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Abstract
In this paper, we study the retrieval of desired or relevant points of interest, a set of spatial skyline points, related to a set of

query points to establish distance restrictions. Note that each point of interest has different importance, assigned to each of

them as weight, and the weighted Euclidean distance is used. In order to efficiently handle the weighted spatial skyline

queries, this research presents a novel MapReduce-based solution for the first time. The proposed method prevents the

bottleneck of centrally finding the global skyline from the local skylines and reduces the dominance test by performing the

necessary dominance tests in parallel. Finally, the experimental results show that the proposed method obtains significant

performance improvement.

Keywords Decision-making support system � Spatial skyline query � Weighted Euclidean distance � Parallel processing �
MapReduce

1 Introduction

Despite an increasing amount of data, the process of

retrieving high-relevance information efficiently about a

given query and separating irrelevant information is

becoming increasingly important. The study of the problem

of maximum vectors in the database context led to the

proposal of several efficient algorithms for skyline queries

[1]. Methods using indexing techniques [2–6] perform

better because they can access the data through the index

instead of the entire data set, although their applicability is

limited due to collecting index data. Other approaches

[1, 7–11] are more common because no specialized access

structure is required to calculate the skyline set.

There are several types of skyline queries. Each of them

maintains the main idea and notation of the skyline query

and solves different aspects of the problem. Spatial skyline

query is a novel type of skyline query that prioritizes both

static and dynamic object attributes in multi-criteria deci-

sion-making applications [12]. In spatial skyline query, the

distance between objects is a dynamic object attribute

different from skyline query, which considers only static

object attributes.

In particular, a set of data points of interest and a set of

query points are the two main elements of a spatial skyline

query. Query points define distance constraints on the set of

points of interest. The spatial skyline query returns a subset

of points of interest not spatially dominated by other points

of interest.

Spatial skyline query applies to many applications such

as facility location, crisis management, trips, or event

planning. Take trip planning applications as an example.

Spatial skyline queries help to select the desired set of

hotels based on their distance from attractions of interest.

Assume that some residential buildings must be evacuated

because of several explosions or fires. The spatial skyline

query helps to identify the first buildings to be evacuated.

The suitable hotels were selected by the traditional

spatial skyline points, which only consider their distance to

the query points. But this scenery is not realistic. When

choosing a hotel, users also take into account several other

aspects of the hotel, such as prices or opinions given by

previous users. These aspects combine to obtain an

attraction value to the hotel. Each hotel receives the

obtained attraction value as a weight. The larger the weight

associated with a hotel, the more attractive it is.

Notably, the Euclidean distance may not be able to

model realistic scenery. Therefore, we assign a weight to
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each point of interest (for example, hotels and residential

buildings) to reflect their importance. The weighted

Euclidean distance is the product of the Euclidean distance

and the inverse of the facility weight [13]. It is notable that

the higher the weight, the smaller the weighted distance for

the Euclidean distance. Although there are practical

applications in spatial skyline query considering weighted

Euclidean distance, it has not received much attention at

present.

Note that many of the features used to solve spatial

skyline query become incorrect in the weighted case [13].

For instance, the convex hull and Voronoi diagram accel-

erate the calculation of spatial skylines. However, they are

not practical for weighted spatial skylines. Some efficient

index structures [14] relying on the triangular inequality

are used in spatial skylines to reduce the dominance tests.

When considering weights, they are not correct. Therefore,

most spatial features that reduce computation are generally

not applicable to weighted spatial skylines. Consequently,

we have to use strategies that require several scans of the

entire data set.

The mentioned problems motivate us to use a parallel

solution for weighted spatial skyline queries. An increasing

number of methods have been proposed for skyline queries

in parallel and distributed environments [2, 15–23]. There

is only one parallel solution for spatial skyline queries

using the MapReduce framework [24]. It uses the convex

hull of the query points to define the independent regions.

We know that the properties of the convex hull cannot be

used for weighted spatial skyline queries. The only existing

parallel solution for weighted spatial skyline queries is [13]

using the GPU. It is notable that GPU hardware has limited

memory, and the MapReduce scheme can efficiently han-

dle large-scale data sets.

For the first time, this paper proposes a novel one-phase

MapReduce-based solution for weighted spatial skyline

queries called MR-WSS considering the weighted Eucli-

dean distance. Our proposed method divides a MapReduce

job into two phases: Phase 1: mapping data points, com-

puting local weighted skyline points. Phase 2: verifying

and reducing local weighted skyline points. As we all

know, MapReduce is a divide-and-conquer model. Fur-

thermore, obtaining a weighted spatial skyline set is not a

decomposable problem. That means that the union of the

results of reducers is not the final result for the weighted

spatial skyline set. Hence, it is difficult to process a

weighted spatial skyline query on large-scale data points in

MapReduce. To address this deficiency, each reducer

receives a dominatee set and several dominator sets in the

second phase from mappers. Then, it verifies the data

points in the dominatee set to be dominated by at least a

data point in dominator sets. Finally, the results of all

reducers create the final weighted spatial skyline points set.

The main contributions of this paper can be summarized

as follows:

• We propose an effective one-phase MapReduce algo-

rithm to evaluate the weighted spatial skyline queries

on large data sets. To the best of our knowledge, it is

possibly the first of this work.

• We introduce an adaptation of traditional methods to

compute the local set of weighted spatial skyline points

in the mappers for decreasing the computation

overhead.

• We propose a distributed dominance test to calculate

the final set of weighted spatial skyline points in the

reducers.

• We theoretically and experimentally analyze our

method and show the efficiency and effectiveness of

our proposed algorithm.

The rest of this paper is organized as follows. Section 2

introduces related works, including the traditional skyline

problems. We study the basic concepts of general spatial

skyline query in Sect. 3. We also describe weighted

Euclidean distance and the properties of the spatial skyline

query under this distance. Section 4 presents the proposed

solution based on MapReduce to handle weighted spatial

skyline queries and theoretical analysis. The experimental

validation of the proposed algorithm is shown in Sect. 5.

Section 6 concludes this paper.

2 Related works

There are many studies on skyline computation. Skyline

queries were first studied as maximal vectors and then

introduced in database context [1]. Then, different algo-

rithms were proposed to compute the skyline [5, 9, 25, 26].

Some studies solve the dimensionality problem of skyline

queries due to the dimensional growth of data [27–29].

Some papers have introduced the dynamic skylines queries

[5, 12, 30, 31]. They survey a moving point of interest that

changes the distance to the candidate points. The reverse

skylines queries are another research topic studying the

changes in the skyline points when finding a new candi-

date. The approaches proposed to this problem are based on

the dynamic skylines [3, 32].

