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Abstract
This paper introduces and tests a novel machine learning approach to detect Android malware. The proposed approach is

composed of Support Vector Machine (SVM) classifier and Harris Hawks Optimization (HHO) algorithm. More specif-

ically, the role of HHO algorithm is to optimize SVM classifier hyperparameters while the SVM performs the classification

of malware based on the best-chosen model, as well as producing the optimal solution for weighting the features. The

effectiveness of the proposed approach and the ability to increase detection performance are demonstrated by scientific

testing using CICMalAnal2017 sampled datasets. We test our method and its robustness on five sampled datasets and

achieved the best results in most datasets and measures when compared with other approaches. We also illustrate the ability

of the proposed approach to measure the significance of each feature. In addition, we provide deep analysis of possible

relationships between weighted features and the type of malware attack. The results show that the proposed approach

outperforms the other metaheuristic algorithms and state-of-art classifiers.

Keywords Machine learning � Security � Android malware detection � Harris Hawks optimization � Support vector
machine � Feature weighting

1 Introduction

Over the last decade, smartphones have become one of the

most used devices worldwide with nearly 3.6 billion users

in 2020 according to Statista report [1]. This took place due

to the outstanding functionality and features that smart-

phones possess [2]. Smartphones can be applied to do

various features, such as sending emails, gaming, take

pictures and video recording, information search, GPS, and

so on. This can be done because of the applications or apps

created and upgraded on a daily basis particularly, on an

android operating system (OS).

Android OS was designed in 2007 as a modified version

of the Linux kernel for touchscreen mobile devices. The

Andriod OS obtain 70% of the market share worldwide

compared to other OS in 2021 [3]. Furthermore, the

number of apps on Android OS reached nearly 2.7 million

apps last year [4]. These android apps can be employed in

diverse categories, including banking, social media, med-

ical, educational, and entertainment apps [5]. Conse-

quently, most of these apps used for the sake of users’

advantage. However, some of them are utilized for
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malicious purposes in order to hack or exploit. Such

malicious apps are known as Malware, which can be

defined as intrusive software that steal information and

damage other users devices [6, 7]. Malware is usually

developed by cybercriminals and programmed to act like

worms, adware, Trojan viruses, ransomware, and spyware

[8].

In view of the rapid rate of development and existence

of malware apps, it becomes hard to prevent and stop most

security attacks [9]. These attacks are able to operate in

different cases, for example, in 2019 a warning took place

by Cybersecurity Check Point for android users that more

than 25 million mobile devices were exposed to malware

known as Agent Smith [10]. Moreover, the malware dis-

guises under apps like WhatsApp to exploit Android OS

vulnerabilities. Another example coccus in 2020 stated that

above billion android devices endanger of getting hacked

due to lacking new security updates [11]. These exposed

devices by ransomware are the ones released before 2012.

Furthermore, according to Kaspersky Lab researchers in

2020, a number of hackers have been employing Google

Play, i.e., the app store for android, for many years to

disseminate advanced malware [12]. In a recent situation,

the android malware ‘FlyTrap’ app has been utilized to

hack numerous Facebook accounts [13]. Additionally, the

‘‘Vultur’’ app was found to be using screen recording

features to steal sensitive information. [14]

Various countermeasures have been utilized in literature

to mitigate and prevent such malicious attacks. The authors

of [15] suggested that there are several kinds of methods to

detect malware, including Static analysis, Dynamic anal-

ysis, Application permission analysis and Anomaly detec-

tion. Each of which has its own technique in order to detect

malicious malware, where static analysis depends on

extracted features from codes of non-executed apps [16],

while, the dynamic analysis relies on monitoring and

analyzing the executed apps in a controlled environment.

As for application permission analysis, it can be described

as a technique considering the access granted from users

for android malware. Finally, anomaly detection usually

applied using Machine Learning (ML) to identify and

predicate malware apps from the learning process and other

domains such as, spam detection [17–20], fake news [21].

image segmentation and other fields.

ML malware detection-based acquired more attention

from researchers in the past few years due to being more

superior compared to other methods. The upgraded mal-

ware characteristics made the ML detection-based achieve

better performance, because of the periodically updated

datasets used in the process. The work in [22], stated that

the non-machine learning-based approaches for Android

malware detection are consuming more time as well as

have less ability to detect malware compared with the ML-

based. Also, according to [23], ML detection-based

approaches can adapt to the new sophisticated and unpre-

dictable malware more than the other methods. Besides, of

all the existing approaches, the ML obtain high accuracy in

malware detection [24].

Many works in Android malware detection based on ML

have been proposed in the literature, for example, the work

in [9] investigated different ML algorithms to detect

Android malware. They compared several ML classifiers in

the process, including Support Vector Machine (SVM),

Naive Bayes (NB), and Random Forest (RF). Another

recent work proposed an Android malware detection

approach using ML algorithms [25]. The authors apply

three different dataset types namely, time-series, Boolean,

and frequency datasets. [26] presented four tree-based ML

approach for Android malware detection. They used the

DREBIN dataset to investigate the performance of the

algorithms. The RF achieved the best results when com-

pared with the other methods. Other numerous works also

examined the detection of malware utilizing ML algo-

rithms such as [27–29].

Furthermore, the SVM classification model shows out-

standing performance against other ML algorithms for

Android malicious detection. [30] presented a combination

of Active Learning and SVM to detect Android malware.

Their approach is evaluated on the DREBIN dataset and

shows excellent results in detecting new malicious. Addi-

tionally, [31] introduced a keywords correlation distance

and SVM method in order to detect Android malware. The

method obtained efficient results in detecting malware on

Android OS. Another approach tried to detect Android

malware using the SVM [32]. In this work, the SVM is

grouped with a decision tree (DT) to deal with malware

apps. The results demonstrate the superiority of the

approach when compared with other detection approaches.

Another recent work applied the SVM to detect Android

malware using Application Program Interface (API) as

features [33]. The results show competitive performance

when compared with other approaches.

