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Abstract
Surgical case scheduling is a key issue in the field of medician, which is a challenging work because of the difficulty in

assigning resources to patients. This study regards the surgical case scheduling problem as a flexible job shop scheduling

problem (FJSP). Considering the switching and preparation time of patients in different stage, an improved multi-objective

imperialist competitive algorithm (IMOICA), which adopts the non-dominant sorting method, is proposed to optimize the

whole scheduling. First, the social hierarchy strategy is developed to initialize the empire. Then, to enhance the global

search ability of the algorithm, the concept of attraction and repulsion (AR) is introduced into the assimilation strategy.

Moreover, to increase the diversity of the population, the revolution strategy is utilized. Finally, the variable neighborhood

search (VNS) strategy is embedded to improve its exploitation capacity further. Experiments show that scheduling in

advance saves time and cost, and IMOICA can solve the surgical case scheduling problem studied efficiently.

Keywords Surgical case scheduling � Imperialist competitive algorithm � Variable neighborhood search strategy

1 Introduction

Scheduling has been applied in many practical problems.

Such as, in medical aspect, Burdett and Kozan [1] formu-

lated medical scheduling to utilize various treatment spaces

effectively. In environment aspect, Zhang et al. [2] con-

sidered optimizing scheduling to achieve the purpose of

saving resources and protecting the environment. About

cloud computing aspect, Chen et al. [3] considered that

efficient scheduling approaches show promising ways to

reduce the energy consumption of cloud computing plat-

forms while guaranteeing quality of service requirements

of tasks. In iron and steel production aspect, Tang et al. [4]

introduced scheduling into the whole process of steel

production to improve productivity and save energy.

Since the outbreak of COVID-19, the medical problem

has become the main concern of people. Therefore, this

paper takes the medical scheduling problem as the research

focus. Medical scheduling includes physical examination

scheduling [5], outpatient scheduling [6], nurse scheduling

[7], surgical case scheduling [8] and so on.

Surgery is an important activity in most hospitals as it is

estimated to generate about 2/3 of hospital revenue and

consume 40% of hospital resource costs [9, 10]. Surgical

case scheduling is a challenging problem faced by hospital

managers. Consequently, many researchers have been

motivated to study surgical case scheduling problem to

save costs and improve resource utilization [11]. Espe-

cially in recent years, people are facing more and more

health problems. The study of surgical case scheduling has

become a research hotspot naturally.

In this paper, the surgical case scheduling problem is

studied, taking into account all stages of hospitaliza-

tion: pre-operative, peri-operative, and post-operative

(Fig. 1). The patient flow during surgery can be described

as follows:
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• Pre-operative: When the patient enters the pre-operative

holding unit (PHU), doctors and nurses are required to

examine the patient’s physical condition and do some

preoperative preparation. Then, the patient is taken to

the operating room (OR).

• Peri-operative: Upon arrival in the OR, the patient is

anesthetized by the anesthesiologist. Then, surgery is

performed by one or more surgeons with the assistance

of one or more nurses.

• Post-operative: After surgery, general patients will be

taken to the post-anesthesia care unit (PACU) for

anesthesia recovery; mild patients may bypass PACU;

and severe patients will be admitted to the intensive

care unit (ICU) where professional doctors and nurses

will take care of them, then went into a second surgery.

Compared with the traditional scheduling optimization

problem, surgical case scheduling has its unique difficul-

ties. It requires a variety of resources, and the availability

of the required resources must be taken into account. At

present, many general hospitals adopt the open scheduling

strategy, which requires each OR to meet the needs of

multi-departments. Open scheduling strategy increases the

workload of the OR and further complicates the scheduling

problem. If the schedule is too loose, the OR will be

vacated, which will not only cause a waste of resources, but

also make the number of operating tables unable to meet

the actual needs of patients, resulting in patient dissatis-

faction. If the schedule is too tight, it will lead to insuffi-

cient opening hours of surgery, overtime work for medical

staff and other situations that will lead to high labor costs.

Considering the availability of resources during surgery,

the surgical case scheduling problem is regarded as the

flexible job shop scheduling problem (FJSP). The patient is

the job, the related resource is the machine, and the surgery

stage is the operation.

With the deepening of medical reform and the limitation

of income, the traditional mode of thinking which relies on

‘‘generating income’’ to help the development of hospitals

has been impacted severely. The mode of using cost con-

trollability to promote ‘‘saving expenditure’’ and promot-

ing the development of medical units has been more and

more recognized by everyone [12]. In recent years, cost has

become one of the three major sectors of hospital compe-

tition. Many medical institutions have been developing

tools to reduce costs and ensure the efficient use of hospital

facilities [13–15].

Under the same results, early surgery, shorter surgery

time, less exposure time, and less trauma time are benefi-

cial for patient recovery and wound repair, including

eventual swelling. Therefore, surgery time and cost are two

important indexes concerned by hospitals [16, 17]. In the

whole process of the surgery, the patient expects the

surgery to be completed in the shortest time and the hos-

pital wants to spend the lowest medical cost. This study

takes the completion time of the surgery and medical cost

of the whole surgery as the research object.

Keeping the above consideration in mind, this study

proposes an improved multi-objective imperialist compet-

itive algorithm, named IMOICA, to solve the surgical case

scheduling problem. The main contributions can be

described as the following: (1) the switching time and the

preparation time constraints are introduced. Patients have

different consumption in different stages, for example, as

shown in Fig. 1, there is a time interval between the pre-

vious stage and the next stage, which can be divided into

switching and preparation times. Switching time is the time

spent by the patient at different stages. Preparation time

can be seen as the patient’s waiting time before formally

proceeding to the next stage of treatment. In previous

studies, these two processes were ignored, although

ignoring these two processes would simplify the study,

there would be a big difference between this and the actual

scheduling. Therefore, Considering switching and prepa-

ration times here will make the scheduling developed in

advance more realistic; (2) to generate a balanced initial

population, a social hierarchy strategy is adopted in

IMOICA, which can enhance the convergence speed of

algorithm; (3) to enhance the global search capability of

the algorithm, the concept of attraction and repulsion (AR)

is introduced into the assimilation strategy; (4) to enhance

the diversity of the population, the revolution strategy is

introduced; (5) a variable neighborhood search (VNS)

strategy is embedded in the proposed algorithm to improve

the exploitation capability further.

The whole surgery process is studied and divided into

different stages, which makes the research problem in line

with the actual situation and simplify the whole research.

The proposed algorithm is applied to the research problem,

the scheduling sequence is optimized in the process of

optimizing the algorithm.

The rest of this paper is organized as follows: Sect. 3

introduces the mixed integer linear programming (MILP)

model. Section 4 describes the proposed algorithm with all

of the components. The computational results and com-

parisons are reported in Sect. 5. Finally, Sect. 6 summa-

rizes the conclusions of this study and discusses future

research directions.

2 Related work

One of the most difficult problems in scheduling problems

is the job shop scheduling problem (JSP) [18, 19]. A classic

JSP similar to the real production situation is called FJSP.

The FJSP consists of two sub-problems, i.e., routing and
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scheduling. The routing sub-problem is to assign each

operation to a machine among a set of given machines,

whereas the scheduling sub-problem is to sequence the

assigned operations on all machines to obtain a feasible

schedule with a satisfactory objective value. The general

JSP is strongly NP-hard, while the FJSP is a much more

complex version of the JSP, so the FJSP is strongly NP

hard [20–25].

Various meta-heuristic algorithms have been proposed

for the FJSP. Boukef et al. [26] studied a particle swarm

optimization (PSO) algorithm to solve the FJSP. The PSO

algorithm can converge quickly, solve problems efficiently,

and provide accurate mathematical models. In the PSO

algorithm, initial parameters may be difficult to define and

may fall into local optimal. De Giovanni et al. [27] studied

the genetic algorithm (GA) for the distributed FJSP. The

GA has many functions and can solve complex problems,

but it can be very time-consuming. The solution may be

inaccurate and may fall into local optimal. Bagheri et al.

[28] studied an artificial immune algorithm (AIA) for the

FJSP. The AIA uses several strategies for generating the

initial population and selecting the individuals for repro-

duction. Different mutation operators are also utilized for

reproducing new individuals. The AIA can generate the

optimal solution in short time, but the stability of the

algorithm is greatly affected by the concentration of anti-

bodies. Wang et al. [29] proposed an effective artificial bee

colony (ABC) algorithm for solving the FJSP with the

criterion to minimize the Makespan. The ABC algorithm

stresses the balance between global exploration and local

exploitation. Inspired by the intelligent foraging behavior

of bees, the ABC can look for the best local and global

solutions. However, it has the disadvantage of premature

convergence of continuous search. For the FJSP with setup

and transportation times, Rossi [30] proposed an ant colony

optimization (ACO) algorithm to enhance the machine

assigning/sequencing constraints and dynamic visibility

function. The ACO algorithm derived from the perfor-

mance of actual ants is compatible and can solve multiple

problems at the same time, but the probability distribution

of each iteration may change. Jiang and Zhang [31] pro-

posed the grey wolf optimization (GWO) algorithm for the

FJSP with typical discrete characteristics. The GWO

algorithm has the characteristics of strong convergence

performance, but it is easy to fall into local optimization

and poor stability.