As a specific case of dynamic skyline query, in [12],

spatial skyline query was first proposed. Two efficient

algorithms, Branch and Bound Spatial Skyline (B2S2) and

Voronoi based Spatial Skyline (VS2), are introduced for the

static query points. The set of data points of interest uses a

data partitioning method, such as R-tree in the B2S2 algo-

rithm for indexing. This method constructs a convex hull

on the query points Then, it uses the properties of the

convex hull to reduce the check of all pairs of data points in
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the interest points and the query points. The B2S2 algorithm

scans space by traversing the R-tree from its root to leaves.

In this algorithm, the mindist is the sum of distances

between a point and the set of data points. When discov-

ering the first spatial skyline, the R-tree expands with the

node with the least mindist. Next, it performs the domi-

nance test between the found node and all the candidates of

the spatial skyline identified so far. This process continues

until all intermediate nodes, including spatial skylines,

have been visited. Another method, VS2, generates a

Voronoi diagram of the points of interest. Then, it con-

siders the closest data points to the query points and tra-

verses the space to access the neighborhood of the data

points visited on the Voronoi diagram. Each visited data

point is compared to all spatial skyline points identified

earlier for the spatial dominance test. This procedure

repeats until the algorithm finds all Voronoi cells involving

spatial skyline points. The experiments in [12] show that

the VS2 algorithm performs better than the B2S2 algorithm,

but [33] demonstrates that the proposed VS2 algorithm is

not correct and accurate. The improvement algorithm

identifies some spatial skyline points without a dominance

test. The basic idea is that a spatial skyline point is each

point of interest whose Voronoi cell intersects the interior

of the convex hull of query points. Although error cor-

rection decreased the performance, it was still the best

algorithm at that moment.

A faster method is represented in [34], which reduces

the number of tests done. First, it reduces the query points

to the set of points that constructs the smallest convex hull.

Then, the algorithm selects an arbitrary query point q and

sorts the set of interest points according to the increasing

distance up to that point. It chooses the closest data point to

q as the spatial skyline point and evaluates the remaining

data points by increasing the distance to q. Furthermore,

this method uses the transitivity of the dominance property

to reduce the number of tests. A fast approximate algorithm

is also introduced in [34] using the Voronoi diagram of

points of interest and the convex hull of query points. This

algorithm approximates the spatial skyline points by the

points of interest whose Voronoi cell intersects the interior

of the convex hull.

Notably, none of the mentioned approaches can solve

the problem of the spatial skyline in parallel. It is non-

trivial to extend them to a distributed and parallel system.

Due to the high cost of skyline evaluation, various

advanced solutions have been introduced in [2, 15–23] to

analyze general skyline queries in distributed and parallel

environments. None of the computation methods men-

tioned could address the spatial skyline problem. There is

just a parallel method for calculating the spatial skyline

introduced in [24] using the MapReduce technique. The

basic idea is to define several independent regions into the

search region. The spatial skyline points of each indepen-

dent region do not depend on external data points. There-

fore, the problem is divided into several subproblems and

solved in parallel. This method consists of three MapRe-

duce phases. The first phase partitions query points and

constructs several local convex hulls in the map step. Then,

it produces the global convex hull by merging the local

convex hulls in the reduce step. The second phase deter-

mines the independent regions based on points of interest

and the global convex hull. It calculates the pivots of the

local independent region in the map step and then estimates

the optimal pivot of the independent region in the reduce

step. It is a point with equal distance from all convex points

that can subdivide data points of the same size. The third

phase selects an independent region for each point of

interest in the map step. Then, it groups the points of

interest by independent regions and sends them to reducers.

Each reducer computes the spatial skyline points, and the

global spatial skyline points are the union of the output of

reducers. This method removes the repeated skyline points

using an elimination algorithm. The reason is that some

data points may be sent to two or more independent regions

and produced duplicates into the result set.

As mentioned before, many properties such as convex

hull and Voronoi diagram are not practical for calculating

weighted spatial skylines. The only existent method that

evaluates the spatial skyline queries under the weighted

Euclidean distances is in [13]. Their authors introduce a

sequential algorithm called the weighted distance sorting

algorithm, WDS.

The WDS algorithm selects an arbitrary query point at

first. Then, it sorts the points of interest according to their

weighted distance and chooses the closest point of interest

as the weighted spatial skyline query point. In the next step,

the algorithm evaluates other points of interest in increas-

ing distance order. It checks whether currently detected

spatial skyline points dominate the data point. If the data

point is not dominated, it is a point on the spatial skyline

and added to the set of spatial skylines. Another algorithm

is proposed in [13], which is called PWBF. This algorithm

takes advantage of the capabilities of the GPU to accelerate

the process and compute the weighted spatial skylines in

parallel.

Our proposed solution targets weighted spatial skyline

queries, which are different from the other skyline queries.

None of the above computational algorithms except one

could address the weighted spatial skyline problem. The

only existing parallel solution for weighted spatial skyline

queries cannot efficiently deal with large-scale data sets.

Therefore, a novel MapReduce-based solution is proposed,

including a parallel approach for computing the global

weighted spatial skyline points from the local weighted

spatial skyline points into multiple reducers.
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3 Preliminaries

This section presents some fundamental concepts of gen-

eral spatial skyline queries. Then, the weighted Euclidean

distance is defined, and the properties of the spatial skyline

queries under this distance are studied. Finally, the problem

tackled in this paper is formalized which deals with the

weighted spatial skyline queries. All notations used in this

paper are summerized in Table 1.

3.1 Skyline query

Let P be a data set in a d-dimensional space Rd. We rep-

resent a point p [ P as p ¼ x1; x2; . . .; xdf g where p:xi is the
value of the point on the ith dimension. Without loss of

generality in this paper, assume that smaller values are

preferable to larger ones in all dimensions. Given two

points p; p0 2 P, p dominates p0 (p � p0) if and only if for

every dimension i 2 1; . . .; df g, p:xi � p0:xi and there is at

least one dimension j such that p:xj\p0:xj, i.e.

8i 2 1; . . .; df g; p:xi � p0:xi ^ 9j 2 1; . . .; df g; p:xj\p0:xj

ð1Þ

A point p [ P is a skyline point if and only if no other

point p0 2 P dominates p in the data set. A skyline query

retrieves the data points of P, called skyline points (Ssky-

line), over which no other data point dominates, i.e.

Sskyline Pð Þ ¼ f p 2 Pj9= p0 2 P� pf g; p0 � pg ð2Þ

The skyline query returns the points in the data set that

are better than other points in the data set. Based on the

situation, ‘‘better’’ means lower or higher coordinate

values.

