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Abstract
The rapid deployment of the Internet of Things (IoT) devices have led to the development of innovative information

services, unavailable a few years ago. To provide these services, IoT devices connect and communicate using networks like

Bluetooth, Wi-Fi, and Ethernet. This full-stack connection of the IoT devices has introduced a grand security challenge.

This paper presents an IoT security framework to protect smart infrastructures from cyber attacks. This IoT security

framework is applied to Bluetooth protocol and IoT sensors networks. For the Bluetooth protocol, the intrusion detection

system (IDS) uses n-grams to extract temporal and spatial features of Bluetooth communication. The Bluetooth IDS has a

precision of 99.6% and a recall of 99.6% using classification technique like Ripper algorithm and Decision Tree (C4.5). We

also used AdaBoost, support vector machine (SVM), Naive Bayes, and Bagging algorithm for intrusion detection. The

Sensor IDS uses discrete wavelet transform (DWT) to extract spatial and temporal features characteristics of the observed

signal. Using the detailed coefficients of Biorthogonal DWT, Daubechies DWT, Coiflets DWT, Discrete Meyer DWT,

Reverse Biorthogonal DWT, Symlets DWT, we present the results for detecting attacks with One-Class SVM, Local

Outlier Factor, and Elliptic Envelope. The attacks used in our evaluation include Denial of Service Attacks, Impersonation

Attacks, Random Signal Attacks, and Replay Attacks on temperature sensors. The One-Class SVM performed the best

when compared with the results of other machine learning techniques.

Keywords Internet of Things (IoT) � Threat model � Smart infrastructure � Bluetooth security � Anomaly behavior analysis �
Intrusion detection

1 Introduction

Advances in mobile and pervasive computing, social net-

work technologies, and the exponential growth in Internet

applications and services have led to the development of

the next generation of Internet services (Internet of Things

(IoT)) that are pervasive, ubiquitous, and touch all aspects

of our life. These IoT services are the key enabling tech-

nologies that are revolutionizing business, healthcare,

critical services, and Industrial Infrastructure. These

advances have driven the integration of many disconnected

networks. But this integration of traditionally disconnected

systems is providing attackers with new attack surfaces to

exploit and thus creating new security challenges.

Today, an attacker targets these IoT networks, through

the Internet or through an insider. Cyber attacks like

Stuxnet [1] have demonstrated the devastating impact such

attacks can have on IoT systems. In such interconnected

IoT systems, the attacker can exploit the communication

networks used by IoT devices. Satam et.al in [2, 3] show

numerous attacks on Wi-Fi networks. Similarly, the

attackers can exploit vulnerability in Ethernet networks [4],

DNS [5], HTML [6] to perform successful cyber attacks.

The attackers can also use cloud-based services to perform

cyber attacks on IoT devices [7]. The attackers can use a

malicious insider to damage IoT sensors and perform
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attacks like Denial of Service (DoS) attacks, sensor

impersonation attacks, random signal attacks, and replay

attacks on IoT systems.

Thus, there is a need for a framework to secure IoT

devices. Satam et al. in [7] and Pacheco et al. in [8] present

a framework to secure smart cyberinfrastructures. This

paper extends this framework and validates the framework

by performing more rigorous experimentations. This paper

makes the following contributions:

• Presents a novel framework for securing Internet of

Thing and smart infrastructure.

• Applies the presented security framework for End-

Nodes layer security (Sensor security) and Network

layer security (Bluetooth Security).

• Presents a novel approach to detect attacks on sensors

using different discrete wavelet transforms (DWTs)

over a sample window.

• Presents an approach to detect attacks on Bluetooth

protocol using n� grams for obtaining temporal and

spatial behavior of the protocol.

The rest of the paper is organized as follows: Sect. 2 pre-

sents the related work, Sect. 3 presents the security

framework for IoT and smart cyber infrastructure. Sec-

tion 4 applies the security framework presented in Sect. 3

to End-Nodes layer (sensors) and Network layer (Bluetooth

Protocol), and Sect. 5 presents the Conclusion.

