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Abstract
The most basic and significant issue in complex network analysis is community detection, which is a branch of machine

learning. Most current community detection approaches, only consider a network’s topology structures, which lose the

potential to use node attribute information. In attributed networks, both topological structure and node attributed are

important features for community detection. In recent years, the spectral clustering algorithm has received much interest as

one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigen-

values of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral

cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have

structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the

goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix

(TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk

to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in

the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been

compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The

experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art

attributed graph clustering techniques.
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1 Introduction

The inherent community structure is ubiquitous in many

natural systems and often contains abundant functional

information of complex networks, such as the functions of

proteins, the patterns of scientific collaboration, the word

association in language evolutions, and the emergence of

social polarization and echo-chambers [1–3]. Conse-

quently, community detection is fundamental significance

for further understanding the complex interplay between

network structure and dynamical processes across different

fields, ranging from statistical physics, biology, ecology,

economics, and social science [4]. Moreover, the process of

detecting communities can even contribute to designing

more effective data storage systems and improving net-

work capacity [5, 6].

Most of the community detection methods deal only

with the structure of networks. There exist a variety of
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structure-aware methods in multiple applications [7, 8].

However, with the rapid growth of available information

to us, the majority of real-world networks provide attri-

butes describing the properties of nodes in addition to the

interconnections. Such network is called as attributed

networks and sometimes node attributes are important as

the topological structure information. Methods that only

consider structure or only attributes, lose some of the

available information in a network. Therefore, many

algorithms have been proposed to fuse the structure and

nodes attribute of a network to detect the communities

[9–12].

Some of these algorithms combine structure and attri-

butes before the community detection process [12]. These

algorithms first build a similarity matrix based on structure

and attribute information and then use this matrix in clas-

sical community detection algorithms. According to how

structure and attributes information are combined, there are

different algorithms like weight-based, node-augmented

graph-based, and embedding-based algorithms [12]. These

algorithms do not need special software implementation

and they just require preprocessing to build the similarity

matrix. However, in weight-based algorithms, there is a

need to tune hyper-parameters to control the balance

between structure and attributes, which is challenging

according to different problems. The node-augmented

graph-based algorithms don’t need any parameter tuning,

however, in these algorithms, new nodes and edges are

added to the graph which leads to enlargement and

increasing complexity in large-scale attributed graphs. For

embedding-based algorithms, usually deep learning algo-

rithms are used which improve the accuracy of these

algorithms, however the complexity of these algorithms are

increased.

For community detection, spectral clustering has

attracted a lot of attention in recent years [13, 14]. This

method partitions nodes of a graph into groups with a

spectral embedding map and usually outperforms tradi-

tional clustering algorithms like k-means in dealing with

non-convex structures [15]. In spectral clustering, an

embedding vector of nodes is constructed in which it

maps the nodes of a graph to the k-dimensional points in

Euclidean space. For this work, k eigenvectors of the

graph’s Laplacian matrix are selected and these vectors

are a new representation of nodes [16]. After extracting

the vectors, a k-way partition algorithm is applied to find

the k clusters of nodes. Most of the time, k-means

clustering is the algorithm used in this part. Spectral

clustering algorithms rely on the analysis of a similarity

matrix. Hence, defining a suitable matrix has a high

impact on improving the performance of spectral clus-

tering [17–19]. The input matrix of spectral clustering

methods can be adjacency matrix [20], the standard

Laplacian matrix [21], the normalized Laplacian matrix

[22], modularity matrix [23], and the correlation matrix

[24].

However, most spectral clustering algorithms only use

the network’s structural information and ignore the attri-

butes. Therefore, it is expected that this method’s accuracy

will not be very high.

In the present paper, we propose a modified version of

spectral clustering, called Attributed Spectral Clustering. In

order to overcome the challenges of the previous spectral

clustering algorithm, we build a new affinity matrix based

on both the network structure and attribute information. For

building the affinity matrix, first we assign the weights to

the edges of a graph based on the similarity of the attributes

of nodes. These weights are defined based on cosine sim-

ilarities of node attributes. Then, we use the biased random

walk to find the similarity matrix based on both structure

and attributes, where the probability of jumping between

nodes is obtained according to the weight of the edge.

Hence, nodes with more similarity-based on attributes have

a higher probability of walking. Unlike the other fusion

algorithms, we don’t need to define control parameters to

combine structure and attribute. Also, extra nodes and

edges are not added to the original network which makes

the proposed method appropriate to apply on a large-scale

network.

Our main contributions are summarized as follows.

• We propose a new spectral clustering method to detect

communities in attributed networks, where an affinity

matrix is built based on the information of both network

structure and nodes attribute.

• To create the affinity matrix, we leverage a biased

Random Walk method. The biased property of this

method is obtained by defining different probabilities

between nodes in a network structure based on the

node’s attributes similarities. Therefore, for integrating

the attributes and structure information of the network,

there is no need for parameter tuning.

