
Software enhancement effort estimation using correlation-based
feature selection and stacking ensemble method

Zaineb Sakhrawi1 • Asma Sellami2 • Nadia Bouassida2

Received: 9 September 2021 / Revised: 9 September 2021 / Accepted: 28 September 2021 / Published online: 23 November 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Estimating software enhancement efforts became a challenging task in software project management. Recent researches

focused on identifying the best machine learning algorithms for software maintenance effort estimation. Most of the

research publications investigated the use of ensemble learning for improving software effort estimation. Intending to

increase the estimation accuracy over individual models, this paper investigates the use of the stacking ensemble method

for estimating the enhancement maintenance effort (EME) of software projects. This paper makes a comparison between

two machine learning-based approaches for estimating software EME: The M5P (as an individual model) and the stacking

as an ensemble method combining different regression models (GBRegr, LinearSVR, and RFR) using the ISBSG dataset.

A correlation-based feature selection (CFS) algorithm is basically used to achieve efficient data reduction. The selected ML

techniques-based approaches were trained and tested on a dataset with relevant features leading to the improvement of

estimate accuracy. Results show that the software EME estimation using CFS and stacking ensemble method is improved

in terms of mean absolute error (MAE) = 0.0383 and root mean square error (RMSE) = 0.1973.

Keywords Enhancement effort estimation � Correlation-based feature selection � M5P ML algorithm � Stacking ensemble

method

1 Introduction

Software enhancement effort estimation (also termed pre-

diction) has recognized the growing importance by several

software organizations since most software enhancement

projects allocated lower cost compared to new develop-

ment [1]. Software enhancement is considered a critical

activity in the software development life cycle. It is defined

as ‘‘changes made to an existing application where new

functionality has been added, or existing functionality has

been changed or deleted. This would include adding a

module to an existing application, irrespective of whether

any of the existing functionality is changed or deleted’’ [2].

Since changes are frequent throughout the Software

Development Life Cycle (SDLC), software project plan-

ning should be reviewed frequently. And therefore, the

software enhancement effort estimation should be accurate.

The benefits of using enhancement effort estimation

models are numerous. For instance, estimation models can

help in making decisions about when to restructure or re-

engineer a software component to make it more main-

tainable, know better the underlying reasons about the

difficulty of correcting specific kinds of errors [3]. In this

area, Machine Learning (ML) techniques are widely used

for achieving better estimation. ML techniques are the

most suitable for dealing with modeling of high dimen-

sional problems [4]. But there is a lack of consensus among

researchers about the technique that can achieve better

estimation [5]. Several techniques have been proposed for

estimating software enhancement effort, including statisti-

cal regressions or machine learning models such as case-

& Zaineb Sakhrawi

zeinab.sakhraoui@fsegs.rnu.tn

Asma Sellami

asma.sellami@isims.usf.tn

Nadia Bouassida

nadia.bouassida@isims.usf.tn

1 Faculty of Economics and Management of Sfax, University

of Sfax, Sfax, Tunisia

2 Higher Institute of Computer Science and Multimedia,

University of Sfax, Sfax, Tunisia

123

Cluster Computing (2022) 25:2779–2792
https://doi.org/10.1007/s10586-021-03447-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1052-3502
http://orcid.org/0000-0002-6739-5508
http://orcid.org/0000-0003-0434-2465
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03447-5&domain=pdf
https://doi.org/10.1007/s10586-021-03447-5

based reasoning, neural networks (NN), decision trees

(DT), Bayesian networks, support vector machines (SVM),

genetic algorithms, genetic programming, and association

rules (ARU) [5].

In our previous work [6], we used separately four vari-

ous ML techniques (M5P, GBRerg, LinearSVR, and RFR)

for estimating software enhancement effort. The four

selected ML techniques were trained and tested using

industrial projects from the International Software Bench-

marking Standards Group (ISBSG) Release 12 dataset [7].

The first phase focused on the selection of the optimal

features set in the ISBSG dataset using the CFS algorithm,

while the second phase focused on estimating the

enhancement effort based on the optimal features set

obtained from the first phase. The findings of our previous

empirical study were as follows:

– The correlation coefficients computed between

enhancement functional size and enhancement effort

have a value of 0.5 which indicates a good correlation.

The enhancement functional size was therefore chosen

as the primary independent variable.

– The use of ML techniques without feature selection

generated good accuracy. However, the use of ML

techniques with the CFS algorithm gives better results.

– The empirical results suggested that M5P is the most

accurate model with small MAEs = 0.0612 and with

quite good performance that can achieve 99%.

More recently, research publications investigated the use of

ensemble learning for improving software effort estimation

[8, 9]. Various ensemble methods are considered for esti-

mating software effort such as [10]:

– Bagging: The estimation is based on merging the same

type of model.

– Boosting: The estimation is based on the use of

sequential method to reduce the bias.

– Stacking: The estimation is done from multiple indi-

viduals models to build a novel model.

Based on the obtained results [6] from our previous work,

we aim in this paper to build a stacking ensemble method

to accurately predict the total enhancement effort for

enhancement projects in person-hours. Our constructed

Stacking ensemble method combines three different

Machine Learning models (GBRegr, LinearSVR, and

RFR). Estimation result using staking will be compared to

those using a single algorithm (M5P). The M5P is recently

used for software estimation [11–14]. M5P is a powerful

implementation of Quinlan’s M5 algorithm for inducing

both Model Trees and Regression Trees [15]. The main

motivation for this research study arises from the fact that

existing single techniques used for estimating software

effort suffer from several limitations [16] while other

innovative approaches such as the ensemble method are yet

to be adopted in the industry for estimating software effort.