The SVM shows excellent performance as shown in the

previously mentioned works. However, SVM has more

space to improve if the optimal hyperparameters were

selected [34, 35]. Therefore, in this study, we propose an

SVM combined with Harris Hawks Optimization (HHO)

for Android malware detection. The HHO in this work,

used for two different parts, first, for automatically iden-

tifying the best hyperparameters of the SVM, while the

second part is for feature weighting to determine the most

important ones in order to improve the detection phase. In

the proposed approach, the evaluation criteria occurs

against the CICMalAnal2017 datasets. Five different

datasets are generated from the original data, each data

consist of various malware types. Furthermore, additional
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analysis was applied to describe the relationship and cor-

rection of the malware types with the most important

features.

In other words, the contribution can be summarized by

the following points:

– Android malware detection based on evolutionary

Support vector Machine (SVM) algorithm is presented.

– The HHO algorithm is employed to achieve two

different objectives simultaneously, including, param-

eter tuning and feature weighting.

– Generate five various datasets, where each data contain

a different malware type.

– Recognizing the most relevant features in order to

improve the malware detection phase.

The rest of the paper is organized as follows: Section 2

presents previous works in the literature for Android mal-

ware detection. Section 3 introduces the background

knowledge of Support Vector Machine (SVM) and Harris

Hawks Optimization (HHO). The proposed approach is

described in Section 4. Section 5 presents dataset

description preparation process. Experiments and results

are conducted and described in Section 6, while conclusion

and future work is addressed in Section 7.

2 Related work

Android becomes the most used OS in the world in the past

few years [3]. The huge number of apps that exist in the

Android store reached 2.7 million apps according to [4].

However, not a small number of apps are malware that

needs to be detected and controlled. One of the ways to do

this is by using malware detection. Android malware

detection is the method to distinguish between malicious or

benign apps by using techniques such as Static analysis,

Dynamic analysis, Application permission analysis, and

Anomaly Detection. Machine learning Android malware

detection-based gain more attention in recent years.

For instance, the authors of [36] presented a machine

learning approach to detect Android malware. They pro-

posed several machine learning methods in order to clas-

sify and identify unknown malicious apps. [37]

investigated the malware detection using the Significant

Permission IDentification (SigPID) system. The SigPID

works as a permission technique to analyze and control the

increase of Android malware numbers. Further, the system

used machine learning methods to classify malware fami-

lies. Their approach using SVM achieved excellent results

in accuracy, recall, precision, and f-measure with a 90%

rate with fewer analysis times. On the other hand, the

SigPID obtained 93.62% malware detection. Another

recent work also applied the machine learning algorithm

for Android malware detection [25, 38]. The authors obtain

the API information by generating flow graph control of

the application separated into three datasets type, time-

series, frequency, and Boolean. Based on these datasets,

three detection models are constructed for API sequence,

API calls, and API frequency. Their ensemble approach

examined 10010 benign and 10683 malware and shows

excellent results when compared with other methods [39].

Moreover, [40] proposed a machine learning method for

Android malware detection based on extracted features of

apps. The features are utilized as a set of inputs for the

classifier learning. They tried enhancing the detection

phase by using the ensemble learning approach (SecENS).

Further, the authors develop an efficient system in order to

integrate their two methods SecCLS and SecENS together

to improve machine learning detection. The work in [41]

applied the dynamic analysis for malware detection using

machine learning technique. An implementation of auto-

matically feature extracted tool from Android phones was

also applied. Their analysis shows that number of features

extracted better on-device when compared to emulators

and performs better with the machine learning model.

The increasing of Android malware encourages

researchers to implement various detection systems. The

work in [42] for instance, presented a detection approach of

two parts. Firstly, they extract 123 different permissions

from more than 10000 applications. Secondly, an evalua-

tion of several machine learning algorithms are applied,

namely, Decision Tree (J48), Simple Logistic (SL), k-star,

Naive Bayes (NB), and Random Forest (RF). The experi-

ments show that the SL obtained the best results compared

with other algorithms. The authors of [43] introduced a

lightweight system based on machine learning for Android

malware detection. Further, in the system, they used both

dynamic and static features alongside the principal com-

ponent feature selection technique to identify the best set of

features. Then the SVM is employed as a classification

model. The proposed approach outperforms the other

methods [44].

Wang et al. [45] proposed a novel approach for Android

malware detection based on information fusion and

machine learning methods. The proposed approach applied

parallel criteria for the machine learning technique. They

start their approach by extracting eight kinds of features,

then employed a parallel machine learning model for the

purpose of Android malware detection. Additionally, they

examine the probability analysis as well as Dempster-

Shafer theory on their approach. Another recent work also

investigated the Android malware and benign identification

using feature weight-based detection, multiple dimensional

and kernel feature-based framework [8]. An analysis of 112

data structure kernels in Android OS and examined the

detection performance against several types of datasets.
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Furthermore, they stated that the memory- and signal-re-

lated features obtained the best detection accuracy com-

pared to schedule-related features.

Standard machine learning proved its efficient perfor-

mance as shown in the previous studies, however, the

detection criteria can be improved more using meta-

heuristic algorithms. Therefore, more recent studies

investigated the detection of Android malware combined

with metaheuristic algorithms are proposed. For example,

[46] proposed a hybrid approach of support vector machine

combined with evolutionary algorithms for Android mal-

ware detection. This hybrid approach utilizes a genetic

algorithm (GA) and a particle swarm optimization (PSO) in

order to enhance the detection phase of the SVM. Their

approach outperforms the other standard machine learning

classifiers. Another recent work applied the metaheuristic

and machine learning together for Android ransomware

detection [47]. They combined the Kernel Extreme

Learning Machine (KELM) with the Salp Swarm Algo-

rithm (SSA) to improve the KELM hyperparameters and

select the best subset of features. The experiments of the

proposed method achieved better results than other meth-

ods in several measures. Furthermore, the work in [48]

presented a malware detection technique based on an

evolutionary algorithm and operational codes (OpCodes).

Their work contained various steps to perform which are,

take apart the executable files, producing OpCodes graph,

and employing the evolutionary algorithm in order to

identify similar graphs. Besides, the detection of the mal-

ware types takes place by applying the graph similarity of

each instance using the evolutionary algorithm.

