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Abstract
Electromyographic signals (EMGs) are becoming important as a tool for muscle fatigue monitoring. EMGs measure the

electric currents produced in muscle contractions providing information that can be analyzed and processed to evaluate the

conditions of muscles. In this work, we proposed a real-time system that measures muscle fatigue levels based on

Electromyographic signals. We used the Mean Frequency and the Power Spectral Density as features for muscle fatigue

determination. A linear regression model determines the levels of muscle fatigue. Moreover, the system is composed of

EMG wireless sensors allowing it to be used in common activities in the manufacturing industry as manual handling loads.

Keywords EMG signals � Biomedical signals � Occupational medicine

1 Introduction

Most of the common injuries in the manufacturing industry

are back injuries, which are related to the excess in the

physical capacities of the workers [1]. Besides, studies

[1, 2] reveal that these injuries can be prevented if an

evaluation of the risk in working environments is carried

out. Disciplines like ergonomics and occupational health,

study and evaluate the risk in job activities to produce safer

working environments. One crucial aspect to take into

account is muscle fatigue since it is associated with a

higher risk of developing musculoskeletal disorders [3].

Muscle fatigue can be determined using a variety of

methods [4], as measuring the time during which an indi-

vidual is able to perform a task with an ergonometric

imposed load, keeping a posture during a certain time

interval, or by measuring the concentration of lactic acid in

muscle [5]. Moreover, various studies [6–10] have also

shown that Electromyographic signals (EMGs) provide a

method that allows continuous monitoring of muscle fati-

gue. This is due to EMGs measure the electric currents

produced during muscle contractions, enabling the study of

physiological muscle properties. The electric currents are

known as muscle fiber potentials, and EMGs are composed

of all muscle fiber potentials. As the above is related to the

neuromuscular activity, EMGs also provide information to

study neuromuscular disorders [11]. EMGs are becoming

important in many fields because of their multiple appli-

cations as human-machine interfaces, biomedical-medicine

[12]; sports [13]; occupational medicine [14], etc. In

human-machine interfaces, EMG can be used to control a

computer, to drive a car, or to control a robotic arm, among

others [15]. In the sports field, EMG signals are used to

measure the muscle activity of athletes. For example, in

[16] is described a method to design a pilates training

program based on a study of muscle response during

exercise. In biomedical-medicine, EMG signals are studied

to find patterns that characterize the signals corresponding

to each hand-finger and in this way to control powerful

prosthesis of upper and lower amputee limbs as it is

described in [17].

EMG signals are generally recorded by non-invasive

sensors placed on the surface of the skin over the muscle.

Then, the recorded signals are studied through spectral

analysis in order to extract information related to muscle

fatigue. Considering the existing wireless technology of the

non-invasive sensors combined with an analysis of features

in real-time, is possible to develop a system to monitor
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muscle fatigue in real-time. Moreover, the wireless sensors

allow the use of this system in working environments as the

manufacturing industry, where the activities performed by

the workers usually require total freedom of arms and legs.

In this paper, a system to monitor the level of muscle

fatigue in real-time using EMG signals is developed. The

system uses non-invasive wireless sensors. An application

was implemented in python for muscle fatigue detection

using a linear regression model for fatigue determination.

Moreover, the system was evaluated in repetitive tasks

similar to the manufacturing industry.

This paper is organized as follows: in Sect. 2, a

description of the selected features is given; materials and

experiment protocol are described in Sect. 3; features

analysis is described in Sect. 4; the monitoring system is

described in Sect. 5; experiment results are presented in

Sect. 6, and Sect. 7 is dedicated to the discussion.

2 Theoretical background

The EMGs are non-stationary signals [9]. Their values

range go from micro to millivolts; therefore, they are

usually studied in short-time windows where the properties

of EMGs behave as quasi-stationary. In other words, the

EMGs data are segmented into short-time intervals for their

analysis. Then, frequency domain features are extracted

from the data to obtain information about the muscle

condition. The above method is widely used in the litera-

ture, as is described in various studies [10, 18, 19].