Table 1 Overview of the symbols used in the paper

Notation Description

P, Q A set of data points and a set of query points

p, q A data point and a query point

p:xi The value of the data point p in the ith dimension

Rd A d-dimensional space

p � p0 The data point p dominates the data point p0

Sskyline Pð Þ The skyline points of data set P

dE(p, q) The Euclidean distance between points p and q

p �Q p0 The data point p spatially dominates the data point p0 with respect to Q

Sspatialskyline P;Qð Þ The spatial skyline points of P with respect to Q

PB p; p0ð Þ The perpendicular bisector of two points

CR p; p0ð Þ The closest region to p with respect to p0

CH (Q) The convex hull of Q

CP(Q) The convex points of the convex hull

VD (P) The voronoi diagram of P

IR (p, q) The independent region generated by p and q

DR(p, Q) The dominator region of p with respect to Q

w(p) A positive real number as the weight of p

dWE p; qð Þ The weighted Euclidean distance between points p and q

B p; p0ð Þ The bisector of p and p0 with weighted Euclidean distance

WR(p, p0) The weight ratio of two points

p �W
Q p0 The data point p spatially dominates the data point p0 with respect to Q in weighted Euclidean distance

SWSS P;Qð Þ The weighted spatial skyline points of P with respect to Q

d_test(p, p0, Q) A function to evaluate whether p spatially dominates p0 with respect to Q

DSQ(P1, P2) The dominated subset operation, the subset of data points in P2 which are dominated by at least one point in P1

local SWSS P;Qð Þ Sm

i¼1

SWSS Pi;Qð Þ

nonSWSS (Pi, Q) The set of weighted spatial non-skyline points of the set Pi with respect to Q
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3.2 Spatial skyline query

Assume that P is a set of n points of interest and Q is a set

of m query points in a d-dimensional space. Assume p:xi is

the value of the point in the ith dimension. The distance

function dE(p, q) computes the Euclidean distance between

points p and q, and Eq. (3) represents it:

dE p; qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

p:xi � q:xið Þ2
v
u
u
t ð3Þ

Given two points p; p0 2 P, p spatially dominates p0 with
respect to Q, denoted p �Q p0, if and only if

dE p; qð Þ� dE p0; qð Þ for every q 2 Q and there is at least one

query point q0 2 Q such that dE p; q0ð Þ\dE p0; q
0� �
, i.e.

p �Q p0 , 8q 2 Q; dE p; qð Þ� dE p0; qð Þ ^ 9q0 2 Q;

dE p; q0ð Þ\dE p0; q0ð Þ
ð4Þ

Let Sspatialskyline be the set of spatial skyline points of P

with respect to Q in the Euclidean plane. The point p 2 P is

a spatial skyline point with respect to Q (p 2 Sspatialskyline) if

and only if there is no other point in P that spatially

dominates it, i.e.

Sspatialskyline P;Qð Þ ¼ f p 2 Pj9= p0 2 P� pf g; p0 �Q pg
ð5Þ

To obtain spatial skyline points, we require investigating

each point in P whether it is spatially dominated by any

other point in P with respect to Q. However, several geo-

metric features of the spatial skyline can reduce the region

where the spatial skyline point can be found. Some algo-

rithms use these features to decrease dominance tests. We

summarize the most important definitions and properties of

the spatial skyline points in the following.

– The perpendicular bisector of two points PB p; p0ð Þ is

the locus of the points of equal distance of p and p0 in
space. It is a straight line perpendicular to the line

passing through the midpoint of the points p and p0.
– Closest region to p with respect to p0 CR p; p0ð Þ is the

locus of points closer to p than to p0 in Euclidean space.

The perpendicular bisector of two points p and p0 is
PB p; p0ð Þ and the half-plane including p.

– The convex hull of the query points CH (Q) is the

smallest convex polytope that contains all points in Q.

Its vertices are called convex points and define the set

CP (Q).

– The voronoi diagram of the points of interest VD (P)

divides the space into |P| regions. Each region contains

a point of p 2 P and the points of the plane that are

closer to p than any other point in P. Each partition is

called the Voronoi cell.

– Independent Region IR (p, q) is a sphere centered at

q with radius d (p, q). The union of the independent

regions is IRG (Independent Region Group) of p with

respect to Q [24].

– Dominator Region DR(p, Q) is the region where p is

spatially dominated by any point within it [24]. Defined

as Eq. (6):

8p 2 P; DR p;Qð Þ ¼
\

qi2Q
IR p; qið Þ ð6Þ

We can use these definitions to limit the search region to

find the spatial skyline points. Based on these definitions,

some properties are extracted in [12, 13, 24, 33–35], as

shown in the following.

Property 1 If p 2 P is a spatial skyline point for Q0 � Q,

then p is also a spatial skyline point for Q [12].

Property 2 The set of spatial skyline points of P with

respect to Q depends only on the convex points which

define the convex hull of Q [12], i.e.

Sspatialskyline P;Qð Þ ¼ Sspatialskyline P;CP Qð Þð Þ ð7Þ

Property 3 Each point of P inside the convex hull of Q is a

spatial skyline point of P with respect to Q [12].

Property 4 Each point of P whose Voronoi cell intersects

the inside of the convex hull of Q is a spatial skyline point

[33, 35].

Property 5 Let p, p0, and p00 be three data points of P. If

p spatially dominates p0 with respect to Q and p0 spatially
dominates p00 with respect to Q, then p spatially dominates

p00 with respect to Q [34].

Property 6 Let p; p0 2 P and PB p; p0ð Þ be the perpendic-

ular bisector of two points in the plane, and CH (Q) is the

convex hull of Q. Two points do not spatially dominate

each other if and only if PB p; p0ð Þ intersects the interior of

CH(Q) [34].

Property 7 Assume that p is the data point of P and DR(p,

Q) is the dominator region of p with respect to Q. The p is a

spatial skyline if and only if it is the only point of P in its

dominator region [24]. Equation (8) represents it:

8p 2 P; p 2 Sspatialskyline P;Qð Þ , P \ DR p;Qð Þ ¼ pf g
ð8Þ

Property 8 Given p 2 P and q 2 Q, each point p0 2
P \ DR p; qð Þ can only be dominated by a data point of

P \ DR p; qð Þ [24].
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3.3 Weighted Euclidean distance

Let P be a set of points of interest and Q be a set of query

points in the space. The dE(p, q) denotes the Euclidean

distance between points p 2 P, and q 2 Q. Assume that

each point p 2 P is assigned a positive real number as the

weight w(p)[ 0 to consider its importance. The weighted

Euclidean distance between two points p 2 P and q 2 Q is

defined as:

dWE p; qð Þ ¼ 1

w pð Þ dE p; qð Þ ð9Þ

The weighted Euclidean distance is a non-metric

parameter. Because the weights are point-dependent, tri-

angle inequality is not maintained.

