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Abstract
For the purpose of research, organizations often need to share and link data that belongs to a single individual while

protecting the privacy, which is referred to as privacy preserving record linkage (PPRL). Various approaches have been

developed to tackle this problem, however, it is still a challenging task due to the massive amount of data, multiple data

sources, and ‘dirty’ data. Therefore, in this paper, an enhanced approximate multi-party PPRL (MP-PPRL) approach is

proposed to improve privacy, scalability, and linkage quality. For privacy, bloom filter (BF) is a better and more efficient

masking techniques than others so far. Thus, the records are encoded into BFs to ensure privacy. However, BFs may be

compromised through frequency-based attacks. To enhance privacy, a distributed protocol that introduces multiple linkage

units (Multi-LUs) to resist frequency-based attacks is proposed. In scalability, we develop a blocking technique based on

sorted nearest neighborhood (SNN) approach for clustering similar BFs across multiple databases, called BF-SNN, which

dramatically reduces complexity. In linkage quality, a personalized threshold that varies with different levels of ‘dirty’ data

is introduced, which provides a more accurate error-tolerance for ‘dirty’ data and consequently improves linkage quality.

An analysis and an empirical study are conducted on large real-world datasets to show the benefit of the proposed

approach.
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1 Introduction

Large amounts of data from several domains like busi-

nesses, government agencies and research projects have

been generated, collected, and stored. Integrating such data

from different sources to identify and match records that

relate to the same real-world entities is known as record

linkage, entity matching, or entity resolution [1], which is

an important data pre-processing step in many data mining

applications. Since unique entity identifiers are not always

available in all the databases to be linked, the linkage can

only be achieved by comparing available identifying

attributes known as quasi-identifiers (QIDs), such as

names, addresses and dates of birth. Values in QIDs are in

general sufficiently well correlated with entities to allow

accurate linkage. However, using such personal informa-

tion often leads to privacy and confidentiality concerns

[2, 3]. For instance, a patient’s medical information may be

stored in a fragmented form across multiple health care

providers. A more complete view of a patient’s medical

information, afforded by record linkage, allows better

effectiveness of treatment and services. However, medical

information of patients are highly sensitive and originated

from multiple health care providers. To overcome such

concerns, techniques are required to integrate records from

different data sources while the privacy of represented

entities is maintained.
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Privacy preserving record linkage, PPRL [4, 5] is the

process of identifying records from two or more data

sources that refer to the same individuals, without revealing

other information besides the matched records. Various

approaches [6–8] have been proposed to achieve this goal,

with the majority of them only considering linking two

sources. However, linking data from several sources is

commonly required. For the small number of existing

multi-party PPRL (MP-PPRL) techniques, the main draw-

backs are that either they only support exact matching

[9–11] or they are applicable to QIDs of categorical data

[12] only. However, approximate linkage using QIDs of

string data, such as names and addresses, is required in

many real-world applications. Therefore, in view of the

practical significance of PPRL, proposing a MP-PPRL

solution that supports approximate matching for strings is

necessary. Recently, two PPRL approaches that satisfy the

requirements above are proposed in [13] and [14]. They are

both based on two efficient privacy techniques bloom filter,

BF [15] and secure summation [16]. However, there are

still some limitations on approximate MP-PPRL approa-

ches: (1) in privacy, BFs may be vulnerable to frequency-

based attacks [17, 18], which would induce privacy con-

cerns; (2) in scalability, with the increasing of the size of

databases and the number of parties, the complexity grows

exponentially; (3) in linkage quality, when input data

contains typographical errors or variations (‘dirty’ data),

the linkage quality is poor.

To overcome the mentioned problems above, in this

paper, we propose an enhanced approximate MP-PPRL

approach, which uses a distributed multiple linkage units

(Multi-LUs) protocol, a blocking technique based on sorted

nearest neighborhood (SNN) approach for clustering BFs,

called BF-SNN, and personalized threshold to offer (1)

improved privacy against new frequency-based attacks

[17, 18] proposed by Anushka Vidanage, (2) better scala-

bility with multiple parties, and (3) higher linkage quality

for ‘dirty’ data. To the best of our knowledge, no such

approximate MP-PPRL technique has been developed in

the literature so far. In summary, our major contributions

are as follows:

• We propose a novel distributed Multi-LUs protocol to

enhance privacy. We first partition each BF into several

non-overlapping segments based on a bit positions

partition method, then the segments are assigned to

corresponding LUs to resist new frequency-based

attacks. Moreover, we theoretically prove the security

of our distributed Multi-LUs protocol.