Furthermore, a evolutionary algorithm has gain attention

recently, Harris Hawks Optimization (HHO). The HHO

applied in different and wide applications in the literature,

including, feature selection [49], student performance, fault

Detection, Internet of Things, image segmentation, manu-

facturing problems and so on.

Therefore, in this study we utilized the HHO for the

problem of malware Android detection. The proposed work

in this study differs from the previously mentioned meth-

ods in the following points:

– Applied the recent metaheuristic algorithm Harris

Hawks Optimization (HHO) in order to improve the

SVM detection performance.

– The propped approach HHO-SVM tackles the problem

of optimizing the SVM hyperparameters and identify

the features weighting of the datasets.

– Generate five sampled datasets to study each scenario

of every attack type.

– Analyze each attack type of the five datasets and their

relation to the features. In other words, identify the

most important features of each dataset (different

malware type).

3 Preliminaries

3.1 Support vector machine (SVM)

Support Vector Machine (SVM) is a machine learning

classifier designed to solve classification and regression

problems [50]. It is known as one of the most reliable

classifiers applied for solving problems in different

domains [51]. SVM depends on searching for the most

possible optimal linear separation criterion which is known

as the Hyperplane. The hyperplane tries to maximize the

distance (margin) between the closes data points of the

training instances which belong to each class. The data

points near to the hyperplane in a distance equal to the

margin are called Support Vectors. On the other hand,

overfitting to the training set will most probably occur,

which can lead to the misclassification of the new instances

or datasets. To solve this problem, a penalty parameter

known as the cost, which is denoted by C, will be used to

increase the accuracy of the classification for the new data

points. [52]. Figure 1 shows the aforementioned description

of SVM.

To solve the issue of nonlinear separation of data points,

different kernel functions can be used for SVM. The most

popular and robust kernel function is the Radial Basis

Function (RBF); as it relies on the gamma c parameter for

Support 
Vectors

Support 
Vectors

Class 2

Class 1

Optimal
 Hyperplane

Margin

x1

x2

Fig. 1 Support vectors with optimal hyperplane
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deciding the effect of support vectors over each other. The

reader can refer to [53] for more details about SVM.

3.2 Harris Hawks optimization (HHO)

Harris Hawks Optimizer (HHO) is a nature-inspired pop-

ulation-based optimization algorithm designed by [54].

HHO is inspired by the behavior of Harris’ hawks when

they cooperate to chase their preys in an intelligent strategy

that is called the surprise pounce, through which, the hawks

pounce their prey from different directions to surprise it as

shown in Fig. 2.

As a nature-inspired optimization algorithm, the HHO is

composed of two main phases; which are the exploration

and exploitation, as well as a transition state between

exploitative behaviors. The candidate solutions here are

represented by the hawks that are observing and waiting in

the desert to detect their prey, and the best solution for each

step is the selected prey.

In the exploration phase, the Harris’ hawks start their

haunting process by selecting random locations and wait-

ing to try to detect a prey. This is carried out based on two

strategies: the first depends on the positions of other hawks

that are participating in the haunting of the prey, and the

second depends on the randomly existing tall trees within

the haunt range. Equation 1 explains both strategies, where

an equal chance q for every positioning (perching) strategy

is considered and thus, the first strategy is selected if q is

equal to or greater than 0.5, and the second strategy is

selected otherwise. Xðt þ 1Þ is the vector of hawks’ posi-

tions in the following iteration, XrabbitðtÞ is the position of

the prey in the current iteration t, XrandðtÞ is a randomly

selected hawk from the current iteration, and X(t) is the

vector of hawks’ positions of the current iteration. r1, r2, r3,

r4 and q are random numbers in the interval (0,1) which are

updated through each iteration, LB and UB are the lower

and upper bounds of the variables, respectively.

Xðt þ 1Þ ¼
XrandðtÞ � r1jXrandðtÞ � 2r2XðtÞ q� 0:5

ðXrabbitðtÞ � XmðtÞÞ � r3ðLBþ r4ðUB� LBÞÞ q\0:5

�

ð1Þ

XmðtÞ is the average position of hawks in the current

population, which can be calculated according to equation

2, where XiðtÞ is the position of the hawk i in the current

iteration, while N is the total number of hawks.

XmðtÞ ¼
1

N

XN
i¼1

XiðtÞ ð2Þ

In the exploitation phase, the Harris’ hawks start attacking

their prey by performing the surprise pounce. However, as

the prey attempts several times to escape from the hawks,

they change their chasing strategies according to the

escaping behaviors of the prey. Hence, there are four dif-

ferent chasing strategies followed by the hawks, which are

Soft Besiege, Soft Besiege with progressive rapid dives,

Hard Besiege, Hard Besiege, and Hard Besiege with pro-

gressive rapid dives.

The selection of either strategy of the four depends on

the energy E of the prey; as the prey loses its energy during

escaping the haunt. In other words, it can be translated as

changing between different exploitative behaviors. The

energy of the prey can be modeled through Equ 3, where

E0 is the initial energy of the prey, and T is the maximum

number of iterations.

E ¼ 2E0 1� t

T

� �
ð3Þ

When jEj � 0:5, the soft besiege occurs only if the chance r

of the prey successfully escaping from the hawks is � 0:5.

However, if r\0:5, the soft besiege with progressive rapid

dives strategy occurs. Equ 4 and 5 illustrate both strategies,

respectively. Where DXðtÞ is the difference between the

position vector of the rabbit and the location stored in the

current iteration t, Y is the rule to evaluate the next move of

the hawks to perform a soft besiege. While Z is the rule to

apply the zigzag deceptive motion that is mimicked in the

Levy Flight LF move, only if the Y rule fails. The reader

can read about Y, Z, and LF in original paper.

Xðt þ 1Þ ¼ DXðtÞ � EjJXrabbitðtÞ � XðtÞj ð4Þ

|E 1=|

E

Fig. 2 HHO different phases [54]
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Xðt þ 1Þ ¼
Y if FðYÞ\FðXðtÞÞ
Z if FðZÞ\FðXðtÞÞ

�
ð5Þ

When jEj\0:5, the Hard besiege strategy is followed in

condition that r is greater than or equal to 0.5. Otherwise,

hard besiege with progressive rapid dives strategy will be

carried out. Equation 6 shows how the current positions are

updated for hard besiege, while for hard besiege with

progressive rapid dives the same Equ 5 is applied with a

difference that Y considers the average positions of the

hawks instead.