2 Related work

2.1 Smart infrastructures, cloud and Fog
Computing, and IoT

Smart infrastructures (SI) integrate autonomy and adaptive

control linking industrial controllers, sensors, and actuators

with cloud services allowing sustainable development,

intelligent services while reducing developmental and

operational costs. SI are critical to address modern envi-

ronmental concerns while improving human comfort and

lifestyle [9, 10]. Cloud Computing provides computing,

storage, and applications as services that are offered on

demand in a cost-effective and a scalable way. Resources

can be shared among a large number of users, who can

access applications and data from anywhere at any time

[11]. On the other hand, Fog Computing aims at providing

computational power, storage, and network services to end

devices. Since Fog Computing host services at the network

edge, its advantages include low service latency, high

quality services, support for mobility, location awareness,

and easier implementation of security mechanisms. It has

been shown that Fog Computing can be effective in sup-

porting IoT applications that demand predictable latency

[12]. IoT is a ubiquitous network of smart heterogeneous

devices allowing data collection and ability to provide

better and personalized services to the users [7]. IoT

devices consist of intelligent end-to-end systems that pro-

vide smart solutions, including sensing, communications,

and networking. This widespread and diverse application

of IoT systems brings with it challenges with respect to

security [7].

2.2 Intrusion detection systems

Intrusion detection systems can be classified into four

major types [2]. They are Signature based IDS, Anomaly

based IDS, Specification based IDS and Hybrid IDS. Sig-

nature based IDS detects attacks by using a database con-

taining known attack signatures. Signature IDS are easy to

develop but they require regular updates to include new

attack signatures [13]. Also, signature IDS are unable to

detect new attacks that are known as zero-day attacks. The

anomaly based IDS [2, 3, 5] is built by developing normal

behavior model of the system so that any attack on the

system will be detected because it produces an abnormal

operation. Anomaly IDS can detect new and modified

attacks. However, they generate high false alarms due to

the difficulty in modeling the normal operations. Specifi-

cation based IDS [14, 15] uses a set of rules and thresholds

that define the expected behavior for different network

components through specification features provided by a

human expert. The fourth IDS type is a hybrid IDS [16],

which is a combination of Signature-based, Anomaly-

based, and Specification-based IDS.

2.3 Bluetooth protocol

Bluetooth (IEEE 802.15.1) is a short-range communication

protocol with a communication range of up to a hundred

meters. The Bluetooth protocol operates in the ISM band of

2.4 GHz. Bluetooth protocol communicates using fre-

quency hopping spread spectrum (FHSS). The Bluetooth

communication hops between seventy-nine different com-

munication channels of one megahertz (1 MHz) each at the

rate of 1600 times per second, minimizing transmission

interference and increasing transmission security. Two

Bluetooth devices while communicating with each other

exchange packets (smallest data unit) consisting of access

code, packet header, and payload. When two Bluetooth

devices are in communication range, a device initiates the

communication by sending an ID Packet. The receiver, if

interested in setting up the communication, responds with a

frequency hop synchronization (FHS) packet. The device

initiating the communication is called the master device.

The devices communicating with the master device are

called slave devices. A master can connect up to seven
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other slave devices to form an ad-hoc communication

network called the Piconet. Each Piconet has its unique

timing clock and frequency hopping sequence, ensuring no

overlap with other Piconets operating in the communica-

tion range. The master in a Piconet can be a slave in

another Piconet. This ad-hoc network formed by the master

connecting two Piconets is called a Scatternet [17], as

shown in Fig. 1. Bluetooth devices are of two types: (1)

Basic Rate/Enhanced Data Rate (BR/EDR) device called

classic Bluetooth device, and (2) Bluetooth Low Energy

(LE) device also called Smart Bluetooth device. Classic

Bluetooth devices cannot communicate with Bluetooth

Low Energy (BLE) devices unless they have both chipsets.

The main components of the Bluetooth Architecture are (1)

Bluetooth Controller, (2) Host Controller Interface (HCI)

Transport Layer, and (3) Bluetooth Host.

• Bluetooth Controller The Bluetooth Controller imple-

ments the Bluetooth protocol’s physical layer and

consists of the Link Manager layer, the Baseband layer,

and the radio layer. The Bluetooth Controller estab-

lishes the communication with the destination through

the Host Controller Interface (HCI). The Link manager

layer initiates the communication link between two

Bluetooth devices while the Baseband layer controls

access to the radio link through the Radio Layer.

