determined to utilize the Gaussian

noise over Laplacian noise and the amount of Gaussian

noise is controlled by its standard deviation r. Three dif-

ferent amount of Gaussian noise is used in this experiment.

For CIFAR-10, we utilized r ¼ 0.1, 0.5, and 1.0. For

CIFAR-100, we reduced the amount of noise to r ¼ 0.1,

0.2, and 0.3 due to the sensitivity towards the amount of

noise. Two famous open-source differential privacy

libraries named PyVacy [33] and Opacus [34] were refer-

enced for correct implementation. As we plan to defend

against a reconstruction attack that steals training data, we

prepared six pre-trained models trained with DP-SGD

optimizer that injects different amounts of noise. The

VGG-11 model introduced in system settings was trained

200 epochs each to create pre-trained models. Learning

rate and d was set to 1e�3 and 1e�5 each.

4.3 Augmentation settings

The augmentations tested in this paper include 14 different

augmentations introduced in [27–30], which includes

diverse color space augmentation and affine transforma-

tions. Each augmentation introduced below have 9 aug-

mentation level from 1 to 9, which determines the level of

modification from low to high. Figure 3 presents how the

introduced augmentations modify the input data.

• Autocontrast - maximize the contrast of an image.

• Brightness - randomly adjusts the brightness of an

image based on magnitude.

• Color - adjusts the balance of color of an image.

• Contrast - adjusts the contrast of an image based on

magnitude.

• Equalize - adjusts the image histogram to be equalized.

Histogram of an image refers to the distribution of

pixels in a digital image.

• Invert - invert all pixels of an image.

Fig. 3 Visualized augmentation strategies
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• Posterize - Reduce the bits from each RGB color

channel.

• Rotate - rotate an image.

• Sharpness - adjust the blurriness of an image. Low

magnitude returns a sharper image.

• ShearX - shear an image vertically based on magnitude.

• ShearY - shear an image horizontally based on

magnitude.

• Solarize - invert pixels of an image above magnitude.

• TranslateX - move an image along the X-axis.

• TranslateY - move an image along the Y-axis.

Due to the characteristics of an augmentation, three aug-

mentations (autocontrast, equalize, invert) return the same

images regardless of magnitude. Also, the reduction range

of bits for posterize augmentation was defined from 0 to 4

bits in [27–30]. However, we extended the reduction range

from 0 to 7 to maximize the effect of augmentation. Note

that solarize inverts the input pixel above the threshold, so

it returns the equivalent images with invert augmentation

when the magnitude is set to 9 as the threshold is set to 0.

Table 1 CIFAR-10 accuracy

table for DP-SGD
Original r ¼ 0:1 r ¼ 0:5 r ¼ 1:0

Accuracyð%Þ MA AA MA AA MA AA MA AA

Airplane 87.80 71.13 71.12 63.07 41.33 34.07 22.11 18.87

Automobile 93.73 77.20 83.53 76.33 63.80 56.73 48.80 40.40

Bird 74.20 69.73 54.30 49.80 32.63 28.47 18.00 13.67

Cat 62.94 55.60 40.21 36.87 38.51 34.53 33.54 30.47

Deer 82.00 82.80 58.92 54.07 36.17 33.47 28.40 24.27

Dog 66.80 65.07 54.70 51.93 46.86 42.80 37.73 29.40

Frog 84.27 82.13 84.65 81.87 69.91 68.87 52.67 47.93

Horse 84.80 83.07 74.13 70.87 46.25 44.80 35.40 29.87

Ship 92.94 85.60 79.48 75.93 47.72 41.73 30.33 25.60

Truck 86.67 83.53 86.65 80.73 81.94 78.73 73.13 67.27

Average 81.62 75.59 68.77 64.15 50.51 46.42 38.01 32.78

Table 2 CIFAR-100 accuracy

table with DP-SGD optimizer
Original r ¼ 0:1 r ¼ 0:2 r ¼ 0:3

Accuracyð%Þ MA AA MA AA MA AA MA AA

Average 62.43 44.60 39.37 24.07 34.42 12.3 29.7 5.33

Fig. 4 Reconstructed CIFAR-10 images with Gaussian noise
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Fig. 5 Reconstructed CIFAR-100 images with Gaussian noise (10 samples)