Xðt þ 1Þ ¼ XrabbitðtÞ � EjDXðtÞj ð6Þ

4 Proposed approach

4.1 Design issues

This section detailedly describes, the approach followed to

utilize the HHO algorithm for optimizing SVM parameters

as well as weighting the features.

Solution representation As described earlier, in this

paper, the solution here is represented by the hawks that are

waiting and observing the prey. Therefore, from now on,

we will only mention the term solution instead of hawks to

eliminate any confusion for the reader. The representation

of the solution is affected by two factors; the parameters of

SVM, and the features (attributes) of the inserted dataset.

For the first part of the representation, we look into the

search spaces of SVM parameters C and c, which both have
different boundaries than the original boundaries of the

solution, which are 0 and 1. Therefore, we need to scale the

values of the solution into readable values for SVM

parameters. The C parameter best accepts values between 0

and 32, and c values can be within the interval [0,35000].

For scaling the values, we apply the min-max normaliza-

tion equ shown in 7, where B represents the final scaled

value, A is the value to be scaled, minA, maxA are the lower

and upper bounds of the old interval, respectively, and

minB, and maxB are the lower and upper bounds of the new

interval, respectively.

B ¼ A� minA
maxA � minA

ðmaxB � minBÞ þ minB ð7Þ

The second part of the solution representation is directly

affected by the number of attributes of the dataset. Each

value in the solution vector is matched to an attribute in the

dataset. Consequently, the value of each cell in the second

part of the solution that is produced by the HHO algorithm

is multiplied by the value of the corresponding attribute for

all training instances as shown in Fig. 3. Hence, combining

both parts will result in a solution that has a length that is

equal to two (for C c ) plus the number of the attributes of

the dataset.

Fitness function Deciding the quality of the solution is

known as fitness assessment and thus, the function that is

used for such task is called the fitness function. In our case,

we use the classification accuracy produced by the SVM

algorithm as the fitness function, and we make sure that

HHO is also set to maximize this value. The classification

accuracy is calculated using Eq. 8, where TP and TN are

the truly classified positive and negative instances, and FP

and FN are the falsely classified positive and negative

instances.

System architecture To start the process, we split the

dataset into training and testing subsets. The split is con-

ducted based on the k-fold cut, where the k � ðk � 1Þ
partition is allocated for the testing set and the remaining

k � 1 is allocated for the testing set. This step is repeated k

times, having different k � 1 parts of the dataset for both

training and testing sets in each iteration. This step is

conducted to guarantee the maximum possible diversity of

the training/testing sets, as well as maximum possible

number of separated runs.

The HHO initializes a random solution based on the

training set at the beginning of each fold. The solution will

be composed of the values that will be given to the SVM

parameters and the features of the training dataset. The

solution is split by assigning the first two values for SVM

parameters after having them scaled and the remaining part

will be assigned to the features. The value in each cell in

the second part of the solution is multiplied by each value

of the matching feature.

Next, the SVM is trained using the scaled values of the

first two cells of the solution vector which are assigned to

the C and c variables, as well as the new values of the

training set which resulted from the multiplications by the

Dataset Weighted 

Dataset

Weighting PartCost & Gamma

0.2 0.5 0.10.2 0.9

0.4 0.2 0.3

0.3 0.1 0.6

0.7 0.1 0.9

0.08 0.1 0.03

0.06 0.05 0.06

0.14 0.05 0.09

Multiply X

Fig. 3 Representation of the weighting mechanism
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correspondent cells. The classification accuracy that

resulted using the values of the solution is returned as the

fitness function outcome for the HHO algorithm.

As we mentioned, all previous operations occur during a

single training fold and they are repeated in that fold based

on the number of iterations set in the HHO algorithm.

When the maximum number of iterations is reached, the

HHO returns the most optimal possible solution which

owns the highest classification accuracy, and this value will

be the outcome of that single fold. Finally, we calculate the

average accuracy out of the accuracy of the testing set of

all folds.

4.2 Evaluation

The results of all algorithms are compared and evaluated in

order to examine their performance on the datasets. The

evaluation process performed using the confusion matrix

table as illustrated in Fig. 4. The True Positive (TP) depicts

the number of all actual positive classes that are accurately

predicted, while the count of actual positive elements that

are incorrectly predicted denotes with False Negative (FN).

As for False Positive (FP), it is the number of negative

elements that are incorrectly predicted as Positive class,

whilst the count of negative elements that are accurately

predicted.

Four evaluation measures are utilized to examine the

model’s performance, including, accuracy, precision,

recall, and f-measure. The mentioned measures can be

calculated as shown in the following equations:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð8Þ

Precision ¼ TP

TPþ FP
ð9Þ

RecallðSensitivityÞ ¼ TP

TPþ FN
ð10Þ

F �Measure ¼ 2 � Precision � Recall
Precisionþ Recall

ð11Þ

All the aforementioned processes described in Sect. 4

are depicted in Fig. 5.

5 Dataset description, characteristics
and preparation

The dataset used in this work (CICAndMal2017) is col-

lected from 10,854 samples by the Canadian Institute for

Cybersecurity [55]. The samples consist of 4354 malware

and 6500 benign gathered from different sources. On one

hand, the malware sources are divided into several parts,

namely, Contagio security blog, VirusTotal, and previously

published works in the literature [56], and on the other

hand, the benign application samples are collected from

Google Play store during the years 2015-2017.

The dataset is categorized into five different groups,

including, Benign, Adware, Ransomware, Scareware and

SMSmalware. The details of each group can be seen in

Table 1.