Moreover, these studies have reported a shift from higher

to lower frequencies in the EMG signals as a manifestation

of muscle fatigue [9, 10]. This is due to a decrease in the

muscle fiber conduction velocity (CV) when one person

gets tired, affecting the myoelectric signal [20]. This

reduction in the frequency can be observed in the Mean

Frequency (MNF), and the Median Frequency (MDF)

parameters that are typically used to study muscle fatigue

[21]. The MNF and MDF parameters are obtained from the

EMG signals’ Power Spectral Density (PSD) [9].

The PSD is computed using the Fast Fourier Transform

[22] . The MDF (see Eq. 1) can be described as the fre-

quency at which the PSD of EMG signals is divided into

two regions with equal amplitude, while MNF ( see Eq. 2)

is described as half of the PSD of EMG signals.

MNF ¼
XM

j¼1

fjpj=
XM

j¼1

pj ð1Þ

where fj is the frequency of the Power Spectral Density

measured at the bin j and pj is the PSD measured at the bin

j, and M refers to the length of the frequency bin.

XMDF

j¼1

pj ¼
1

2

XM

j¼MDF

pj ¼
XM

j¼1

pj ð2Þ

3 Materials

Figure 1 shows the schema of the developed system for

monitoring muscle fatigue in real-time. The proposed

method comprises EMG wireless sensors, a wireless base

station, a server, and a client. The function of each element

is described as follows: the system takes the EMG signals

using the EMG wireless sensors placed over the skin of the

volunteer. Then, the EMG signals are transmitted to a

wireless base station connected to a local EMG server

through a serial cable. The local server sends the data to a

client through a TCP connection. Subsequently, the data is

analyzed in real-time by the client.

The EMG wireless sensors and the wireless base station

are integrated into the commercial Trigno Wireless System

[23] (see Fig. 2). The Trigno system is composed of eight

non-invasive electromyographic sensors that measure the

electric currents of muscles. The body size of each Trigno

sensor is 27x37x13 mm3, and the mass is 14 g. The mea-

sured EMG signals obtained by the Trigno sensors are

transmitted to a receiving base machine station via a

wireless protocol, which is optimized to minimize data

latency across sensors. The wireless sensors’ coverage

range is 20 m, allowing taking data without being close to

the volunteer.

For real-time analysis of the data, a locally based

machine is configured as a client. The device used for the

data analysis is an NVIDIA Jetson Nano [24] (see Figs. 3,

4), which is a small computer that allows analyzing

biomedical signals in real-time due to its low latency and

less impact on overhead.

The Jetson Nano was preconfigured with the operating

system NVIDIA L4T based on Ubuntu 18.4, which pro-

vides the drivers, kernels, etc., needed for running the

machine. The L4T is a light operative system that allows

run applications that require high computing time

performance.

3.1 Experiment protocol

According to the ‘‘Manual Handling at work: A brief

guide’’ [26] by the Health and Safety Executive (HSE)

agency of the UK, the weights recommended for manual

handling of loads depend on the height. The maximum

theoretical weight that one worker can handle without

being exposed to an injury is shown in Fig. 5 for different

body heights. The safest one is just below the elbow level.

386 Cluster Computing (2023) 26:385–394

123



The chosen dynamic to test the system consists of

handling the box shown in Fig. 6 and transporting it from

one desk to another, taller desk. The height of the smaller

desk is 93 cm, while the height of the taller desk is 150 cm.

The procedure consists of that the volunteer performs the

activity until the developed system emits an alert when the

volunteer starts reaching the critical point of muscle fati-

gue. The critical point in this work is when the volunteer

feels so exhausted.

The positions adopted by the volunteer are shown in

Figs. 7 and 8. The volunteer holds the box, which is filled

with books, and then he turns left and puts the box on the

top level of the next desk. Then, immediately, the volunteer

takes the box from the top-level desk, turns right, and puts

the box on the top level of the lower desk. Thus, in this

exercise, the volunteer has two positions: (1) holding the

box just below elbow height and (2) holding the box just

above eye height.