Atashpaz-Gargari and Lucas [32] proposed an opti-

mization algorithm influenced by imperialist competitive,

called the Imperial competitive algorithm (ICA). This was

the first time the algorithm was proposed. The ‘‘mining’’

and ‘‘exploration’’ capabilities were not well balanced;

therefore, researchers continue to optimize ICA in the

follow-up. Talatahari et al. [33] presented a new chaos

ICA. Although this algorithm improved the global opti-

mization ability of the algorithm, but the search perfor-

mance of the algorithm was reduced greatly. To solve the

FJSP with transmission time, Karimi et al. [34] studied a

hybrid ICA. In the algorithm, the local search strategy was

used to enhance the local search ability of the algorithm,

but the global search performance of the algorithm was not

improved. Jian et al. [35] embed ant colony algorithm in

ICA. In the process of assimilation, pheromone guidance

mechanism was added to update the position of ants, which

prevented the ICA solution from falling into local opti-

mization. However, the complexity of the algorithm was

increased greatly. Zhang et al. [36] proposed an improved

ICA to solve the rebalancing problem of multi-objective

bilateral assembly lines with space and resource con-

straints, without considering the conflict problem of ICA in

solving multi-objective problems. For the multi-criteria

engineering design, Mohamed et al. [37] designed a multi-

objective ICA, although considering the problems of the

algorithm in dealing with multi-objective problems, the

local search ability of the algorithm was not been well

improved. Therefore, in view of the shortcomings of the

existing ICA, the improved multi-objective imperialist

competitive algorithm, named IMOICA, is used to opti-

mize the whole scheduling process.

In addition to FJSP, Meta-heuristic algorithm has also

made great progress in big data text clustering. Mahdavi

et al. [38] proposed a novel hybrid harmony search (HS)

based algorithms for clustering the web documents that

finds a globally optimal partition of them into a specified

number of clusters. Mahdavi et al. [39] introduced a novel

Harmony K-means Algorithm (HKA) based on HS opti-

mization method for document clustering. Garcı́a et al. [40]

adopted a hybrid technology based on genetic population

optimization algorithm and Nelder-Mead simplex search to

solve the time-domain constrained data clustering problem.

Jahwar and Abdulazeez [41] pointed out that k-means

clustering algorithm can be applied to meta-heuristic

algorithm to improve algorithm performance. Abualigah

et al. [42] studied the application of optimization algorithm

in text clustering, and studied the accessibility and appli-

cation of appropriate optimization algorithms for each

class. Irfan et al. [43] pointed out that to overcome the

inherent limitations of learning classifier system-based

systems to high-dimensional problems, the hybrid model

designed by the integration of learning classifier system

and deep learning methods has been a research hotspot in

recent years. Irfan et al. [44] studied the application of

brain-inspired lifelong learning model based on neural

learning classifier system in underwater data classification

and developed a continuous learning system like human

beings to improve classification performance.
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Unlike the FJSP with a single objective, the FJSP with

multiple objectives has attracted researchers’ attention

recently. However, most of the literature on the multiple-

objective FJSP adopts the aggregation approach. The

drawback of that approach is that it generates only a single

solution at each run. Thus, little information can be pro-

vided to the decision maker regarding the quality of each

performance criterion. The Pareto-based approach has

become a practical tool for solving the multi-objective

FJSP recently. Lei proposed a Pareto archive particle

swarm optimization [45], Li et al. presented a hybrid Par-

eto-based local search algorithm [46], Wang et al. con-

ducted a Pareto-based estimation of distribution algorithm

[47], and Gao et al. investigated a Pareto-based grouping

discrete harmony search algorithm [48]. Furthermore, Wu

and Sun proposed a non-dominated sorted genetic algo-

rithm to solve the multiple-objective FJSP with two

energy-saving measures [49]. Luo et al. developed an

elaborately-designed multi-objective Grey wolf optimiza-

tion algorithm and used two Pareto-based mechanisms to

determine the leading wolf and the lowest (worst) wolf

[50]. Li et al. [51] proposed an elitist non-dominated

sorting hybrid algorithm for the multi-objective FJSP.

Wang [52] used a hybrid multi-objective evolutionary

algorithm based on decomposition to solve the multi-ob-

jective FJSP under time-of-use electricity price conditions,

where all the optimal solutions of all single-objective sub-

problems constituted the final Pareto set.

Sentiment analysis plays an important role in healthcare.

Wallace et al. [53] generated a probabilistic model to

analyze sentiments to capture patients’ views on health

care. To explore the role of social media in shaping the

understanding of digital health care, Afyouni et al. [54]

conducted sentiment analysis and found that people’s

overall view of digital health care is generally positive. Du

et al. [55] studied the challenges and opportunities of

sentiment analysis in medical settings and pointed out that

sentiment analysis in medical literature requires a domain

specific source of emotion and complementary context-

dependent characteristics to correctly interpret implied

emotions. Park and Woo [56] believed that sentiment

analysis is the most common text categorization tool,

which could be used to learn about gender, especially for

people with sensitive diseases. Jiménez-Zafra et al. [57]

used supervised learning and dictionary-based sentiment

analysis to analyze online comments about drugs and

doctors.

The quality of surgical case scheduling has a great

impact on the sentiment of patients. FJSP is a strongly NP

hard, the surgical case scheduling problem is also strongly

NP-hard. Therefore, researchers have proposed different

methods to optimize various problems related to surgical

case scheduling. Pham and Klinkert [8] studied a new

surgical case scheduling approach which uses a novel

extension of the JSP called multi-mode blocking job shop

(MMBJS) and discussed the use of the MMBJS model for

scheduling elective and add-on cases. Cardoen et al. [58]

used the MILP model to optimize the multi-objective sur-

gical case scheduling problem to facilitate the decision-

making process of the OR scheduler. The starting time of

the surgery was determined by explicitly fixing the value of

the variable by solving multiple knapsack problems. Con-

sidering the uncertainty of patients’ hospitalization time

and the availability of intensive care unit resources, Min

and Yah [10] proposed a stochastic programming model,

which assigns patients to the community to minimize the

waiting time and overtime of the patient. Aiming at the

multi-day, multi-resource, patient-priority-based surgery

case scheduling problem, Vijayakumar et al. [59] presented

a MILP model based on efficient First Fit Decreasing-based

heuristic to increase the utilization rate of the OR. Lee and

Yih [60] proposed a flexible job shop model with fuzzy

sets, which takes into account patient waiting, idle clinical

resources and total completion time in the process to

reduce the delay in the flow of people in the OR. Cap-

panera et al. [61] developed a mixed-integer programming

model to compare three different scheduling policies in the

master surgical scheduling context with respect to three

performance standards. Al Hasan et al. [62] presented a

MILP model based on dictionary method to minimize the

overtime of the surgical unit staff, the number of ORs used

and the number of instruments processed in emergency in

the sterilizing unit while respecting the current level of

service represented by the total number of patients operated

per month at the orthopedic surgery unit. Behmanesh and

Zandieh [63] developed a novel bi-objective ant system to

minimize Makespan and the number of unscheduled sur-

gical cases simultaneously. Furthermore, these studies are

analyzed, as shown in the following Table 1.

In recent years, researchers have optimized the problems

related to different surgical case scheduling. Through the

investigation, it is found that, first, most of the related

studies on surgical case scheduling only involve the peri-

operative stage of surgery. Only consider the process of the

patient from entering the OR to the end of the surgery and

ignored many details of the surgery process. This paper

combines with the actual situation and studies the whole

surgical process. The whole surgical process is divided into

three different stages: pre-operative, peri-operative, post-

operative, and the resource selection of different stages is

pondered. Next, most of the previous studies are aimed at

minimizing surgery time, and the medical cost is consid-

ered in our study on the basis of previous studies. In

addition, according to the survey, it is found that the two

important constraints of switching and preparation times

are not studied in the previous surgical case scheduling
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problem, and these two constraints are taken into account

in this study. Finally, a MILP based on sequence is

established, and the IMOICA is used to optimize the whole

scheduling process.

3 Problem description

In the surgical case scheduling system includes three

stages: pre-operative, peri-operative, and post-operative

(Fig. 1). The patient is regarded as scheduling unit gener-

ally. Each patient has a different route of surgery, that is,

the surgical stages of the patients are different. At each

stage, each patient selects any set of available surgical

resources from the set of candidate surgical

resources. Therefore, through the analysis of the schedul-

ing problem of surgical cases, this study model this

scheduling as FJSP.

