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Abstract
Social navigation is beneficial for mobile robots in human inhabited areas. In this paper, we focus on smooth path tracking
and handling disruptions during plan execution in social navigation. We extended the social force model (SFM)-based local
planner to achieve smooth and effective social path following. The SFM-based local motion planner is used with the A* global
planner, to avoid getting stuck in local minima, while incorporating social zones for human comfort. It is aimed at providing
smooth path following and reducing the number of unnecessary re-plannings in evolving situations and a waypoint selection
algorithm is proposed. The whole plan is not directly assigned to the robot since the global path has too many grid nodes and
it is not possible to follow the path easily in such a dynamic and uncertain environment inhabitated by humans. Therefore, the
extracted waypoints by the proposed waypoint selection algorithm are incrementally sent to the robot for smooth and legible
robot navigation behavior. A corridor like scenario is tested in a simulated environment for the evaluation of the system and
the results demonstrated that the proposed method can create paths that respect people’s social space while also eliminating
unnecessary replanning and providing that plans are carried out smoothly. The study presented an improvement in the number
of replannings, path execution time, path length, and path smoothness of 90.4%, 53.7%, 8.3%, 55, 2%, respectively.

Keywords Social navigation · Mobile robots · Human–robot interaction · Path planning

1 Introduction

Robots are becoming a part of our lives and we expect robots
to act in a way to avoid interference with our safety and
social being. Robots which are employed in human inhab-
ited areas such as malls or hospitals should benefit from a
navigation approach that is built upon those principles. This
navigation is more than mere avoidance and requires legible
robot motion so that rational agents as humans should under-
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stand and predict the robot motion (eliminate uncertainty
in robot behavior) to adapt their motions accordingly. Fur-
thermore, especially in times of pandemics, robots obeying
social distance during the navigation process among people
is a positive step for the acceptance of robots and increases
the physical and social comfort of the bystanders.

The proposed approach will be used as a part of the novel
Roborehab social robotic system involving an affective Pep-
per humanoid robot and a sensory setup which is designed
and developed for the assistance of children with hearing
impairments in hospitals [8,18]. This paper focuses on the
social navigation of this assistive mobile robot among chil-
dren, families, and clinicians in hospitals where the robot
is expected to generate its own path to a desired location
in these human–robot interactive environments, considering
the social distance requirements.

2 Related work

Autonomous robot navigation refers to the process of the
finding and execution of a collision free trajectory from the
start pose of the robot to the intended target pose. In order to
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complete specific tasks in the environment, maps with obsta-
cles that are known to the robot in advance, i.e., grid based
maps, are utilized. A*, Dijkstra and RRT∗ are well known
search algorithms that address the problem of path plan-
ning. Learning and optimization based algorithms, such as
fuzzy neural networks with particle swarm optimization also
attracted scholars attention to solve path planning problem
[9]. A navigation algorithm based on the Particle Filter and
SLAM is proposed to be used in the dynamic environments
[19]. The aforementionedmethods for solving the navigation
problems calculate collision-free paths, but do not specifi-
cally focus on generating a social path that takes social factors
like physiological comfort and proxemics into account.

On the other hand, socially aware navigation approach is
a new active research field combining perception and social
intelligence. The primary motivation of these approaches is
to increase the safety and psychological comfort in human–
robot interactive social environments as much as possible.
Proxemics theory-basedmethods attach space or costs tomap
cells while planning a path around the center of humans or
interactions for modeling the social context. This method
modifies the robot’s costmaps to reflect social behaviors and
social zones. The studies in [5,16] modeled proxemics into a
robot’s local costmap. Their socially aware costmaps follow
two dimensional Gaussian distributions or constant values
of a different mixture of social constraints depending on the
spatial context, e.g., adding more costs in the direction of
human orientation. However, this requires fine-tuning of the
costmap parameters because one or more dynamic and static
people around the robot may block the possible paths of the
robot. The robot might freeze, and can not move although
there is available space for action in a cluttered and narrow
hallway. For this reason, Reference [10] modified the social
costmap by using softer constraints on the planned paths (a
linear cost function) to allow the robot to enter places, if
needed, where it normally would not. Furthermore, several
researchers have introduced variants of the dynamic window
approach (DWA) which expand the optimization functions
for social robot navigation [1]. Another work applies a pre-
diction step to the DWA algorithm and then uses an adaptive
neuro-fuzzy inference system to adjust DWA weights [15].