• We develop a BF-SNN blocking method to reduce

complexity. Both twice sorting algorithm and sliding

window algorithm are designed for supporting better

scalability on multiple databases.

• We introduce a personalized threshold varying with

different levels of ‘dirty’ data, which provides a more

accurate error-tolerance for ‘dirty’ data and conse-

quently improves linkage quality.

• We analyze our approach and conduct an empirical

study on large real-world datasets. Empirical results

manifest that our approach outperforms previous tech-

niques in scalability, linkage quality and privacy.

The rest of paper is organized as follows. We shortly dis-

cuss the related work in Sect. 2. We introduce the defini-

tions and background of the study in Sect. 3. We describe

our approach in Sect. 4 and analyze the approach in

Sect. 5. Then in Sect. 6 we validate this analysis through

an empirical study. Finally, we conclude this paper in

Sect. 7.

2 Related work

Over recent years, several techniques have been developed

to address the PPRL research problem, but few among

these have considered PPRL on multiple databases. The

existing MP-PPRL approaches can be classified into two

categories, exact MP-PPRL which only matches records

when the matching attributes are exactly identical, and

approximate MP-PPRL which matches several records if

they are very similar. The exact MP-PPRL work includes

various approaches, an exact MP-PPRL approach was

introduced in [9] to perform secure equi-join of masked

records from multiple k-anonymous databases by using a

LU. And an exact approach based on secure multi-party

computation (SMC) using an oblivious transfer protocol

was proposed in [10] for PPRL on multiple databases.

Another efficient MP-PPRL approach of categorical data

was proposed [12] using a Count-Min sketch data structure.

Lai et al. proposed a MP-PPRL [11] for matching of

masked records using BF, the approach also only performs

exact matching.

Different from the study of exact MP-PPRL, the

approximate MP-PPRL approaches are few. In 2014, an

approximate MP-PPRL approach [13] based on two effi-

cient privacy techniques BF and secure summation was

proposed by Dinusha Vatsalan. In this approach, records

are first converted into BFs. Each party then partitions its

BFs into segments according to the number of parties p,

and sends these segments to the corresponding other par-

ties. The segments received by a party are calculated the

number of common 1-bits and the total number of 1-bits.

At last, they use the secure summation protocol to calculate

the similarity of each set of BFs and classify the compared

sets of records into matches and non-matches based on the

similarity threshold st. Although the cost of this approach is
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low since the computation is completely distributed among

the parties and the processing of BF is very fast, the pri-

vacy of this approach is weak. This approach exposes

partial information of BFs in each party to the other par-

ticipants. Even with only partial information of BFs, it is

still possible for the participants to employ a frequency-

based attack against those BFs. And when data contains

typographical errors or variations, the linkage quality of

this approach rapidly descends, which indicates its poor

error-tolerance. The other approximate MP-PPRL

approach was proposed in [14] using counting BF (CBF), a

variation of BF. Comparing with the approach in [13], this

approach provides increased privacy without compromis-

ing linkage quality, however, at the sacrifice of scalability.

Therefore, in this paper we propose a novel distributed

Multi-LUs protocol to enhance privacy, develop a BF-SNN

blocking method to reduce complexity and introduce a

personalized threshold to improve linkage quality.

3 Preliminaries

In this section, we define the problem and introduce the

related technologies investigated in the paper.

3.1 Problem formulation

Definition 1 (MP-PPRL). Assume P1, P2,...,Pp are p par-

ties owning the datasets D1;D2; . . .;Dp respectively. They

wish to identify the matched records among D1;D2; . . .;Dp

according to a matching function in a privacy preserving

manner, such that at the end of the process P1, P2,...,Pp will

know only a set of matched records respectively and no

information will be revealed about the non-matched

records.

3.2 Bloom filter

BF is an efficient and accurate masking technique in a

variety of PPRL approaches [11, 13, 14]. A BF is a bit

vector of length l where initially all bit positions are set to

0. At first, a set of QIDs values are selected as matching

attribute values (MAVs), such as names, dates of birth, and

addresses. These selected MAVs are then converted into a

set S ¼ fs1; s2; . . .; sng of sub-strings of length q (known as

q-grams). Each sx 2 S is encoded into a given BF by using

k independent hash functions h1; h2; . . .; hk and all bits

having index positions hy ðsx) for 1� y� k in the BF are set

to 1. As shown in Fig. 1 (left), the BF encodes two QIDs

values ‘sarah’ and ‘sara’ into l ¼ 14 BFs using k ¼ 2 hash

functions.