For instance, Fig. 1 shows a set of eight points P = {p1,

p2, …, p8} and a query point Q = {q}. The Euclidean

distance is considered for each point of P with respect to

the query point q in Fig. 1a. Based on the point weight, the

weighted Euclidean distance is computed for each point of

P concerning q in Fig. 1b, while the weight of each point is

shown in parentheses. It is notable that some points place

near point q in the Euclidean distance (e.g., p1, p2, and p3

in Fig. 1a), containing a greater weighted Euclidean dis-

tance (in Fig. 1b). Since these points weigh less than other

points, their weighted Euclidean distance is more. On the

other hand, the more weight the points are than the other

points (e.g., p5, p6, p7, and p8), the less their weighted

Euclidean distance.

3.4 Bisector between two points with weighted
Euclidean distance

Assume that P is a set of points, and each point p 2 P is

also given a weight w(p)[ 0. For each pair p; p0 2 P, the

set of all points that have equal weighted Euclidean dis-

tance between two points p and p0, with weights w(p) and

w(p0) is called the bisector of p and p0 and is denoted

B(p,p0) where

B p; p0ð Þ ¼ f xjdWE p; xð Þ ¼ dWE p0; xð Þg
¼ fxjdE p; xð Þ=dE p0; xð Þ ¼ w pð Þ=w p0ð Þg

ð10Þ

Bisectors generate two different types. If w(p) = w(p0)
then, B(p, p0) is the hyperplane being orthogonal to the line

between p and p0 and bisecting it. In the special case

(x 2 R2 in Eq. 10), the hyperplane is a straight line. If

w(p) = w(p0) then B(p, p0) is a sphere that has the fol-

lowing center and radius:

c ¼ w pð Þ2p0 � w p0ð Þ2p
w pð Þ2�w p0ð Þ2

and r ¼ w pð Þw p0ð ÞdE p; p0ð Þ
w pð Þ2�w p0ð Þ2
�
�

�
�

ð11Þ

In the special case (x 2 R2 in Eq. 10), the sphere is a

circle. If w(p)\w(p0), B(p, p0) is a circle containing p in its
interior [36]. Let WR be the weight ratio of two points,

WR(p, p0) = w(p)/w(p0), Fig. 2 represents three examples of

bisector B(p, p0) for fixed points p and p0 corresponding to

WR(p, p0) = 1, 2, 1/3 values. The bisector becomes a

straight line in the particular situation WR(p, p0) = 1

(w(p) = w(p0)). The bisector is a circle surrounding point p0

in the special case of WR(p, p0) = 2, and it is a circle

surrounding point p in the case of WR(p, p0) = 1/3. Nota-

bly, the circle radius decreases as WR increases, and the

center becomes closer to the surrounded point.

The definition of the closest region to p with respect to

p0, CR p; p0ð Þ should be re-evaluated according to the

denotation of B p; p0ð Þ. The closest region to the point p

may be the interior or the exterior of the circle specified by

B p; p0ð Þ. For instance, in the case of WR(p, p0) = 2 in

Fig. 2, the closest region to the point p with respect to p0 is
the outer region of the circle.

Fig. 1 An example of a set of

points of interest and a query

point: a Euclidean distances

b weighted Euclidean distances
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3.5 Weighted spatial skyline queries

Let P be a set of n weighted points and Q be a set of m

query points in a d-dimensional space. Assume that p and

p0 are two weighted points of P, p spatially dominates p0

with respect to Q in weighted Euclidean distance, denoted

p �W
Q p0, if and only if dWE p; qð Þ� dWE p0; qð Þ for every q 2

Q and there is at least one query point q0 2 Q such that

dWE p; q0ð Þ\dWE p0; q
0� �
, i.e.

p �W
Q p0 , 8q 2 Q; dWE p; qð Þ� dWE p0; qð Þ ^ 9q0 2

Q; dWE p; q0ð Þ\dWE p0; q0ð Þ
ð12Þ

Assume that SWSS is the set of weighted spatial skyline

points of P with respect to Q in weighted Euclidean dis-

tance. The weighted point p 2 P is a weighted spatial

skyline point with respect to Q (p 2 SWSS) if and only if

there is no other weighted point in P that spatially domi-

nates it, i.e.

SWSS P;Qð Þ ¼ f p 2 Pj9= p0 2 P� pf g; p0 �W
Q pg ð13Þ

In other words, SWSS P;Qð Þ contains the weighted points

of the set P with respect to Q:

SWSS P;Qð Þ ¼ f p 2 Pj8p0 2 P� pf g; 9q 2 Q; q
2 CR p; p0ð Þg ð14Þ

We obtain different results in the spatial skyline query

with the weights for the points of interest.

Some of the well-known properties of the spatial skyline

points presented in Sect. 3.2 still hold in the weighted

spatial skyline points, but most of them turn to be not true.

Several statements related to the geometric properties of

the weighted spatial skyline queries have been provided to

demonstrate the difference between the weighted and the

unweighted spatial skyline queries.

1. Assume that Q0 � Q and p 2 P for Q0 is a weighted

spatial skyline point. It may happen that p for Q is not a

weighted spatial skyline point. For example, in Fig. 3,

Q0 = {q2, q3, q4} and p is a weighted spatial skyline

point. The point p is not a weighted spatial skyline

point for Q because p0 spatially dominates it with

respect to q1.

2. Let CP (Q) denote the convex points of Q, the points

defining the convex hull of Q (see Sect. 3.2 for further

details). The set of spatial skyline points of P may not

depend only on CP (Q) in weighted Euclidean

distance. For example, in Fig. 3, the point p spatially

dominates p0 with respect to CP (Q) = {q2, q3, q4}. The

point p is not a weighted spatial skyline point with

respect to Q because the point p0 spatially dominates it

with respect to Q = {q1, q2, q3, q4}.

3. A point p 2 P inside the convex hull of Q (CH (Q))

may not be a spatial skyline point of P concerning Q in

weighted Euclidean distance. For instance, in Fig. 4,

the point p0 inside CH (Q) is not a weighted spatial

skyline point because point p dominates it.

4. Two points p; p0 2 P may dominate each other, while

the bisector between two points (B p; p0ð ÞÞ intersects the
interior of the convex hull of Q (CH (Q)). For example,

in Fig. 3, even though B p; p0ð Þ intersects with the

interior of CH (Q), p0 dominates p. This statement can

be seen again in Fig. 4. The bisector between p and p0

intersects with the interior of the convex hull of Q, but

the point p dominates the point p0.
5. Each point p 2 P whose Voronoi cell overlaps the

inside of the convex hull of Q may not be a weighted

spatial skyline point. For example, in Fig. 4, the

Voronoi cell of p0 overlaps the inside of CH (Q), but

it is not a weighted spatial skyline point.