For online motion planning, potential fields are a com-
mon approach for static environments. This approach was
adopted as a traditional social force model (SFM) to describe
the motion of pedestrians in crowded escape scenarios. The
model is then successfully employed as a local planner in a
corridor like environment [7] and urban human scenarios [2].
However, traditional SFMfails tomimic for a diverse rangeof
social interactions which are present in human environments.
Because SFM has a flexible nature by its mathematical for-
mulation, it can extended with social signals and cues [12]
and walking side-by-side [14] which affect social interac-
tions. The problem of local minima should also be addressed

during the implementation of the SFM approach. Therefore,
the motion planning problem may be separated into global
planning and path following algorithm to execute the pro-
duced global plan as two-layered design. Obstacle avoidance
strategies can be incorporated into motion planning since
using only global planners in a dynamic environment might
be slow. Furthermore, once the initial path is obtained, it may
not always be expected to stay the same and be easy to follow
the path due to the nature of navigation in evolving dynamic
environments.

In the light of the above consideration, in this study, we
extend our prior online path following approach [6] to include
further flexibility in dynamic human environments that may
have one or more local minima conditions. This is achieved
by adding awaypoint selection algorithm considering human
behaviour patterns. By means of this novel extension, we
expect to provide smooth motion, avoid getting stuck at local
minima, and minimize disturbance in the original plan (e.g.,
the number of unnecessary replanning, travel time), while
retaining the safety and comfort of the people in interaction
to the robot. Furthermore, we will use the social individual
index (SII) for the evaluation of this system in terms of social
comfort. SII is a parameter which is used to measure human
physical and psychological safety and comfort during robot
navigation [17].

This system is designed and developed to be used with
childrenwith hearing impairments in hospitals and audiology
departments. Therefore, safety and social comfort are vital as
well as the smoothness of the motion and cost effectiveness
(in terms of time and path length) of the motion of the robot
to be acceptable and useful on behalf of the users in this
scenario.

3 Extended SFM-based local planner

SFMcan be regarded as a kind of potential field path planning
in which mathematical functions are followed in the config-
uration space (think of a vector field over the space). The
SFM-based motion planner is computationally light, which
is appropriate in uncertain dynamic environments for steering
the robot during its navigation. According to this model, the
agent behavior is affected by attractive and repulsive forces
for acceleration, deceleration and directional changes. The
idea behind the model makes it a good candidate for local
path planning and is expected to generate more human-like
trajectories for the robot. That enables a robot to imitate the
comprehensibility of the inner dynamics of human motion
efficiently dependent on its motion constraints.

The attractive force is the force that pulls the agent towards
the desired destination. The force is velocity dependent and
stated as a composition of the desired speed, desired direc-
tion, and current velocity using Newton’s motion law. The
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Fig. 1 Illustration of the attractive force to the destination

desired speed is effected by the crowd of the place or in
a rush. The desired velocity, v0v0v0 = v0 · ê̂êe, is equal to the
desired speed v0 multiplied by the desired direction ê̂êe. The
desired direction is the shortest path unit vector, which is the
direct path from our current pose. When moving, the agent
moves ideally at the desired speed. When the desired speed
is currently slowing down due to disturbing factors, it tends
to adjust its actual velocity, vvv, in order to reach the desired
velocity at the relaxation time, k−1. As a result, the attractive
force is visualized and expressed in both Fig. 1 and Eq.1.

fff att (t) = k · (v0v0v0(t) − vvv(t)). (1)

The motion is deviated by the repulsion forces of other
people and obstacles around. The force that pushes people or
obstacles away in order to maintain a safe distance is called
a repulsive or interaction force. Deviations from the short-
est path are the result of these types of forces. Repulsive
forces considered to be circular shape is expressed in terms of
the relative Euclidean distance between the obstacle and the
robot as defined in Eq.2. It employs the Euclidean distance
vector dddi j = p jp jp j − pipipi decays with exponential, indicating
from the position i , pipipi to the position j , p jp jp j . When approach-
ing an obstacle, the force is strong, and when away from an
object, the force magnitude is weaker and even will not devi-
ate from the current motion of the agent. An illustration of
the circular shape repulsive function of relative distance can
be seen in Fig. 2b.