3.1 Assumptions

• All the patients are ready before the surgery.

• Different surgeries have the same priority.

• A surgical resource set can handle only one surgical

stage at a time.

• Once a surgery is performed, it cannot be interrupted

until it is completed.

• The patient will move to the next stage only when the

previous surgical stage is completed.

• The state of every kind of surgical resource set is

known before scheduling begins.

• The processing time of each surgical stage is deter-

mined in advance and will not change with the order.

• The time and cost of the preparation and switching

process are considered.

3.2 Notations

Indices

i; i
0

Indices of patients

l; l0 Indices of surgical stages

k; k
0
; k

00
Indices of surgical resource sets

Parameters

n Number of the patients

m Number of surgical resource sets

opi Number of surgical stages of patient i

Oi;l lth surgical stage of patient i

U Large positive number

Variables

PTi;l;k Processing time of Oi,l on the kth surgical resource set

STi;k0 ;k Switching time of patient i from the k’th surgical

resource set to the kth surgical resource set

Table 1 Simple analysis of the surgical cases scheduling problem

Contribution Shortcoming

Pham and

Klinkert [8]

A new multi-mode blocking job shop model was adopted to

optimize the surgical case scheduling

The MMBJS model was not flexible enough to deal with

additional cases of scheduling

Cardoen et al.

[58]

They studied a MILP model to facilitate the decision process of

the OR scheduler

The optimization process was not considered

comprehensively, so it was difficult to implement it in reality

Min and Yih

[10]

A stochastic programming model was proposed to minimize

patient waiting time and overtime

The result was random, which was quite different from the

actual scheduling

Vijayakumar

et al. [59]

A MILP model based on efficient First Fit Decreasing-based

heuristic was proposed to increase the utilization rate of the

OR

The scheduling process studied was too general, which brings

difficulties to the implementation of scheduling

Lee and Yih

[60]

A flexible job shop model with fuzzy set was studied to reduce

the delay in the flow of people in the OR

The model was solved by two-stage decision-making process,

and errors was easy to occur in different stages of

transformation

Cappanera

et al. [61]

They presented a mixed-integer programming model to the

master surgical scheduling for maximizing the number of

surgeries scheduled and balance the beds and OR daily

workloads

The hospital dimension was not explained, which would affect

the efficiency of scheduling. In addition, some hospital

resources (anesthesiologists, ICU beds, medical equipment)

that have an important impact on the schedule were ignored

Al Hasan

et al. [62]

A MILP model based on dictionary method was presented to

minimize the overtime of the surgical unit staff and the

number of instruments

Uncertainty in the actual duration of surgery due to multiple

factors (e.g., surgical complications) and significant gaps

between planned and realized schedules

Behmanesh

and

Zandieh

[63]

For solving the surgical case scheduling with minimize

makespan and the number of unscheduled patients, a MILP

model is proposed

Ignoring the details of the stages would lead to a gap between

the scheduling in advance and the actual scheduling
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PPi;l;k Preparation time of Oi,l on the kth surgical resource set

PCi;l;k Unit time medical cost of Oi,l on the kth surgical

resource set

SCi;k
0
;k Unit time medical cost of the switching process for

patient i from the k’th surgical resource set to the kth
surgical resource set

PPCi;l;k Unit time medical cost of the preparation process of Oi,l

on the kth surgical resource set

SM Medical cost of patients during surgery

PPM Medical cost of preparation process

SPM Medical cost of switching process

TMC Total medical cost

CMi;l Completion time of Oi,l

EBi;l;k Binary variable taking value 1 if Oi,l can be processed

by kth surgical resource set, and 0 otherwise

Xk;i0 ;l0 ;i;l Binary variable taking value 1 if on the kth surgical

resource set, Oi,l is processed after Oi’,l’, and 0

otherwise

Yi;l;k;k0 Binary variable taking value 1 if Oi,l is processed by the

kth surgical resource set and Oi,l-1 is processed by the

k’th surgical resource set

3.3 Problem formulation

Aiming at the surgical case scheduling problem, a

sequence-based MILP model is established to minimize the

completion time (Makespan) of patients and the total

medical cost (TMC). The model includes objective func-

tions and constraints. To establish the objective function,

the total medical cost modules of the surgery are also

provided.

The medical costs vary in accordance with the surgical

stage. Consequently, the TMC consists primarily of several

parts: the medical cost during the surgery (SM), the med-

ical cost in the patient switching process (SPM), the

medical cost in the patient preparation process (PPM).

SM can be calculated by determining the surgical

resource set k occupied by the patient and multiplying the

unit time medical cost and processing time of Oi;l on the

kth surgical resource set, as shown in Eq. (1)

SM ¼
Xm

k¼1

Xn

i¼1

Xopi

l¼1

Xm

k0¼1

Yi;l;k;k0 � PCi;l;k � PTi;l;k ð1Þ

SPM can be calculated by judging the surgical resource

set k occupied by the patient and multiplying the unit time

medical cost of the switching process and the switching

time of the patient i from the k’th surgical resource set to

the kth surgical resource set, as expressed in Eq. (2)

SPM ¼
Xm

k¼1

Xn

i¼1

Xopi

l¼1

Xm

k0¼1

Yi;l;k;k0 � SCi;k
0
;k � STi;k0 ;k ð2Þ

PPM can be calculated by judging the surgical resource

set k occupied by the patient and multiplying the unit time

medical cost of the preparation process and the preparation

time of Oi,l on the kth surgical resource set, PPM can be

calculated by Eq. (3)

PPM ¼
Xm

k¼1

Xn

i¼1

Xopi

l¼1

Xm

k0¼1

Xn

i0¼1

Yi;l;k;k0 � Xk;i0;l0;i;l � PPCi;l;k � PPi;l;k

ð3Þ

TMC consists of SM, SPM, and PPM. Therefore, the

TMC can be calculated by Eq. (4)

TMC ¼ SM þ SPM þ PPM ð4Þ

According to the problem description, the scheduling

optimization objectives are to minimize the Makespan and

the TMC. Therefore, the model is formulated as follows.

min Cmax ð5Þ
min TMC ð6Þ

Subject to

Xm

k¼1

Xm

k0¼1

Yi;l;k;k0 ¼ 1 8i; l ð7Þ

Xm

k¼1

Yi;1;k;0 ¼ 1 8i ð8Þ

Xm

k0¼1

Yi;l;k;k0 �EBi;l;k 8i; l; k ð9Þ

Yi;1;k;0 �EBj;1;k 8i; k ð10Þ

Yi;l;k;k0 �
Xm

k00¼1

Yi;l�1;k0;k00 8i; l[ 2; k; k0 ð11Þ

Yi;2;k;k0 � Yi;1;k0;0 8i; k; k0 ð12Þ

PHU OR

PACU

patients

ICU

preoperative perioperative postoperative

Fig. 1 Surgery procedure with different stages
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CMi;l �CMi;l�1 þ
Xm