Fig. 2 The bisectors of p and p0 corresponding to three ratios WR(p,
p0)

Fig. 3 An example of two weighted point P = {p, p0} with WR(p,
p0) = 2 and Q = {q1, q2, q3, q4}

Fig. 4 An example of two weighted point P = {p, p0} with WR(p,
p0) = 2 and Q = {q1, q2, q3}
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6. Assume that the independent region p 2 P and q 2 Q is

a sphere centered at q with radius dWE p; qð Þ. Dominator

Region of p with respect to Q may not be created

because the independent regions of p with respect to

Q do not overlap. For instance, the independent regions

of point p with w(p) = 2 with respect to Q = {q1, q2,

q3} are shown in Fig. 5. DR (p, Q) is the intersection of

the regions of point p with respect to Q according to

Eq. (6). It is empty in Fig. 5.

As it can be seen, many of the properties used to solve

spatial skyline queries do not match the weighted spatial

skyline queries. The convex hull or the Voronoi diagram

does not reduce the number of tests performed. It is also

not possible to use the Dominator Region to accelerate the

discovery of the weighted spatial skylines. The weight

cannot be selected randomly, and its value significantly

affects the results. The weight causes |Q| virtual points to

be extracted from each point p 2 P. Each point p is vir-

tually placed in a different place for each query point

q 2 Q. Figure 6 shows a transformation of the points of

P according to each query point. Therefore, many of the

techniques used in the unweighted case do not extend to the

weighted one.

4 Parallel processing of weighted spatial
skyline queries

This section introduces a new MapReduce-based solution

for processing weighted spatial skyline queries (MR-WSS).

As described in the previous sections, many properties of

spatial skylines cannot be used to reduce the number of

tests done on weighted spatial skylines. Hence, this section

proposes a parallel computing approach to accelerate the

process.

4.1 Theoretical foundation

Consider a set of weighted data points P and a set of query

points Q. The first property for the weighted spatial skyline

set is as follows:

Lemma 1 Assume that p 2 P is a unique point and the

point closest to q 2 Q. The point p is a weighted spatial

skyline point.

Proof We have p 2 P is a unique point and the closest

point to q 2 Q, which means:

8p0 2 P; dWE p; qð Þ\dWE p0; qð Þ ð15Þ

Therefore, there is not a weighted point in P that

spatially dominates p with respect to Q. Equation (13)

implies that point p is a weighted spatial skyline

point. h

In particular, if the point p is not unique. There is more

than one weighted point with the same minimum distance

to the point q. At least one of them is a weighted spatial

skyline point, and others are spatially dominated. There-

fore, we assume that the closest weighted point to each

query point is unique in the remainder of this paper,

without loss of generality.

Lemma 1 demonstrates that the presence of some points

in the set of weighted spatial skyline points is independent

of the position of any other data points. The following

Lemma shows the transitivity rule in weighted spatial

skyline points.

Lemma 2 For three weighted points p; p0; p00 2 P, if

p spatially dominates p0 concerning Q and p0 spatially

dominates p00 with respect to Q, then p spatially dominates

p00 with respect to Q.

Proof If p spatially dominates p0 with respect to Q i.e.

8q 2 Q; dWE p; qð Þ� dWE p0; qð Þ ^ 9q0
2 Q; dWE p; q0ð Þ\dWE p0; q0ð Þ ð16Þ

If p0 spatially dominates p00 with respect to Q i.e.

8q 2 Q; dWE p0; qð Þ� dWE p00; qð Þ ^ 9q00 2 Q;

dWE p0; q00ð Þ\dWE p00; q00ð Þ
ð17Þ

Consider two cases (i) q0 ¼ q00 (ii) q0 6¼ q00.
Fig. 5 The independent regions of p with w(p) = 2 and Q = {q1, q2,
q3} in 2-dimensional space

Fig. 6 Virtual transformation of P = {p1, p2} according to Q = {q1,
q2}
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(i) q0 ¼ q00: According to Eqs. (16) and (17):

8q 2 Q; dWE p; qð Þ� dWE p0; qð Þ� dWE p00; qð Þand

9 q0 ¼ q00

2 Q; dWE p; q0ð Þ\dWE p0; q0ð Þ\dWE p00; q0ð Þ

Therefore, p spatially dominates p00 with respect

to Q (p �W
Q p00).

(ii) q0 6¼ q00: According to Eq. (16), there is a query

point q0 2 Q that dWE p; q0ð Þ\dWE p0; q0ð Þ and

according to Eq. (17), for all query points q0 2 Q

except q00 2 Q; dWE p0; q0ð Þ � dWE p00; q0ð Þ.
Therefore,

dWE p; q0ð Þ\dWE p00; q0ð Þ ð18Þ

On the other hand, for all query points except q0 2 Q, we

have dWE p; qð Þ� dWE p0; qð Þ or dWE p; q00ð Þ � dWE p0; q00ð Þ
according to Eq. (16) and dWE p0; q00ð Þ\dWE p00; q00ð Þ
according to Eq. (17). It is clear that:

dWE p; q00ð Þ\dWE p00; q00ð Þ ð19Þ

Therefore, by Eqs. (18) and (19), p spatially dominates

p00 with respect to Q (p �W
Q p00). h

The typical method of calculating weighted spatial

skyline is to check the spatial dominance between each pair

of data points. We want to exploit the distributed envi-

ronment to accelerate the computation process. The basic

idea is to partition the data points first. Then, it assigns that

data to different nodes to compute the weighted spatial

skyline points locally. It is notable that according to the

role of the query points set in the problem, its cardinality

has to be much smaller than the cardinality of the data

points set. Hence, each partition receives all query points.

Finally, a central site collects the local weighted spatial

skyline points to compute the global weighted spatial

skyline points.

To solve the problem in a distributed environment, the

problem must be decomposable. Assume that op1 is a query

operator on the data points set P and divide P into n sub-

sets. The op1 is a decomposable operator since it can be

computed by another operator (for example, op2) as given

in Eq. (21):

P ¼
[n

i¼1

Pi ð20Þ

op1
[n

i¼1

Pi

 !

¼ op2
[n

i¼1

op1 Pið Þ
 !

ð21Þ

Unfortunately, weighted spatial skyline computation is

not a decomposable problem. According to Eq. (13), the

weighted point p 2 P is a weighted spatial skyline point

with respect to Q if and only if there is no other weighted

point in P that spatially dominates it. Therefore, we have to

check each point with the others, while some are in other

partitions.