The Adware type is defined as a malicious application

that is responsible for sending user information to a specific

remote server in order to forcefully showing personalized

(interest-based) advertisements for that user. This can be

done by hacking smartphone speakers or tracking users’

search history and application usage [57]. As for the

Ransomware type, it is a kind of malware that demands

users an amount of cash. This type has two general classes,

which are, crypto and lock-screen. The crypto class works

as an encryption method that scrambles the mobile device

information and contents, while the lock-screen class

functions by blocking the smartphone screen and covers it

completely with a picture and make it impossible to be

used. Both classes can be resolved if the users pay the

demanded payment. Moreover, the Scareware type oper-

ates by scaring users with some kind of phishing websites

or applications that threaten them to steal their information

[58]. Scareware tries to trick users by pretending to be a

security application, for instance, that shows a fake list of

viruses on users’ devices causing them to use such mal-

ware. Finally, the SMSmalware type is a malware that

controls and manages messages to send unwanted mes-

sages. In other words, it is a process used by the hacker to

send messages by using users’ mobile phones to trick their

trusted contacts [59].

Before processing, the dataset comprises various files

where each file is a member of the malware groups (Ad-

ware, Ransomware, Scareware, and SMSmalware).

Therefore, to merge all files together, a command line

script was applied. Further, some prepossessing steps were

employed in order to prepare the dataset for the classifi-

cation models, including, clean noisy data and missing
Fig. 4 Confusion matrix
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values. These issues were solved using normalization and

majority vote methods, respectively.

In this paper, five datasets are prepared and sampled

from the original data. In our sampling technique, we

generated each dataset to have two types of classes, Benign

and different malware types, while the last dataset contains

all malware types except the Adware due to having diverse

characteristics. Also, all datasets simulate the distribution

of the original data. Additional experiments were applied

with other feature selection approaches and the same
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Fig. 5 Proposed approach process

Table 1 Details of the original data

Type No. of instances

Benign 1,210,210

Adware 424,147

Ransomware 348,943

Scareware 401,165

SMSmalware 229,275
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results were obtained. The details of the sampled datasets

are shown in Table 2.

6 Experiment and results

In this section, several experimental phases are carried out

on all datasets, including, base classifiers models exami-

nation, SVM with metaheuristic benchmarks investigation,

comparison between the proposed approach, and other

metaheuristic algorithms on our datasets.

Additionally, feature importance analysis is applied in

order to identify the best-weighted ones to detect android

malware on each dataset.

Therefore. to summarize the four experiments and

analysis phases:

– Base classifiers models: an examination of our sampled

datasets on traditional well-known classification

models.

– Benchmarks performance of SVM with metaheuristic

algorithms: to investigate the performance of HHO-

SVM against other algorithms with distinguished

benchmarks.

– HHO-SVM against other metaheuristic algorithms: an

examination of our sampled datasets on the proposed

HHO-SVM compared with other algorithms.

– Feature Importance analysis: an analysis of the most

important features to detect malware as well as the

relationship between each class type and the features.

6.1 Experiments setup

All experiments were conducted on a workstation with the

specification of Xeon E5-2609 CPU and 64GB RAM. All

algorithms were implemented on MATLAB 2016 version

A. As for the base classifiers we used Weka tool. The

settings and parameters of the metaheuristic algorithms can

be found in Table 3.

Furthermore, 10 independent runs are conducted for all

approaches and the average alongside standard deviations

of the runs were taken, while the number of iteration was

20 for metaheuristic algorithms. The performed measures

in this work are accuracy, precision, recall, and f-measure.

As for the training and testing splitting criteria, we utilized

the 10-fold cross-validation, thus, we guarantee the maxi-

mum shuffle for the testing and training sets. Finally, all

approaches are examined on the 5 sampled datasets, and an

extra investigation of the metaheuristic is examined on 10

well-known benchmarks.

6.2 Performance of the sampled data
(CICMalAnal2017) on the base classifiers
models

In the first phase, the performance of the base classifiers

models is investigated on the new 5 sampled datasets.

Theses classifiers are commonly used in the literature,

which are, Naive Bayes (NB), k-nearest Neighbors (k-NN)

with different k values and Random Forest (RF). This

phase implemented in order to analyze and examined the

sampled datasets before executed on our proposed

approach.

Table 4 illustrates the results for Data1 dataset. The

highest results obtained by 5-NN with 85.57%, while the

second highest achieved by NB classifier with 84.86%. In

terms of precision, the NB achieved the highest result with

0.876%, followed by RF with 0.8745%. As for the recall

measure, the maximum result accomplished by 5-NN with

0.97%, while the second best acquired by NB. If we

observe the f-measure results, the 5-NN has the best result,

followed by NB, RF, 3-NN and 1-NN, respectively.

Table 2 Details of the five

sampled datasets
Dataset No. of instances Name of classes

Data1 2400 Benign, Adware

Data2 1725 Benign, Ransomware

Data3 2210 Benign, Scareware

Data4 2450 Benign, SMSmalware

Data5 2850 Benign, Ransomware, Scareware, SMSmalware

Table 3 Parameter settings

Algorithm Parameter Value

SSA c1 [0-1]

c2 [0-1]

PSO Acceleration constants [2.1, 2.1]

Inertia w [0.9, 0.6]

GA Single point crossover 0.9

Mutation 0.01
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Based on the results for Data2 in Table 5, we notice that

the NB outperforms all other methods with 86.7% in terms

of accuracy, followed by 5-NN, RF, 3-NN and 1-NN,

respectively. As for the precision results, the 1-NN pro-

vides the fittest result, while 3-NN obtained the second best

result. In terms of recall and f-measure, the best classifier

was NB with 0.99% and 0.92%, respectively.

According to the accuracy results for Data3 in Table 6,

5-NN achieved the best results with 92.6%, followed by 3-

NN, RF, 1-NN and NB, respectively. As for the precision

measure, the NB outperforms other classifiers, while the

highest result in recall and f-measure accomplished by 5-

NN with 0.99% and 0.96%, respectively.

The 5-NN achieved the highest accuracy for Data4 as

shown in Table 7, followed by 3-NN, RF, NB and 1-NN,

respectively. As for the precision measure, the 3-NN

exceeds all other classifiers, while 5-NN is placed second

with 0.9313%. In terms of recall and f-measure, the 5-NN

obtained the highest results with 0.99% and 0.96%,

respectively.