This study investigates the use of CFS and stacking

ensemble methods for improving enhancement effort esti-

mation. First, the M5P, GBRegr, LinearSVR, and RFR are

used separately. Second, the stacking ensemble method

that combines GBRegr, LinearSVR, and RFR is used. And

finally, comparisons of the experimental results are made.

The hypothesizes investigated in this research are the

following:

– H1: The enhancement effort estimation accuracy with

the stacking ensemble method is statistically better than

that obtained with M5P when the functional change

Size is used as the independent variable.

– H2: The use of the CFS algorithm improves the

accuracy of the selected ML methods.

The rest of the paper is organized as follows: in Sect. 2, we

present the background and the related work. The detailed

description of our research methodology consisting for

achieving better software enhancement effort estimation is

presented in Sect. 3. In Sect. 4, we intend to discuss the

experimental results. Our evaluation is performed also

throughout threats to validity presented in Sect. 5. Finally,

we conclude the paper and we give directions for future

works in Sect. 6.

2 Background and related work

2.1 Software enhancement effort estimation
and machine learning

Enhancement is considered as a type of adaptive mainte-

nance [2]. Regarding the use of ML for software mainte-

nance effort estimation models, we identified 18 studies

published between 1995 and 2020. The models in these 18

studies were statistical regressions [17–21], neural net-

works [22, 23], SVR [24], rule based [23, 24], Bayesian

network [25], analogy [26], pattern recognition approach

termed optimized set reduction [21], general regression

[22], support linear regression models [22], support vector

regression [24], and decision trees stochastic gradient

boosting [27].

Results showed that there was not a statistically signif-

icant difference in the estimation accuracy among the

proposed models. A major challenge for the research

community is to develop a good theoretical understanding

of maintenance and evolution which are scaled to industrial

applications [28]. Several studies lack clarity on how the

data were prepared and used, which makes it difficult to

compare results among studies as well as replicate them

[29]. More recently, the use of ensemble method

2780 Cluster Computing (2022) 25:2779–2792

123

combining more than one single ML technique has

achieved attention in the software engineering research

[30]. Hence, a systematic review conducted by Idri et al.

[31] and Alsolai et al. [32] have confirmed that the

ensemble methods outperformed their constituents (single

models). The ensemble method has revealed promising

capabilities in ameliorating the accuracy over single

models [33]. It contributes to better accurate results even

when compared to deep learning models [34]. Indeed, the

more diverse the constituents are, the better the ensemble

method outputs will be distributed around the desired

output [35, 36]. Despite that, in the area of effort

enhancement maintenance estimation, ensemble methods

are not yet adopted. This is the first study to our knowledge

that investigates the use of the ensemble method in soft-

ware maintenance effort estimation. The main motivation

behind using the ensemble method in this work is that it

makes the model more reliable and robust due to the

advantages of using more than one ML technique for

estimation [37]. Hence, with the creation of an ensemble

method if any of the used models perform poorly, the

ensemble method can reduce the error using many models

[38].

2.2 Stacking ensemble method

The stacking model is invented by Wolpert [39]. It is

recently used for estimating software effort [30, 34]. The

stacking model combines lower-level Machine Learning

techniques for achieving more accurate estimation. The

constructed linear estimation model consists of two learn-

ing levels [40]. The first learning level is called Level-0,

where models are trained and tested in independent cross-

validation examples from the original input data. Then, the

output of Level-0 and the original input data is used as

input for level-1, called generalized (i.e. the meta-model).

The Level-1 is constructed using the original input data and

the output of level-0 generalizers [40].

2.3 Feature selection methods

Feature selection methods or techniques can be classified

into three categories: Filters, Wrappers, and Hybrid algo-

rithms [41]. The Filter methods select the features based on

the characteristics of the dataset without involving any

learning technique. Afterward, this subset of features is

presented as input to a classification/regression estimation

algorithm [42]. The Wrapper methods select the feature

subset based on the performance of given learning tech-

niques according to a performance measure. And Embed-

ded or Hybrid methods perform the selection step and

model building simultaneously or combine filter and

wrapper techniques. One of the measures used for feature

selection is the dependency measure. Many dependency-

based algorithms have been proposed. In this study, we will

use correlation-based feature selection (CFS) since it can

evaluate all the possible combinations [43]. It can also

update the subset of the selected features during the eval-

uation process instead of the greedy forward selection and

greedy backward elimination that do not update the subset

of features during the evaluation process [44]. CFS

employs correlation to evaluate a feature subset that

derived from Pearson correlation coefficient [43]. This

method is a multivariate Feature Filter. That means that it

assesses different feature subsets and chooses the best one.

CFS was proposed by Hall [43] to evaluate subsets of

features according to the heuristic evaluation function. This

study was based on the hypothesis ‘‘A good feature subset

contains features highly correlated with the class, yet

uncorrelated with each other’’ [43]. Due to the ability of the

Feature selection algorithm to produce good subsets of

features, its use with the ensemble method will be effective

for improving ensemble methods accuracy [45]. This

observation was also founded by Hosni et al. [44] in their

empirical study, where the CFS ensemble generated better

results than the RReliefF ensemble. The choice of feature

selection methods differs among various application areas

[46]. Table 1 presents the findings that used filter feature

selection for software effort estimation.

There are relatively few studies that investigated the use

of CFS algorithm in the area of software enhancement

effort estimation for both individual and ensemble models.

Nevertheless, a number of research studies confirmed the

effectiveness of CFS algorithm and ML techniques for

software effort estimation [41, 44, 44, 45] .