3.3 Dice coefficient

Any set-based similarity function can be used to calculate

the similarity of pairs or sets of BFs. The Dice coefficient

has been used for matching of BFs, since it is insensitive to

many matching zeros in long BFs. We calculate the Dice

coefficient similarity [13] of p BFs b1; b2; . . .; bp as:

Dice simðb1; b2; . . .; bpÞ ¼
p� c
Pp

i¼1 xi
; ð1Þ

where c is the number of common bit positions that are set

to 1 in all p BFs (common 1-bits), and xi is the number of

bit positions set to 1 in bi (1-bits), 1� i� p: Figure 1

(right) illustrates the Dice coefficient similarity calculation

of two QID values ‘sarah’ and ‘sara’ masked into BFs.

4 Approximate multi-party PPRL approach

In this section, we present our approximate MP-PPRL

approach improving on privacy, scalability, and linkage

quality. Firstly, to ensure privacy, each party encodes its

records into BFs. However, BFs may be vulnerable to

frequency-based attacks. So to enhance privacy, we pro-

pose a distributed Multi-LUs protocol to reduce the pos-

sibility of information leakage. Then, in that the

computation complexity increases significantly with mul-

tiple parties, we propose a BF-SNN blocking method with

two efficient algorithms twice sorting algorithm and sliding

window algorithm to reduce the generation of candidate

records on multiple databases. Finally, for the reason that

the data in real-world often contains typographical errors or

variations, a personalized threshold varying with different

levels of ‘dirty’ data is introduced to improve linkage

quality.

In addition, we study our approach in detail from Sects.

4.1 to 4.3 and illustrate our approach with an example as

shown in Fig. 2. The symbols used in our approach are

summarized in Table 1.

1 11100010 0

0

0 1

0

0

1
1

001 01100010

sasarah

sara

ar ra ah

sa ar ra

Common
1-bits

5 Dice_sim=2×5/（7+5）
=0.83

1-bits

7
5

Fig. 1 Dice similarity calculation of two QID values (‘sarah’ and

‘sara’) masked using BFs
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4.1 Distributed Multi-LUs protocol

BFs are vulnerable to frequency-based cryptography

attacks, as mentioned in introduction. Some work has been

done to resist the attacks, but recently Anushka Vidanage

et al. proposed a new attack method [17, 18]. More

specifically, the attack method applies frequent pattern

mining to identify sets of frequently co-occurring bit

positions (fcobp) that correspond to encoded frequent q-

grams. Furthermore, they could re-identify plain-text val-

ues based on the identified q-grams.

In Fig. 3, an example of the new attack is shown. Firstly,

it identifies that bit positions p5 and p13 have co-occurring

1-bits in the same three BFs (b1, b3 and b4) and therefore

must encode ‘‘ma’’ which is the only q-gram that occurs in

three plain-text values. Next, it sends that positions p1 and

p10 must encode ‘jo’ as they have co-occurring 1-bits in the

same two BFs (b2 and b5) and ‘jo’ is the only q-gram that

occurs in two plain-text values. Based on the identified q-

grams and their bit positions, we learn that BFs b2 and b5

can only encode ‘‘john’’ and ‘‘joan’’, while b1, b3 and b4

can encode ‘‘maude’’, ‘‘mary’’ or ‘‘max’’.

Therefore, to avoid the leakage of plain-text values, we

propose a distributed multi-LUs protocol with aim to par-

tition the fcobps into different LUs to resist attacks. The

distributed Multi-LUs protocol consists of two main

phases:

4.1.1 Phase 1: generate partitions of bit positions

(a) Identify a set of fcobp s in each BF dataset. Before this

phase, the sets of records need to be encoded into BFs.

1 10111010

1 01011101
1 01110110

1 10110100

1 11010101
1 01110110

1 01110110

0 00110101
0 01011001

P1

P2

P3

1 11
1 10
1 01

1 10
1 11

1 11

1 010
0 10

LU2

010

101
110

100

101
110

110

101
001

LU3

111

011
010

110

110
010

010

010
011

LU1

par1 = <1, 7, 8>

r11
r12
r13

r21
r22
r23

r31
r32
r33

r11

r13
r21
r22
r23
r31
r32
r33

r11
r12
r13
r21
r22
r23
r31
r32
r33

r11
r12
r13
r21
r22
r23
r31
r32
r33

r12

{<r11, r21, r31>, 2, 7}

{<r11, r23, r33>, 0, 5}

{<r12, r22, r31>, 1}

par2= <2, 3, 4>
par3 = <5, 6, 9> 1 10

1 01

1 10

0 10
0 01

LU1

r21
r13
r23
r33
r32

1 11r12
1 11r22
1 11r31

LU11 01r11

LU2

101

101
101

001

110
110

110

100
010

r13
r23
r33
r32
r12
r22
r31
r11
r21

LU3

111

011
011

110

010
110

010

00 1
010

r11
r13
r32
r21
r23
r12
r22
r31
r33

{<r12, r22, r31>, 3, 9}

{<r13, r21, r33>, 0, 5}
{<r13, r23, r33>, 0, 5}

{<r13, r23, r33>, 2, 6}
{<r12, r23, r33>, 1, 6}
{<r12, r23, r32>, 0, 5}
{<r12, r22, r33>, 0, 4}