k¼1

Xm

k0¼1

Yi;l;k;k0 � PTi;l;k þ STi;k0 ;k þ PPi;l;k

� �
8i; l[ 1; l0 [ 1

ð13Þ

CMi;1 �
Xm

k¼1

Yi;1;k;0 � PTi;1;k þ STi;0;k þ PPi;1;k

� �
8i ð14Þ

CMi;l �CMi0;l0 þ PTi;l;k þ PPi;l;k � U

� 3� Xk;i;l;i0;l0 �
Xm

k0¼1

Yi;l;k;k0 �
Xm

k0¼1

Yi0l0;k;k0

 !
8i; l[ 1; i0

6¼ i; l0 [ 1; k

ð15Þ

CMi;1 �CMi0;l0 þ PTi;1;k þ PPi;l;k � U

� 3� Xk;i;1;i0;l0�
Xm

k0¼1

Yi;1;k;0 �
Xm

k0¼1

Yi0l0;k;k0

 !
8i; l[ 1; i0

6¼ i; l0 [ 1; k

ð16Þ

CMi;l �CMi0;1 þ PTi;l;k þ PPi;l;k � U

� 3� Xk;i;l;i0;l0 �
Xm

k0¼1

Yi;l;k;k0 �
Xm

k0¼1

Yi0;1;k;0

 !
8i; l[ 1; i0

6¼ i; l0 [ 1; k

ð17Þ

CMi;1 �CMi0;1 þ PTi;1;k þ PPi;l;k � U

� 3� Xk;i;1;i0;1 �
Xm

k0¼1

Yi;1;k;0 � Yi0;1;k;0

 !
8i; l[ 1; i0

6¼ i; k

ð18Þ

CMi0;l0 �CMi;l þ PTi0;l0;k þ PPi;l;k � U

� Xk;i;l;i0;j0 �
Xm

k0¼1

Yi;l;k;k0 �
Xm

k0¼1

Yi0;l0;k;k0 þ 2

 !
8i; l[ 1; i0

6¼ i; k; l0 [ 1

ð19Þ

CMi0;l0 �CMi;1 þ PTi0;l0;k þ PPi;l;k � U

� Xk;i;1;i0;l0 � Yi;1;k;0 �
Xm

k0¼1

Yi0;l0;k;k0 þ 2

 !
8i; l[ 1; i0

6¼ i; k; l0 [ 1

ð20Þ

CMi0;1 �CMi;l þ PTi0;1;k þ PPi;l;k � U

� Xk;i;l;i0;1 �
Xm

k0¼1

Yi;l;k;k0 � Yi0;1;k;0 þ 2

 !
8i; l[ 1; i0

6¼ i; k

ð21Þ

CMi0;1 �CMi;1 þ PTi0;1;k þ PPi;l;k � U

� Xk;i;1;i0;1 �
Xm

k0¼1

Yi;1;k;0 � Yi0;1;k;0 þ 2

 !
8i; i0

6¼ i; k ð22Þ

Cmax �Ci;opi 8i ð23Þ

Ci;opi � 0 8i ð24Þ

PCi;l;k � 0 8i; l; k ð25Þ

SCi;k0;k � 0 8i; k; k0 ð26Þ

PPCi;l;k � 0 8i; i0; k ð27Þ

Xk;i0;l0;i;l; Yi;l;k;k0 � 0 ð28Þ

Constraints (5) and (6) are objective functions. Con-

straints (7) and (8) consider that each surgical stage is

allocated to a surgical resource set for processing. For each

surgical stage, there is a set of available surgical resource

sets to process. Therefore, constraints (9) and (10) are

defined to ensure the surgical resource set occupied by each

surgical stage is selected from the available surgical

resource sets. According to the decision variables Yi,j,k,k’,

Oi,l-1 can be processed by the k’th surgical resource set, if

Oi,l can be processed by the kth surgical resource set.

Constraints (11) and (12) guarantee that Oi, l-1 is processed

by the k’th surgical resource set, Oi,l is processed by the kth

surgical resource set. Constraints (13) and (14) ensure that

the patients will not enter the next surgical stage until the

previous stage has been completed. Constraints (15)–(22)

ensure that each surgical resource set is occupied by only

one surgical stage at a time. Constraint (23) determines the

value of the Makespan by considering the completion time

of the last stage of all the patients. Constraints (24)–(28)

force these variables to be positive.

4 The proposed algorithm

The imperialist competitive algorithm (ICA) is a new meta-

heuristic inspired by sociopolitical behaviors. In contrast to

other optimization algorithms such as the GA and PSO, the

ICA has good neighborhood search ability, effective global
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search properties, and a good convergence rate [32, 64, 65].

However, the ICA cannot simultaneously handle objective

conflicts in multi-objective design problems. The ICA has

the disadvantage of capturing local optimal solutions when

used for high-dimensional or complex multimodal func-

tions [37, 66]. The surgical case scheduling problem in our

study considers Makespan and TMC as two objectives. To

better solve the research problems with ICA, an improved

multi-objective ICA, named IMOICA, is proposed. The

main features of the IMOICA can be described as fol-

lowing: (1) the social hierarchy strategy is developed to

initialize the empire; (2) to enhance the global search

ability of the algorithm, the concept of AR is introduced

into the assimilation strategy; (3) the revolution strategy is

utilized for the diversity of the population; (4) the VNS

strategy is used to improve the exploitation capacity of the

algorithm. The framework of the IMOICA is described in

Algorithm 1.

Algorithm 1. IMOICA

Input: all populations

Output: Pareto optimal solution

Randomly produce the initial population

Initialize the empires (c.f. Section 4.2)

For each imperialist i do
Generation of Pareto solution (c.f. Section 4.3)

For each colony j do
Perform the assimilation strategy with AR measure (c.f. Section 4.4)

Conduct the updating strategy of empire (c.f. Section 4.5)

Implement the revolution strategy (c.f. Section 4.6)

Execute the VNS strategy (c.f. Section 4.7)

End
End 

In the course of the study, the country is equivalent to

the individual, all countries (individuals) constitute the

population, and optimizing the country (individual) is

equivalent to optimizing the surgical case scheduling of a

group of patients. The scheduling sequence is obtained by

optimization algorithm. The application of the algorithm in

surgical case scheduling is shown in Fig. 2.

4.1 Encoding

For the n patients who need to undergo surgery, the

encoding is based on the sequence of different stages of the

surgery and the different resources selected. The encoding

solution consists of two parts: the surgical resource

assignment (SRA), and the surgical stage sequence (SSS).

Figure 3 shows the composition of an encoding solution.

The SRA stores the available surgical resource set numbers

selected for each surgical stage. The SSS defines the

patient numbers. Furthermore, the Local Selection strategy

[67] is adopted in the SRA part and the random selection

strategy is adopted in the SSS part.

4.2 Initialization of empires

The social hierarchy strategy is used to initialize the

empire. First, all countries are sorted according to fitness.

As shown in Fig. 4, the best fitness (surgical case

scheduling) with the highest social hierarchy is named a
imperialist. In succession, the following Nim-1 levels are b
imperialist, c imperialist, and so on. The remaining coun-

tries are colonies. The colonies are divided according to the

social hierarchy of the imperialists, i.e., the higher the

social hierarchy, the more colonies will be occupied. Note

that the occupation of colonies by imperialists is random.

Therefore, after the selection of the Nim imperialists, the

order of the remaining colonies will be disrupted. Then, the

imperialists and their colonies form different empires. The

number of colonies occupied by imperialists is obtained by

Eq. (29).

NumðxÞ ¼ Ncl

xþ 1ð Þ2
ð29Þ

where x = 1, …, Nim; Nim is the number of imperialists,

Num(x) is the number of colonies acquired by x imperialist,

and Ncl is the number of colonies. During the initialization

of the empire, the smaller the x, the higher the social

hierarchy of the empire.

4.3 Generation of Pareto solution

By using the sorting non-dominant strategy [68], the opti-

mal solution in the population is selected as the Pareto

solution. The initial population and the construction set are

denoted by P and X, respectively. The individuals in X are

temporary, because they can be deleted in subsequent

comparisons. At the beginning of the algorithm, the first

individual is inserted into the construction set X, and the

individual p’ in the evolutionary population P (p0 62 X) is
removed and inserted into the construction set X. Then, the
individual p0 is compared with the individual in X in turn,

and the individual dominated by p’ is deleted. Assuming

that p’ is dominated by any individual in X, p’ is deleted
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from X. The framework for the non-dominant sorting

method is described in Algorithm 2.

In the first iteration, there are Nim empires, each

imperialist i has Ncli colonies. Hence, the strategy begins

with those Nim empires. For each empire, the imperialist is

preserved to form a Pareto solution. Then, the imperialist is

compared with the remaining colonies. The imperialist

remains in the Pareto solution set as long as the imperialist

dominates the colonies; otherwise, the imperialist is

replaced by the colony. In the following iteration, the

imperialists of the empires are compared with the indi-

vidual solutions of the previous Pareto solution, and the

Pareto optimal solution is obtained. This strategy is shown

in Fig. 5.

4.4 Assimilation strategy with AR measure

The important factor affecting the assimilation strategy is

the distance between imperialists and colonies. The idea is

to use the AR measure based on this distance to improve

the performance of the algorithm and achieve the globally

optimal position. The average distance between the impe-

rialist and its colonies (AVR) is as follows:

AVR ¼ 1

M

XM

i¼1

Vcol
best � VImp

� �
� Vcol

current � VImp
� �� �

ð30Þ

where M is the number of colonies in each empire, Vcol
best

is the fitness of the best colony, Vcol
current is the fitness of the

current colony, and VImp is the fitness of the imperialist.

After calculating the value of AVR, the following three

scenarios occur, in accordance with the value of AVR:

• If the value of AVR is less than a specified threshold (x)
that is set in advance, the mutation operator is

performed. Figure 6a shows the mutation operator that

occurs in the SRA part. First, a feasible individual (P0)

is selected. Then, several elements in the SRA part are

chosen randomly and replaced with available surgical

resource set numbers. The new individual (P0
0) is

generated. Figure 6b presents the mutation operator that

acts on the SSS part. First, three variation points are

randomly selected in the individual (G0) in accordance

Patients

Stages

Patients

Stages

Resources

Optimize Optimize

Empire
Empire

Countries

Surgical case  

scheduling 

Surgical case  

scheduling 

Imperialist Imperialist

Resources

Colony

Colony Colony

Colony

Country 

with better 

fitness

Country 

with worse 

fitness

Fig. 2 Application of the algorithm in surgical case scheduling

Surgical resource assignment Surgical stage sequence

Patient1 Patient2 Patient number

Solution

Fig. 3 Example of an encoding solution

α

δ

γ

βImperialists

Colonies

Fig. 4 Social hierarchy divided by the countries
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with the generated neighborhood search range. Then, all

combinations of neighborhood solutions are generated

(G0
0, G0

00). Finally, one of the neighborhood solutions is

selected randomly as the offspring.