• Host Controller Interface (HCI) The HCI layer acts as a

liaison between the Bluetooth host and the Bluetooth

Controller. The Bluetooth Host communicates with the

Bluetooth Controller through the HCI.

• Bluetooth HostThe Bluetooth Host consists of the

Bluetooth protocol stack’s logical components, allow-

ing applications to use the Bluetooth protocol.

3 Security framework for IoT and smart
cyber infrastructure

In this section, we present a security framework that will be

used to effectively model the behavior of any smart

infrastructure and secure the services and applications that

will run on the IoT and smart infrastructures. The security

framework can be used to model the operations of the IoT

devices and in understanding the behavior of the IoT

devices.

3.1 IoT security framework

Several IoT frameworks can be used to create a threat

model and apply mitigation strategies [7, 8, 18–20]. Fig-

ure 2 shows an architecture that can be used to guide the

security development of IoT smart infrastructures. The

framework consists of four layers: IoT end Nodes (end

devices), Network, Services and Applications. Cyberat-

tacks can be launched against the functions and services

provided by each layer as shown in Fig. 2. For each layer in

our framework we can define the threats in terms of target,

impact, and mitigation methods.

• End nodes layer The first layer (end nodes), passes

information through physical devices that represent the

physical world. The information includes object prop-

erties, environmental conditions, data, etc. The key

components in this layer are the sensors for capturing

the current state of physical device, and the actuators to

modify and drive the physical environment to a desired

operational state. The attack targets at this level are

local controllers, sensors, actuators, and information.

The impact can be energy waste, monetary cost, human

safety, provider’s reputation, and waste of time. Mit-

igation mechanisms include lightweight encryption,

sensor authentication, IDS, anti-jamming, and behavior

analysis.

• Network layer Network layer is responsible for the

reliable transmission of information from/to end nodes

[21]. The technologies used in this layer include the

Internet, mobile communication networks, wireless

sensor networks, network infrastructures, and commu-

nication protocols. Network security and management

play an important role to defend against cyber-attacks

targeting firewalls, routers, protocols, and personal

information. The impacts might be monetary, reputa-

tion, safety, energy, control, and time. Network miti-

gation mechanisms include authentication, anti DoS,

encryption, packet filtering, congestion control, anti-

jamming, intrusion detection, and behavior analysis.

• Service layer The services layer acts as an interface

between the application layer in the top level and the

network layer in the lower level [22]. At this layer, all

the required computational power is mostly provided as

a cloud service. In this layer, cyberattacks target

personal and confidential information, IoT end devices,

monitor and control functions. The impact includes

people safety, money losses, and important information

leakage. Protection mechanisms include encryption,
Fig. 1 Bluetooth scatternet
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authentication, session identifiers, intrusion detection,

selective disclosure, data distortion, and behavior

analysis.

• Applications layer The application layer provides

programmable services according to the needs of the

user [21]. The access to the IoT services is through this

layer and it can be via mobile technology such as

cellphone, mobile applications, or a smart appliance. In

this layer, data sharing is an important characteristic

and consequently application security must address data

privacy, access control and information leaks. The

impacts are stolen intellectual properties, disclosure of

critical business plans, money loss, and damaging

business reputation. Some mitigation mechanisms

include encryption, authentication, and anomaly behav-

ior analysis of applications and their services.

Attackers may use any exploitable vulnerability to gain

access to the system and launch an attack. Our framework

can be used to identify the existing vulnerabilities and the

appropriate mitigation mechanism. For instance, an IP

temperature sensor located in a remote place can be easily

replaced by a computer to obtain illegal information and to

launch an attack (e.g. replay attack). Since sensors usually

have low (or no) computational power, it is unrealistic to

apply encryption techniques, a more suitable approach is to

authenticate each sensor and its data.

4 Application of IoT security framework

In this section, we apply the IoT Security Framework

presented in Sect. 3 to secure end nodes by applying

anomaly behavior analysis on sensors, that are experienc-

ing attacks on their Bluetooth network.