Fig. 6 Model accuracy range for CIFAR-10 augmentations

Fig. 7 Attack accuracy range for CIFAR-10 augmentations

Fig. 8 Model accuracy range for CIFAR-100 augmentations

Fig. 9 Attack accuracy range for CIFAR-100 augmentations
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5 Experimental results

Approximately 780,000 images (390,000 from each of

CIFAR-10 and CIFAR-100) were reconstructed with vari-

ous augmentations and differential privacy settings

throughout the experiment. Firstly, we conducted recon-

struction with the pre-trained models that were trained with

DP-SGD optimizer with different levels of noise. Tables 1

and 2 below show differential privacy-based accuracy for

CIFAR-10 and CIFAR-100. Note that model accuracy is

the accuracy of original data with noise, and attack accu-

racy is the accuracy of reconstructed data with DP-SGD

optimizer. ResNet-50 and VGG-11 without fully connected

layers described previously were used for measuring

accuracy and making pretrained models, respectively. As

mentioned previously, DP-based defense inevitably

involves utility loss as the noise affects the optimization

performance in the classification process. In addition to

that, DP-based defense still leaks some amount of training

data in the reconstruction process even when enough

amount of noise is injected as the noise is scattered ran-

domly in the optimization process. The reconstruction time

of each image is approximately 4 minutes for differential

privacy settings, and 2 minutes for augmented images, on

average.

Figures 4 and 5 show the inherent issues in differential

privacy-based defense strategy. The frog image in Fig. 4

and the butterfly image in Fig. 5 are clearly recognizable

regardless of the injected noise, and adding more noise

Table 3 Optimized

augmentations for CIFAR-10
Labels/Accuracy 1st highest 2nd highest 3rd highest

Airplane Solarize (M7) Equalize (M4) Solarize (M1)

Automobile Solarize (M7) Solarize (M6) Solarize (M3)

Bird Contrast (M7) Posterize (M8) Posterize (M9)

Cat Posterize (M9) Contrast (M8) Solarize (M4)

Deer Brightness (M9) TranslateX (M5) TranslateY (M5)

Dog Equalize (M7) Solarize (M7) Posterize (M9)

Frog Contrast (M6) Brightness (M5) Solarize (M5)

Horse Posterize (M9) Posterize (M8) Solarize (M6)

Ship Solarize (M6) Rotate (M9) Posterize (M8)

Truck Solarize (M3) Brightness (M6) Rotate (M4)

Table 4 Sampled

augmentations for CIFAR-100
Labels Efficient Augmentations Labels Inefficient Augmentations

Aquarium fish Solarize (M3) Chair TranslateX (M2)

Beaver Solarize (M2) Dinosaur Solarize (M6)

Beetle Equalize (M5) Fox ShearY (M5)

Boy Equalize (M9) Hamster Contrast (M5)

Can Posterize (M9) Keyboard Sharpness (M7)

Lamp Posterize (M9) Mountain Contrast (M3)

Motorcycle Solarize (M2) Racoon Equalize (M6)

Sea Brightness (M9) Shark ShearY (M7)

Tank Posterize (M7) Streetcar Color (M7)

Worm Contrast (M8) Television Invert (M9)

Fig. 10 CIFAR-10 advantage score matrix
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significantly hurts the utility. We believe an augmentation-

based defense strategy could be an enhanced solution for

this problem depending on the type of augmentations and

magnitude. In Figs. 6, 7, 8, and 9, linear graphs that show

the accuracy change of CIFAR-10 and CIFAR-100 based

on magnitude are provided. The provided figures show that

augmentations applied to a dataset distort the given image

Fig. 11 CIFAR-10 model

accuracy advantages

Fig. 12 CIFAR-10 attack

accuracy advantages

Table 5 Advantage scores of

best CIFAR-10 augmentations

per label

Labels Airplane Automobile Bird Cat Deer

Augmentation Solarize (M7) Solarize (M7) Contrast (M7) Posterize (M9) Brightness (M9)

Advantage 27.74 57.19 21.17 15.56 12.37

Labels Dog Frog Horse Ship Truck

Augmentation Equalize (M7) Contrast (M6) Posterize (M9) Solarize (M6) Solarize (M7)

Advantage 22.48 18.76 35.68 20.14 40.79
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data directly, therefore the accuracy decreases as the

magnitude increases.