• If the value of AVR is greater than x, the crossover

operator is performed. Figure 7a is the two-point

crossover strategy that acts on the SRA part. First,

two positions of the individual (P1) are selected

randomly. Then, selecting another individual (P2), the

elements between these two positions of P1 are selected

and inserted into P2 to form a new individual (P3).

Figure 7b shows the JBX crossover strategy that acts on

the SSS part. First, the patient numbers are randomly

selected from individual (Q1), and according to the

position, the patient numbers are inserted into the

offspring (Q2). Then, another individual (Q3) is

selected, and the remaining patient numbers are inserted

into Q2 in turn.

• If the value of AVR is equal to x, then the classical

assimilation strategy is conducted. The assimilation

process can be achieved through the movement of

colonies to imperialists. The movement of a colony to

the imperialist is presented in Fig. 8.

The colony moves to the imperialist through a distance

of X to a new position, and X is defined as

X�U 0b� dð Þ ð31Þ

where b is a real number greater than 1, and d is the

distance between the colony and the imperialist. To find the

difference points around the imperialists and expand the

scope of search, a random deviation from direction h is

Fig. 5 Generation of Pareto

solutions
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added. h is subject to a uniformly distributed random

number:

h�U �ccð Þ ð32Þ

where c represents a parameter used to adjust deviation

from the original direction.

The framework for the assimilation strategy with AR

measure is described in Algorithm 3.

Algorithm 3. Assimilation strategy with AR measure

Calculate the value of AVR
Select threshold ω

IF < do
The mutation operator is performed

End
IF > do

The crossover operator is conducted

End
Else

The classical assimilation strategy is implemented

End

Algorithm 4. Updating of the empire

Execute the first update strategy

For each empire i do
IF the colony in empire i is better than its imperialist do

Replace the original imperialist as a new imperialist 

End
End
Execute the second update strategy

For each empire i do
IF there are no colonies in the empire i do

The strategy of empire extinction is implemented, that is to 

say, the imperialist is transferred to the powerful empire and 

become one of its colonies.

End
End

4.5 Updating of the empire

The updating of the empire includes two situations. (1)

Replacement of imperialist: with the increase of iterations,

the colonies might obtain more power than their imperialist

in an empire. Consequently, the empire is replaced, i.e., the

most powerful colony will replace the imperialist as the

new imperialist, as depicted in Fig. 9a. (2) Extinction of

empire: for the empires that do not have any colonies, the

empire extinction strategy is implemented, i.e., for the

empires that exist only one imperialist will be transferred to

the powerful empire and become one of its colonies. Fig-

ure 9b shows another situation in the updating of the

SRA SSS

0P

'

0P

(a) Mutation operator of the SRA part

SRA SSS

0G

'

0G

''

0G

(b) Mutation operator of the SSS part

Fig. 6 Mutation operator

SRA SSS

1P

2P

3P

(a) Two-point crossover

SRA SSS

1Q

2Q

3Q

(b) JBX crossover

Fig. 7 Crossover operator

Colony

Imperialist

New position of colony

d

Fig. 8 Movement of the colonies toward the imperialist
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empire. The framework for the updating of the empire is

presented in Algorithm 4.

4.6 Revolution strategy

Revolution is another way to generate new solutions. The

detailed steps of the revolution strategy are list in Algo-

rithm 5, where R and a are integers, Pr is the revolution

probability (consistent with the parameter in reference

[70]), Si is the number of countries in empire i, and rand is

a randomly generated number.

For colony k, Uk represents the number of colonies that

dominate the colony k in the empire. Good colonies have a

greater possibility of carrying out the revolution strategy.

Therefore, assuming that the colony k with the smallest Uk

value, it will have more opportunity to execute the revo-

lution strategy to produce a new colony.

The change and insert operators are used in the revo-

lution strategy. The change operator produces a new

solution by replacing an element randomly in the SRA part,

as shown in Fig. 10a. The insert operator consists of

selecting two position elements r1 and r2, randomly in the

SSS part. The element r2 is inserted into the r1, and the

element r1 is inserted into the last position. Then, the ele-

ment after r2 moves forward. Figure 10b shows an example

of the insert operator.

4.7 Variable neighborhood search

VNS is a heuristic algorithm to solve the optimization

problem. VNS has the characteristics of simple structure

and few parameters, and its unique variable neighborhood

mechanism can prevent the search from falling into local

optimization [69]. This provides VNS with strong local

search capability [70].

In this paper, the VNS strategy is added to enhance the

convergence performance of the algorithm. The steps of

VNS are listed in Algorithm 6, in which three neighbor-

hood structures: insert, change, and swap are used. The

change and insert operators are as described in Sect. 4.6.

The swap operator acts on the SSS part, selecting two

position elements randomly and then swapping them.

max_0 is the maximum number of cycles the objective

function evaluates for termination.

Infeasible solutions are dropped. The generated feasible

solution is compared with the current solution, and if the

feasible solution is better, the current solution is replaced.

4.8 Algorithm complexity

In this part, the complexity of the main strategy of the

algorithm is presented. In the process of generation of

Pareto solution, the complexity of the algorithm is O(p’q),

p’ represents the number of individuals in the population,

q represents the number of individuals in the Pareto solu-

tion sets. In assimilation strategy with AR measure, the

complexity of the algorithm is O(2mns), m represents the
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number of empires, n denotes the number of colonies, and

s is the length of the surgical resource assignment or the

surgical stage sequence. The complexity of updating of the

empire algorithm is O(mn). The complexity of revolution

strategy is O(m(f ? r)), f represents the number of colonies

in each empire, r represents a positive integer less than 10.

In the variable neighborhood search strategy, the com-

plexity of the algorithm is O(logv), v is the maximum

number of cycles the objective function evaluates for

termination.

5 Experimental results

The performance of the algorithm was evaluated by sim-

ulating the surgical case scheduling process. The charac-

teristics of systems and resources were briefly described in

Table 2. Before the beginning of the experiment, we

investigated a third-class hospital, analyzed and collated

the data obtained, and then generated an experimental

instance. The generated instances were processed by the

Imperialist Colony

Empire Empire

(a) Replacement update

Imperialist Imperialist

Empire Empire

Colonies

(b) Extinction update

Fig. 9 Updating of the empire

SRA SSS

(a) Change operator

SRA SSS

r1 r2

(b) Insert operator

Fig. 10 Change and Insert operators in the revolution strategy
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proposed algorithm and the scheduling scheme was gen-

erated. In addition, in the practical application part, the

simulation experiment was carried out by using the data

disclosed in other papers to verify the algorithm.

First, the Taguchi method was used to investigate the

influence of important parameters on the algorithm. Then,

the model was verified using CPLEX. The strategies were

verified through numerical experiments. Finally, to assess

the performance of the algorithm, the proposed algorithm

was compared with other recently published efficient

algorithms.

5.1 Experimental parameters

The experimental parameters included the population size

(P), the number of imperialists (Nim), a specific threshold

(x), the integer (R, Ln), and the maximum number of

cycles the objective function evaluates to terminate

(max_0). The levels of the six parameters were presented in

Table 3. The Taguchi method was used to examine the

influence of these six parameters on the performance of the

proposed algorithm. Table 4 shows the orthogonal array

L27 (3
6) in which each combination runs 30 times in 30 s,

and the means of Makespan and TMC are used as the

response variable (RV). Figure 11 reports the factor level

trend of the six parameters, from which it can be seen that,

when P = 150, Nim = 15, x = 5, R = 20, max_0 = 50, and

Ln = 3, the IMOICA has the best performance.

5.2 Comparison with the exact CPLEX solver

The CPLEX solver can be used to verify the accuracy of

the model and evaluate the performance of the proposed

algorithm further. The solver uses the exact algorithm

based on branch and bound, consuming substantial time to

calculate accurate results. Consequently, when comparing

the CPLEX algorithm with the proposed algorithm, the

computing time for CPLEX was set to 3 h, the number of

threads was set to 3, and the CPU stop time of IMOICA

was set to 30 s. Then, 9 small-scale instances were tested.

To conduct a comprehensive comparison between CPLEX

and IMOICA, the inverted generational distance and

hypervolume are used as comprehensive indicators to

evaluate the convergence and distribution of the

algorithms.

Inverted generational distance (IGD) [71]: Average

distance from the real and uniformly distributed Pareto

optimal solution set Q * to the optimal solution set Q

obtained by the algorithm.

IGD Q;Q�ð Þ ¼ 1

Q�j j
X

v2Q�
min
z2Q

d v; zð Þ ð33Þ

where d v; zð Þ corresponds to the distance between solutions

v and z. Q�j j is the number of solutions of the point set

distributed on the real Pareto front. A smaller value of IGD

can be considered as indicating a better set of solutions

approximating the true Pareto front from the convergence.