4.1 Sensor anomaly behavior analysis

In the smart infrastructure shown in Fig. 3, the observer

nodes collect sensor data, actuator information, IP

addresses, network packets sent and received. While

implementing continuous monitoring, the observer node

creates the Device� DNA data structure, to characterize

the devices normal operations. The observer uses

Device� DNA, to detect malicious device activity using

machine learning models. The observer node performs

Fig. 2 Internet of Thing security

framework

Fig. 3 Smart device observer continuous monitoring and continuous

authorization architecture
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continuous authorization by enforcing security policies and

secure communications. We use DWT [23–28] to charac-

terize temporal and the spatial behavior of the smart

devices. For this paper, the IoT security framework from

Sect. 3 is applied to sensor nodes.

4.1.1 Continuous monitoring for sensors

Figure 3 shows the IoT sensor nodes. The continuous

monitoring for the sensor nodes consists of the following:

• Sniffer The sniffer sniffs the raw data from the sensor

nodes as shown in Table 1.

• Anomaly Behavior Analysis Module The Anomaly

Behavior Analysis Module performs data preprocessing

and transforms the raw features from Table 1 to

processed features in Table 2 for a selected window of

t samples. Sensor attacks are detected using pretrained

machine learning models. We perform DWT on the

sensor data to obtain temporal and spatial features.

DWT has two types of coefficients which are obtained

from wavelet decomposition, they are Approximation

coefficients denoted by cA and Detail coefficients

denoted by cD. The cA obtain low frequency informa-

tion and the detailed coefficients (cD) obtains high

frequency information. We use cD coefficients in our

analysis. For the collected sensor data, we use a window

of size 5 to read the sensor data to find the coefficient

mean and variance to generate a table on which we

perform machine learning classification and analysis.

We use different types of wavelets such as Biorthogonal

DWT, Daubechies DWT, Coiflets DWT, Discrete

Meyer DWT, Reverse Biorthogonal DWT and Symlets

DWT. Biorthogonal DWT is a wavelet whose associ-

ated wavelet transform is invertible, but it is not

necessarily orthogonal. Biorthogonal wavelets allow

more degrees of freedom as compared to orthogonal

wavelets. Daubechies wavelet is a family of orthogonal

wavelets which defines DWT and is characterized by

maximum number of vanishing moments. Coiflets

wavelet function has 2N moments equal to 0 and

scaling function of 2N-1 moments equal to 0. Both

functions have support of 6N-1 length. Discrete Meyer

wavelet is an orthogonal wavelet which is infinitely

differentiable with infinite support and is defined in

frequency domain. Symlets DWT are symmetrical

wavelets and they are similar to Daubechies wavelets.

4.1.2 Evaluation of sensor anomaly behavior approach

In this subsection, we evaluate the performance of detect-

ing attacks against sensors. Table 3 shows the various

machine learning classifiers we used in our evaluation. The

machine learning classifiers are: Adaboost is a boosting

algorithm that uses weak classifiers repeatedly for ‘‘t’’

rounds over a distribution Dt of the provided set D. The

initial distribution D1ðiÞ ¼ 1=m is used for all i. Distribu-

tion Dðtþ1Þ from Dt is obtained by multiplying the weight of

example i by some number bt 2 ½0; 1Þ if that round clas-

sified the event correctly or the weight is left unchanged.

The iteration is rerun after normalizing the weights by

dividing by the normalization factor Zt. Random Forest is a

classification and regression model which combines many

decision trees in a randomized order and averages their

predictions. Decision Tree uses a tree like model where a

leaf node denotes the decision and the probability of an

event happening. Decision trees algorithm uses conditional

control statements for predictions. SVM or Support Vector

Machine is used for regression and classification problems.

The SVM algorithm checks for a hyperplane or line which

separates the data in two classes.

Table 4 shows the various attacks used to perform the

experiments. The studied attacks are as follows:

• DoS attack In the Denial of Service attack, the attacker

makes the sensor inaccessible or shuts down the sensor

by flooding its resources hence making it unavailable.

• Impersonation attack In the Impersonation attack, the

attacker poses as a trusted person, sharing wrong sensor

information.

• Random signal attack In Random signal attack, the

attacker sends random sensor signals.

• Replay attack In the Replay attack, the attacker

eavesdrops the sensor communication and intercepts

it. Then the attacker replays the communication and

consequently force the receiver to do what the attacker

wants.