• Extensive experiments on different types of synthetic

datasets and real-world attributed graph datasets show

that our proposed algorithm significantly outperforms

five state-of-the-art methods, which are appropriate for

the attributed network

This paper is organized as follows. In Sect. 2 we present

related work on defining various similarity matrices for

spectral clustering and also different approaches to fuse
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structure and attribute. In Sect. 3 we describe the algorithm

of this paper. In Sect. 4 we report the experiments and

results, and finally, in Sect. 5 we conclude this study.

2 Related work

Spectral clustering algorithms have been successfully

applied to community detection. Since the construction

of an excellent similarity matrix is a key to spectral

clustering, many methods try to construct an ideal one to

obtain a better clustering performance. Zhang and You

[25] used the random walk method to construct the

similarity matrix. With this approach, they have found

similarities between points and their neighbors. The

drawback of this method is manually setting the thresh-

old of neighboring nodes which affects the stability of

clustering. In [26], Shuxia et al. constructed a similarity

matrix of nodes by transition probability among nodes.

The Markov chain model is used to calculate the tran-

sition probability between nodes. Although this method

gets a good accuracy in community detection, it needs a

lot of time and space to multiply the transition proba-

bility matrix. In [27] Fang Hub et al. developed a

Node2vec-SC algorithm that combines node2vec and

spectral clustering to find communities in complex net-

works. The similarity matrix is built by calculating the

similarity among any two nodes embedding extracted

from the node2vec process. Wang et al. [28] proposed a

community detection algorithm based on topology

potential and spectral clustering. This algorithm con-

structs the normalized Laplacian matrix with nodes’

topology potential. The topology potential describes the

interaction and association among nodes of the network

and gives rich structural information of the network. The

authors of [29] proposed a method that builds a prox-

imity matrix based on magnitude of the linear coeffi-

cients as the similarity values. These linear coefficients

are extracted from representation of node as a sparse

linear combination of all other nodes in the same

network.

The similarity matrix of these considered algorithms is

defined based on the topologic of the network, while the

attributes of nodes are ignored. To address this problem,

some algorithms have been proposed which consider

both attribute and structure for creating a similarity

matrix. One of the categories of these algorithms is

weight-based algorithms which change the node attrib-

uted network into a weighted network with no attributes.

Then any type of community detection method which is

suitable for weighted networks could be applied [30]. In

this class of methods, first, the structural information

(i.e., edges) of the network is stored as a function of the

similarity between nodes and then it is combined linearly

with the similarity calculated according to nodes attri-

butes. Edge weights of the graph are usually assigned

as Wa vi; vj
� �

¼ aWS vi; vj
� �

þ 1� að ÞWA vi; vj
� �

; vi; vj 2 V ,

where WS and WA are chosen structural and attributive

similarity functions, respectively. The hyper-parameter a
(a 2 0; 1½ �) controls the balance between structure and

attributes. collaborative similarity measure (CSM) [31],

Attracting Degree and Recommending Degree (AR-

Cluster) [32] are examples of these algorithms. Structural

attributed graph cluster (SAG-Cluster) [33] measures

similarity based on attribute importance in case the pair

of disconnected nodes as well as a novel path strategy

using classic Basel problem [34] for the indirectly con-

nected nodes. The spectral algorithm based on node

convergence degree (SCNCD) [35] defined a node con-

vergence degree measurement by combining structure

with node attribute, and then the overlap communities’

structure will be gained through the spectral clustering

method. Structure convergence degree and attribute

convergence degree are combined using the weighted

sum method. The weighting factor can be set according

to the actual situation. Alinejad et al. [36] have proposed

weight modification approach (PWMA) and proposed

linear combination approach (PLCA) methods. PWMA

[36] takes the original attributed network as input and

transforms it into a non-attributed secondary network. In

this step similarity measure(s) would be utilized; in this

paper, they include Jaccard, cosine, and angular. The

second step is to use a mixed-integer linear programming

(MILP) method to detect communities in the constructed

secondary network. PWMA neither adds nor removes

edges from the original network and only weights change

throughout this process. The idea behind PLCA [37] is

that by using a linear combination of the network

topology and attributes, the nodes which have a simi-

larity more than a desired threshold but are structurally

far from each other could get closer. PLCA also includes

the transformation step to the secondary network but its

edge set doesn’t necessarily match the one from the

source network and edges may be added. CNS [38] used

both Coupled Attribute Similarity and Coupled Attribute-

to-Structure Similarity extracted respectively from Node

Attribute Information and Network Structure Information.