3 Research process

In this paper, we will extend our previous research

methodology [6] by setting up two new models using the

CFS algorithm to predict software enhancement mainte-

nance effort. The first model is constructed using four

selected regression ML techniques (M5P, LinearSVR,

GBRegr, and RFR) separately. While, the second model

combines three models (LinearSVR, GBRegr, and RFR)

that will construct the stacking ensemble method. Finally,

we make a comparison of the estimation accuracy of the

two mentioned models. We aim to identify whether the use

of the CFS algorithm with the stacking ensemble method

improves the performance of the estimation model versus

the use of the CFS algorithm with the M5P model.

Cluster Computing (2022) 25:2779–2792 2781

123

3.1 Data preprocessing

The dataset used for training and testing the estimation

model is obtained from the ISBSG Release 12 [18]. The

ISBSG dataset is widely used for software project esti-

mation [47]. It includes new, enhanced, and re-develop

software projects. It has been extensively reviewed for its

applicability to building effort estimation models, includ-

ing the effects of outliers and missing values [48]. The

effort expended on the support activities is reported in

person-hours. We selected the data regarding ‘‘enhance-

ment’’ as the ‘‘development type’’ where the ‘‘count

approach’’ was the COSMIC Functional size measurement

method. In addition, we consider only data with soundness

and a high level of integrity (i.e., records having ‘‘Data

Quality Rating’’ of ‘‘A’’ or ‘‘B’’). To exclude trivial pro-

jects, the following filters were applied:

– Normalized work effort (full life cycle effort for

project) equal to or greater than 80 person/hours.

– Development types other than enhancement were

excluded.

Table 2 lists the data fields, the corresponding values

selected in this study, the discarded values, and the number

of projects. After the preprocessing phase, we selected a

total of 17 attributes.

3.2 Constructing estimation models

This section presents a series of experiments to investigate

the performance of estimation models with the use of the

CFS algorithm. We have constructed two estimation

models presented in Fig. 1. The first model constructs four

ML techniques (M5P, LinearSVR, GBReg, and RFR) for

estimating enhancement effort. The chosen models are

trained and tested separately on the ISBSG dataset with

relevant features using the CFS algorithm. The second

model constructs a stacking ensemble method (that com-

bines LinearSVR, GBRegr, and RFR). For this second

model, the meta-model provided via the ‘‘final_estimator’’

argument (LinearSVR) is trained to combine the estimation

of the chosen regression ML techniques provided via the

‘‘estimators’’ argument (GBReg, RFR). Each regression

model is trained on the ISBSG dataset with relevant fea-

tures filtered using the CFS algorithm allocated for train-

ing. Then the outputs of ‘‘estimators’’ are fed into the

’’final_estimator’’, which combines each regression esti-

mator model with a weight and delivers the final estima-

tion. For the first set of experiments, the classic approach is

to do a simple 70%–30% split. We split data into training

and validation/test set. The training set is used to train the

model, and the validation/test set is used to validate it on

data it has never seen before. The selected ML techniques

are trained and tested for various sorts of experiments using

features selected from the preprocessing phase. Thereafter,

to carry out the experiments, different tools was used.

Building the M5P model (tree-based model) has been

carried out using Weka software1. It is widely used for

teaching, research, and industrial applications. It contains a

plethora of built-in tools for standard machine learning

tasks. For the feature selection methods, 10-fold cross

validation and validation test estimation of GBRegr, SVR

and RFR models were performed using the Google

Colaboratory2 python programming. Google Colaboratory

known as Google Colab is the current inventory tool [49].

It provides GPU for research to the people who do not have

Table 1 Literature review on CFS algorithm used for software effort estimation

Authors Estimation

techniques

Type of filter feature selection Type of FS algorithms

Hosni et al.

[44]

K-NN, SVR, MLP,

and DTs

Correlation based feature selection (CFS) and RReliefF on the estimation

accuracy of heterogeneous (HT) ensemble

Correlation based Feature

selection (CFS)

Deng et al.

[46]

k-NN Pearson coefficients and the ReliefF index ReliefF index

Blessie

et al. [41]

Without ML CFS subset evaluation consistency-subset evaluation FCBF algorithm CFS subset evaluation

Table 2 First selection of data

concerning software

enhancement projects from the

ISBSG dataset

ISBSG data field Selected values Discarded values Projects

Data quality rating A, B C,D 1084

Count approach COSMIC IFPUG, NESMA, FISMA, etc. 449

Development type Enhancement New development and redevelopment 302

1 https://www.cs.waikato.ac.nz/ml/weka/.
2 https://colab.research.google.com/notebooks/intro.ipynbrecent=

true.

2782 Cluster Computing (2022) 25:2779–2792

123

https://www.cs.waikato.ac.nz/ml/weka/
https://colab.research.google.com/notebooks/intro.ipynbrecent=true
https://colab.research.google.com/notebooks/intro.ipynbrecent=true

enough resources or cannot afford one. Table 3 lists the

selected ML techniques with their corresponding prede-

fined range of parameters values.