{<r11, r22, r31>, 1, 5}
{<r11, r21, r31>, 0, 4}

{<r13, r21, r32>, 1, 6}
{<r12, r21, r32>, 1, 5}
{<r12, r23, r32>, 1, 5}
{<r12, r21, r31>, 1, 4}
{<r12, r23, r31>, 1, 5}
{<r12, r22, r31>, 1, 3}

{<r11, r22, r31>, 2, 8}

{<r12, r22, r31>, 2, 6}
{<r12, r22, r32>, 0, 4}

{<r13, r21, r32>, 0, 5}

{<r11, r21, r32>, 1, 7}

{<r12, r22, r33>, 1, 3}

(a) (b) (c) (d) (e)

Bit Positions Partitions：

{CRIs, cz, xz}

{CRIs, Dic_sim}

{<r13, r23, r32>, 1, 5}

{<r11, r21, r33>, 1, 5}

1 01

Fig. 2 Each party individually encodes its records into BFs and

partitions each BF into three segments based on the bit positions

partitions par1 ¼ f1; 7; 8g; par2 ¼ f2; 3; 4g; par3 ¼ f5; 6; 9g as a
shows. Then each part sends the segments to the corresponding

LUs as b shows. Each LU independently sorts the segments they

received by twice sorting algorithm as c shows. And then each LU

slides the window to generate candidate records IDs (CRIs). For each

CRIs, we calculate cz and xz as described in Sect. 4.2 to generate a

triple {CRIs, cz; xz} as d shows. At last, we integrate each CRIs from

all of LUs and calculate Dic sim as described in Eq. (1), by

comparing the results of similarity with personalized threshold pt , we

can decide the CRIs fr12; r22; r31} is a match as e shows. In this

example, p ¼ 3;N ¼ 3; s ¼ 3;w ¼ 1; and pt ¼ 0:9

Table 1 Table of frequent symbols

Symbol Description

Di Datasets for party i; 1� i� p

N Number of records in the dataset

p Number of participants

k Number of hash functions

l The length of BF

s Number of segments/LUs

Bi The BFs representing dataset Di

z The zth segments/LUs, 1� z� s

g The gth bit position, 1� g� l

w The size of window

st Similarity threshold

pt Personalized threshold
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After that, each party independently applies frequent pat-

tern mining on its own BF dataset to identify a set of

fcobps. u is a support ratio of the require number of co-

occurring 1-bits against the number of the records in the

dataset. v is the minimum number of bit positions satisfy-

ing the ratio u. The bit positions that satisfy u and v are

regarded as a fcobp. As shown in Fig. 4a, u ¼ 2=3; v ¼ 2;

each party independently identifies a set of fcobps.

(b) Construct a graph based on the sets of fcobps.

Construct an undirected G ¼ ðV ;EÞ;V ¼ ftv1; v2; . . .; vlg;
vg ð1� g� lÞ represents the gth bit position; Eg;h ðEg;h 2 EÞ
represents that vg and vh are a fcobp; The number on Eg;h

represents the number that both vg and vh appear in the sets

of fcobps. As shown in Fig. 4b, an undirected graph is

constructed based on the sets of fcobps from three parties.

(c) Partition the bit positions. After constructing an

undirected graph, to resist attacks, we only need to make

sure that the adjacent vertices are partitioned into different

LUs. Therefore, our problem can be changed into the well

known vertex coloring problem (VCP) [19] that is defined

as follows:

Definition 2 (Vertex coloring problem). Given an undi-

rected graph G = (V, E) with vertex set V and edge set E,

the VCP requires to assign a color to each vertex in such a

way that colors on adjacent vertices are different and the

number of colors used is minimized.

There have been many approaches to solve VCP [19].