Therefore, CNS uses the most information to detect

communities. Caiyan Jia et al. [39]proposed a method

called k Nearest Neighbor (KNN-enhanced) which adds

the (kNN) graph of node attributes to the original net-

work. Then community centers are determined based on

the K-rank-D method, and finally, kNN-nearest or kNN-

Kmeans is applied to form communities. In [40] a

genetic algorithm for detecting a community in attributed
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graphs is proposed where a linear combination of struc-

tural connectivity and node attributes, is used as a fitness

function in the genetic algorithm. In 2020, the Structure-

Attribute Similarities Label Propagation (SAS-LP) algo-

rithm was presented by Kamal et al. [41]. In this algo-

rithm, a new version of the LPA algorithm for attributed

graphs is proposed. The problem of these weight-based

algorithms is manually chosen hyper-parameters which is

challenging in different problems [10, 11].

Another category consists of node-augmented graph-

based algorithms. Structural attributed (SA-Cluster) [37] is

an example of this category that provides an attribute

augmented graph, where attributes are added to the original

graph as attribute vertices and attribute edges. Then a

neighborhood random walk model is applied to unify two

similarities based on structure and attributes and a distance

matrix is defined. Cheng et al. [42] proposed an algorithm

called Inc-Cluster based on the idea of the augmented

graph of SA-Cluster, where in this algorithm time com-

plexity is reduced by incrementally updating the random

walk distance. Huang et al. [43] leverage a cell-based

subspace clustering approach and propose )SCMAG(

algorithm, for community detection in multi-valued

attributed networks. The random walk is used to calculate

the similarity in the attributed augmented graph. Since the

size of the augmented graph is larger than the original one,

running these methods in large-scale attributed graphs is

hard.

Moreover, embedding techniques are used for node-

attributed networks to encode both structures and attri-

bute information [44–46]. Then clustering algorithms like

k-means are applied to the learning embedded. Le et al.

[47] advocated a framework for document networks that

combines topic modeling and graph embedding of doc-

uments relationships. In order to join these two spaces, a

mapping function from the embedded space to the topic

space is proposed. Recently, deep learning algorithms are

applied for attributed graph clustering. Deep Attributed

Network Embedding (DANE) algorithm [44] is devel-

oped which uses two autoencoder architectures to learn

node embeddings based on graph structure and node

attributes respectively, which can capture the high non-

linearity information. In ANRL [48] a neighbor

enhancement autoencoder to model the node attribute

information and also attribute-aware skip-gram model to

capture the network structure are designed. Wang et al.

[49] proposed a graph attentional autoencoder to combine

both graph structure and attribute values to learn

embedding representation. Then, self-training clustering

is performed based on the learned representation. Zhang

et al. [50] proposed an adaptive algorithm based on

graph convolution network (GCN) [51] 52 to get a new

representation of the node. This method adaptively

selects the appropriate order for graphs with different

diversity. The marginalized graph autoencoder (MGAE)

algorithm [53] proposed a newly marginalized graph

autoencoder to learn representation for graph clustering.

Sun et al. [54] proposed a framework consisting of a

graph convolutional autoencoder, modularity module, and

a self-clustering module to learn graph structure-based

representations and clustering-oriented representations

together. Luo and Yan [55] proposed an end-to-end

network embedding based on high order graph convolu-

tional network to simultaneously optimizes the node

embedding learning and community detection. These

methods get a good accuracy in community detection,

however the complexity of these attributed network

embeddings increases as the network grows.

Our work is a weight-based algorithm, where we assign

the weight to the edge of a graph-based on attributes

similarity. Then we use the biased random walk to find the

similarity matrix based on both structure and attributes,

where the probability of walking between nodes is obtained

according to the weight of the edge. Unlike the other

weight-based ones, we don’t need to define control

parameters to combine structure and attribute. Moreover,

contrasting the augment-based methods no nodes or edges

are added to the original network. So, this algorithm can be

applied in large-scale networks.

3 Contribution

Before addressing the algorithm, let us review some defi-

nitions and concepts, which are the proposed algorithm’s

foundations.

3.1 Background and notation

In general, an attributed network is defined by the triple

G = (V, E, A), where V denotes the set of nodes, E denotes

the set of edges indicating the existing node relations, and

A implies the set of attribute vectors. The total number of

vertices is shown as the value of n =|V |, the total number

of edges is m =|E|, and A (attr1, attr2, attr3… attrn) is

associated with nodes in V and describes their features. An

attribute vector’s dimension is n. We concentrate on graphs

872 Cluster Computing (2022) 25:869–888
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with binary (interchangeably, label) attributes on nodes in

the present paper.

3.2 Traditional spectral clustering review

Among different algorithms proposed to perform commu-

nity detection, spectral clustering (SC) has been studied by

many researchers [56–59]. Spectral clustering is very

popular in data mining because of its ability to detect

arbitrary shape clusters in data spectrum feature space. The

reason is that the change of representation induced by the

eigenvectors makes the cluster properties of the initial data

set much more evident. The basic spectral clustering

algorithm consists of four steps: (1) Constructing the

similarity matrix. (2) Obtaining the Degree matrix, D, and

the Laplacian matrix, L. (3) Computing the k eigenvectors

of L, using their eigenvalues. (4) Performing the K-means

clustering algorithm to obtain the community structure of

the network. Although these steps seem simple enough,

there are still some challenges that need to be handled. One

of the most important challenges is the definition of the

similarity matrix. The similarity matrix has a direct impact

on the performance of the SC algorithm.