3.3 Experiments results

This section evaluates the estimation performance of the

two constructed models where two experiments are con-

ducted. In each constructed model, we propose to use the

Fig. 1 Research method design

Table 3 Parameters values for grid search

ML techniques Parameters

M5P Instances = 5

GBRegr random_state = 0; min_samples_split = 2

LinearSVR Kernel = Linear; Complexity = {1,2}; epsilon = {0.2}; Deviation = {0.001, 0.0001}

RFR random_state = 0; min_samples_leaf = {1,2,3}; Max_depth = {2,4,6}; min_samples_split = {2}

Cluster Computing (2022) 25:2779–2792 2783

123

CFS algorithm. That is after applying the CFS algorithm,

we randomly split data with relevant features into two

subsets: a training set and a test set. To evaluate the

accuracy of the prediction models, we used a wide set of

evaluation metrics [47, 48] such as root mean square error

(RMSE) and mean absolute error (MAE). We also used the

Standardized Accuracy measure (SA) based on MAE

proposed by [50]. We also used the cross-validation

method [51]. We partitioned the validation size with

K = 10. It is well-known since the number of the selected

ML model fitting to get the estimate now becomes inde-

pendent of the size of the training sample [52].

3.3.1 Correlation-based feature selection (CFS) algorithm

Once the appropriate projects have been selected (i.e.,

projects with high quality of data), then we propose to use

the CFS algorithm for selecting the features that are rele-

vant for software enhancement effort estimation. The main

challenge when using correlation-based Filters is related to

the starting points for feature subsets generation [44]. To

handle the missing values in a feature, CFS replaces the

missing values by taking into account the average value for

continuous features and the most common value for dis-

crete features [44]. That is after applying the CFS algo-

rithm, we determine which features globally and

consistently appear in the optimal set of features. The fil-

tering here is done by using correlation matrix and Pearson

correlation [53].

Pearson correlation Pearson’s correlation coefficient is

a measure of the strength of the association between two

variables [54]. In our research, we will plot the Pearson

correlation heat map (see Fig. 2). After the preprocessing

phase, we selected a total of 17 attributes where 16 are

independent variables and one is the dependent variable

(NormalizedWorkEffort). This correlation coefficient is a

single number that indicates both the strength and direction

of the linear relationship between two continuous variables.

Values can range from � 1 to þ 1 [54].

– Strength: The greater the absolute value of the corre-

lation coefficient, the stronger the relationship. When

the value is in-between 0 and þ 1/� 1, there is a

relationship, but the points do not all fall on a line.

– Direction: The sign of the correlation coefficient

represents the direction of the relationship. Positive

coefficients indicate that when the value of one variable

increases, the value of the other variable also tends to

increase. Negative coefficients represent cases when the

value of one variable increases, the value of the other

variable tends to decrease.

Since correlation coefficients which magnitude are less

than 0.3 have little if any (linear) correlation [54], only the

features correlating larger than 0.4 (taking into account

absolute value) are selected with the output variable. The

use of the CFS algorithm selects 37.5% (6 out of 16) of

features (see Table 4). Note that the CFS algorithm is used

not only to select features but also to evaluate the impact of

the enhancement size (i.e., functional size of the functional

change) feature on the accuracy of the software enhance-

ment effort estimation.

It has been observed that COSMIC sizing is an efficient

method for measuring not only software size but also the

functional size of the functional change that may occur

during the Software Life Cycle [55]. Figure 2 shows that

the correlation coefficients value between enhancement

functional size and enhancement effort is equal to 0.5. This

investigation indicates an acceptable correlation when

compared with other features (such as CHANGEWorkEf-

fort and UnrecordedWorkEffort). Change functional Size

was therefore chosen as the primary independent variable.

M5P algorithm Performance Assessment versus

GBRegr, SVR and RFR models Using the CFS algorithm

with the selected regression ML techniques separately

leads to an accurate enhancement effort estimation when

the enhancement functional Size is used as the independent

variable (see Table 5). Error metrics (such as MAEs and

RMSEs) reveal quite values using M5P (MAE = 0.0612;

RMSE = 0.2514). It is evident from the results that M5P

method delivers the best performance as compared to other

three ML techniques with SA stands at around 99% (see

Fig. 3).

3.3.2 Stacking ensemble method based on the use
of correlation-based feature selection (CFS) algorithm

Regarding the above estimation results, our stacking

ensemble method is based on the hypothesis that ‘‘When

weak models are rightly aggregated, the strength of the

union, therefore, leads to better performance and more

accurate estimation of software enhancement effort’’. (1)

Selecting which models to be used as ’’estimators’’ and

model to be used as a meta-model and (2) making pre-

dictions by feeding estimators’ predictions into a meta-

model.

Selecting estimators and meta-model The main param-

eters of the stacking ensemble regression model are defined

in scikit-learn3 as follows: StackingRegressor(estimators,

final_estimator = None, *) explained in Table 6.

Thus, we try to identify which technique from the three

ML techniques can be used as ‘‘final_estimator’’ and which

ones should be used as ‘‘estimators’’. In this case, we

3 https://scikit-learn.org/.../sklearn.ensemble.StackingRegressor.

html.

2784 Cluster Computing (2022) 25:2779–2792

123

https://scikit-learn.org/.../sklearn.ensemble.StackingRegressor.html
https://scikit-learn.org/.../sklearn.ensemble.StackingRegressor.html

selected the r2_score evaluation metric4 to evaluate the

overall performance of the selected prediction model to

provide an adequate combination. Table 7 illustrates the

r2_score results where the best possible score stands at 1.0.

Figure 4 shows the ML ‘‘estimators’’ and the average of

their predictions.

Fig. 2 Pearson correlation heat map

Table 4 Selected feature correlation

Features selection

methods

Selected features with value (round(correlation target))

Pearson correlation CHANGEWorkEffort = 0.4; UnrecordedWorkEffort = 0.5; Functionalsize = 0.5; EffortTest = 0.4;

SummaryWorkEffort = 0.8; NormalizedWorkEffortLevel1 = 1

Table 5 Estimation analysis using MAE, RMSE and SA

Method/parameters MAE RMSE SA (%)

M5P 0.0571 0.2514 99.36

GBRegr 0.2625 0.3447 85.43

LinearSVR 0.1110 0.3020 89.69

RFR 0.1665 0.3187 87.54

4 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

r2_score.html.