Employing any approach, the adjacent vertices with dif-

ferent colors would be partitioned into different partitions,

which realizes the partition of fcobps. As shown in Fig. 4b,

the partitions of bit positions are par1 ¼ f1; 7; 8g; par2

¼ f2; 3; 4; 5; 9g; par3 ¼ f6g:
However, due to the load balance of our distributed

protocol, we should guarantee that the number of vertices

in each partition is equal. Specifically, to obtain the equal

partitions, the bit positions (vertices) partition method is

performed as follows. Firstly, we classify the vertices into

two categories, the one with edges and the one without

edges. The isolated vertices without edges can be put into

any partitions to adjust the size of partition. Next, we only

perform the approach in VCP on the vertices with edges to

generate the initial partitions. We assume the number of

final partitions is s, the cardinalities of vertex set is l. To

guarantee the size of each partition is equal, we compare

the size of each initial partition with l/s, if they are equal,

the bit positions in this partition would be regarded as a

final partition. If the size of a initial partition is smaller than

l/s, we would insert the isolated vertices into this partition

until the size of it is equal to l/s. If the size of a initial

partition is larger than l/s, we would retain l/s vertices as a

final partition. And the other vertices are regarded as a new

partition.

Fig. 3 The example of the new

attack

1 10111010

1 01011101
1 01110110

1 10110100

1 11010101
1 01110110

1 01110110

0 00110101
0 01011001P1 P2 P3

par1 = <1, 7, 8>

r11
r12
r13

r21
r22
r23

r31
r32
r33

par2 = <2, 3, 4>
par3 = <5, 6, 9>

Fcobp1 = {(1, 6), (3, 7), (4, 8)} Fcobp2 = {(1, 4, 6)} Fcobp3 = {(4, 7)}

1 4 7

6 8 3

(a)

(b) (c)

2

2

9

5

B1 B2 B3

1 4 7

6 8 3

2

9

5

(d)

2

Fig. 4 The process of phase 1 in

distributed Multi-LUs protocol
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For example, in Fig. 4c, d, the vertices are first classified

into isolated vertices {2, 5, 9} and the vertices with edges

{1, 3, 4, 6, 7, 8}. Then, we perform the approach in VCP on

the vertices {1, 3, 4, 6, 7, 8}. The initial partitions are

par1 ¼ f1; 7; 8g; par2 ¼ f3; 4g; par3 ¼ f6g: In the exam-

ple, l ¼ 9; s ¼ 3; j par1 j¼ 3; which is equal to l/s, so par1

is regarded as a final partition; j par2 j¼ 2; which is smaller

than l/s, so we insert vertex 2 into par2; j par3 j¼ 1; which

is smaller than l/s, so we insert vertex 5 and vertex 9 into

par3. The final partitions are par1 ¼ f1; 7; 8g; par2 ¼
f2; 3; 4g; par3 ¼ f5; 6; 9g:

4.1.2 Phase 2: generate segments for each LU

In this phase, each party partitions its BFs into s segments

according to the final partitions. After that, the segments

are sent to the corresponding LUz (1� z� sÞ by each party

independently. Each LU receiving the segments from all

the parties would perform blocking and matching dis-

tributed in the next texts. The security of our distributed

Multi-LUs protocol is discussed as follows:

Proposition 1 For each LU, knowing the segments from p

BF datasets, it can not identify the fcobps based on the

frequent pattern mining.

Proof We assume a fcobp has been identified in a LU

based on the frequent pattern mining.

For the existence of a fcobp, it should exist the bit

positions that satisfy the u and v in a LU. Because the

segments in a LU are from p BF datasets, then at least in

one BF dataset, the bit positions in this fcobp should satisfy

the u and v. Therefore, the bit positions in this fcobp have

been regarded as a fcobp in at least one BF dataset and

would have been partitioned into different LUs. The

conclusion is opposite to the proposition that the bit

positions are in the same LU.

As a consequence, the assumption is false, we prove the

Proposition 1. h

Based on the proof above, we conclude that our

approach can resist the new frequency-based attacks.

4.2 BF-SNN blocking method

In this section, we present the BF-SNN blocking method,

which aims at clustering the encoded segments and

reducing the number of comparisons in each LU. Origi-

nally SNN methods consist of the following steps. Firstly, a

summary of each record is created. Next, all records are

sorted upon the values of these summaries. Finally,

matching is performed by sliding a size window over the

resulting list of records. Different from the previous SNN

blocking methods that are only applicable to two data

sources [20, 21], our BF-SNN blocking method is for

multiple data sources. Therefore, a new sorting algorithm

and a new sliding window algorithm are designed in our

BF-SNN blocking method.

4.2.1 Twice sorting algorithm

Firstly, we merge and sort the segments to make the similar

segments from multiple parties to be close. To achieve this

goal, we design a twice sorting algorithm to sort the seg-

ments. In the first sorting, we sort the segments according

to the number of 1-bits. As to the segments with the same

number of 1-bits, we perform the twice sorting to sort them

in descending order (Algorithm 1, lines 1–6). As Fig. 2c

shows, the segments in each LU have been sorted by twice

sorting algorithm.