Several muscles can be monitored when performing the

activity described above. However, in this study, it was

found that the effort was mainly concentrated in the mus-

cles of the shoulder, more specifically, in the deltoid

muscle shown in Fig. 4. This is in agreement with studies

reported in [27]. Accordingly, one sensor in the deltoid

muscle of the right shoulder was placed on each volunteer.

As a cross-check, a sensor was also placed in the deltoid

muscle of the left shoulder.

In this work, three male students, ages 21, 22, and 21,

participated in this study as volunteers. The volunteer’s

heights are 1.65 cm, 1.72 cm, and 1.74 cm and weigh 56

Fig. 1 Architecture of the

developed system for muscle

fatigue monitoring in real-time

Fig. 2 Trigno wireless system [23] for EMG signals collection. The

wireless sensors allow taking data in working environments like

manual handling loads without affecting the activity of workers

Fig. 3 NVIDIA Jetson Nano [24] used for the analysis of the EMG

signals in real-time

Fig. 4 Illustration of the deltoid muscle. The sensor was placed in red

zone. The figure was taken from [25]
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kg, 60 kg, and 98 kg, respectively. All the participants

signed an Informed Consent form indicating they agreed to

take part in this study.

4 Feacture analysis

Features are computed and analyzed in real-time to deter-

mine the critical point of muscle fatigue. The criteria for

the critical point of muscle fatigue determination were

established after doing an offline analysis of PSD and

MNF, and it is described below.

For the offline analysis, all the volunteers performed the

activity described in Sect. 3.1 two times; each lasted 3

minutes. The weight box was varied each time as follows:

1. Without weight: the box was empty. The box’s total

weight was 100 g.

2. With weight: the box was filled with books. The box’s

total weight was 7 kg, which is 40 % above the

recommended weight for eye height.

The PSD was computed for all the volunteers. The PSD for

the first volunteer shows a shift from higher to lower fre-

quencies when he performs the activity with weight(see

Fig. 9). In the activity with the box weight of 7 kg, a

narrower peak is observed, which means that the muscle

gets fatigued more quickly when performing the heaviest

task. The same behavior was observed for the second

volunteer (see Fig. 10). The third volunteer does not show

similar results (Fig. 11). However, this can be due to his

physical condition.

The mean frequency (MNF) was also computed for the

three volunteers when they were doing the two activities.

In this case, the manifestation of muscle fatigue was more

Fig. 5 Recommended weight for manual lifting. The information

shown in this figure was taken from [26]

Fig. 6 Box used for the testing activity. The box size is 50x30x13

cm3

Fig. 7 Position adopted by the volunteer at elbow height. The height

of the desk is 93 cm
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visible with MNF (see Figs. 12 and 13) than the one with

the PSD. Besides, the MNF shows a clear difference in

both activities. The MNF of volunteer 1 performing the

exercise without weight decreases slightly with time. On

the other hand, when volunteer 1 performed the activity

with the box of 7 kg, the reduction of the frequency is

faster.

4.1 Linear regression

The MNF versus time plots are shown in Figs. 12 and 13.

The graphs show a dispersion of MNF over time that

makes it difficult to see the decrement of the frequency,

and consequently, difficult to monitor the muscle fatigue.

For this reason, the variation of MNF in time was studied

Fig. 8 Position adopted by the volunteer at eye height. The height of

the desk is 1.50 cm

Fig. 9 Power Spectral Density computed from EMG signals of the

first volunteer. As one can see, there is a more significant peak at

lower frequencies when the volunteer performs the activity with the

box of 7 kg. The dotted line corresponds to the activity with the empty

box

Fig. 10 Power Spectral Density computed from EMG signals of the

second volunteer. The same behavior as the first volunteer one is

observed here. There is a more significant peak at lower frequencies

when the volunteer performs the activity with the box of 7 kg. The

dotted line corresponds to the activity with the empty box

Fig. 11 Power Spectral Density computed from EMG signals of the

third volunteer. In this case, the activity with weight show a wider

peak than the other two volunteers
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using a linear regression model. This model assumes a

linear relationship between the MNF and time. The slope

of the linear regression was used to estimate fatigue as it is

described in [28–30]. The equation of the linear regression

is defined as:

y ¼ b0 þ b1X þ � ð3Þ

where X is the independent variable, y is the dependent

variable, b0 and b1 are the regression coefficients and � is

the residual error. The linear regression method can be

used to predict the value of the MNFi at timei and in this

way not being affected by the data dispersion.