Hypervolume (HV) [71]: Volume of the region in the

target space surrounded by the non-dominant solution set

and reference points obtained by the algorithm.

HV Qð Þ ¼ Leb U
z2Q

f1 xð Þ; r1½ 	 � ::: fd xð Þ; rd½ 	
� 	

ð34Þ

where r ¼ r1;r2;:::;rdð Þ is the reference point, Q is the

non-dominant solution of the algorithm, d is the number of

objective functions, and Leb �ð Þ is the Lebesgue measure. A

larger HV value indicates a better performance.

Table 5 lists the IGD and HV values achieved by the two

algorithms, where the best IGD and HV values are marked

Table 2 The characteristics of systems and resources

Computer Software

Visual studio MATLAB CPLEX

Version Windows 10 16.6.2 visual Studio

Community 2019

9.0.0.341360

(R2016a)

12.7.1.0 IBM ILOG CPLEX

Optimization Studio

Processor Intel(R) Core (TM) i7-6700 CPU @

3.40 GHz 3.41 GHz

- - -

System

type

64bit 64bit 64bit 64bit

Table 3 The level of the key

parameter
Parameter Level

1 2 3

P 50 100 150

Nim 5 8 15

x 5 10 20

R 8 10 20

max_0 10 20 50

Ln 3 5 8
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in bold. Table 5 contains six columns. The first column

presents the instance name and the second column shows

the surgical case. The following two columns correspond to

the IGD values obtained by IMOICA and CPLEX. The last

two columns list the HV values obtained by IMOICA and

CPLEX. The bold in the Table is the optimal values

obtained by comparing different algorithms under different

instances. According to the results, it can be seen that the

proposed algorithm outperforms CPLEX in terms of the

convergence and distribution of the algorithm.

5.3 Efficiency of the assimilation strategy
with AR measure

To investigate the performance of the assimilation strategy

with AR measure, which was discussed in Sect. 4.4, two

types of assimilation strategy were studied: (1) the pro-

posed assimilation strategy with AR measure; and (2) the

assimilation strategy adopted by Zandieh et al. [72] (called

IMOICA_NAR). First, 21 different surgical cases base on

practical problems were generated and used for simulation

tests. The two algorithms were performed under the same

operating environment and each instance was run 30 s. To

verify the effectiveness of the proposed algorithm, the

relative percentage increase (RPI) [21] is introduced for the

multifactor analysis of variance (ANOVA) comparison.

Table 6 (where j-m represents j patients and m surgical

resource sets) lists the IGD and HV values achieved by the

two algorithms. It can be found in Table 6: (1) for the IGD

values, IMOICA obtains 20 better results; (2) for the HV

values, 19 better results are obtained by the IMOICA,

compared with IMOICA_NAR algorithm; and (3) the

ANOVA results from Fig. 12 illustrates that the IMOICA

is better than its comparison algorithm.

5.4 Efficiency of the revolution strategy

To verify the effectiveness of the revolution strategy, we

compared IMOICA with IMOICA_NRS, IMOICA_NRS

without the proposed revolution strategy. The two algo-

rithms were performed under the same operating environ-

ment with each instance running 30 s. The comparison of

Fig. 11 Factor level trends of key parameters
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IGD and HV values of the two algorithms was shown in

Table 7. According to Table 7: (1) for the IGD values,

IMOICA obtains 21 better results; (2) for the HV values,

18 better results are obtained by the IMOICA, compared

with IMOICA_NRS algorithm; and (3) the ANOVA results

from Fig. 13 illustrates that the IMOICA is better than its

comparison algorithm. The main reason for this effect is

that by using the revolution strategy can produce new

solutions and further increase the diversity of the

population.

5.5 Efficiency of the VNS strategy

In this section, we compared IMOICA with IMOI-

CA_NVS, IMOICA_NVS without the proposed VNS

strategy. The two algorithms were performed under the

same operating environment with each instance running

30 s. Table 8 lists the IGD and HV values achieved by the

two algorithms. As can be seen from the comparison results

in Table 8: (1) for the IGD values, IMOICA obtains 19

better results; (2) for the HV values, 19 better results are

obtained by the IMOICA, compared with IMOICA_NVS

algorithm; and (3) the ANOVA results from Fig. 14 shows

that the IMOICA is better than its comparison algorithm.

The main reason for this effect is that by using the VNS

strategy can increase the search range and effectively

prevent the algorithm from falling into local optimization.

5.6 Comparison with other efficient algorithms

We compared IMOICA with current popular algorithms

similar to ours, including the Pareto-based grouping dis-

crete harmony search (PGDHS) algorithm [48], the hybrid

evolutionary algorithm based on decomposition (HMOEA/

D) [52], the Pareto-based discrete artificial bee colony

algorithm (P-DABC) [73], and the non-dominated sorted

Table 4 Combination of algorithm parameters

Number Factor RV

P Nim x R max_0 Ln

1 1 1 1 1 1 1 4.725 9 105

2 1 1 1 1 2 2 4.709 9 105

3 1 1 1 1 3 3 4.685 9 105

4 1 2 2 2 1 1 4.695 9 105

5 1 2 2 2 2 2 4.699 9 105

6 1 2 2 2 3 3 4.733 9 105

7 1 3 3 3 1 1 4.692 9 105

8 1 3 3 3 2 2 4.699 9 105

9 1 3 3 3 3 3 4.694 9 105

10 2 1 2 3 1 2 4.738 9 105

11 2 1 2 3 2 3 4.746 9 105

12 2 1 2 3 3 1 4.678 9 105

13 2 2 3 1 1 2 4.739 9 105

14 2 2 3 1 2 3 4.695 9 105

15 2 2 3 1 3 1 4.680 9 105

16 2 3 1 2 1 2 4.721 9 105

17 2 3 1 2 2 3 4.690 9 105

18 2 3 1 2 3 1 4.715 9 105

19 3 1 3 2 1 3 4.724 9 105

20 3 1 3 2 2 1 4.700 9 105

21 3 1 3 2 3 2 4728 9 105

22 3 2 1 3 1 3 4.690 9 105

23 3 2 1 3 2 1 4.714 9 105

24 3 2 1 3 3 2 4.669 9 105

25 3 3 2 1 1 3 4.694 9 105

26 3 3 2 1 2 1 4.726 9 105

27 3 3 2 1 3 2 4.678 9 105
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genetic algorithm (NSGA-II) [74]. The algorithms adopted

the parameter settings proposed in their references. For fair

comparison, all the algorithms ran in the same environment

for 30 s and got the Pareto solutions. Figure 15 presents the

Pareto values of the two different scale instances. It should

be noted that there is none true Pareto front, because the

generated 21 instances are generated by a realistic surgical

case scheduling system. Therefore, we used the Pareto

solutions obtained by the five compared algorithms as the

near Pareto front ‘‘PF’’. It can be seen from the figure that

the IMOICA proposed in this paper can get more and better

Pareto values.

Table 9 lists the comparison results of the IGD values of

the given 21 instances. The first column gives the scale of

the instance, while the second column displays the best

IGD values collected from the five compared algorithms.

Then, the IGD values collected by IMOICA, PGDHS,

HMOEA/D, P-DABC, and NSGA-II, are displayed in the

following five columns, respectively, while the RPI values

obtained from the five compared algorithms are provided in

the last five columns. According to Table 9: (1) in com-

parison with the other four algorithms, the proposed

IMOICA obtained 19 optimal RPI values for the 21 spec-

ified instances; and (2) on average, the proposed IMOICA

obtained an RPI value of 0.041, which is substantially

better than the other compared algorithm.

According to the comparison of HV values shown in

Table 10, it can be seen that the proposed IMOICA

obtained 18 better HV values, which further verify the

superiority of the proposed algorithm. Figure 16 shows that

the proposed algorithm performs significantly better than

the other compared algorithms.

The complexity of IMOICA algorithm is

O(p’q ? 2 mn(s ? 1) ? m (f ? r) ? logv). The com-

plexity of the PGDHS algorithm is O(4 mn ? mnsk ?

mnsq ? 7mns), k represents the number of machines. The

complexity of HMOEA algorithm is O(6 mn(L1 ? L2-
? 1) ? 2msk ? mnpk), L1 and L2 is the number of ran-

domly selected individuals. The complexity of PDABC

algorithm is O(m ? 7 mn (1 ? 4p ? s) ? mns(L1 ? L2)).

The complexity of NSGA_II algorithm is

O(5 mn(1 ? p) ? 2 ms(L1 ? L2 ? k)). By comparison, it

is found that the complexity of the proposed IMOICA is

smaller. Therefore, for the problem studied, our proposed

algorithm is better.