fff repi j (t) =
Qo∑

j∈Qo

Ao · e−dddi j /Bo · d̂̂d̂di j . (2)

Ao is the repulsive force strength or intensity, while Bo is the
interaction range. The range factor controls how quickly the
force decreases based on the distance. If the value of the range
parameter is big, then the force will slowly decrease and vice
versa. The exponentially decreasing repulsion function with
various parameter values is seen in Fig. 2a. Q is the entity
type [obstacle (Qo) or human (Qh)]. d̂̂d̂di j = dddi j/‖dddi j‖ is
the normalized distance vector between features. The total

Fig. 2 Illustration of the a exponential decaying and b circular shape
repulsive function of relative distance with different values

repulsive force is calculated as the sum of all the repulsive
forces exerted by each entity.

The superposition (sum) of attractive and repulsive forces
guides the robot toward the goal while simultaneously
avoiding each obstacle and increasing the physical and phys-
iological safety of the human (Eq.3).

fff total(t) = fff att (t) + fff rep(t). (3)

At every point in time, the robot looks at the resultant total
force at that point and applies a control law to determine
the direction of travel and speed. It is required to turn the
model output in the Cartesian coordinates into kinematic
robot motion in polar coordinates (linear and angular veloc-
ities). More details are given in Sect. 3.1.4. For information
about the calibration process of SFM parameters considering
the size of the robot and proxemic zones, please refer to [6].
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3.1 Extensions

Reactive planners are found to be late in taking action
because they do not take possible future collisions into
account in dynamic humanenvironments.Conventional SFM
is designed for reactive collision avoidance by keeping a cer-
tain distance from humans and obstacles. Proxemic theory
is reflected implicitly by the repulsive force generated by
humans in their social context so that it does not show proac-
tive behavior in passing and crossing scenarios. According
to [20], none of the elliptical-based force specifications are
intended to predict pedestrian behavior and future interac-
tions. The extensions that are added to the traditional SFM
method are explained in the following subsections.

3.1.1 Passing and crossing behavior

The proactive behavior in the motion model is beneficial in
navigating alongside people. Passing and crossing behav-
ior can be done by incorporating the collision prediction
scheme that makes the robot have proactive motion depends
on relative positions and speed. We implement the collision
prediction force introduced in [20] to calculate the repulsive
forces from humans. The collision prediction force applies
a circular force at a specific angle to the potential conflict
point between the robot and the person as they move towards
each other. A collision prediction-based passing force has an
internal dynamic that actively attempts to keep humans at bay
in passing scenarios. Similarly, it allows the agent nearest to
the crossing point to accelerate while the other slows down.

3.1.2 Instant turns and oscillations

The other problem with algorithms that use potential field
ideas is instant turns and oscillations that could happen
because of the instant changes in force size and disconti-
nuity at some points. These may reduce the robot’s motion
understandability and acceptance. To suppress oscillations
and sudden changes when the robot moves in any direction,
a kind of interpolation or smoothing is applied to the consec-
utive time stamp forces. That is, the forces are decreased or
increased by a specific step size when the consecutive time-
stamped forcemagnitudes are bigger than a certain threshold.
That way, we impose continuity on the steering.

3.1.3 Identifying force frame

A structure that has fixed orientation as the global orientation
and movable origin based on the robot’s pose is required to
be able to evaluate and perform vector operation of forces.
It is handled by publishing a force frame transformation as
seen in Fig. 3.