Lemma 3 The weighted spatial skyline query is not

decomposable.

Lemma 3 shows that a set of data points cannot be

divided into multiple partitions and, then the results of each

partition are combined as the final results of a weighted

spatial skyline query. Therefore, we need more operation to

obtain the final result.

The proposed method computes the set of weighted

spatial skyline points in one phase of MapReduce. It

obtains the local weighted spatial skyline points in mappers

and then distributes the tasks of computing the global

weighted spatial skyline points into reducers.

4.1.1 Distributed dominance tests

Let p and p0 be two weighted data points in P and d_test(p,

p0, Q) denote a function to evaluate whether p spatially

dominates p0 with respect to Q. If p �W
Q p0, d_test(p, p0,

Q) returns ‘True’ else returns ‘False’. A dominance test is

to perform this function once. The intuitive method to find

the weighted spatial skyline points of a set of data points

P with respect to Q is to perform a dominance test on each

data point pair (p, p0) with p = p0. Let SWSS be the set of

weighted spatial skyline points of P with respect to Q and

first SWSS = P. The data point p0 is removed from SWSS if

d_test(p, p0, Q) is true for every other data point p in SWSS.

We introduce a dominated subset operation on two sets

of data points to design a distributed method to perform the

dominance tests on the local weighted spatial skyline

points. Let P1 and P2 denote two nonempty subsets of P. A

dominated subset operation on P1 and P2 with respect to

Q, denoted DSQ(P1, P2), is as follows:

DSQ P1;P2ð Þ ¼ f pjjpj 2 P2 ^ 9pi 2 P1; pi �W
Q pjg ð22Þ

where P1 as dominator set and P2 as dominatee set are

known.

The result of DSQ(P1, P2) is a spatially dominated

subset of P2 with regard to P1. The P2—DSQ(P1, P2) is

the undominated subset of P2 with regard to P1. DSQ(P, P)

represents the data points in P spatially dominated by at

least one point in P. In other words, DSQ(P, P) consists of

the data points which are not in SWSS(P, Q).Therefore,

SWSS P;Qð Þ ¼ P� DSQ P;Pð Þ ð23Þ

Assume that P1, P2, …, Pm are m partitions of a set of

data points P (P ¼
Sm

i¼1

Pi). The main objective is to find
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SWSS(P, Q) from the SWSS(Pi, Q) for i = 1, …, m by per-

forming the dominated subset operations among SWSS(Pi,

Q) for i = 1, …, m.

Lemma 4 Let P1, P2, …, Pm are m partitions of a set of

data points P (P ¼
Sm

i¼1

Pi). Let.

local SWSS P;Qð Þ ¼
[m

i¼1

SWSS Pi;Qð Þ ð24Þ

For each partition Pi,

DSQ P;Pið Þ ¼ DSQ local�SWSS P;Qð Þ;Pið Þ ð25Þ

Proof For each data point p belongs to

DSQ local�SWSS P;Qð Þ;Pið Þ, it also belongs to Pi (p 2 Pi)

and it is dominated by a point in local�SWSS P;Qð Þ.
Because the local�SWSS P;Qð Þ is a subset of P, p is domi-

nated by a point in P, i.e., p 2 DSQ P;Pið Þ.
For each data point p in DSQ (P, Pi), there is a data point

in P (e.g., p0 2 P) that dominates p. Let Pj be the partition

containing p0. Consider two cases:

(i) p0 is in SWSS(Pj, Q): p is dominated by a data point

in local�SWSS P;Qð Þ because, according to Eq. (24),

SWSS(Pj, Q) is a subset of local�SWSS P;Qð Þ.
(ii) p0 is not in SWSS(Pj, Q): there is a data point p00 in

SWSS(Pj, Q) which dominates p0 and p (Lemma 2.).

Therefore, the data point p is dominated by a point

in SWSS(Pj, Q), a subset of local�SWSS P;Qð Þ.

In both cases, the data point p is in DSQ local�ð
SWSS P;Qð Þ;PiÞ. h

Lemma 5 Let P1, P2, …, Pm are m partitions of a set of

data points P (P ¼
Sm

i¼1

Pi). Then,

SWSS P;Qð Þ ¼
[m

i¼1

ðSWSS Pi;Qð Þ
�

[

j ¼ 1::m
j 6¼ i

DSQ SWSS Pj;Qð Þ; SWSS Pi;Qð Þð ÞÞ

ð26Þ

Proof According to Eq. (23): SWSS P;Qð Þ ¼ P� DSQ
P;Pð Þ

SWSS P;Qð Þ ¼
[m

i¼1

Pi� DSQ P;
[m

i¼1

Pi

 !

ð27Þ

¼
[m

i¼1

Pi�
[m

i¼1

DSQ P;Pið Þ ð28Þ

¼
[m

i¼1

Pi� DSQ P;Pið Þð Þ ð29Þ

h

from Lemma 4:

¼
[m

i¼1

Pi� DSQ local�SWSS P;Qð Þ;Pið Þð Þ ð30Þ

Each Pi consists of the points of the skyline and the

points of non-skyline. The points dominated by the points

in the skyline are the points of non-skyline. According to

Eq. (13), Let SWSS (Pi, Q) be the set of weighted spatial

skyline points of the set Pi with respect to Q, and then

nonSWSS (Pi, Q) be the set of weighted spatial non-skyline

points of the set Pi with respect to Q. Therefore, SWSS(P, Q)

is:

SWSS P;Qð Þ ¼
[m

i¼1

SWSS Pi;Qð Þ [ nonSWSS Pi;Qð Þð Þð Þ

� DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þ [ nonSWSS Pi;Qð Þð Þð Þ
ð31Þ

For any universe U and subsets A, B and C of U, the

following identity holds:

A [ Bð Þ � C ¼ A� Cð Þ [ B� Cð Þ ð32Þ

By Eqs. (31) and (32):

SWSS P;Qð Þ ¼
[m

i¼1

ðSWSS Pi;Qð Þ � DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þ [ nonSWSS Pi;Qð Þð Þð Þð Þ

[ nonSWSS Pi;Qð Þ � DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þ [ nonSWSS Pi;Qð ÞÞð Þð Þð Þ

ð33Þ

We could consider:

DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þ [ nonSWSS Pi;Qð Þð Þð Þ ¼
DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þð Þ [ DSQ local�SWSS P;Qð Þ; nonSWSS Pi;Qð Þð Þ

ð34Þ

By Eq. (24), SWSS Pi;Qð Þ � local�SWSS P;Qð Þthen :