3.3 Incorporate the information
of both structure and attribute

In order to conduct the task of community detection in the

attributed network, two data sources can be used. The

network and the set of connections between nodes provide

the first source of data, while data about the nodes and their

attributes provide the second. With the growing number of

rich graph attributes, such as user profiles in social net-

works and gene annotations in protein interaction net-

works, it is more important than ever to consider both the

structure and attribute data of graphs for detecting high-

quality communities.

According to the homophily property of social networks,

relationships among nodes with similar attributes are

greater than those between nodes with different attributes,

and they are more likely to connect in the network [41, 60].

As a result, the attribute information may affect the pres-

ence of two nodes in the community. The Topological and

Attribute Random Walk Affinity Matrix is presented to

calculate the similarity between nodes by fusing structure

and attribute information to further increase the efficiency

and accuracy of node similarity calculation in the attributed

network.

Embedding the information of vertex attribute similarity

into a transformed weighted graph G0 ¼ V;E;Wð Þ is the

first step. In particular, in order to quantify the vertex

attribute similarity for ui and uj, an edge weight w eð Þ is

assigned for each edge e = ui; uj
� �

2 E. Accordingly, the

vertex attribute information of G is encoded into the

weighted graph G0 as edge weights. In order to measure the

similarity of the pairs of nodes, the well-known cosine

similarity of the angle between two node vectors is applied.

A reason for selecting cosine similarity is its effectiveness

for sparse vectors that consider only non-zero values. The

attribute similarity is expressed as Eq. (1) for two nodes ui
and uj, whose attribute vectors are Ai = ai1; ai2; . . .:; aitf g
and Aj = aj1; aj2; . . .:; ajt

� �
, respectively.

ATSIM ui; uj
� �

¼
Pt

d¼1 AidAjdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
d¼1 Aidð Þ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
d¼1 Ajd

� �2
q ð1Þ

where t implies the dimension of an attribute vector.

The second step is to implement a biased random walk

on the weighted graph in order to find node similarities

based on both network structure and attributes. In random

walk approaches, each node has a walker, and each walker

will randomly pick a neighbor of the node that currently

stands on to localize. The random walk similarity is con-

structed for a pair of nodes using a special transition

probability rule [61–63], which can help capture both the

information potential of topological and attribute relation-

ships between nodes. A more general transfer matrix can be

used [reference] to describe a weight-biased random walk

on a graph. The factor pij provides the probability that a

walker on node ui of the graph can move to node uj in a

single step, where this probability is based on the edge’s

weight of each pair of vertices ui and uj. The appropriate

weight for each pair of nodes in the network is considered

proportional to the attribute similarity (ATSIM) between

the nodes extracted according to Eq. (1).

When a transition probability pij ¼ ATSIMij on each link

ui; uj
� �

is assigned, semi-local information is applied by the

Local Random Walk (LRW) algorithm [64] to obtain

similarities between nodes. The final formula is defined as

Eq. (2) according to the Bias Local Random Walk model:

SBLRWij ðgÞ ¼
Xg

l¼1

di
2jEj �

ATSIMijP
j2CðiÞ ATSIMij

ðlÞ þ dj
2jEj

� ATSIMijP
i2CðjÞ ATSIMij

ðlÞ ð2Þ
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where g implies the number of random walk steps and

d and E denote the degree of node and number of present

links in the network, respectively. The graph diameter is

employed for the number of random walking steps in order

to travel the graph structure best with random walking.

3.4 The proposed Attributed Spectral Clustering
(ASC)

In this investigation, we consider an attributed graph G ¼
ðV;E;AÞ where the number of clusters isK. The purpose is

partitioning the node-set V into K disjoint subsets

v1; v2; . . .; vn, where V ¼
Sn

i¼1vi and vi \ vj for anyi 6¼ j.

Therefore, the nodes within clusters are densely connected

with regard to structure, while the nodes in different

clusters are sparsely connected; and the nodes within

clusters have low diversity in their attribute values with

regard to attribute, while the nodes in different clusters

may have diverse attribute values. The main of the attrib-

uted graph clustering is to achieve well-connected (struc-

tured) clusters while their nodes benefit from homogeneous

attribute values (content).

This algorithm has four main steps; the first step is the

formation of the affinity matrix, which is of special

importance. Because the effectiveness and quality of

spectral clustering mainly depend on the input affinity

matrix between each pair of nodes. The affinity matrix acts

as an input and consists of a quantitative evaluation of each

pair of points in the data set regarding its relative simi-

larity. In order to use the spectral clustering algorithm in

attributed networks, the affinity matrix must contain

information on graph structure and node attributes. (In

most of the previous works, for the simultaneous use of

structure and attribute information, researchers have used

the combination of these two information sources, and also

some parameters have been used to adjust them. Tuning

these parameters dramatically affects the algorithm’s per-

formance and takes the algorithm out of the free-parameter

mode.