4.1.2.1 Experiment setup

• Sensor attack detection For the experimental evaluation

of the continuous sensor monitoring and detection, a

testbed consisting of 3 temperature sensors was setup,

Table 1 Raw features collected from sensors

Features Description

Frame epoch time Epoch time

Sensor IP Sensor’s IP address

Observer IP Observer’s IP address

Sensor Port Sensor’s port address

Observer port Observer’s port address

Sensor data Sensor’s measured data
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with a Linux observer monitoring the temperature

sensor readings every second. The testbed also has an

attacker device capable of injecting DoS attack,

Impersonation attack, Random signal attack, and

Replay attack. In the experimental analysis, a dataset

consisting of 10800 normal samples (3 h), and 3600

attack samples for each attack was created. The raw

data was processed and the DWT features were

extracted with a window size of 5 samples.

4.1.2.2 Sensor detection performance evaluation In our

evaluation of sensor attack detection, a AdaBoost Classi-

fier, a Random Forest Classifier (with 100 trees), support

vector machine (SVM) with a radial bias function (RBF)

classifier, and a Decision Tree Classifier (C4.5) were

trained. Table 3 shows the Precision, Recall, and F-Mea-

sures for these classifiers from 5� fold cross validation

and Table 4 shows the Recalls for each of the attacks. We

conclude that the AdaBoost classifier gives the best per-

formance, although it’s overall Precision, Recall, and F-

measure [29] scores are lower than Random Forest (as seen

in Table 3), as AdaBoost performs more consistently while

Recalling individual attacks (as shown in Table 4). We also

observe that this approach performs the worst while

detecting the DoS attack for all the classifiers, hinting that

more feature engineering is required to extract features that

help detect DoS attacks. We use precision, recall and F-

measure [29] to evaluate the results. Precision is defined as

the fraction of the relevant instances among all the

retrieved instances. Precision is defined by this equation:

Precision ¼ True Positive/(True Positive þ False Posi-

tive). Recall, also referred as ‘sensitivity, it is the fraction

of retrieved instances among all the relevant instances.

Recall is defined by this equation: Recall ¼ True Positive/

(True Positive þ False Negative). F-Measure also known

as F-Score is a way to combine precision and recall into a

measure that captures both properties together and gives

them equal weight. F-measure is defined by this equation:

F � measure ¼ 2 � (precision � recall) / (precision þ
recall).

Table 2 Features extracted from the raw features

Features Description

Biorthogonal DWT mean Biorthogonal DWT [23] detail coefficient’s mean over the selected window

Biorthogonal DWT var Biorthogonal DWT detail coefficient’s variance over the selected windows

Daubechies DWT mean Daubechies DWT [24] detail coefficient’s mean over the selected window

Daubechies DWT var Daubechies DWT detail coefficient’s variance over the selected windows

Coiflets DWT mean Coiflets DWT [25] detail coefficient’s mean over the selected window

Coiflets DWT var Coiflets DWT detail coefficient’s variance over the selected windows

Discrete Meyer DWT mean Discrete Meyer DWT [26] detail coefficient’s mean over the selected window

Discrete Meyer DWT var Discrete Meyer DWT detail coefficient’s variance over the selected windows

Reverse biorthogonal DWT mean Reverse Biorthogonal DWT [27] detail coefficient’s mean over the selected window

Reverse biorthogonal DWT var Reverse Biorthogonal DWT detail coefficient’s variance over the selected windows

Symlets DWT mean Symlets DWT [28] detail coefficient’s mean over the selected window

Symlets DWT var Symlets DWT detail coefficient’s variance over the selected windows

Table 3 Sensor attack classification results

Classifier Precision Recall F-Measure

AdaBoost 0.815 0.685 0.745

Random forest 0.83 0.695 0.756

Decision tree 0.92 0.548 0.687

SVM 0.138 0.242 0.176

Table 4 Classifier recalls for

each attack
Attack AdaBoost Random forest Decision tree SVM

Denial of Service (DoS) 0.83 0.6 0.6 0.19

Impersonation 1 1 1 0.39

Random signal 0.91 0.97 0.83 0.57

Replay 1 1 1 0.21
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4.2 Applying the IoT security framework
to networking layer: bluetooth protocol