Fig. 3 Force global frame is not changing while the robot is turning
right

3.1.4 Robot controller

Due to the inherent constraints on awheeled platform, the lin-
ear (vr ) and angular (ωr ) velocities of non-holonomic robots
govern their locomotion. To this end, the output vector of
the SFM algorithm is required to be transformed into veloc-
ity command in polar coordinates for the robot controller.
There are several proposed methods for making the robot
compatible with the SFM approach. One approach exploits
the algebraic description of vectors. The total force vector,
f total = fr‖θ + fr⊥θ can be broken into x and y compo-
nents in a two-dimensional coordinate system.The amplitude
of the projected component on the heading direction fr‖θ
and the orthogonal component fr⊥θ can be considered to
contribute into translational acceleration av and rotation
acceleration aω, respectively. Hence, the robot rotation accel-
eration can be computed in two different ways as in Eq.4 [3]
and Eq.5 [13].

aω = r × fr⊥θ + kω, (4)

where r is the robot’s vector radius towards θ and k is a factor.

aω = kp · �α + kd · (−ω), (5)

where �α is the angle between the total force vector and
the robot orientation and k is a factor. Linear and angular
velocities is then computed using the following equations.
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Fig. 4 SFM-based robot controller (v, ω)

vr = vr + av · �t, (6)

ωr = ωr + aω · �t . (7)

In our implementation, we determine the resultant force
as an indicator of the particular direction the robot should
follow in the next period.

The degrees of (θ f orce−θrobot ) pointing in the direction of
the f total force are sent to a steering input calledωr (Fig. 4a).
Linear speed is then determined under the assumption that the
robot needs less speed at high steering, as shown in Fig. 4b.
Note that the yawangle is the rotation on the robot’s z axis and
can range from θ ∈ [−π, π ]. When the robot is on a surface,
the yaw angle difference must be scaled to a [−π, π ] range
by either adding or subtracting 2π based on the value of θ as
expressed in Eq.8.

θ =
{

θ − (2π) if π < θ < 2π,

θ + (2π) if − 2π < θ < −π.
(8)

3.1.5 Avoiding local minima

There is a known issue with algorithms based on artificial
potential areas that could be stuck in local minima, as stated
in [4]. This happens when the direction of the robot velocity,

Fig. 5 Local minima condition, where the sum of the attractive and
repulsive forces are balanced out

the obstacle, and the target position are on the same straight
line and the obstacle is positioned between the robot center
and the target location. The robot is attracted towards the
target while at the same time pushed away from an obstacle,
as shown in Fig. 5. Because local minima lead to a situation
in which the robot gets stuck between the target location
and the obstacle where the repulsive force balances out the
attractive force. This defect makes the method incomplete
and the robot never reaches its goal.

To overcome this problem, we incorporate the high-level
global planner to find a valid path between the starting point
and goal point. The computed global path created by a global
planner is transferred to the SFM-based local planner to exe-
cute the plan.

3.1.6 Waypoints (social subgoals) selection algorithm

During plan execution, the initial plan tends to change fre-
quently in dynamic or uncertain environments. Therefore,
re-planning is needed. Frequent changes in the plan can be
costly and yield to non-smooth motion. Moreover, the whole
global plan consists of too many grid nodes and it is infea-
sible to have a smooth motion planning algorithm in such
environments. To avoid unnecessary replanning and provide
smooth motion control, we propose a waypoint selection
algorithm. Human social zones (social costmaps) are consid-
ered to respond to disruptions. The waypoints of the global
path are extracted by pruning parts of the global path and then
they are incrementally assigned as waypoints to the robot’s
path planner. The method for computing the waypoints is
given in the Algorithm 1. Since the key points can be dif-
ferent for each of the interaction, an algorithm is developed
based on the angle between the vectors of the node. The defi-
nition of the algorithm steps for selecting the waypoints from
global path are as follows:

First of all, the global plan P = {p1, p2, p3, . . . , pn}
that consists of all the grid nodes towards the goal position is
obtained, where pn is the goal location as the last point. Then,
an empty waypoint listK is allocated. Following that, we go
through all of the nodes and score each point i based on the
metric of angle between vectors. We keep pi as the current
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point, pi−1 as the previous point, and pi+1 as the next point,
and compute pi ’s predecessor vector

−→v1 and pi ’s successor
vector −→v2 . The angle θ between −→v1 and −→v2 is calculated by
taking the dot product of vectors to determine whether or not
pi is a waypoint. If θ is less than a certain value, then set pi as
the nextwaypoint ki , and add it toK beforemoving on to next
point. When all nodes have been traversed, i.e., all waypoints
have been determined, then set the last node, which is the
goal point, as the last waypoint list K. Finally, the algorithm
returns all thewaypoints denoted asK = {k1, k2, k3, . . . , km}
along the global path. Examples where waypoints are found
on the global plan while incorporating human social cost-
maps are illustrated in Fig. 7.