However, in the present article, the authors intend to

introduce a new affinity matrix called Topological and

Attribute Random Walk Affinity Matrix, which does not

require any parameters to combine structure and attribute

information. For this purpose, first, the graph is weighted

using the information of the attributes, and the weight of

each edge of the graph is obtained by applying Eq. (1).

Based on the weighted graph, the similarity between every

two nodes is obtained using the random walking algorithm

defined in Eq. (2). Since random walking is applied to the

weighted graph, it accurately traverses the graph’s structure

with bias. The similarity obtained for every two nodes is

highly accurate due to the use of attribute information and

k-hop neighborhood structural data.

TARWAM is constructed that faithfully reflects the

similarity information of structural and attribute among

nodes in attributed networks. After obtaining the affinity

matrix, in the second step, the Laplacian matrix is calcu-

lated by L = D–S. Where D is degree matrix, which is a

diagonal matrix with Di ¼
Pn

j Sij and S is an affinity

matrix between nodes. Spectral clustering should use the

eigenvalues of the affinity matrix of the data to reduce

dimension before clustering in fewer dimensions. Then in

the third step, the set from k to the smallest eigenvalues is

selected by the Eigngap approach A particular way to

estimate the number of k or (connected components) is

eigngap. Here k is chosen such that all eigenvalues k1, …,

km are small and km ? 1 is relatively large. Actually,

Eigngap calculated the difference between two consecutive

eigenvalues. Most stable clustering is generally given by

the value k that maximizes the difference expression [14].

By selecting k eigenvalues, the Laplacian matrix is

transferred to space with smaller dimensions and contains

more information. The new transferred space has a better

description of the structure and attributes information of

each node. In the last step, k-means clustering is applied to

the new space of data with more useful information. The

nodes within the clusters obtained in this step have the

highest edge density and homogeneous attribute, which

will be equivalent to communities in attributed graphs.

The steps of the ASC algorithm are illustrated in Fig. 1.

In this figure, the second column shows the steps of affinity

matrix formation, which is indicated by implementing the

affinity algorithm of local and biased random walking on

the weighted matrix, and the third column shows the other

steps of the algorithm.

The details of the algorithm are presented in Fig. 1. As

shown in the figure, in step (1), structural and attributes

information of nodes are considered. In step (2), the

weighted matrix will be defined by calculating the weight

edge between each node pair (ni;nj) according to Eq. (1).

Then the affinity matrix will be produced by Eq. (2). Using

the affinity matrix from the previous step, Laplacian will be

calculated in step (3), eigenvalues and eigenvectors of the

matrix will be computed, and finally, assign points to two

or more clusters, based on the new representation.
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3.5 Pseudocode

3.6 Time complexity

We present a complexity analysis of the proposed approach

in this section. Assuming that each network has N nodes,

|E| links. The ASC method consists of three main steps:

construct the similarity matrix, compute the first k-eigen-

vectors, and k-means to cluster the normalized matrix U.

The construction of a similarity matrix is divided into two

stages: the first is the conversion of the adjacent matrix to a

weighted matrix; because cosine similarity is used, the

complexity is equal to O(Nk) because only the neighbors

are considered, where d represents the average degree of

the network; the second stage involves performing a local

random walk over a weighted graph with a complexity of O

(Nk). The first k eigenvectors from the Laplacian matrix

are computed in the second step, which has a complexity of

O. (kN2.3676). The K-means algorithm on dimensional

reduction is the final step in performance, with a

Fig. 1 the steps of the ASC algorithm
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complexity of O(Ndc), where c denotes the number of

cluster iterations and d is the dimension of each data set.

By combining the results of these analyses, the time

complexity of the ASC method is found to be O

(2Nk ? kN2.3676 ? Ndc) & O (kN2.3676).

4 Experimental evaluation

The ASC experiment findings are discussed in this sec-

tion. A series of experiments was carried out to evaluate

the proposed approach of performance thoroughly. The

following is the structure of the organization. Section 4.1

reviews five well-known and state-of-art comparison

methods including, SCNCD [35], SA-cluster [37], GA-Net

[40], and KNN-enhance [39]. Section 4.2 reviews evalua-

tion metrics. The datasets utilized in the following studies

are summarized in Sect. 4.3. In Sect. 4.4, the method’s

effectiveness is evaluated on different types of synthetic

datasets. The synthetic dataset’s detailed findings were

discussed compared to five state-of-the-art approaches

based on four frequently used evaluation metrics. The

outcomes of the performance evaluation on real-world

datasets are presented in Sect. 4.5. The comparison meth-

ods are compiled in the MATLAB programming language

and implemented on a computer with an Intel Core i5

processor and 8 GB of RAM.