As per accuracy results in Table 8, 5-NN outperforms all

other methods, followed by RF, 3-NN, NB and 1-NN,

respectively. NB classifier provides the fittest results

compared to the other classifiers in terms of precision with

0.878%. As for recall and f-measure, 5-NN also acquired

the highest results, while the second best achieved by RF.

In summary, the investigation of the datasets shows the

stability of the results in total. Therefore, the examination

of our proposed approach can be employed after this

analysis. It is worth mentioned that the best algorithm

obtained by the 5-NN, where it acquired first place 4 times

in terms of accuracy, while NB achieved the first place in

one time. As for the other measure, NB placed first 3 times

in precision and 5-NN placed first for recall and f-measure

in 4 times.

6.3 Performance of HHO-SVM on general
benchmarks

Before examining our sampled datasets on the the proposed

approach, a general performance investigation is applied on

number of benchmarks. This is done in order to verify the

proposed approach performance compared with the other

algorithms. Table 9 reports a brief description of the 10

utilized benchmarks in this subsection.

Four metaheuristic algorithms are applied in this phase

which are, Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Salp Swarm Algorithm (SSA), and

Harris Hawk Optimizer (HHO).

According to the average accuracy shown in Table 10,

HHO-SVM outperforms the other algorithms with 6 out of

10 datasets, namely, Breast Cancer, Wine, Sonar, Spectft,

Ionosphere, Glass and Iris. Further, Parkinsons dataset

achieved the best result by both the HHO-SVM and GA-

SVM with 94.8421%. The two other datasets, Heart and

Table 4 Base classifiers results

for Data1 dataset
Dataset Algorithm Accuracy Precision Recall F-measure

Avg Std Avg Std Avg Std Avg Std

Data1 NB 84.8689 1.6960 0.8767 0.0058 0.9620 0.0190 0.9173 0.0100

Data1 1-NN 77.4990 2.0221 0.8723 0.0082 0.8697 0.0222 0.8708 0.0129

Data1 3-NN 84.0225 1.3189 0.8741 0.0054 0.9545 0.0136 0.9125 0.0077

Data1 5-NN 85.5772 1.1717 0.8721 0.0036 0.9783 0.0122 0.9221 0.0068

Data1 RF 84.5644 1.3087 0.8745 0.0049 0.9611 0.0138 0.9158 0.0076

The bold values represent the highest results

Table 5 Base classifiers results

for Data2 dataset
Dataset Algorithm Accuracy Precision Recall F-measure

Avg Std Avg Std Avg Std Avg Std

Data2 NB 86.7745 0.7019 0.8724 0.0018 0.9937 0.0084 0.9291 0.0041

Data2 1-NN 78.9731 2.3607 0.8795 0.0088 0.8795 0.0265 0.8793 0.0150

Data2 3-NN 83.7240 1.8795 0.8763 0.0077 0.9471 0.0186 0.9103 0.0109

Data2 5-NN 85.1909 1.2185 0.8720 0.0037 0.9731 0.0134 0.9197 0.0071

Data2 RF 84.7673 1.4224 0.8731 0.0049 0.9658 0.0153 0.9170 0.0083

The bold values represent the highest results
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Table 6 Base classifiers results

for Data3 dataset
Dataset Algorithm Accuracy Precision Recall F-measure

Avg Std Avg Std Avg Std Avg Std

Data3 NB 87.0367 2.1158 0.9314 0.0055 0.9287 0.0226 0.9299 0.0122

Data3 1-NN 87.2857 1.5966 0.9304 0.0052 0.9328 0.0159 0.9315 0.0091

Data3 3-NN 91.7837 0.7733 0.9291 0.0036 0.9868 0.0075 0.9570 0.0042

Data3 5-NN 92.6245 0.3859 0.9285 0.0025 0.9974 0.0037 0.9617 0.0021

Data3 RF 91.5592 0.7845 0.9283 0.0030 0.9851 0.0077 0.9558 0.0043

The bold values represent the highest results

Table 7 Base classifiers results

for Data4 dataset
Dataset Algorithm Accuracy Precision Recall F-measure

Avg Std Avg Std Avg Std Avg Std

Data4 NB 88.7376 2.2982 0.9304 0.0040 0.9501 0.0244 0.9400 0.0129

Data4 1-NN 87.3394 1.6832 0.9310 0.0042 0.9332 0.0184 0.9320 0.0097

Data4 3-NN 92.1946 0.6507 0.9316 0.0028 0.9888 0.0068 0.9593 0.0035

Data4 5-NN 92.9050 0.3958 0.9313 0.0021 0.9973 0.0037 0.9632 0.0021

Data4 RF 91.7602 0.7481 0.9303 0.0018 0.9854 0.0082 0.9570 0.0041

The bold values represent the highest results

Table 8 Base classifiers results

for Data5 dataset
Dataset Algorithm Accuracy Precision Recall F-measure

Avg Std Avg Std Avg Std Avg Std

Data5 NB 84.1455 2.0462 0.8784 0.0048 0.9509 0.0218 0.9131 0.0121

Data5 1-NN 78.4169 1.8981 0.8763 0.0069 0.8779 0.0207 0.8770 0.0119

Data5 3-NN 84.4436 1.2187 0.8765 0.0038 0.9576 0.0130 0.9152 0.0071

Data5 5-NN 86.9146 0.6112 0.8780 0.0024 0.9881 0.0064 0.9298 0.0034

Data5 RF 85.2896 1.0068 0.8776 0.0036 0.9671 0.0109 0.9202 0.0058

The bold values represent the highest results

Table 9 List of benchmark

datasets
No. Dataset No. of features No. of instances No. of classes

1. Breast Cancer 10 683 2

2. Wine 13 178 3

3. Heart 13 270 2

4. Parkinsons 22 195 2

5. Sonar 60 208 2

6. Vowel 10 528 11

7. Spectft 44 276 2

8. Ionosphere 34 351 2

9. Glass 9 214 6

10. Iris 4 150 3
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Vowel, obtained the highest results by SSA-SVM and

PSO-SVM, respectively.