4 Simulation

ROS is the de facto standard in research robotics and offers
us the ability to use multiple platforms, languages and incor-
porate standard solutions to robot problems.

4.1 Integration of ROS navigation stack with Pedsim
simulator

Pedsim1 is developed as a ROS package using publicly avail-
able Pedsim library2 based on theSFM. It is an environmental
representation tool that can be used on Rviz. This package
is extended to integrate move_base3 navigation stack with
our robot. move_base is a ROS meta-package that contains
a navigation framework using a costmap based approach to
planning on top of a map. It makes use of a global planner
that does a shortest-path search (using A* or Dijkstra’s algo-
rithm) along the grid of its currently knownmap (and replans

1 https://github.com/srl-freiburg/pedsim_ros.
2 https://sourceforge.net/projects/pedsim/.
3 http://wiki.ros.org/move_base.

Fig. 6 Software architecture overview of the waypoint based extended
SFM planner

when the local planner cannot succeed in following the path
and avoiding dynamic obstacles). The navigation stack uses
two different cost-map that store information about obstacles
in the environment. The first one is called “global_costmap”
which contains the whole obstacle map of the environment.
The second one is called “local_costmap” which contains
the local area of the map with sensor measurements and is
used to avoid obstacles. The separate configuration files with
the common configuration (e.g., obstacle thicknesses, colors,
obstacle threshold values) file are created. Furthermore, the
ROS costmap library provides a representation of a layered
cost map and allows us to work with different layers. Such
as static maps, obstacle layer, inflation layer, and other user-
defined layers (for example, socially compliant cost maps).
One can create a human-aware layer for proxemic cost maps
such that it subscribes to the location of people and mod-
ifies the cost maps by adding Gaussian costs around the
detected static or dynamic people. Therefore, the robot nav-
igates between people without collision and respects their
personal or social areas (proxemic concerns) [11].
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Fig. 7 Process of finding or
selecting and extracting
waypoints on the global plan
(solving local minima problem
smoothly)

Fig. 8 The corridor-like dynamic simulation environment consists of
walls and moving humans where the robot can get stuck at the local
minima conditions. The robot R navigates consecutively from the start

point (Start) through points (A) and (B), and then goes back to the start
pointwhile avoiding encountering dynamic humansH1–5 and obstacles
in the environment

With the help of pedsim_sensor package4 the simulator
provides the point cloud of “dynamic human obstacles” and
“static obstacles” inworld frame. Social navigation cost-map
layers5 are added for humans as layered cost maps which
increase the map in the direction of human motion. The layer
subscribes to the position of people and adds a cost map
with a Gaussian distribution around the people. Eventually,
the navigation stack on Pedsim simulator using the sensory

4 https://tinyurl.com/h5hrj2y4.
5 http://wiki.ros.org/social_navigation_layers.

data and cost map configurations are developed on ROS. The
major component of modules that is used in the experiments
are depicted in Fig. 6.

4.2 Simulation experiments

Simulation experiments are implemented to demonstrate the
performance of proposed approach for social navigation on
ROS Melodic on Ubuntu 18.04 (Bionic Beaver). We simu-
late a corridor-like dynamic environment with possibilities
where the robot can get stuck at the localminima condition on
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Table 1 Comparison of w/out waypoint selection approaches on char-
acteristic of path properties

Evaluation
metrics

Without
waypoint
approach

Proposed
waypoint
approach

Path execution time (s) 441 204

Path length (m) 43.652 40.030

#replanning 21 2

Total heading change (◦) 5094 2282

Pedsim. We compare our approach to the traditional method
(without proposed algorithm) in the scenario illustrated in
Fig. 8a. In each case, the robot navigates sequentially from
the start point (Start) through points (A)–(B), and then goes
back to the start point with the aim of socially avoid dynamic
humans and obstacles in the environment.

The dimensions of the area created in the Pedsim simu-
lation environment are 20m× 21m. The evaluation metrics
used to asses the efficiency of the proposed idea are path
execution time, path length, number of replanning, and cumu-
lative heading changes. Heading changes along the trajectory
provides an easy way to check for path smoothness. Fur-
thermore, human comfortable safety indices are suggested
to measure socially appropriate behaviors in mobile robots.
The SII is used tomeasure human physical and psychological
safety and comfort during robot navigation [17].