An advantage score is used to describe the efficiency of

augmentation strategies in this paper, which is defined as

follows:

Advantage score ¼ ðMADP �MAAugÞ þ ðAADP �AAAugÞ;
ð4Þ

where MA denotes a model accuracy, AA denotes an attack

accuracy, DP is differential privacy with r ¼ 0:5 and r ¼
0:2 respectively for CIFAR-10 and CIFAR-100, and Aug

denotes an augmentation scheme. That is augmentations that

return higher model accuracy and lower attack accuracy

return a high advantage score. Tables 3 and 4 are the aug-

mentation strategies that we have found based on the

advantage score. The chosen augmentation with magnitude

has lower attack accuracy and higher model accuracy than

the DP-based defense strategy, which means it should suc-

cessfully defend reconstruction attack while preserving a

certain level of utility even when augmentation significantly

distorts the original data. From the results above, we can see

that color space augmentations have better efficiency com-

pared to geometric transformation in themajority of cases. In

Table 3, Geometric transformations such as TranslateX and

TranslateY with magnitude 5 are only ranked in 2nd and 3rd

best places for deer label, and rotate with magnitude 9 is

ranked in 2nd for ship label. In Table 4, the inefficient aug-

mentation columns returned notable advantage scores,

however, they leaked a lot of information from the recon-

structed data. The problem of geometric transformation is

that it still leaks information from the area that is not aug-

mented. As the geometric augmentations only affect a cer-

tain area of image data, it cannot be considered privacy-

preserving even if it shows notable accuracy.

In Fig. 10, we provide the advantage score of CIFAR-10

and the best augmentations. A few labels return the best

performance in model and attack accuracy when a certain

type of augmentations are applied. For example, the air-

plane label in CIFAR-10 works best when solarize aug-

mentation with magnitude 7 is applied, which shows

16.07% higher model accuracy and approximately 11.67%
lower attack accuracy. In the case of the truck label located

at the end of the graphs, it has slightly lower model

accuracy, however, it shows significantly lower attack

accuracy compared to DP-SGD when Solarize

Fig. 13 CIFAR-100 advantage score matrix

Fig. 14 CIFAR-100 model

accuracy advantages
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Fig. 15 CIFAR-100 attack

accuracy advantages

Table 6 Sampled advantage

scores of CIFAR-100

augmentations

Labels Aquarium fish Beaver Beetle Boy Can

Augmentation Solarize (M2) Solarize (M2) Equalize (M5) Equalize (M8) Solarize (M8)

Advantage 15.34 15.67 19.34 35.67 34.34

Labels Motorcycle Orchid Rose Sea Tank

Augmentation Solarize (M2) Posterize (M7) Equalize (M9) Brightness (M9) Posterize (M7)

Advantage 46.0 51.34 6.34 4.67 -3.0

Fig. 16 CIFAR-10 posterize

(M9) model accuracy

advantages
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augmentation with magnitude 3 is applied. Figures 11 and

12 provide the model advantage and attack the advantage

of CIFAR-10. The sum of values for each label provided in

Figs. 11 and 12 is the total advantage scores provided in

Table 5. A few outstanding results in Table 5 are auto-

mobile and truck labels that return very high advantage

scores, 57.19 and 40.79 relatively. Both labels show the

best performance when solarize augmentation with mag-

nitude 7 is applied. The truck label shows lower model

accuracy compared to DP-SGD results, however, it pro-

vides 59.33% lower attack accuracy, which is outstanding

defense performance.

Same as the CIFAR-10, Figs. 13, 14, and 15 provide

the advantage score of CIFAR-100 denoted in Table 6. We

sampled the 10 best labels of CIFAR-100 due to the sig-

nificant amount of classes in CIFAR-100. As mentioned

before, color space augmentations return high advantage

scores in most cases. In the case of the Orchid label, it

returns a significant advantage score of 51.34, which is the

result when posterize augmentation with magnitude 7 is

applied. Note that CIFAR-100 differential privacy results

return relatively low accuracy compared to CIFAR-10 due

to the sensitivity towards the noise.