The data fit obtained with the linear regression model is

shown in red in Figs. 12 and 13. The fit shows a clear

downward trend of the frequency in Fig. 13, and it is still

possible to see the slight reduction of the frequency as a

function of time in Fig. 12.

5 Monitoring system

Figure 14 shows the flow of the monitoring system. The

EMG signals are processed in the Jeton Nano Machine.

The PSD and MNF features are computed every 0.255

seconds. For each iteration, the system compares the cur-

rent MNF to a baseline to measure the reduction of the

frequency over time. The lower frequency, the higher the

muscle fatigue. The criteria for the determination of muscle
Fig. 12 Mean Frequency (MNF) obtained from volunteer 1 when he

was performing the activity with the 5 kg box. The red dotted line

corresponds to the linear fit using a regression model

Fig. 13 Mean Frequency (MNF) obtained from volunteer 1 when he

was performing the activity with the 7 kg box. The red dotted line

corresponds to the linear fit using a regression model

Fig. 14 Schema of the data acquisition and signal processing to

determine fatigue in a muscle. Trigno wireless sensors and Trigno

base station belonging to the Trigno Wireless System
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is presented in Table 1. The system defines three levels of

muscle fatigue: yellow, yellow phase 2, and critical point.

The critical point represents the maximum level of tired-

ness of the volunteer. The values t1min, t1max, and t2max

are the thresholds for each level of fatigue.

The level of muscle fatigue is determined by using the

algorithm 1. As mentioned in 4.1, the MNF and the base-

line used to computed the level of fatigue are obtained

from a linear regression model to be less sensitive to the

data dispersion shown in Figs. 12 and 13. The way to fit the

regression model is shown in Eq. 4.

regressionModel ¼ LinearRegression(time,Y) ð4Þ

where time = {ti; tiþ1:::tn} and Y = {yi; yiþ1:::yn}, yi is the

MNF computed at ti.

Once the regression model is fitted, the variables are

predicted as follows:

x ¼ regressionModel ðtiÞ ð5Þ

The MNF sample collected in the first 30 seconds is fitted

with a linear regression model, and the baseline is obtained

by evaluating the fit at t0 ¼ 0. On the other hand, for the

current MNF, the MNF data sample is fitted in every

iteration. A sliding window, like the one shown in Fig. 15

is used to have the same statistic for the fit and not saturate

the disk memory with data. Moreover, due to First-In,

First-Out (FIFO) principle, the data sample length is

always the same. In addition, it is important to mention that

longer-size windows were tested at the beginning of this

work. The difference in the accuracy of the features

extraction was not significantly different.

6 Experimental results

For testing and validation of the developed real-time sys-

tem, the three volunteers described in Sect. 3.1 were

required again. The test of the system in real-time was

carried out three days after the first data taking described in

Sect. 4, and divided into two days. During the first day, the

volunteers performed the activity with a box of 5 kg twice

to monitor only one of the two (left and right) deltoid

muscles at a time. During the activities, the system emitted

alerts when reaching the three levels of muscle fatigue:

yellow, yellow phase 2, and critical point. Besides, as a

cross-chek, all the volunteers were asked if they were

fatigued when entering the critical point.

Figure 4 shows the results obtained with the 5 kg box for

the right deltoid muscle. The time values tell that each

volunteer gets fatigued at different times, which can be

Table 1 Criteria to determine the different intervals of muscle fatigue

Level of fatigue Condition

Yellow t1 min \ MNF
baseline

\t1 max

Yellow phase 2 t1 max \ MNF
baseline

\t2 max

Critial point MNF
baseline

[ t2 max

Fig. 15 Sliding window used for fitting the MNF. For the fit, only the

last 30 seconds (green cells) are taking into account. The red cells are

discarded as time goes on
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since each of the volunteers has a different physical con-

dition, as mentioned in Sect. 3.1. On the other hand, the

results obtained when monitoring the left deltoid muscle

(see Table 2, 3) show a decrease in the volunteers’ per-

formance. This result can be due to two factors: (1) the

volunteers only rested 20 min between the two tests, or (2)

all the volunteers mentioned that due to the activity’s

movements, they felt more tension in the left shoulder than

the right one.