Cluster Computing (2022) 25:2779–2792 2785

123

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

Constructing the estimating software enhancement effort

Regarding Table 7, LineanrSVR is selected to be used as

the final_estimator. Table 8 shows the stacking ensemble

method parameter that defines the best combination.

Using the CFS algorithm with the constructed stacking

ensemble method leads to an accurate enhancement effort

estimation when the enhancement functional Size is used

as the independent variable (see Table 9). It is evident from

the results that the stacking ensemble method delivers the

best performance when compared with the other three ML

techniques. The r2_score arises to 0.987 (see Figs. 3, 5).

4 Discussion and comparison

When comparing the estimation accuracy of the models

using the same ISBSG dataset, we can accept the two

following hypotheses derived from the one formulated in

Sect. 1.

– H1: The enhancement effort estimation accuracy using

the stacking ensemble method with an R2score of 0.98

is statistically better than that obtained using M5P the

functional change Size is used as the independent

variable.

– H2: The use of the CFS algorithm improves the

accuracy of the selected ML methods.

The main reason behind selecting the enhancement func-

tional size as a primary independent variable in our study is

that the software functional size is correlated to the soft-

ware project effort. And that affects the sensitivity of the

software project [56]. Our previous experiment study was

conducted to evaluate the accuracy of four machine

learning techniques (M5P, GBRerg, LinearSVR, and RFR)

separately. The selected ML techniques are used to provide

Fig. 3 ML techniques accuracy

Table 6 Stacking ensemble

regression model parameters’
Parameters Description

Estimators Base estimators which will be stacked together

Final_estimator An estimator which will be used to combine the base estimators

Table 7 Estimation analysis

using R2 score
Method/parameters R2 score

GBRegr 0.981

LinearSVR 0.956

RFR 0.980

2786 Cluster Computing (2022) 25:2779–2792

123

the effort estimation of a new enhancement when software

is being developed. Among the selected ML algorithms,

M5P is the most effective. This is supported by the results

with a minimum MAE of 0.0612. The effectiveness of

M5P can be seen from the results obtained when applying a

simple method. It has small MAEs and RMSEs values. A

good accuracy (SA) of 99% is obtained when using the

10-fold cross-validation.

To identify the effective determinants for enhancement

effort estimation, the importance of each feature is com-

puted using the CFS algorithm. Furthermore, the model

using the CFS algorithm delivers superior performance

when compared to the model that used all the selected

features (17 features). Thus, using the M5P ML algorithm

improves the accuracy of enhancement estimation.

Furthermore, to ensure the above results, we have

investigated the idea of using a stacking ensemble method

by combining the weak ML techniques (GBRerg, Lin-

earSVR, and RFR). Experimental results are compared

with the M5P algorithm (see Table 9). The effectiveness of

Table 8 Parameters values for grid search

ML

techniques

Parameters

Stacking

model

estimators = [(GBRegr,RFR)], final estimator = LinearSVR()

GBRegr alpha = 0.9, ccp_alpha = 0.0, criterion = ’friedman_mse’, init = None, learning_rate = 0.1, loss = ’ls’, max_depth = 3

LinearSVR C = 1.0, cache_size = 200, coef0 = 0.0, degree = 3, epsilon = 0.1, gamma = ’scale’, kernel = ’rbf’, max_iter = � 1,

shrinking = True, tol = 0.001, verbose = False

RFR max_depth = 3, max_features = 1, max_leaf_nodes = None, min_samples_leaf = 25, min_samples_split = 2,

min_weight_fraction_leaf = n_estimators = 25

Table 9 Estimation analysis using MAE, RMSE and r2_score

Method/parameters MAE RMSE r2_score

M5P 0.0612 0.2514 0.985

Stacking regressor 0.0383 0.1973 0.987

Fig. 4 ML ‘‘estimators’’ and the average of their predictions

Cluster Computing (2022) 25:2779–2792 2787

123

the stacking ensemble method can be seen in the results

(see Figs. 4 and 6). This is supported by the results with the

minimum MAE of 0.0383, RMSE of 0.1973, and a good

r2_score of 0.987 (Fig. 7).

5 Threads to validity

In this section, we discuss the threats to the validity of this

research study according to the guidelines proposed by

[57]. The validity of this research results is pertinent to

internal validity, external validity, and construct validity.

Fig. 5 Regressor estimation score

Fig. 6 ML techniques

performance assessment

2788 Cluster Computing (2022) 25:2779–2792

123

5.1 Internal validity

Internal validity is related to (i) the size of the data set

where the number of instances in the data set must be more

significant, as well as (ii) the number and the nature of

attributes used to estimate the software enhancement effort.

To overcome this limitation (ii), we have used the CFS

algorithm for selecting the attributes from one of the well-

known historical software project datasets (the ISBSG

dataset that contains many attributes). Since we restricted

the study to numerical attributes only 17 features have been

selected which constitutes 17% from all the attributes in the

ISBSG dataset after the phase of prepossessing data. And,

six features have been selected after using the CFS algo-

rithm that constitutes 6% from all the attributes in the

ISBSG dataset. This is why the findings of this work may

differ from other studies that use other types of data.