5 Results

We examine the robot’s motion when the robot is equipped
w/out proposed approach for smooth social path tracking and
reducing the number of replanning in the dynamic environ-
ment. A video clip demonstrating the results of experiments
can be found at the hyperlink.6

The resulting robot trajectories for each case are presented
in Fig. 8b. Table1 provides a comparison of characteristic
path properties of the w/out waypoint approaches.

The results in Table1 showed that the proposed waypoint
approach outperformed the traditional approach in terms
of evaluation metrics, which are path execution time, path
length, number of replannings, and total heading changes.
Total heading changes in angles can be considered as the
geometric complexity analysis of the robot path. Therefore,
the smoothness of a robot path is quantified using the head-
ing changes. As the number of heading changes decreases,
the geometric complexity of the path also decreases, and
hence the path becomes smoother. The results indicate that
the proposed approach has greatly reduced the number of

6 https://youtu.be/gMpVThOJYew.

Fig. 9 SII values of a with waypoint selection and b without waypoint
selection approach experiments

replannings (from 21 to 2 which is 90.4%) and therefore
greater performance on the path execution time of the tra-
ditional approach by a factor of 53.7% (which reduces from
441 to 204s). Furthermore, the proposed method generated a
3.62m (8.3%) shorter path and executed its motion smoother
with 2812◦ which is 55.2% less heading change in degree
when compared to without waypoint approach.

In Fig. 9, the SII values are presented. Figure9a shows
that, the SII values are below the determined thresholds for
each human the robot encounters, respectively. Therefore, the
robot performs social navigation considering social zones,
the psychological comfort, and physical safety of humans.
On the other hand, due to the absence of waypoint selec-
tion in dynamic environments, human comfort is not satisfied
for all humans, as seen in Fig. 9b. The sequence of pictures
and presentations of the obtained experimental results are
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Fig. 10 Experimental results of
navigation illustration. Two
cases with a–c–e–g and without
b–d–f–h waypoint selection
approach are examined. Green
squares represent the waypoints

123



1674 Cluster Computing (2022) 25:1665–1675

shown in Fig. 10. Figure10a–c–e–g illustrates the waypoint
selection-based navigation method, while the Fig. 10b–d–f–
h demonstrates the approach without waypoint selection. For
both cases, it is shown that the robot makes a complete nav-
igation to the goal location and turns back to the starting
location, as well as avoiding the obstacles in the case of local
minima on the way.

As summary, experimental results show that the behav-
ior of the tradition navigation approach without waypoint
selection is characterized by a time costing, inefficient and
rough path. In contrast, reducing the unnecessary replan-
ning, improving the human comfort and social acceptance
and smoothness of the path are the advantages of the pro-
posed approach. Furthermore, the robot takes shorter paths
in less time to reach the goal point.

6 Conclusion

Social navigation systems play an important role in human–
robot interaction, especially in providing the safety and
comfort of the people interacting with robots during nav-
igation in populated environments. SFM would be a good
solution to provide the safety and comfortability of people
when the robot is not forced to follow a path. However, the
local minima problem is a known issue with artificial poten-
tial field based algorithms. The problem can be dealt with
subdividing the role of motion planning as a two-layered
architecture by searching for the global path and executing
the plan. In this study, we present a waypoint selection exten-
sion to the SFM-based motion planner to ensure a complete
(avoiding the local minima), social, and smooth robot con-
trol strategy in human–robot interactive social environments.
We showed that our method can generate paths that respect
people’s social space as well as reducing the unnecessary
replanning and provide smoothness during plan execution.
Experiments revealed that our approach has advantages over
without traditional (without waypoint) planning approach.

Furthermore, while the robot is navigating, it might pass
the waypoint over to achieve avoidance of dynamic obsta-
cles in the environment. In that case, the robot either tries to
make a new global plan or may switch/change the waypoints
according to its current knowledge about the environment.
Since this strategy is supposed to occur in the dynamicworld,
this will be considered as a future work of this study.
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