In this experiment, we found that posterize augmenta-

tion shows significant efficiency for the majority of

introduced labels. All image data given in the dataset

consists of red, green, and blue images, which are included

in the RGB channel. Each channel consists of 8 bits and

they support up to 28 ¼ 256 colors each. As the magnitude

determines the number of bits to be removed from each

color channel, only a few color pixels remain with high

magnitude settings, therefore only the silhouette remains

when reconstructed. The advantage scores of posterize

augmentation are visualized in Figs. 16 and 17, and also

the overall advantage score is provided in Table 7.

Finally, Fig. 18 shows the reconstructed images to

visualize how to posterize augmentation prevents the data

leakage from model inversion attack in the given envi-

ronment. The overall results of CIFAR-10 are in the

appendix section, and CIFAR-100 results are available

from our website.1

6 Future works

We presented the results of our augmentation-based

defense strategy against privacy attacks that reconstructs

training data from model parameters. A few outstanding

Fig. 17 CIFAR-10 posterize

(M9) attack accuracy

advantages

Table 7 CIFAR-10 advantage scores of posterize (M9)

Augmentation Posterize (M9)

Labels Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Advantage 21.87 50.93 15.37 15.56 - 6.37 17.47 - 10.3 35.68 11.14 17.32

1 http://i2s.kennesaw.edu/resources.html.
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augmentations with optimized magnitude were found in the

experiment, however, all the searching process was done

manually this time, so there are many other outstanding

augmentations that can give even better results compared

to differential privacy-based defense strategies. These

techniques will be analyzed and implemented in our future

work. As we proved that distorting the given image through

augmentation can prevent reconstruction from model

parameters, future research will be about developing the

adaptive augmentation that provides noticeable accuracy in

classification while preventing the reconstruction of data.

Our future research plan includes finding an automated

solution that selects and applies the best augmentations to

the given training data. For example, when an image that

has 256 � 256 sizes are given as input, 65,536 pixels and a

total 2563 RGB value for each pixel will be observed.

Based on the observation, selecting the best action from

numerous cases, which means selecting and applying

augmentation to the best pixels that affect the result of the

reconstruction attack, will be the key to future research.

7 Conclusions

In this paper, we discussed federated learning and inherent

privacy risks regarding the reconstruction of hidden train-

ing data from model parameters used in the training pro-

cess. A traditional way to protect sensitive data from the

proposed attacks that exploit the model parameter is to

deploy differential privacy with a sufficient amount of

noise. However, a few issues for deploying differential

privacy exist, which are controlling the amount of noise

and optimizing the hyperparameters. To present a new

privacy-preserving solution that outperforms differential

privacy with a simple implementation process, we con-

ducted multiple reconstruction experiments applying 14

augmentations with 9 magnitudes. approximately 780,000

images were reconstructed during the experiment to secure

the meaningful amount of data, and as a result, our

experiment showed that a few augmentations successfully

preserved the privacy against attacks exploiting model

parameters and achieves noticeable accuracy in classifica-

tion compared to differential privacy based defense strat-

egy. We found a few good matches of augmentations and

data classes from both datasets that returns the best per-

formance during the experiment. Color space augmenta-

tions proposed in this paper shows superior performance to

geometric transformations, and the posterize augmentation

with the highest magnitude worked greatly for various

image classes in both CIFAR datasets. Our augmentation-

based defense strategy is easy to implement and can be

applied regularly to whole data, therefore contributing to

building a secure environment against model inversion

attacks. Although the optimized augmentations and mag-

nitudes for each label of the dataset were chosen manually

this time, the adaptive augmentation algorithms and the

optimized hyperparameters that outperform the current

results will be found in the next research based on deep

reinforcement learning.

Appendix

See Figs. 19, 20, 21, 22.

Fig. 18 Reconstructed images with Gaussian noise/Posterize (M9)
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Fig. 19 Notable visualization results of defense strategies
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Fig. 20 Accuracy table for augmentations with magnitude 1 to 3

Fig. 21 Accuracy table for augmentations with magnitude 4 to 6
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