4.1 Comparison methods

In our experiments, the proposed method compares with

four well-known and state-of-art methods for discovering

communities in the node attributed networks, SCNCD, SA-

cluster, GA-Net, and KNN-enhance. The procedure of

these methods is summarized as follows:

– SCNCD: It is categorized as weighted-based method in

which a weighted linear combination of both structure

and attribute controlled by a parameter, is used to form

a similarity matrix. Then, an improved spectral clus-

tering algorithm is applied to this matrix to discover the

final communities.

– GA-Net: In this method, the clustering unified distance

measure, a linear combination of structural connectivity

and node attributes, is used as a fitness function in the

genetic algorithm.

– KNN-enhance: Method aim is to reduce the sparsity

and noise in the network structure using node attribute

enhancement during the community discovering pro-

cess. To this end, first, the KNN graph of node

attributes is added to the original graph. Then the

community centers are determined based on the

K-rank-D method. Finally, kNN-nearest or kNN-

Kmeans is applied to form final communities.

– SA-cluster: In this method, first, an attribute-augmented

graph is formed by combining the structure and

attribute of nodes in a unified framework. Then, the

neighborhood random walk model is used to obtain a

unified pairwise distance. In other words, in this step,

the degree of contributions of structural and attributes

similarity are automatically learned. Finally, K-me-

doids algorithm is adopted to discover the communities

based on the pairwise learned distance.

4.2 Evaluation metrics

In this paper, the quality of communities generated by

different methods is compared by two types of evaluation

metrics; quality-based and information recovery-based

metrics. In the first type, the quality of discovered com-

munities is evaluated using the basic definition of com-

munities. But information recovery-based metrics are

based on the ground truth information of partitions in the

networks.

4.2.1 Information recovery-based metrics

Let, X and Y be two sets of discovered communities and

ground-truth communities, respectively. Then xi and yi
represent the ith community of these sets.

To evaluate the similarity between these two sets Nor-

malized Mutual Information (NMI) and Rand Index (RI)

are used.

4.2.1.1 Normalized mutual information Normalized

Mutual Information (NMI) [65] is a well-known entropy

measure in information theory, which one of its uses is as

an evaluation metric to compare the community detection

methods. The confusion matrix n is created to measure of

similarity between these two partitions. So that, the values

of nij is the number of nodes in the xi that appear in the yj.

Then a unified formulation of NMI is defined as:

NMI X; Yð Þ ¼ �2�
P

ij pij=piþpþjP
i piþlogpiþ þ

P
j pþjlogpþj

ð3Þ

where, pij ¼
nij
jnj, pþj ¼

P
i pij and piþ ¼

P
j pij. Also, nj j is

the total number of members in the partitioned set. The

range of the NMI value is [0, 1], higher consistency causes

a higher NMI, and NMI (X, Y) = 1 corresponds to being

identical to two partitions X and Y. Also, NMI (X, Y) = 0

indicates the independence of these partitions.

4.2.1.2 Rand Index (RI) RI is the pair counting-based

metric [66]. The basic idea behind the RI is that how pairs
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of points are clustered. This means the ‘‘goodness’’ of

discovered communities is defined as the fraction of a

number of the concordant pair nodes in two partitions X

and Y as follows:

RI X; Yð Þ ¼ aþ d

aþ bþ cþ d
ð4Þ

where, a: is the set of pairs of nodes that are placed in the

same communities in both partitions X and Y. b: is the set

of pairs of nodes that are placed into the same communities

in partitions X but not in Y. c: is the set of pairs of nodes

that are placed into the same communities in partitions Y

but not in X. d: is the set of pairs of nodes that are placed in

different communities in both partitions X and Y.

4.2.2 Quality-based metrics

The lack of ground-truth communities in many networks

has challenged the comparison of community detection

methods. So, quality-based metrics are provided to mea-

sures the quality of a partitioning of a network based on the

definition of networks. In this paper, for the performance

assessment of discovered communities, two quality-based

metrics; modularity and density are also used.

4.2.2.1 Modularity In this metric, the quality of discov-

ered communities is compared to the edges placed within

the community with a randomized network [67]. The

maximum value of this metric is equal to 1. The closer the

value of Q is to 1, the more obvious the community

structure. Modularity can be expressed in the following

form [3]:

Q Xð Þ ¼ 1

2jEj
X

i;j

ðAij �
kikj
2 Ej jÞdi;j ð5Þ

where ki is the degree of node I and dij is the Kronecker

delta function described as:

dij ¼
1 vi and vj are in the same community:
0 Otherwise

�

4.2.2.2 Density This metric measures the density of

edges [68] within the cluster and is defined as:

den Xð Þ ¼ 1

E

X

i;j

A i; jð Þ:dij ð6Þ

It ranged into [0, 1]. In other words, the higher values

mean more strength of discovered communities.