The previous results clearly show the superiority of the

HHO-SVM compering with other approaches on the 10

benchmarks. However, for more accurate examination, all

four approaches are also compared with our sampled

datasets.

6.4 Results of HHO-SVM compared with other
metaheuristic algorithms on the sampled
data (CICMalAnal2017)

In this subsection, the HHO-SVM applied on the sampled

datasets and compared with the remaining metaheuristic

algorithms. These algorithms are the same as the previous

subsection, including GA-SVM, PSO-SVM, and SSA-

SVM. Moreover, unlike the previous phase, the examina-

tion take place on several measures namely, accuracy, ,

recall, precision, and f-measure.

Table 11 illustrates the results of the four algorithms in

terms of all measures for the Data1 dataset. In terms of

accuracy, HHO-SVM achieved the best result, followed by

GA-SVM, PSO-SVM, and SSA-SVM, respectively.

Regarding the recall measure, HHO-SVM obtained the

highest result, while GA-SVM placed second. Further, the

HHO-SVM also acquired the fittest result for precision and

f-measure with 99.95% and 93.20%, respectively, while the

best-second achieved by PSO-SVM for both measures.

As shown in Table 12, the HHO-SVM exceeds all other

approaches in terms of accuracy for Data2, followed by

PSO-SVM, SSA-SVM, and GA-SVM. As per recall

results, the best result is obtained by HHO-SVM, while

PSO-SVM has the second highest result. According to the

precision measure, the best results gained by both HHO-

SVM and SSA-SVM. The PSO-SVM has the fittest result

in f-measure compared to other algorithms with 93.14%.

Table 13 states the comparison of all algorithms for

Data3 dataset. As per results for accuracy, recall and pre-

cision measures, we can see that all algorithms have the

same results. This is happened due to the sensitivity of the

dataset and the distribution of the classes. As for f-measure,

the PSO-SVM attained the best result with 96.4355%.

Table 14 reflects the comparison results of Data4 data-

set. The HHO-SVM reached the highest accuracy rates

with 92.85%, which is followed by PSO-SVM, SSA-SVM

and GA-SVM, respectively. Regarding the recall and f-

Table 10 A comparison of

average accuracy for GA-SVM,

PSO-SVM, SSA-SVM and

HHO-SVM over all benchmarks

Algorithm GA-SVM PSO-SVM SSA-SVM HHO-SVM

Benchmark Avg Std Avg Std Avg Std Avg Std

Breast Cancer 96.3342 1.9904 96.7796 2.1518 96.6326 2.7638 96.9224 1.6174

Wine 97.2222 2.9280 97.7778 3.8845 97.1895 2.9641 98.3007 2.7377

Heart 80.3704 8.0104 80.7407 11.4223 82.9630 7.2409 82.5926 9.0806

Parkinsons 94.8421 6.7575 92.2368 8.2970 93.4211 5.7762 94.8421 5.9289

Sonar 83.1905 7.4849 87.9762 6.8413 86.5476 11.2168 88.0238 5.5579

Vowel 98.8643 2.0298 99.4340 0.9114 98.8643 1.3216 99.0530 1.3371

Spectft 78.2764 5.8175 78.6610 7.8639 78.9744 9.8853 79.3875 9.2618

Ionosphere 92.8810 7.4031 92.3175 2.2980 92.0079 4.2272 93.1508 4.0940

Glass 65.9524 9.1719 66.8831 8.3825 69.6970 11.9965 71.9913 8.4068

Iris 94.6667 2.8109 93.3333 4.4444 94.0000 6.6295 95.3333 5.4885

Rank 4th 2nd 3rd 1st

The bold values represent the highest results

Table 11 HHO-SVM and other metaheuristic algorithms results for Data1 dataset

Dataset Algorithm Accuracy Recall Precision F-measure Rank

Avg Std Avg Std Avg Std Avg Std

Data1 GA-SVM 87.2448 2.0984 87.3162 2.0243 99.9029 0.30702 93.1758 1.2059 2nd

Data1 PSO-SVM 87.2444 1.9681 87.3161 1.9079 99.9031 0.20423 93.1771 1.1198 3rd

Data1 SSA-SVM 87.2019 2.4614 87.3113 2.4652 99.8572 0.31781 93.1469 1.4017 4th

Data1 HHO-SVM 87.2868 1.7891 87.3220 1.7231 99.9507 0.15578 93.2031 1.0208 1st

The bold values represent the highest results
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measures, the HHO-SVM obtained the best results with

92.85% and 96.27%, respectively. As for the precision, we

observe that the HHO-SVM joint with PSO-SVM achieved

the highest result.