5.2 External validity

External validity is related to the degree of the general-

ization of the results. The results of this study are based

only on the use of the ISBSG R12 dataset. Conducting

more experiments with other kinds of datasets that present

quality characteristics are also required. There are two

threats to the external validity of this study: (1) the first

threat may come from the CFS algorithm. Although the

experiments were performed using CFS, it is still com-

pulsory to test other FS algorithms with different ML

techniques. (2) The other threat may come from the

selected dataset. We have used a single popular ISBSG

dataset containing COSMIC Functional Points measures.

5.3 Threats of construct

Threats of the construct are related to (i) the degree of

reliability of the features used to predict enhancement

effort and (ii) the accuracy metric used for the analysis. In

fact, (i) the estimation of enhancement effort in our study is

provided based on the independent variable (i.e., the size of

functional change). Even the results about the performance

accuracy of the selected ML techniques provide a good

accuracy equals to 99%, the correlation coefficients com-

puted between enhancement functional size and enhance-

ment effort is still a moderate value, this is due to the fact

that enhancement functional size is identified at a high

level of abstraction of the software life-cycle. Regarding

the accuracy metric (ii), there has been some criticism of

these metrics [47] such as ignoring the importance of the

dataset quality. However, we adopted these four evaluation

metrics (MAE, RMSE, R2 score, and SA) in our work.

6 Conclusion

The study was based on two main hypotheses (i) ‘‘A good

feature subset is one that contains features highly corre-

lated with the class, yet uncorrelated with each other’’ [43]

and (ii) ‘‘When powerless (/weak) models are rightly

combined we can obtain more accurate software enhance-

ment effort estimation models’’. The constructed models

are tested using the ISBSG dataset of historical software

projects that take into account the use of software func-

tional size expressed in terms of COSMIC Function Point

units (as an independent variable). The findings of the

research questions were as follows:

Fig. 7 ML techniques accuracy

Cluster Computing (2022) 25:2779–2792 2789

123

– The correlation coefficient computed between enhance-

ment functional size and enhancement effort has a

value of 0.5 which indicates a good correlation. The

enhancement functional size was therefore chosen as

the primary independent variable.

– The ML techniques without feature selection generated

good accuracy. However, ensemble learning techniques

with the CFS algorithm give better results.

– The experimental results suggested that:

– M5P is more accurate with small MAEs = 0.0612

and with quite good performance of 99% compared

to GBRerg, LinearSVR, and RFR.

– The stacking ensemble method (combining

GBRerg, LinearSVR, and RFR)is more accurate

with small MAEs = 0.0383 and R2 score = 0.987

compared to M5P algorithm.

For future work, several extensions can be made. This

work will be extended by exploring other ensemble

methods for estimating software enhancement effort, to get

more accuracy reaching 100% and other features selection

methods including Backward Elimination, Forward Selec-

tion, Bidirectional Elimination, and RFE.

References

1. Bourque, P., Fairley, R.E., et al.: Guide to the Software Engi-

neering Body of Knowledge (SWEBOK (R)): Version 3.0. IEEE

Computer Society Press, Washington (2014)

2. Group, International Software Benchmarking Standards. Glossary

of terms for software project development and enhancement, vol.

113, pp. 188–215 (2018)

3. De Almeida, M.A., Lounis, H., Melo, W.L.: An investigation on

the use of machine learned models for estimating software cor-

rectability. Int. J. Softw. Eng. Knowl. Eng. 9, 565–593 (1999)

4. Susto, G.A., Schirru, A., Pampuri, S.: Machine learning for pre-

dictive maintenance: a multiple classifier approach. IEEE Trans.

Ind. Inform. 11(3), 812–820 (2015)

5. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature

review of machine learning based software development effort

estimation models. Inf. Softw. Technol. 54(1), 41–59 (2012)

6. Sakhrawi, Z., Sellami, A., Bouassida, N.: An improved prediction

of software enhancement effort using correlation-based feature

selection and M5P ML algorithm. In: 17th IEEE/ACS Interna-

tional Conference on Computer Systems and Applications

(AICCSA 2020), Antalya, Turkey, 2–5 November 2020, pp. 1–8.

IEEE, Piscataway (2020)

7. ISBSG: Repository Data Release 12–Field Descriptions. e.Field

Descriptions—Data Release 12. Document Provided as a Part of

Data Set. International Software Benchmarking and Standards

Group, South Melbourne (2013)

8. Hidmi, O., Sakar, B.E.: Software development effort estimation

using ensemble machine learning. Int. J. Comput. Commun.

Instrum. Eng. 4, 1–5 (2017)

9. Minku, L.L., Yao, X.: Ensembles and locality: insight on

improving software Effort Estimation. Inf. Softw. Technol. 55,
1512–1528 (2013)

10. Shukla, S., Kumar, S.: A stacking ensemble-based approach for

software effort estimation. In: Proceedings of the 16th Interna-

tional Conference on Evaluation of Novel Approaches to Soft-

ware Engineering, vol. 1: ENASE, pp. 205–212 (2021)

11. Blaifi, S., Moulahoum, S., Benkercha, R., Taghezouit, B., Saim,

A.: M5P model tree based fast fuzzy maximum power point

tracker. Sol. Energy 163, 405–424 (2018)

12. Ali, A., Gravino, C.: Using combinations of bio-inspired feature

selection algorithms in software efforts estimation: an empirical

study. In: 2019 13th International Conference on Open Source

Systems and Technologies (ICOSST), vol. 163, pp. 1–8 (2019)

13. Al Asheeri, M., Hammad, M.: Machine Learning models for

software cost estimation. In: 2019 International Conference on

Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), vol. 163, pp. 1–6 (2019)

14. Khan, M.Z.: Particle swarm optimisation based feature selection

for software effort prediction using supervised machine learning

and ensemble methods: A comparative study. Invertis J. Sci.