4.2.2 Sliding window algorithm

After twice sorting algorithm, we use a sliding window of

size w on the sorted list to identify the CRIs that fall in the

same window (Algorithm 1, lines 7–17). The value for w

represents the number of segments that must be included in

the window from each party. In other words, if w = 1, we

must guarantee in the window one segment is included

from each participant. The windows in LU1 are shown in

Fig. 5. Any p records from different parties in the same

window are regarded as a CRIs. For each CRIs in LUz, we

calculate the number of common 1-bits bit positions in all

BFs, cz, and the number of bit positions set to 1 in all BFs,

xz. Finally, as Fig. 2d presents, the triples {CRIs, cz; xzg
are generated (Algorithm 1, lines 18–21).

4.3 Matching results generation
and personalized threshold

In the previous steps, the CRIs have been generated in each

LU. Due to the distributed process, integrating each CRIs

from all LUs is necessary to classify the CRIs into matches

or non-matches. In our approach, the process of generating

matching results contains two steps. In the first step, only

the CRIs that exist in all LUs are retained. In the second

step, we calculate the Dice coefficient similarity of each

remaining CRIs according to the cz and xz. Consequently,

our decision rules (DR) can be described as follows:

DR ¼ Dice simðb1; b2; . . .; bpÞ� st; match;
otherwise; non-match:

�

ð2Þ

Only when the similarity is no smaller than the similarity

threshold st, we regard the CRIs as a match.
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Algorithm 1 BF-SNN Blocking Method
Require: LUz: Set of the z th segments from all Bij , 1 ≤ i ≤ p, 1 ≤ j ≤ N,

1 ≤ z ≤ s; w : Size of the window;
Ensure: Triples {CRIs, cz, x z};
1: for each LUz do
2: for each B ij,z do
3: countnumber(Bij,z);
4: sort the Bij,z according to the number of 1;
5: end for
6: end for
7: for each B ij,z with the same number of 1 do
8: sort the Bij,z according to the descending order;
9: end for
10: m = 0;
11: while m < len(LUz) do
12: for each Di do
13: n = 0;
14: while (any len(Di) ≤ w and m + n < len(LUz) and LUz[m + n]

�= 0) = true do
15: if LUz[m + n] ∈ P i then
16: Di += LUz[m + n];
17: cluster dataset [c] = cluster dataset [c] + Di;
18: n += 1;
19: end if
20: end while
21: c += 1;
22: m += n;
23: end for
24: end while
25: for each cluster dataset do
26: for any p records (r1, r2,..., rp) in it do
27: generate {CRIs, cz, x z};
28: end for
29: end for
30: return {CRIs, cz, x z}

The setting of similarity threshold is so important that it

determines the error-tolerance of the approach and conse-

quently the linkage quality. When the threshold is set to 1,

the approach would only support exact matching, which

classifies record sets as matches if their masked QIDs are

exactly the same. However, the data in real-world often

contains typographical errors or variations. To improve

error-tolerance, previous approaches usually discretionarily

set a similarity threshold smaller than 1, which is unrea-

sonable and would induce low linkage quality. In our

approach, we set the personalized threshold according to

the levels of errors to provide a more accurate error-tol-

erance for ‘dirty’ data.

We assume a record exists e errors, then the generated

BF corresponding this record would have no more than ekq

positions be influenced. As the similarity calculation shown

in Eq. (1), the errors would produce a greater impact with

the more participants p. Therefore, the influence of errors

on the similarity is calculated as follows:

pt ¼ sb �
ekqp

Ps
z¼1 xz

: ð3Þ

sb is a basic similarity threshold. The personalized

threshold p t is decided by the p and e. When p is main-

tained, the bigger the e the smaller the threshold of p t, and

consequently the higher error-tolerance; vice versa.

5 Analysis of the approach

In this section, we analyze our approximate MP-PPRL

approach in terms of privacy, complexity and linkage

quality.

Privacy As with most of the existing PPRL approaches

[22–24], we assume that all parties follow the semi-honest

adversary model [25], where the parties follow the protocol

honestly, but may try to infer private information based on

messages they receive during the process without collu-

sion. Next we summarize the information that our approach

discloses to the participants and LUs.

P i ð1� i� pÞ: Each party does not receive any mes-

sages regarding other participants. Therefore, without col-

lusion each part cannot infer any information.

LU z ð1� z� sÞ: Each LU only learns l/s bits of each

BF. And the segments in each LU can resist new fre-

quency-based attacks, which has been proved in Sect. 4.1.