4.3 Datasets

To validate and assess the performance of our algorithm,

two classes of datasets are used. The synthetic dataset is

computer-generated networks allowing the creation of the

ground truth useful to evaluate the similarity between the

synthetically generated and the detected communities. The

real-world datasets, extracted from real environments,

better represent the actual network behavior. The descrip-

tion of these networks is as follows.

4.3.1 Synthetic dataset

LFR-EA is the synthetic network that is generated using

the benchmark proposed by Elhadi and Agam [64]. It is an

extension of the LFR benchmark of Lancichinetti et al.

[69]. The network generator uses two parameters l and m,
both ranging in the interval [0.1, 0.8], to control the

structure and attribute values, respectively. The mixing

parameter l determines the rate of intra and inter-com-

munity connections. Low amounts of l give a clear com-

munity structure where the intra-cluster link is much more

than inter-cluster links. Analogously m is the noise attribute

parameter in which low values generate similar features of

nodes belonging to the same community. The combination

of l and m values produces graphs with a clear to

ambiguous structure and/or attributes.

We generated a benchmark of networks consisting of

1000 nodes, named LFREA-1000, to evaluate all aspects of

ASC. Different instances of the combination of parameters

reported in Table 1 are generated. Since generating net-

works are the stochastic procedure and different runs may

Table 1 LFR-EA-1000 parameters setting

Parameter Value

Number of nodes (N) 1000

Average degree (k) 25

Maximum degree (maxk) 40

Mixing parameter (l) [0.1;0.8]

Exponent for the community size distribution (t1) 1

Minimum for the community size (minc) 60

Maximum for the community size (maxc) 100

Number of overlapping nodes (om) 0

Number of attributes 4

Attribute’s domain cluster assignment (ainf) 1

Attribute range (R) 10

Attribute noise [0.1;0.9]

1. Mixing parameter l: For the case of varying l, the attribute noise is
fixed m = 0.1
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lead to different resulting partitions, so we average the

results over ten runs.

4.3.2 Real-world dataset

In addition to synthetic networks, two real-world networks

are used for evaluating our experiments; Cora and Cornell.

Cora network consists of 2708 nodes representing the

machine learning papers, classified into seven classes;

Case-Based Reasoning, Genetic Algorithm, Neural Net-

works, Probabilistic Methods, Reinforcement Learning, or

Rule Learning Theory. Each of these papers is associated

with 1433-dimensional binary-valued attributes. Also, the

citations of these papers are reflected by 5429 edges in the

network. The second real-world network is Cornell, one of

the four subnetworks gathered from four universities in the

WebKB network. In this network, there are 877 websites

with 1608 links between them as edges. Each webpage is

associated with 1703-dimensional binary-valued attributes

(key words of web-pages) and assigned to one of the five

communities; course, faculty, student, project, or staff.

4.4 Evaluation of synthetic datasets

In the first experiments, we created networks with 1000

nodes by setting 2 numerical attributes for each node. We

generated 8 different instances, where the attribute noise

parameter (v) is constant and the mixing parameter (l) has
different values from 0.1 to 0.8. All the nodes in a com-

munity, share the same attribute domain values.

Figure 2 shows the NMI result of experiments on the

LFR-1000 datasets obtained by the proposed method and

compared methods described in the previous section. As

shown in this figure, for low values of mixing parameter

(0.1 B l B 0.4), where the network graph has a clear

structure, the proposed method performs better than the

other method and achieves higher NMI values compared to

the others. SA-Cluster and KNN methods are in the second

place of this comparison. For the SCNCD method,

although optimal alpha is considered, this method is not

able to match the ground truth with good NMI values. By

increasing the l value, NMI values of all methods are

decreasing. When the structure of the graph becomes less

clear (0.7 B l B 0.8), the proposed method can find the

boundary between clear and ambiguous graph structure

content better than the other methods. The SA-cluster

method makes the biggest drop where the mixing param-

eter increases.

The other considered metric is RI, where the results are

shown in Fig. 3. Each subplot refers to a value of the

mixing parameter l ranging from 0.1 to 0.8, with a con-

stant value of attribute noise v = 0.5. Here, the ASC gains

the highest rand-index in the most of the mixing parameter

values (0.2 B l B 0.7) and when l = 0.1 and l = 0.8 it

has the second-highest RI. The SCNCD method has the

lowest value in the most of the mixing parameter values.

The ranking of the other methods changes in different

values of mixing parameters.

In Table 2 the results of the quality metrics (i.e. mod-

ularity and density) for LFR-1000 obtained by the proposed

method and compared methods are shown. In this table, the

highest and the second-highest metrics are marked in italic

and bold, respectively. For clear graph structure (0.1 B

l B 0.2) the ASC has the highest values in both modularity

and density. When the mixing parameter increases

(0.3 B l B 0.8) the ASC still has acceptable results, where

the highest or the second highest values of modularity and

density belong to the proposed method. Among the other

algorithms, SA-cluster and KNN-Nearest have high mod-

ularity and density in just some values of mixing parame-

ters. Against the other metrics, the density result of the

SCNCD algorithm is high in some values of mixing

parameter, however, this metric alone cannot evaluate the

algorithms well. According to the results of different

evaluation metrics on different networks of LFR-1000, the

superiority of the proposed method compared to the other

methods is clear. This means the ASC is able to better

exploit both the attributes and the structure of the graph on

these considered settings.