Continuous attack monitoring is performed by the Blue-

tooth Piconet Master that analyzes all the Bluetooth traffic

flowing in the network. The abnormal behavior threshold is

decided during the training phase of the system. When the

detection and classification unit detects activities beyond

the threshold, the Behavior Analysis Module generates an

alert. As Bluetooth is a networking protocol, it is critical to

analyze temporal and spatial protocol behavior while per-

forming continuous monitoring and analysis. We use

traffic� flows and n� grams to characterize the temporal

and the spatial behavior of the Bluetooth protocol.

• Traffic flow A traffic flow is a continuous flow of frames

or packets between a source-destination pair sampled at

specific intervals of time t. The traffic flow characterizes

the state transitions made by the networking protocol.

• n-grams An n-gram is an n-transition pattern in a

specific time interval. It is sliding window of a

predefined size n, over the sequence of frames or

packets sampled from the traffic flow.

4.2.1 Anomaly analysis of the bluetooth protocol
operations

Figure 4 shows the architecture for the anomaly behavior

analysis methodology for the Bluetooth protocol.

• Sniffer The sniffer sniffs raw Bluetooth frames trans-

mitted in the Bluetooth Piconet and extracts the features

shown in Table 5 for each observed frame.

• Behavior Analysis Module The Behavior Analysis

Module implements the Bluetooth Intrusion Detection

System (BIDS) as in [30]. The data structures for traffic

flow and n-grams are used for extracting spatial and

temporal features from the raw feature set shown in

Table 5. As shown in Fig. 5, the raw features from

Table 5 are used to extract traffic flows which are used

to form n-grams. From the traffic flows and n-grams the

features shown in Table 6 are extracted. The final

feature sets are probability of the flow extracted after

Jelinek-Mercer smoothing [31], ratio of Host Control

Interface (HCI) commands frames in the flow, ration of

ACL data frames in the flow, ratio of Synchronous

Connection Oriented (SCO) data frames in the flow,

and the ratio of HCI data frames in the flow. Malicious

network flows are detected using a pretrained machine

learning model for attack detection.

4.2.2 Device authorization in bluetooth network

In Bluetooth Protocol, we study the device authorization

for a hierarchical Bluetooth network, as shown in Fig. 6.

For the hierarchical Bluetooth network device authoriza-

tion is implemented by white listing all the authorized

Bluetooth devices. Security for the hierarchical Bluetooth

network is achieved by continuous monitoring and analysis

as the operations of the Bluetooth communications in order

to allow only white listed devices to use the Bluetooth

network.

4.2.3 Experiments for bluetooth anomaly behavior analysis

In this subsection, we evaluate the performance of con-

tinuous attack detection and device authorization for the

Bluetooth Protocol.

4.2.3.1 Experiment setup

• Bluetooth attack detection For the experimental eval-

uation of attack detection, a Bluetooth Piconet with a

master device, a slave device (legitimate device), and
Fig. 4 Bluetooth protocol anomaly behavior analysis approach

Table 5 Features extracted from raw Bluetooth Frames

Features Description

Frame epoch time Epoch time

hci h4 type Host Connect Interface (HCI) packet type

Blt hci evt code Bluetooth HCI event code

Blt hci opcode Bluetooth HCI OPCode

Blt L2CAP Scid Bluetooth L2CAP protocol Source CID

Destination address Destination address

Destination name Destination device name

Destination role Destination device role

Source address Source address

Source name Source device name
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an attacker device is used. The Bluetooth attacker

targets the Bluetooth Piconet with power draining

attack [32] and BlueSnarfing attacks [32]. For

experimental evaluation, normal Bluetooth traffic con-

taining file transfers and music data were collected.

Attack Bluetooth traffic includes Bluetooth attack such

Fig. 5 Raw Bluetooth features to n-grams conversion

Table 6 Features extracted from

raw Bluetooth Frames
Features Description

Probability of Flow Probability of flow extracted after Jelinek-Mercer smoothing

Ratio of HCI command frames HCI packet type

Ratio of ACL data frame Bluetooth HCI event code

Ratio of SCO data frame Bluetooth HCI OPCode

Ratio of HCI data frame Bluetooth L2CAP protocol Source CID

Fig. 6 Bluetooth whitelisting

architecture
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as Bluesnarfing attack were also collected.The Blue-

tooth continuous monitoring evaluation dataset contains

3058 normal data points, and 422 attack data points

after feature extraction and data preprocessing for n�
gram size three and traffic� flow size of ten seconds.