5.7 Practical instances

To further verify the effectiveness of the algorithm, we

used the experimental data from reference [63] and com-

pared the results with other algorithms, including the

Table 5 Comparison of IMOICA and the exact CPLEX solver

Instance Surgical case IGD HV

IMOICA CPLEX IMOICA CPLEX

Inst1 2 0.011 0.078 0.889 0.510

Inst2 3 0.033 0.176 0.767 0.461

Inst3 4 0.024 0.224 0.979 0.678

Inst4 5 0.126 0.246 0.948 0.777

Inst5 6 0.044 0.597 0.976 0.624

Inst6 7 0.037 0.455 0.945 0.742

Inst7 8 0.003 0.831 0.997 0.810

Inst8 9 0.096 – 0.923 –

Inst9 10 0.016 – 0.982 –

The bold in the Table is the optimal values obtained by comparing

different algorithms under different instances

Table 6 Comparison of IGD and HV values obtained by IMOICA and IMOICA_NAR

Scale IGD HV Scale IGD HV

IMOICA IMOICA_NAR IMOICA IMOICA_NAR IMOICA IMOICA_NAR IMOICA IMOICA_NAR

4–3 5.876 17.34 0.094 0.078 10–10 7.336 36.04 0.026 0.009

4–5 0.987 8.153 0.045 0.029 30–3 0.067 27.84 0.052 0.024

4–8 0.004 19.43 0.043 0.023 30–5 0.000 15.56 0.065 0.038

4–10 0.745 8.574 0.039 0.064 30–8 0.000 38.37 0.074 0.039

7–3 6.437 27.34 0.032 0.021 30–10 8.376 19.82 0.032 0.019

7–5 0.002 11.58 0.057 0.037 50–3 5.345 6.325 0.072 0.032

7–8 0.031 32.42 0.042 0.063 50–5 0.000 67.32 0.068 0.025

7–10 0.000 25.80 0.016 0.007 50–8 0.003 16.07 0.032 0.021

10–3 1.379 16.72 0.059 0.016 50–10 21.03 19.25 0.045 0.015

10–5 0.003 12.22 0.043 0.017 50–30 0.000 26.62 0.073 0.043

10–8 2.435 17.73 0.046 0.019 – – – – –

The bold in the Table is the optimal values obtained by comparing different algorithms under different instances
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PGDHS [48], HMOEA/D [52], P-DABC [73], and NSGA-

II [74], to verify the effectiveness of the proposed algo-

rithm. Table 11 shows the number of surgical resources for

different types of patients at different stages. The duration

time of different types of surgery is shown in Table 12.

Table 13 shows the comparative results of the five algo-

rithms based on the above instances. As can be seen from

the comparative results reported in Table 13: (1) consid-

ering the IGD values, IMOICA obtains 9 better results for 9

instances; (2) for the HV values, IMOICA obtains 8 better

p-value = 1.70709e-16 p-value = 4.82438e-08

Fig. 12 ANOVA comparison results

Table 7 Comparison of IGD and HV values obtained by IMOICA and IMOICA_NRS

Scale IGD HV Scale IGD HV

IMOICA IMOICA_NRS IMOICA IMOICA_NRS IMOICA IMOICA_NRS IMOICA IMOICA_NRS

4–3 5.234 17.34 0.146 0.072 10–10 8.321 34.78 0.040 0.002

4–5 0.442 6.133 0.051 0.031 30–3 3.436 28.45 0.056 0.032

4–8 0.013 11.24 0.067 0.017 30–5 1.367 32.22 0.076 0.039

4–10 0.653 9.987 0.079 0.035 30–8 7.891 35.27 0.079 0.031

7–3 6.737 26.49 0.044 0.051 30–10 0.000 21.24 0.036 0.011

7–5 0.009 29.44 0.091 0.066 50–3 8.973 11.22 0.077 0.033

7–8 0.032 55.24 0.046 0.039 50–5 6.234 53.29 0.086 0.025

7–10 0.001 12.90 0.031 0.027 50–8 3.457 34.49 0.032 0.034

10–3 0.986 17.92 0.073 0.076 50–10 8.673 23.45 0.049 0.021

10–5 0.011 19.03 0.052 0.034 50–30 4.729 35.13 0.076 0.039

10–8 3.478 24.43 0.047 0.022 – – – – –

The bold in the Table is the optimal values obtained by comparing different algorithms under different instances

p-value = 2.78438e-23 p-value = 7.12005e-09

Fig. 13 ANOVA comparison results
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results; and (3) the average performance of HV and IGD

given from the last line can verify the effectiveness of the

IMOICA. Figure 16 represents the Pareto values of the two

instances. It should be noted that there is none true Pareto

front, because the generated 9 instances are generated by a

realistic surgical case scheduling system. Therefore, we

Table 8 Comparison of IGD and HV values between IMOICA and IMOICA_NVS

Scale IGD HV Scale IGD HV

IMOICA IMOICA_NVS IMOICA IMOICA_NVS IMOICA IMOICA_NVS IMOICA IMOICA_NVS

4–3 6.324 21.23 0.132 0.080 10–10 13.25 56.43 0.042 0.029

4–5 1.456 8.667 0.046 0.057 30–3 7.891 22.34 0.053 0.032

4–8 0.679 12.23 0.073 0.043 30–5 4.374 24.99 0.069 0.038

4–10 0.774 17.36 0.081 0.050 30–8 8.563 34.26 0.074 0.041

7–3 8.342 23.45 0.039 0.021 30–10 3.719 22.37 0.046 0.033

7–5 0.002 31.24 0.088 0.046 50–3 0.000 3.227 0.073 0.039

7–8 0.367 62.21 0.054 0.028 50–5 9.876 36.22 0.085 0.055

7–10 0.012 8.798 0.027 0.045 50–8 6.333 4.437 0.040 0.034

10–3 0.886 0.716 0.089 0.067 50–10 9.432 31.24 0.043 0.038

10–5 0.045 13.84 0.047 0.039 50–30 12.37 37.78 0.077 0.043

10–8 6.341 22.32 0.055 0.042 – – – – –

The bold in the Table is the optimal values obtained by comparing different algorithms under different instances

p-value = 2.81327e-14 p-value = 8.8721e-08

Fig. 14 ANOVA comparison results IMOICA and IMOICA_NVS

(a) Pareto results for “7-5” (b) Pareto results for “10-5”

Fig. 15 Pareto values of the compared algorithms
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used the Pareto solutions obtained by the five compared

algorithms as the near Pareto front ‘‘PF’’. It can be seen

from the figure that the IMOICA proposed in this paper can

get more and better Pareto values. Figure 17 shows the

Pareto values of the two different scale practical instances.

5.8 Discussions

The comparison results show that the performance of

IMOICA is obviously better than other efficient algorithms

for similar scheduling problems. This paper studies the

surgical case scheduling problem. In the same running

environment, comparing IMOICA with other algorithms, it

can be seen that the performance of IMOICA is better.

The principal reasons can be concluded as follow. (1)

The concept of AR is introduced into the assimilation

strategy, which can enhance the global search ability of the

algorithm. Increasing the search ability will help to obtain

the global optimal surgical cases scheduling. Through the

comparison of the ANOVA diagram of the two algorithms

in Sect. 5.3, it can be concluded that IMOICA with the

assimilation strategy with AR measure has better perfor-

mance. (2) The revolution strategy is designed in the

proposed algorithm, which can increase the diversity of

solutions. By increasing the diversity of the population,

more surgical cases scheduling can be generated. Through

the comparison of the ANOVA diagram of the two algo-

rithms in Sect. 5.4, it can be concluded that the perfor-

mance of IMOICA with revolutionary strategy is better. (3)

The VNS strategy is embedded in the proposed algorithm,

which can keep the IMOICA from falling into a local

optimality. In case surgical case scheduling cannot be

further optimized. Through the comparison of the ANOVA

diagram of the two algorithms in Sect. 5.5, it can be con-

cluded that IMOICA with VNS strategy has better per-

formance. Furthermore, it can be seen from Fig. 2 that the

surgical case scheduling is obtained by executing the

algorithm, and the scheduling is continuously optimized in

the process of optimizing the algorithm.