As per results for Data5 dataset in Table 15, it is

observed that the HHO-SVM again exceeds the other

approaches in terms of accuracy. The GA-SVM, PSO-

SVM and SSA-SVM has attained the next rates,

Table 12 HHO-SVM and other metaheuristic algorithms results for Data2 dataset

Dataset Algorithm Accuracy Recall Precision F-measure Rank

Avg Std Avg Std Avg Std Avg Std

Data2 GA-SVM 87.1216 2.2218 87.2217 2.1654 99.8658 0.2830 93.1043 1.2512 4th

Data2 PSO-SVM 87.1787 1.5535 87.2287 1.4993 99.9324 0.2137 93.1437 0.8831 2nd

Data2 SSA-SVM 87.1757 2.5126 87.2264 2.5055 99.9333 0.2108 93.1310 1.4472 3rd

Data2 HHO-SVM 87.1841 2.4637 87.2348 2.4562 99.9333 0.2108 93.1366 1.4116 1st

The bold values represent the highest results

Table 13 HHO-SVM and other metaheuristic algorithms results for Data3 dataset

Dataset Algorithm Accuracy Recall Precision F-measure Rank

Avg Std Avg Std Avg Std Avg Std

Data3 GA-SVM 93.1222 1.5352 93.1222 1.5352 100.0000 0.0000 96.4327 0.8273 1st

Data3 PSO-SVM 93.1222 1.1247 93.1222 1.1247 100.0000 0.0000 96.4355 0.6025 1st

Data3 SSA-SVM 93.1222 1.2401 93.1222 1.2401 100.0000 0.0000 96.4348 0.6653 1st

Data3 HHO-SVM 93.1222 1.1247 93.1222 1.1247 100.0000 0.0000 96.4354 0.6070 1st

The bold values represent the highest results

Table 14 HHO-SVM and other metaheuristic algorithms results for Data4 dataset

Dataset Algorithm Accuracy Recall Precision F-measure Rank

Avg Std Avg Std Avg Std Avg Std

Data4 GA-SVM 92.8163 1.2047 92.8488 1.1723 99.9558 0.1399 96.2680 0.6416 2nd

Data4 PSO-SVM 92.7755 1.4014 92.7755 1.4014 100.0000 0.0000 96.2475 0.7532 3rd

Data4 SSA-SVM 92.7347 1.2734 92.7727 1.2764 99.9561 0.1387 96.2263 0.6886 4th

Data4 HHO-SVM 92.8571 2.3741 92.8526 2.3711 100.0000 0.0000 96.2796 1.2853 1st

The bold values represent the highest results

Table 15 HHO-SVM and other metaheuristic algorithms results for Data5 dataset

Dataset Algorithm Accuracy Recall Precision F-measure Rank

Avg Std Avg Std Avg Std Avg Std

Data5 GA-SVM 87.6794 1.4886 87.7111 1.5499 99.9612 0.1226 93.4293 0.8409 2nd

Data5 PSO-SVM 87.6102 1.9331 87.7023 1.9128 99.8798 0.2707 93.3858 1.1040 3rd

Data5 SSA-SVM 87.6084 1.8844 87.6998 1.8326 99.8789 0.19505 93.3852 1.0781 4th

Data5 HHO-SVM 87.6803 2.1189 87.7103 2.0827 99.9590 0.1296 93.4235 1.2087 1st

The bold values represent the highest results
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respectively. However, in terms of recall, precision, and f-

measure, the GA-SVM attained the best result with

87.711%, 99.96% and 93.429%, respectively. While the

HHO-SVM obtained the second best result for the three

measures.

Mainly, the results of SVM in total shows improvement

compared with the base classifiers phase. All metaheuristic

algorithms obtained good results, however, the HHO-SVM

outperforms all other approaches in most of the measures.

This again proves the superiority of the proposed approach

(HHO-SVM).

Figure 6 presents the box-plot charts for all datasets in

terms of accuracy. The box-plots is determined by using

the 10-runs values of the accuracy measure for each

algorithm.
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Fig. 6 Box-plot charts for HHO-SVM and other algorithms based on sampled-datasets
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6.5 Feature importance analysis

In this subsection, a feature importance analysis is pre-

sented in order to investigate the features’ weights for each

dataset. This analysis will help us to identify the relation-

ship between the features and the types of classes that each

dataset has. Therefore, more identification and explanation

is needed about the most important features to detect the

malware for each scenario.

According to Fig. 7, the weights of the features reveals

different values for each datasets. In Fig. 7a for example,

the best feature was minsegsizef orward, while the second

best feature was IdleMax. In Data2, the highest weighted

feature was Init Win bytes forward as shown in Fig. 7b, and

the second obtained by Bwd IAT Total. As can be seen in

Fig. 7c the first and second features were FIN Flag Count

and Fwd IAT Total with 0.610 and 0.550, respectively. On

the other hand, Fig. 7d illustrates the features’ weights for

Data4, where FIN Flag Count achieved the first place and

Init Win bytes forward acquired the second place. Finally,

Fig. 7e shows the weights of Data5 features. Fwd IAT Total

attained the highest weighted feature, while Init Win bytes

forward was the second highest.
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Fig. 7 HHO-SVM feature weighting for all datasets, incdluding Data1, Data2, Data3, Data4 and Data5
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Overall, 7 reveals each dataset’s important features and

the difference between them. Each of which shows unique

order of the features, due to the characteristics of the class

type. Data1 for example, with classes Benign and Adware,

the features were inclined to IAT features which mean the

range time (total time between two actions) of the Flow,

forward, and backward directions. Further, Data2 classes

(Benign, Ransomware) related more to feature such as the

total bytes transmitted to the initial window in a forward

direction and the duration of two packets transmission in

both directions. As for Data3 with classes Benign and

Scareware the features closer to features that mean termi-

nation of data transmission alongside the time duration and

flow of transmission between two packets. On the other

hand, Data4 (Benign, SMSmalware) correlates with fea-

tures like termination of the data, initial window trans-

mission, and minimum segment volume in the forward

direction. Finally, Data5 that has the largest number of

classes, which are Benign, Ransomware, Scareware, and

SMSmalware. The data shows more bonds with features

such as transfer time duration of two packets in the forward

direction, minimum segment size in the forward direction,

transmission duration in the backward direction, and the

flow maximum time being idle until it moves again.

7 Conclusion and future work

Android OS has been dominating the market share

worldwide in the past few years. The number of users and

applications increases every year due to this lead. There-

fore, hackers and attackers exploit this success to spread

various types of malware. Such issues can be resolve by

using a measure like a machine learning Android malware

detection-based. Consequently, in this work, we proposed a

hybrid Support Vector Machine (SVM) and Harris Hawks

Optimization (HHO) approach to detect these malware.

The HHO is responsible for two procedures in this

approach, optimizing of SVM hyperparameters and fea-

tures weighting, while the SVM is in charge of evaluating

this combination and selecting the best model for the

testing phase of CICMalAnal2017 sampled datasets. Fur-

thermore, a detailed analysis of the relationship between

the features and malware attacks was presented. The per-

formance of the proposed approach outperforms the other

approaches in most datasets and measures. This approach

suffers from two main limitations, namely, time con-

sumption and computational complexity. The time con-

sumption limitation can be solved using the correct

application and appropriate dataset. While the computa-

tional complexity is hard to overcome due to the require-

ments needed for the objective of this work, parameter

optimization and feature weighting, where both require

different and unique structure representations. In future

work, we seek to investigate more sub-attack types as well

as other machine learning methods and metaheuristic

algorithms. There are more than twenty sub-attack types

that can be reviewed to improve the detection phase. Also,

other classification methods can be employed that could

offer different results and analyses.
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