Therefore, without collusion each LU also cannot infer any

information.

Complexity We assume p parties in the approach, each

having a dataset of N records. In step 1 of our approach, the

agreement of parameters has a constant communication

complexity. And the creation of BFs using k hash functions

for N records is O(kN). In step 2 of our approach, each

party sends its BF segments (each of length l/s) to the

corresponding LUs. If we assume direct communication, s
2 messages are required in this step, each of these of size

N � l=s (O(Nls) total communication). In the step of BF-
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SNN blocking method, we assume the size of sliding

window is w and then the maximum number of windows is

N/wp, the number of candidate record pairs for each LU

generated by our approach is wp�1N=p: The combinatorial

complexity is low because of the small value of w. The

similarity calculation phase consists of the integrating each

CRIs from all LUs, which requires a communication over

all LUs of Oðs � wp�1N=pÞ:
Linkage quality Our approach supports approximate

matching of QIDs values, in that data errors and variations

are taken into account depending on the personalized

threshold pt. The personalized threshold varies with dif-

ferent levels of ‘dirty’ data to improve linkage quality. The

quality of BF masking depends on the BF parameters. For a

given BF length l, the number of elements q, and the

optimal number of hash functions k, the minimum false

positive rate f is calculated as f ¼ ð1=2lnð2ÞÞl=q.

6 Experiments

In this section, we evaluate the scalability, linkage quality

and privacy of different approaches on a variety of real-

world datasets. We implemented all approaches in Python

3.6.5, and ran all experiments on a server with a 64-bit,

8.0G of RAM Intel Core (3.30 GHz) CPU.

6.1 Datasets

We used the large real-world voter registration dataset

from North Carolina (NC) as available from ftp://

alt.ncsbe.gov/data/. We downloaded the dataset ncvoter_-

Statewide that contains over 8 million records. To evaluate

our approach with different dataset sizes, different number

of parties and different data quality, we used a recently

proposed data corruptor [26] to create a variety of datasets

with different characteristics. We extracted four attributes

commonly used for record linkage: first name, last name,

city, and zipcode. To generate datasets of different sizes,

we extracted sub-sets of 5000, 10000, 50000, 100000,

500000, and 1000000 records from the NC dataset for each

party where the number of matching records was set to

50% (i.e. half of all selected records occur in the datasets of

all parties). The number of parties was set to p ¼
½3; 5; 7; 10�: To investigate how our approach deals with

‘dirty’ data, we generated several series of datasets with

one, two, or three modifications (corruptions) applied to

randomly selected attribute values. These corruptions

consisted of character edit operations (insert, delete, sub-

stitute, or transposition).

6.2 Baselines and settings

6.2.1 Baselines

The experiments were twofold. In the first part, we

evaluated the scalability of our BF-SNN blocking method.

For comparative evaluation purposes we used two state-of-

the-art multi-party private blocking techniques, the hier-

archical canopy clustering-based (HCC) blocking method

[27] and the distributed clustering and hashing (DCH)

blocking method [28]. In the second part, we compared

the complexity, linkage quality, and privacy of our

approach with the previous two approximate PPRL

approach [13, 14], which we call BF-based approach [13]

and CBF-based approach[14].

6.2.2 Settings

Following earlier BF work in PPRL [13, 14], we set the BF

parameters as the length of BF l ¼ 1000; the number of

hash functions k ¼ 20; the length of grams q ¼ 2: In the

distributed Multi-LUs protocol, we set the number of LUs

as s ¼ ½5; 10; 20; 50�; u ¼ 2=3; tv ¼ 2: In the BF-SNN

blocking method, the size of window was set to w ¼
½1; 2; 3; 4; 5�: We set the parameters of the HCC and DCH

multi-party private blocking approaches according to the

settings provided by the authors.

6.3 Evaluation metrics

We evaluate the scalability of our approach by runtime.

The linkage quality of our approach is measured by pre-

cision and recall. Precision is calculated as the ratio of the

number of true matched record pairs found against the total

number of candidate record pairs compared across datasets.

And recall is calculated as the ratio of the number of true

matched record pairs against the total number of true

matched record pairs across all datasets.

The blocking quality is measured by reduction ratio

(RR) and pair completeness (PC). RR is the fraction of

record pairs that are removed by a blocking technique and

PC is the fraction of true matching record sets that are

included in the candidate record sets generated by a

blocking technique.