• Bluetooth device authorization For the experimental

evaluation of the bluetooth device authorization, a

hierarchical Bluetooth network with two layers is setup,

with master device receiving the results of continuous

monitoring (through simulated input).

4.2.3.2 Experiment 1: N-grams size analysis This experi-

ment aids in deciding the appropriate n� gram size for the

Bluetooth continuous monitoring. As shown in Fig. 7, we

observe the total number of unique n� grams learnt over

the training period. The n� gram size was selected to be

equal to 3. This value was shown experimentally to give

the best performance [2, 3]. In Fig. 8, we observe the new

n� grams learnt over time stops after first ten minutes,

emphasizing for our test scenario we had captured all the

normal traffic.

4.2.3.3 Experiment 2: performance evaluation In this

experiment, we train a Decision Tree (C4.5), a AdaBoost

classifier, a SVM with radial bias function (RBF) classifier,

a Naive Bayes classifier, a Ripper Classifier, and a Bagging

classifier. To address the class imbalance problem present

in cybersecurity datasets, we use Synthetic Minority

Oversampling Technique (SMOTE) with 0%, 100%, and

1000%. Figure 9 shows the precisions of the classifiers,

while Fig. 10 shows the recalls of the classifiers. The

Ripper algorithm with 100% SMOTE gives the best pre-

cision and recall, while Bagging algorithm gives the best

overall precision, and recall for 0%, 100%, and 1000%

SMOTE.

4.2.3.4 Experiment 3: performance evaluation In this

experiment, we evaluate the performance of the Bluetooth

device authorization for the hierarchical Bluetooth net-

work. The attacker device sends pairing request to the

master device of the piconet. The master device sends the

attacker device’ Bluetooth address and priority level to the

Main Whitelisting Server (MWS) to check if the attacker’s

Bluetooth address was authorized or not. Since the attacker

device was not authorized by the MWS, the master device

of the piconet did not authorize the attacker device from
Fig. 7 Total n� grams learnt

Fig. 8 New n� grams learnt with time

Fig. 9 Bluetooth continuous monitoring classifier precisions

Fig. 10 Bluetooth continuous monitoring classifier recalls
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joining the piconet. We also send a pairing request from the

slave device to the master device, the master device was

able to authorize and connect the slave device as the slave

device’s Bluetooth address was authorized by the MWS.

Hence, the authorization approach was successfully able to

detect and prevent unauthorized devices from connecting

to the Bluetooth network.

5 Conclusion

In this paper, we present a Security Framework for the IoT

and Smart Cyber Infrastructures. The presented security

framework splits IoT and smart infrastructure into four

layers consisting of End-Nodes layer, Network Layer,

Service Layer, and Application Layer. In this paper, we

showed how to apply the framework to End-Nodes layer

and to Network layer. For the sensor-nodes, we developed

a sensor model that uses the means and variances of cD for

a five sample windows, of Biorthogonal, Daubechies,

Coiflets, Discrete Meyer, Reverse Biorthogonal, Sysmlets

DWT. Classification models (AdaBoost, Random Forest,

Decision Tree, and SVMs) were trained on normal sensor

data. The AdaBoost based model had the best performance,

with overall precision of 0.815, overall recall of 0.685, and

overall F-measure of 0.745. For the sensor-nodes, we

developed a mitigation strategy to drop sensor data when

attacks are detected. The continuous authorization method

was used to only allow whitelisted Bluetooth device to

access the network while rejecting any other devices.

Classification models (Decision Tree, AdaBoost, SVM,

Naive Bayes, Ripper, and Bagging) were trained using

normal traffic dataset. The bagging based model had the

best performance with overall Precision and Recall over

0.996 and recall of 0.996 for Synthetic Minority Over-

sampling Technique (SMOTE) with 0%, 100%, and 100%

additions.
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