DSQ local�SWSS P;Qð Þ; nonSWSS Pi;Qð Þð Þ ¼ nonSWSS Pi;Qð Þ
ð35Þ

We substitute Eqs. (35) into (33):

SWSS P;Qð Þ ¼
[m

i¼1

SWSS Pi;Qð Þ � ðDSQ local�SWSS P;Qð Þ;ð SWSS Pi;Qð Þð Þ [ nonSWSS Pi;Qð Þð ÞÞ
[ nonSWSS Pi;Qð Þ � ðDSQ local�SWSS P;Qð Þ;ðð SWSS Pi;Qð ÞÞ
[ nonSWSS Pi;Qð ÞÞÞÞ

ð36Þ

Finally,
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SWSS P;Qð Þ ¼
[m

i¼1

SWSS Pi;Qð Þ � DSQ local�SWSS P;Qð Þ; SWSS Pi;Qð Þð Þð Þ

ð37Þ

The SWSS (Pi, Q) from local_ SWSS (P, Q) must be

removed to solve the problem properly. Therefore,

SWSS P;Qð Þ ¼
[m

i¼1

SWSS Pi;Qð Þ � DSQ local�SWSS P;Qð Þ � SWSS Pi;Qð Þ; SWSS Pi;Qð Þð Þð Þ

ð38Þ

¼
[m

i¼1

ðSWSS Pi;Qð Þ
�

[

j ¼ 1::m
j 6¼ i

DSQ SWSS Pj;Qð Þ; SWSS Pi;Qð Þð ÞÞ ð39Þ

We design a distributed algorithm to compute the

weighted spatial skyline points according to Lemma 5.

4.2 The proposed strategy

Our approach MR-WSS consists of one MapReduce phase,

which receives a set of weighted data points P and query

points Q and outputs a set of weighted spatial skyline

points of P with respect to Q.

Initially, all data points are divided into m splits, and

each split is assigned to a mapper. The cardinality of the set

of query points is much less than that of the set of data

points, so each mapper receives the set of query points.

Each mapper (mapperi) computes the set of weighted

spatial skyline points of each split Pi with respect to

Q (SWSS (Pi, Q)) and then sends the result to the reducers.

Each reducer (reduceri) uses the set of weighted spatial

skyline points of split Pi (SWSS(Pi, Q)) as the dominatee

and the set of weighted spatial skyline points of split Pj (

SWSS(Pj, Q)) as the dominator (for j = 1, 2, …, m, j = i).

Then, it removes the data points in SWSS (Pi, Q) dominated

by at least a data point in SWSS (Pj, Q).

Finally, the results of all the reducers create the final set

of weighted spatial skyline points (SWSS (P, Q)). Figure 7

demonstrates the framework of the MR-WSS method.

Each mapper should compute the set of weighted spatial

skyline points for a split of data points concerning a set of

query points in the proposed method. The main idea is to

perform a dominance test on each pair of data points. An

adaptation of the traditional methods of computing the

local set of weighted spatial skyline points in the mappers

is introduced.

An arbitrary point of query points is initially selected

(e.g., q 2 Q), and then the data points of P are sorted

according to their weighted distance to the query point q.

The closest data point of P to the query point q is chosen

(e.g., p0 2 P) as the first data point of P in the weighted

spatial skyline set (due to Lemma 1) and stored in the

weighted spatial skyline set (SWSS (P, Q)). Then, each data

point p 2 P is analyzed in increasing distance order by

checking whether it is dominated by any of the weighted

spatial skyline points currently detected. If not dominated,

it is a weighted spatial skyline point and is added to the

weighted spatial skyline set (SWSS (P, Q)). According to

lemma 2, each non-skyline point will be dominated by one

of the skyline points already detected. Therefore, the final

set contains all points of the weighted spatial skyline.

Algorithm 1 describes the details of the proposed method.

A dominance test determines whether the point p 2 P is

dominated by a point of the currently detected weighted

spatial skyline set (p0 2 SWSS). If a point q 2 Q is closer to

point p0 than to point p, then point p0 dominates point p.

The algorithm traverses query points Q to compute and

compare the weighted distances dWE (p0,q) and dWE (p,q).

Once a point q 2 Q is found with dWE (p0,q)\ dWE (p,q), it

indicates that p0 dominates p and the dominance test returns

the ‘True’ value. If for all q 2 Q the inequality dWE

(p0,q) C dWE (p,q) holds, p0 does not dominate p. If this

process is repeated for all p0 2 SWSS and none dominates p,

then point p is a weighted spatial skyline point. Algorithm

2 shows the dominance test pseudocode.

Fig. 7 The framework of the proposed method MR-WSS
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The proposed method MR-WSS first finds the local

skyline points by mappers. Each mapper uses Algorithms 1

and 2 to compute the local skyline points from the assigned

split (see the pseudocode in Algorithm 3). The global

skyline computation from the local skyline points is done

by the dominated subset operations distributed to multiple

reducers for parallel processing. Algorithm 4 shows this

process.

Complexity analysis Assume that n =|P|, m =|Q| and all

data points are divided into k splits, and each mapper

receives a split. First, the memory and then the execution

time requirements of the MR-WSS are analyzed. Each

mapper gets the same share of data points and whole query

points and computes local weighted spatial skyline points

(LSWSS). Suppose that l =|LSWSS| and in the best case l = m

and the worst case l = n/k. Therefore, the memory

requirements are O(n/k ? m ? l) = O(n/k ? m) for each

mapper. Each reducer receives local weighted spatial

skyline points from the mappers and computes the fraction

of global weighted spatial skyline points. The number of

global weighted spatial skyline points is much less than the

number of data points. Hence, the total memory require-

ment is O(n ? m). In terms of time complexity, the algo-

rithm requires O(n=k log n=kÞð Þ to sort the data points

according to the distance to an arbitrary query point q in

each mapper. It performs at most O(nl/k) dominance tests

takes O(m) time each in the worst case. This process leads

to the worst-case time complexity of

O(n=k logðn=kÞ þ nml=kÞ for each mapper. Each reducer

performs at most O(l2k) dominance tests taking O(m) time

in the worst case. It leads to the worst-case time complexity

of O(l2mk) for each reducer. There are cases the number of

local skylines is l = O(m) in the best cases. The algorithm

could run in O(n=k logðn=kÞÞ time. On the other hand, there

exist cases where l = O(n/k), in the worst case, and the time

complexity of this algorithm is O(n2m/k).
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Concerning the previous sections, most of the properties

and techniques used in spatial skyline queries cannot be

used to the weighted spatial skyline query because the

nature of the problems is quite different. Therefore, this

strategy is introduced to accelerate computations by taking

advantage of the benefits of parallel implementation.