The results obtained for the activity with the 7 kg box

are shown in Tables 4 and 5 for right and left deltoid

muscle, respectively. The volunteers entering the critical

zone more quickly agree with the recommended weight for

manual lifting shown in 5. Moreover, a better agreement

between the real-time system and the feeling of tiredness of

volunteers was observed.

7 Discussion and future work

In this work, a real-time system that monitors muscle

fatigue using electromyographic signals were developed.

The Mean Frequency was used as a feature to determined

muscle fatigue. The system uses a linear regression to

analyse the variation in time of the Mean Frequency. The

system used wireless sensors to be more portable and

defines three levels of muscle fatigue. The activity chosen

to validate the system was related to an activity commonly

performed in the manufacturing industry as the manual

handling loads, which the purpose of develops a tool that

can be used to measure the risk in this kind of working

environment.

Table 2 Results obtained with

the right deltoid muscle and the

5 kg box during the real-time

testing

Volunteer Yellow (min) Yellow phase 2 (min) critical point/feels fatigued

1 1.40 1.50 1.55 min/No

2 1.15 1.40 1.45 min/Yes

3 1.20 1.40 2.00 min/Yes

Feels fatigued refers to the answer of the volunteer when entering the critical point

Table 3 Results obtained with

the left deltoid muscle and the 5

kg box during the real-time

testing

Volunteer Yellow (min) Yellow phase 2 (min) critical point/feels fatigued

1 1.30 1.43 1.50 min/Yes

2 1.15 1.35 1.55 min/No

3 1.10 1.20 1.30 min/Yes

Feels fatigued refers to the answer of the volunteer when entering the critical point

Table 4 Results obtained with

the right deltoid muscle and the

7 kg box during the real-time

testing

Volunteer Yellow (min) Yellow phase 2 (min) critical point/feels fatigued

1 0.50 0.54 1.00 min/No

2 0.40 0.45 0.55 min/Yes

3 0.40 0.47 1.53 min/Yes

Feels fatigued refers to the answer of the volunteer when entering the critical point

Table 5 Results obtained with

the left deltoid muscle and the 7

kg box during the real-time

testing

Volunteer Yellow (min) Yellow phase 2 (min) critical point/feels fatigued

1 1.10 1.15 1.22 min/No

2 1.15 1.20 1.30 min/Yes

3 0.42 0.50 1.00 min/Yes

Feels fatigued refers to the answer of the volunteer when entering the critical point
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The obtained results can be summarized as follows:

– The analyzed data showed that the Mean Frequency

could be used as a feature to monitor muscle fatigue as

it showed a decrement due to muscle fatigue.

– The variation in time of the Mean Frequency was

studied using a linear regression approach to get less

sensitive to the data dispersion.

– During the testing phase, the system showed that it took

longer to get fatigued when the volunteers performed

the activity with the recommended weight by the HSE

agency.

– The system also showed that the volunteers get fatigued

more quickly when performing with 43% above the

recommended weight.

– The developed system showed different results when

monitoring the left and right deltoid muscles. The latter

is interpreted as an effect of the designed activity,

which requires more action from the left deltoid

muscle. On the other hand, the level of muscle fatigue

emitted by the system and each volunteer’s tiredness

agrees in 60 %. However, more statistics are needed to

give a more precise performance of the system.

Subsequent versions of the system can include an interface

that sends data of the EMG signals to a cloud system

allowing remote data analysis. The latter can open a

research line in occupational health where one can monitor

the muscle fatigue of workers in real-time even if they are

in another city.

Acknowledgements Authors thanks to The Mexican Council of Sci-

ence and Technology, CONACYT, Mexico, for its support (Grant

236207, CB-2014-01).

Author contributions All the authors in this paper contribute to the

design and development of the system presented here. The full

manuscript was written by P. González-Zamora, and all authors
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