Technol. 13, 33–50 (2020)

15. Quinlan, J.R., et al.: Learning with continuous classes. In: I5th

Australian Joint Conference on Artificial Intelligence, vol. 92,

pp. 343–348 (1992)

16. Wang, L., Zhu, Z., Sassoubre, L., Yu, G., Liao, C., Hu, Q., Wang,

Y.: Improving the robustness of beach water quality modeling

using an ensemble machine learning approach. Sci. Tot. Environ.

765, 142–760 (2021)

17. Yu, L.: Indirectly predicting the maintenance effort of open-

source software. J. Softw. Maintenance Evol. Res. Pract. 18,
311–332 (2006)

18. Shukla, Ruchi, Misra, A.K.: Software maintenance effort esti-

mation-neural network vs regression modeling approach. Int.

J. Comput. Appl. 975, 157–169 (2010)

19. De Lucia, A., Pompella, E., Stefanucci, S.: Assessing effort

estimation models for corrective maintenance through empirical

studies. Inf. Softw. Technol. 15, 3–15 (2005)

20. Ahn, Y., Suh, J., Kim, S., Kim, H.: The software maintenance

project effort estimation model based on function points.

J. Softw. Maintenance Evol. Res. Pract. 15, 71–85 (2003)

21. Jorgensen, M.: Experience with the accuracy of software main-

tenance task effort prediction models. IEEE Trans. Softw. Eng.

21, 674–681 (1995)

22. López-Martı́n, C.: Predictive accuracy comparison between

neural networks and statistical regression for development effort

of software projects. Appl. Soft Comput. 27, 434–449 (2015)

23. Shukla, R., Shukla, M., Misra, A.K., Marwala, T., Clarke, W.A.:

Dynamic software maintenance effort estimation modeling using

neural network, rule engine and multi-regression approach. In:

International Conference on Computational Science and Its

Applications, vol. 15, pp. 157–169 (2012)

24. Garcı́a-Floriano, A., López-Martı́n, C., Yáñez-Márquez, C.,

Abran, A.: Support vector regression for predicting software

enhancement effort. Inf. Softw. Technol. 97, 99–109 (2018)

25. Song, T.-H., Yoon, K.-A., Bae, D.-H.: An approach to proba-

bilistic effort estimation for military avionics software mainte-

nance by considering structural characteristics. In: 14th Asia-

Pacific. Software Engineering Conference (APSEC’07),

pp. 406–413 (2007)

26. Leung, H.K.N., Emilia, V.: Estimating maintenance effort by

analogy. Empir. Softw. Eng. 7, 157–175 (2002)

27. Cerón-Figueroa, S., López-Martı́n, C., Yáñez-Márquez, C.:

Stochastic gradient boosting for predicting the maintenance effort

of software-intensive systems. IET Software, pp. 99–109 (2019)

28. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolu-

tion: a roadmap. In: Proceedings of the Conference on the Future

of Software Engineering, pp. 73–87 (2000)

2790 Cluster Computing (2022) 25:2779–2792

123

29. González-Ladrón-de-Guevara, F., Fernández-Diego, M., Lokan,

C.: The usage of ISBSG data fields in software effort estimation:

a systematic mapping study. J. Syst. Softw. 113, 188–215 (2016)

30. Sampath Kumar, P., Venkatesan, R.: Improving accuracy of

software estimation using stacking ensemble method. In: Patnaik,

S., Yang, X.S., Sethi, I. (eds.) Advances in Machine Learning and

Computational Intelligence. Algorithms for Intelligent Systems.

Springer, Singapore (2021)

31. Idri, A., Hosni, M., Abran, A.: Systematic literature review of

ensemble effort estimation. J. Syst. Softw. 118, 151–175 (2016)

32. Alsolai, H., Roper, M.: A systematic literature review of machine

learning techniques for software maintainability prediction. Inf.

Softw. Technol. 119, 106–214 (2020)

33. Elish, M.O., Aljamaan, H., Ahmad, I.: Three empirical studies on

predicting software maintainability using ensemble methods. Soft

Comput. 19, 2511–2524 (2015)

34. Priya Varshini, A.G., Varadarajan, V., et al.: Estimating software

development efforts using a random forest-based stacked

ensemble approach. Electronics 10(10), 1195 (2021)

35. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation

methods: a survey and categorisation. Inform. Fusion 6(1), 5–20
(2005)

36. Chandra, A., Yao, X.: DIVACE: Diverse and accurate ensemble

learning algorithm. In: Proceedings of 5th International Confer-

ence on Intelligent Data Engineering and Automated Learning

(LNCS 3177). Springer, Berlin, pp. 619–625 (2004)

37. Garcı́a-Pedrajas, N., Hervás-Martı́nez, C., Ortiz-Boyer, D.:

Cooperative coevolution of artificial neural network ensembles

for pattern classification. IEEE Trans. Evol. Comput. 9(3),
271–302 (2005)

38. Da Silva, P.M., Lima, M.N.C.A., Soares, W. L., Silva, I.R.R., De

Fagundes, R.A., De Souza, F.F.: Ensemble regression models

applied to dropout in higher education. In: Proceedings of 2019

Brazilian Conference on Intelligent Systems (BRACIS 2019),

pp. 120–125 (2019)

39. Wolpert, D.: Stacked generalization. Neural Netw. 5, 241–259
(1992)

40. Kraipeerapun, P., Amornsamankul, S.: Using stacked general-

ization and complementary neural networks to predict Parkin-

son’s disease. In: Proceedings of International Conference on

Natural Computing, January 2016, pp. 1290–1294 (2016)

41. Blessie, E.C., Karthikeyan, E.: Sigmis: a feature selection algo-

rithm using correlation based method. J. Algorithms Comput.