5 Experimental results

In this section, the two subsections introduce the experi-

mental settings and the effectiveness evaluations on the

strategies applied in the proposed algorithm MR-WSS,

respectively.

5.1 Experimental settings

All experiments were performed by an Intel Xeon E7-8890

v4 processor, with a total speed of 2.2 GHz, 28 cores (48

threads) in total, and 512 GB of memory. We executed all

the implementations in Spark 2.4.7 and Scala 2.11.12 on

Linux 3.10.0.

The actual weighted data sets are not easy to obtain, so

experiments have been performed with synthetic data. We

consider several data sets P with different cardinalities

from 2 to 100 K, and three data sets Q with 50, 100, and

150 queries as synthetic data sets. Because of the role of

query points in the problem, their cardinality is much

smaller than the cardinality of P. The sets P and Q were

generated randomly in the squared domain [0, 1] 9 [0, 1],

and the weights of data points were also generated within

[1, 10]. Figure 8 shows a set P with 100 weighted points

and a set Q with 5 query points that the weighted points are

blue, the query points are red, and the obtained weighted

skyline points are green. We label the skyline points

obtained with their weights in the image. This figure re-

flects that the weighted spatial skyline points tend to be too

close to the query points and, in most cases, have a sig-

nificant weight.

5.2 Performance analysis

In this section, we evaluate the performance of the pro-

posed MapReduce-based algorithm on several synthetic

data sets. The following comparison algorithms were

selected to be implemented in the same experimental

environment to assess our proposed algorithm MR-WSS.

DEFT is a serial and base algorithm to obtain weighted

spatial skyline points. WDS [13] is another serial algorithm

that is an adaptation of [34]. It sorts the interest points

according to their distance to an arbitrary query point.

Then, it selects the closest point of interest as the first

weighted spatial skyline point and checks other points of

interest to add to the set of the weighted spatial skyline

points. There is no parallel algorithm for weighted spatial

skyline points based on the MapReduce framework. PWBF

[13] is the only existing parallel solution that uses GPU for

weighted spatial skyline queries. Due to the different

implementation environments, we only used it to compare

speedup.

Figures 9, 10, and 11 provide the information related to

the performance of the mentioned algorithms when con-

sidering several sets of interest points and query points. We

ran the algorithms with 21 pairs of P and Q sets, repeated

ten times for each experimental group, and reported the

average value to obtain more reliable results.

We can see the number of weighted spatial skyline

points for the different cardinalities of P and Q in Fig. 9.

The output size increases as the number of interest points

and query points increases. Based on the results obtained

with different sets, between 8 and 31% of the points of P

are skyline points. Figure 10 shows the execution times of

the presented algorithms. We observe that the proposed

algorithm MR-WSS is faster than the DEFT and WDS in

all cases. When the number of points of interest is small,

the execution time of the three algorithms is almost the

same. The reason is that the number of dominance tests

performed by the algorithm is small. The execution time of

Fig. 8 In blue 50 weighted points, in red 5 query points and in green

all the weighted skyline points Fig. 9 Output size for different cardinalities of P and Q
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DEFT increases dramatically as the number of points of

interest increases because this algorithm performs the

dominance test for all pairs of points of interest. According

to the experiment results, WDS has a shorter execution

time than DEFT in all test cases because it performs less

dominance test than DEFT. The proposed algorithm MR-

WSS has the least execution time among these algorithms,

and its execution time does not increase much as the

number of points of interest increases. The reason is that it

performs fewer dominance tests based on Lemma 2, similar

to WDS. MR-WSS is faster than WDS because WDS sorts

all data points serially, but MR-WSS sorts them in parallel

by mappers. In addition, WDS does the dominance tests to

obtain weighted spatial skyline points in serial, but MR-

WSS first computes the local skylines by mappers and then

obtains the global skylines by reducers. MR-WSS takes

advantage of the benefits of parallel performing of the

dominance tests.

To easily visualize how many times MR-WSS is faster

than WDS and PWBF, in Fig. 11, we present the speedup

of three methods related to DEFT. These speedups vary

from 3.3 to 52.8 for |Q| = 50, 2.9 to 50.6 for |Q| = 100, and

2.7 to 52.9 for |Q| = 150. We can see that PWBF always

has a higher speedup than WDS, although it does more

operations as the number of points of interest increases.

Fig. 10 Execution time at different data sizes of P when a |Q| = 50,

b |Q| = 100, c |Q| = 150

Fig. 11 Speedup MR-WSS vs WDS and PWBF at different data sizes

of P when a |Q| = 50, b |Q| = 100, c |Q| = 150

3262 Cluster Computing (2022) 25:3249–3264

123



The reason is that PWBF exploits the parallel capabilities

of the GPU. According to the experiment results, MR-WSS

has the highest speedup among these algorithms. By

comparing the complexities of PWBF and MR-WSS, they

theoretically have the same time complexity. PWBF has

the O(n2m/k) time complexity when O(n) threads are

considered [13]. It is not possible in the real world.

Therefore, GPU hardware has memory limitations, and the

MapReduce scheme can efficiently deal with large-scale

data sets. Finally, the experiment results demonstrate that

the proposed method is a scalable and fast algorithm.

6 Conclusions and future work

We have theoretically studied and proposed a novel solu-

tion for the weighted spatial skyline query, namely MR-

WSS, which can be applied to different decision-making

applications. Traditional methods cannot efficiently pro-

cess the weighted spatial skyline queries because most of

their properties are useless for the weighted spatial skyline

queries. Therefore, we design a parallel algorithm utilizing

the MapReduce framework to improve the performance of

the weighted spatial skyline queries. The proposed algo-

rithm MR-WSS prevents the bottleneck of centrally finding

the global spatial skyline from the local spatial skylines. It

uses an adaptation of the traditional methods to compute

the local set of weighted spatial skyline points in the

mappers. Then, it distributes a set of dominated subset

operations to reducers to find the global weighted spatial

skyline points. The experimental results show that MR-

WSS is a scalable and fast algorithm because the execution

time increases much slower than other algorithms while the

data points size increases. In addition, MR-WSS outper-

forms WDS and PWBF algorithms by a factor between 4

and 13 in most analyzed settings.

In the future, to further improve the performance, we are

interested in controlling the load balance of the tasks

assigned to the mappers and reducers. Another future work

is to extend the proposed method to support the weighted

spatial skyline queries over data streams. The proposed

algorithm will be adapted to manage resources for virtual

machine migration in cloud computing. The expanded

solution can improve the performance to cases where more

intelligence is required to improve the performance of fog

or edge computing in task scheduling based on different

parameters such as response time, quality of results, and

energy.
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