6 Conclusion

Effective surgical case scheduling can significantly

improve patient flow, optimize treatment management, and

reduce surgical risk. However, the optimization of surgical

Table 9 Comparison of IGD values between IMOICA, PGDHS, HMOEA/D, P-DABC, and NSGA-II

Scale Best IGD RPI

IMOICA PGDHS HMOEA/D P-DABC NSGA-II IMOICA PGDHS HMOEA/D P-DABC NSGA-II

4–3 5.667 5.667 17.36 15.63 25.00 25.00 0.000 2.064 1.758 3.411 3.411

4–5 1.714 1.714 490.6 122.0 204.7 204.9 0.000 285.2 70.17 118.4 118.6

4–8 0.002 0.002 0.230 0.100 0.100 0.005 0.000 114.0 49.00 49.00 1.550

4–10 0.825 0.825 860.0 96.91 100.3 151.1 0.000 1041 116.4 120.6 182.2

7–3 8.431 8.431 8.431 14.30 10.90 94.20 0.000 0.000 0.697 0.292 10.17

7–5 0.007 0.007 1.178 0.816 0.866 0.011 0.000 180.2 124.6 132.2 0.692

7–8 6.441 9.007 6.441 7.676 8.997 26.44 0.398 0.000 0.192 0.397 3.105

7–10 0.019 0.019 18.42 5.812 6.293 3.543 0.000 968.7 304.9 330.2 185.5

10–3 2.720 2.720 551.4 648.6 781.1 190.1 0.000 201.7 237.4 286.2 68.87

10–5 0.001 0.001 0.329 0.046 0.047 0.058 0.000 657.0 91.40 93.00 115.6

10–8 4.035 4.035 780.7 8.657 15.26 20.61 0.000 192.5 1.146 2.781 4.107

10–10 9.220 9.220 963.2 824.8 66.17 11.53 0.000 103.5 88.46 6.177 0.250

30–3 0.500 0.500 89.19 163.3 72.73 75.43 0.000 177.2 325.4 144.3 149.7

30–5 0.551 0.551 221.9 16.04 18.73 10.62 0.000 401.8 28.12 33.01 18.27

30–8 2.011 2.011 422.6 18.56 48.96 111.0 0.000 209.2 8.227 23.35 54.19

30–10 9.244 9.244 9.972 10.46 10.28 11.00 0.000 0.079 0.132 0.112 0.190

50–3 7.033 7.033 7.033 7.074 7.033 20.01 0.000 0.000 0.006 0.000 1.845

50–5 9.087 9.087 971.7 114.1 772. 6 118.5 0.000 105.9 11.56 84.02 12.04

50–8 7.168 7.168 951.6 938.9 920.4 975.2 0.000 131.8 130.0 127.4 135.1

50–10 23.44 34.02 34.31 23.44 79.88 255.4 0.451 0.464 0.000 2.408 9.895

50–30 0.256 0.256 46.77 62.77 55.51 24.00 0.000 181.7 244.2 215.8 92.75

Avg 4.684 5.310 307.3 147.6 121.7 110.9 0.041 235.9 87.32 84.43 55.62

The bold in the Table is the optimal values obtained by comparing different algorithms under different instances
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case scheduling is challenging. This study regards the

surgical case scheduling problem as a flexible job shop

scheduling problem (FJSP). To tackle the problem,

IMOICA was proposed. First, the social hierarchy strategy

was adopted to initialize the empire. Then, to enhance the

global search ability of the algorithm, the concept of AR

was introduced into the assimilation strategy. Furthermore,

the revolution strategy was conducted to increase the

diversity of population. Finally, a VNS strategy was cap-

able of escaping from being trapped into a local optimum.

The proposed algorithm was applied to the surgical case

scheduling problem, and the scheduling was made in

advance, which shortens the time consumed in the whole

surgery process and saves the medical cost.

Table 10 Comparison of HV values between IMOICA, PGDHS, HMOEA/D, P-DABC, and NSGA-II

Scale Best HV RPI

IMOICA PGDHS HMOEA/D P-DABC NSGA-II IMOICA PGDHS HMOEA/D P-DABC NSGA-II

4–3 0.097 0.097 0.017 0.091 0.017 0.018 0.000 4.706 0.066 4.706 4.389

4–5 0.052 0.052 0.016 0.031 0.010 0.011 0.000 2.250 0.677 4.200 3.727

4–8 0.042 0.042 0.015 0.027 0.010 0.022 0.000 1.800 0.556 3.200 0.909

4–10 0.038 0.038 0.017 0.024 0.018 0.021 0.000 1.235 0.583 1.111 0.810

7–3 0.029 0.029 0.016 0.014 0.010 0.012 0.000 0.813 1.071 1.900 1.417

7–5 0.047 0.047 0.045 0.029 0.019 0.021 0.000 0.044 0.621 1.474 1.238

7–8 0.032 0.032 0.017 0.022 0.019 0.018 0.000 0.882 0.455 0.684 0.778

7–10 0.048 0.036 0.016 0.048 0.020 0.015 0.333 2.000 0.000 1.400 2.200

10–3 0.057 0.057 0.013 0.051 0.010 0.010 0.000 3.385 0.118 4.700 4.700

10–5 0.036 0.036 0.021 0.026 0.011 0.020 0.000 0.714 0.385 2.273 0.800

10–8 0.034 0.034 0.012 0.032 0.022 0.015 0.000 1.833 0.063 0.545 1.267

10–10 0.021 0.021 0.014 0.019 0.021 0.019 0.000 0.500 0.105 0.000 0.105

30–3 0.032 0.022 0.026 0.032 0.011 0.011 0.455 0.231 0.000 1.909 1.909

30–5 0.034 0.034 0.017 0.010 0.017 0.012 0.000 1.000 2.400 1.000 1.833

30–8 0.054 0.054 0.014 0.031 0.017 0.012 0.000 2.857 0.742 2.176 3.500

30–10 0.027 0.022 0.017 0.027 0.014 0.024 0.227 0.588 0.000 0.929 0.125

50–3 0.022 0.022 0.011 0.022 0.011 0.011 0.000 1.000 0.000 1.000 1.000

50–5 0.028 0.028 0.016 0.020 0.012 0.017 0.000 0.750 0.400 1.333 0.647

50–8 0.022 0.022 0.022 0.016 0.012 0.017 0.000 0.000 0.375 0.833 0.294

50–10 0.045 0.045 0.018 0.037 0.011 0.010 0.000 1.500 0.216 3.091 3.500

50–30 0.019 0.019 0.010 0.013 0.016 0.012 0.000 0.900 0.462 0.188 0.583

Avg 0.039 0.038 0.018 0.030 0.015 0.016 0.048 1.380 0.443 1.841 1.701

The bold in the Table is the optimal values obtained by comparing different algorithms under different instances

p-value = 5.43997e-05 p-value = 7.46711e-08

Fig. 16 ANOVA comparison results of the five compared algorithms
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The real advantage of IMOICA is that it is a multi-

objective optimization algorithm designed according to the

research problem, which can solve the research problem

with good comprehensive performance, including local

search ability, global search ability, convergence and so on.

To verify the effectiveness of the proposed method in the

research problem, the numerical analysis and experiments

was performed. Two performance indicators HV and IGD

was introduced to reflect the improvement of the proposed

algorithm compared with other algorithms in saving time

and cost. First, the proposed algorithm was compared with

the CPLEX algorithm, and the effectiveness of the algo-

rithm was verified by two performance indicators. Then, in

the strategy verification section, the degree of improvement

of the algorithm was further illustrated by the performance

indicators and ANOVA diagram. Finally, in the multi-al-

gorithm comparison section, the IMOICA was compared

with other classical algorithms to verify its effectiveness.

The problems in the study include rescheduling when

emergency patient arrivals were not considered and the

uncertain duration of each stage. Therefore, our future

research work should start from the following aspects.

Table 11 Different types of instances

Instances Patients Surgery type (S: M: L: EL:S) Pre-operative medicals Peri-operative medicals Post-operative medicals

1 8 (2: 4:1:1:0) 5 5 2

2 10 (2: 6:1:1:0) 8 6 4

3 10 (2: 5:2:1:0) 8 6 4

4 15 (3: 9:2:1:0) 10 6 3

5 20 (4: 12:3:1:0) 15 10 4

6 20 (4: 10:3:3:0) 15 10 4

7 30 (7: 16:3:2:2) 19 10 5

8 30 (5: 15:3:4:3) 22 12 5

9 30 (3: 15:3:4:5) 22 12 6

Table 12 Duration of different

surgery types
Pre-operative Peri-operative Post-operative

Small Medium Large E-large Special

Duration Random Random Random Random Random Random Random

Normal Normal Normal Normal Normal Normal Normal

(min) (8,2) (33,15) (86,17) (153,17) (213,17) (316,62) (28,17)

(a) Pareto results of instance 1 (b) Pareto results of instance 6

Fig. 17 Pareto values of the different algorithms
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First, emergency patient arrival and rescheduling must be

considered during the surgery. Second, the time of each

stage is represented by fuzzy number. Third, to verify the

effectiveness of the solution, applying the solution to other

areas such as complex manufacturing automation factories,

and considering situations where job scheduling may be

affected by many confusing parameters. Moreover, there

are three types of scheduling models, we will make an in-

depth study of different scheduling models/strategies in the

future. For example, in the study of RFID-driven discrete

manufacturing system dynamic scheduling with multi-layer

network index as heuristic information, the overall and

overall optimization of scheduling will be taken into

account. When studying the establishment of a series of

multi-Agent systems based on blockchain and intelligent

contracts, decentralized self-organization will be consid-

ered. When considering the block chain of the global

optimization model as a two-layer intelligent problem of

intelligent manufacturing, the hybrid mode will be adopted.
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