In line with other work in PPRL [13, 14], we evaluate

privacy using disclosure risk (DR) that measures based on

the probability of suspicion, i.e. the likelihood a masked

dataset record can be matched with one or several masked

records aM in a publicly available global dataset DM . We

show mean DR values is calculated as follows:

DR ¼ 1

n

X

aM2DM

PsðaMÞ: ð4Þ
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To evaluate the ability of resisting the frequency-based

attacks, we measure the quality of the identified frequent q-

grams, as the precision and recall of how many bit posi-

tions are correctly identified for a q-gram.

6.4 Performance evaluation

6.4.1 Scalability

In our first set of experiments, we evaluate the scalability

of three multi-party private blocking methods BF-SNN,

DCH, and HCC with different dataset sizes and the number

of parties. According to the experimental results illustrated

in Figs. 6 and 7, our BF-SNN blocking method requires

less runtime than previous HCC and DCH blocking

methods and is scalable to large datasets. Figures 8 and 9

respectively show the blocking quality of BF-SNN block-

ing method and average time required for blocking with

different window sizes w. As expected, PC and runtime for

blocking increase with w while RR decreases. This is

because there are more candidate records generated with

increasing w. When w ¼ 2; there is a drastic improvement

in PC with a smaller increase in runtime and smaller

decrease in RR, thus w ¼ 2 is chosen as the default

parameter. Our BF-SNN blocking method performs well by

achieving high values for both RR and PC, which indicates

the effectiveness of proposed twice sorting algorithm and

sliding window algorithm in BF-SNN blocking method.

6.4.2 Complexity

Figure 10 shows the complexity of three approximate MP-

PPRL approaches in terms of the runtime required over the

whole process with different s for five parties. In our

approach, the runtime decreases at first and then increases.

The reason is that with increasing s, the segments received

by each LU with the length of l/s get shorter, accordingly

the time of matching would decrease. But we need to

integrate the distributed results from more LUs. When s ¼
20; these two achieve a balance. For the previous two

approaches, the CBF-based approach requires more

runtime, because it needs more communications than the

BF-based approach. The results above indicate that our

approach achieves better efficiency by adjusting s.
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6.4.3 Linkage quality

The linkage quality of three approximate MP-PPRL

approaches with different dataset sizes and numbers of

parties is presented in Figs. 11, 12, 13 and 14 on modified

and non-modified datasets. As can be seen, in Fig. 11,

precision and recall are both high on non-modified datasets

in three approaches. However, on mod-1 datasets the recall

of BF-based approach and CBF-based approach drop quite

drastically with increasing p as shown in Fig. 12. The

reason is that the invariable similarity threshold induces an

increase in the number of missed true matches with

increasing p. Owing to the setting of personalized thresh-

old, the recall of our approach is still high. Figures 13 and

14 show that the linkage quality of our approach keeps high

even on different corruption levels of datasets or the size of

dataset becoming larger.

6.4.4 Privacy

The privacy of three approaches with different p for 20

LUs, as measured by DR of an exact matching attack using

the full NC dataset as the global dataset, is shown in

Fig. 15. The DR of our approach is lower than the previous

two approaches, for the reason that the BF segments in our

approach with much shorter length are matched to more

global records. In addition, we apply new frequency-based

attacks to the three approaches to measure the ability to

resist new attacks. Figure 16 shows the quality of the

identified frequent q-grams in three approaches. In the BF-

based approach, a small part of q-grams is re-identified

with the low quality of identified frequent q-grams, this is

because the attacks are based on the BF segments. The

privacy is increased in CBF-based approach which is

identified less frequent q-grams than the BF-based

approach. In our approach, the quality of the identified

frequent q-grams is close to zero, which verifies the

effectiveness of our distributed Multi-LUs protocol.
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Above all, we conclude that our approach outperforms

previous techniques in scalability, linkage quality and

privacy.

7 Conclusion

In this paper, the problem of approximate matching entities

from more than two sources in privacy has been studied. It

is a challenging task due to the massive amount of data,

multiple data sources, and ‘dirty’ data. Therefore, an

enhanced approximate MP-PPRL approach has been pro-

posed to improve privacy, scalability, and linkage quality.

To enhance privacy, a novel distributed Multi-LUs proto-

col is proposed to resist the frequency-based attacks. To

reduce complexity, a BF-SNN blocking method is devel-

oped. To improve linkage quality, a personalized threshold

varying with different levels of ‘dirty’ data is introduced.

Experiments conducted on real datasets show the approach

in this paper is better in scalability by comparing with

previous MP-PPRL blocking and matching methods while

achieving superior results in terms of linkage quality and

privacy. In the future, in order to apply the technique of

PPRL to big data, improving the efficiency, linkage quality

and privacy of PPRL is still an urgent problem to be

solved.
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