Technol. 6, 385–394 (2012)

42. Idri, A., Cherradi, S.: Improving effort estimation of fuzzy

analogy using feature subset selection. In: 2016 IEEE Sympo-

sium Series on Computational Intelligence (SSCI), vol. 113,

pp.1–8 (2016)

43. Hall, M.A.: Correlation-based feature selection for machine

learning. Citeseer 113, 1–8 (1999)

44. Hosni, M., Idri, A., Abran, A.: Investigating heterogeneous

ensembles with filter feature selection for software effort esti-

mation. In: Proceedings of the 27th International Workshop on

Software Measurement and 12th International Conference on

Software Process and Product Measurement, vol. 113,

pp. 207–220 (2017)

45. Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for

ensembles using the multi-objective optimization approach. In:

Jin, Y. (ed.) Multi-Objective Machine Learning. Studies in

Computational Intelligence, vol 16. Springer, Berlin (2006)

46. Deng, J.D., Purvis, M., Purvis, M.: Software effort estimation:

harmonizing algorithms and domain knowledge in an integrated

data mining approach. Int. J. Intell. Inf. Technol. (IJIIT) 7, 41–53
(2011)

47. Idri, A., Azzahra Amazal, F., Abran, A.: Analogy-based software

development effort estimation: a systematic mapping and review.

Inf. Softw. Technol. 58, 206–230 (2015)

48. Bala, A., Abran, A.: Use of the multiple imputation strategy to

deal with missing data in the ISBSG repository. J. Inf. Technol.

Softw. Eng. 6, 171 (2016)

49. BKarthiga, R., Keerthiga, B., Preethi, S.R.: Analysis on machine

learning techniques. i-Manager J. Comput. Sci. 7, 171 (2019)

50. Shepperd, M., MacDonell, S.: Evaluating prediction systems in

software project estimation. Inf. Softw. Technol. 54, 820–827
(2012)

51. Yadav, S., Shukla, S.: Analysis of k-fold cross-validation over

hold-out validation on colossal datasets for quality classification.

In: 2016 IEEE 6th International Conference on Advanced Com-

puting (IACC), vol. 6, pp. 78–83 (2016)

52. Kohavi, R.: A study of cross-validation and bootstrap for accu-

racy estimation and model selection. In: Proceedings of Four-

teenth International Joint Conference on Artificial Intelligence,

IJCAI, Montreal, CA, pp. 1137–1143 (1995)

53. Biesiada, J., Duch, W.: Feature selection for high-dimensional

data-a Pearson redundancy based filter. Comput. Recogn. Syst. 2,
242–249 (2007)

54. Fan, J., Lv, J.: Sure independence screening for ultrahigh

dimensional feature space. J. R. Stat. Soc. Ser. B (Stat. Metho-

dol.) 70, 849–911 (2008)

55. Haoues, M., Sellami, A., Ben-Abdallah, H.: Towards functional

change decision support based on COSMIC FSM method. Inf.

Softw. Technol. 110, 78–91 (2019)

56. Bhardwaj, M., Ajay, R.: Estimation of testing and rework efforts

for software development projects. Asian J. Comput. Sci. Inf.

Technol. 5, 33–37 (2015)

57. Shull, F., Singer, J., Sjøberg, D.I.K.: Guide to Advanced

Empirical Software Engineering. Springer, London (2007)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Zaineb Sakhrawi received her

Master Thesis degree in Com-

puter Science from Higher

Institute of Computer Science

and Multimedia, Sfax Univer-

sity, Tunisia in 2018. She is

currently a PhD student at Sfax

University, Tunisia and a

member of Multimedia, InfoR-

mation systems and Advanced

Computing Laboratory (MIR-

ACL). Her research interests

include software engineering,

ontology, cloud computing and

machine Learning techniques.

Cluster Computing (2022) 25:2779–2792 2791

123

Asma Sellami is teaching at the

University of Sfax in Tunisia.

Her current research interest

includes broadly measurement

in Software Engineering, soft-

ware quality and software pro-

ject management. She is also

working on ISO standards for

measuring the functional size of

software, and has been involved

in developing case study of ISO

19761 (COSMIC FSMMethod).

She published more than 40

referred conferences, journals,

and technical reports. She is

currently member of COSMIC Advisory council in Tunisia.

Nadia Bouassida received a

Ph.D. in Computer and Infor-

mation Science from the

University of Science of Tunis,

Tunisia. Currently, she is Asso-

ciate Professor at the Depart-

ment of Computer Science of

the Higher Institute of Com-

puter Science and Multimedia at

the University of Sfax, Tunisia.

She is a member of the Multi-

media, Information systems and

Advanced Computing Labora-

tory, University of Sfax. Her

research interests include reuse

techniques, such as design patterns, Frameworks and Software Pro-

duct Lines.

2792 Cluster Computing (2022) 25:2779–2792

123

	Software enhancement effort estimation using correlation-based feature selection and stacking ensemble method
	Abstract
	Introduction
	Background and related work
	Software enhancement effort estimation and machine learning
	Stacking ensemble method
	Feature selection methods

	Research process
	Data preprocessing
	Constructing estimation models
	Experiments results
	Correlation-based feature selection (CFS) algorithm
	Stacking ensemble method based on the use of correlation-based feature selection (CFS) algorithm

	Discussion and comparison
	Threads to validity
	Internal validity
	External validity
	Threats of construct

	Conclusion
	References