In the second experiment, we created networks with

1000 nodes by setting 2 numerical attributes for each node.

We generated 16 different instances of the combination of

l and m parameters. The range of attribute noise values is

from 0.1 to 0.8 and the mixing parameter l is constant.

In Fig. 4 the NMI results of the experiments on the

graph with two mixing parameter values (0.6 and 0.7)

obtained by considering methods are demonstrated. As

shown in this figure for l = 0.6 the ASC at most of the

attribute noise values has the highest NMI. The KNN-

nearest loses its efficiency in identifying the communities

by increasing the v values. The KNN-kmeans, SA-cluster,

and GA-net have lower NMI values in the network with
Fig. 2 NMI comparison of the compared methods on the LFR

benchmark networks with l 2 ½0:10:8� and m ¼ 0:5
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less attribute noise. When l = 0.7 the ASC in graphs with

less attribute noise (0.1 B v B 0.4) has the second-highest

NMI values. By increasing the attribute noise of the net-

work, it outperforms all the other algorithms (except SA-

cluster in v = 0.8). The KNN-Kmeans and KNN-nearest

methods which have high NMI values on the graph with

less attribute noise, their NMI drop-down severely by

increasing the v values. GA-net and SA-cluster are influ-

enced less by increasing the attribute noise, however they

have low NMI values in a graph with less attribute com-

pared to the proposed method and KNN algorithms. In both

states (l = 0.6 and 0.7) the SCNCD method with an opti-

mal alpha has the lowest NMI and increasing the attribute

has a low influence on it.

In Fig. 5 the RI results obtained by experiments on LFR-

1000 with l = 0.6 are shown where for most of the

attribute noise values (v = 0.1, 0.3 B v B 0.6, v = 0.8) the

ASC has the highest, and for some of them (v = 0.2,

v = 0.7) it has the second-highest RI. The GA-net algo-

rithm has the second-highest RI in most of the v values.

The KNN algorithms have low RI in some values of the

v like v = 0.5. Again, SCNCD is the algorithm with the

lowest RI in most of the subplots.

The RI values returned by all algorithms on LFR-1000

with l = 0.7 are shown in Fig. 6. Also, here the ASC has

the highest or the second-highest RI on graphs with dif-

ferent attribute noise. KNN-Kmeans and SCNCD have the

lowest RI values in most of the attribute noise values.

The results of quality metrics on LFR-1000 with l ¼
0:6 are reported in Table 3. Here also the best and the

second-best performance are marked in italic and bold,

respectively. According to these metrics, the ASC has the

a. = 0.1 b. = 0.2 c. = 0.3.

d. = 0.4 e. = 0.5 f. = 0.6

h. = 0.8

Fig. 3 RI comparison of the compared methods on the LFR benchmark networks with l 2 ½0:10:8� and m ¼ 0:5
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highest density for all the v vales (except v = 0.7 where it

has the second-highest density). For the modularity metric,

the ASC has the highest and second-highest values in dif-

ferent values of v. The KNN methods have accept-

able modularity and density when attribute noise is low

(0.1 B v B 0.3). However, by increasing the v values

(0.3 B v B 0.8) these methods drop down. SA-Cluster has

results comparable to the proposed method in a network

with a high attribute value (0.3 B v B 0.8). The results of

GA-Net and SCNCD are low in both modularity and density

for all v values. In Table 4 the results of quality metrics of all

algorithms on LFR-1000 with l = 0.7 are reported. The

ASC for both modularity and density metrics has the highest

or the second highest values in different values of v. How-

ever, the other algorithms just have a high value in one or

two values of v. Also, the results of the second experiment

on LFR-1000 networks in different metrics confirm the

superiority of the proposed method in most cases. The ASC

has the best or the second-best performance among all

comparison algorithms.

In the last experiments on a synthetic dataset, we created

LFR networks by setting 5 and 10 numerical node attri-

butes and the different sizes of the network. The parameter

settings of these networks are shown in Table 5 we gen-

erated 10 different instances of the combination of the

number of nodes and number of attributes with constant

mixing parameter and attribute noise. Here, we want to

evaluate the influence of the number of attributes on the

performance of the ASC and comparison ones. The details

of the created instances are shown in Table 5.

Table 2 Numerical results of

the Modularity and Density

comparison of compared

methods on the LFR benchmark

networks with l 2 ½0:10:8� and
m ¼ 0:5

N-l Metrics SCNCD KNN-K KNN-N SA-cluster GA-Net ASC

N_0.1 Mod 0.3360 0.6828 0.7004 0.5938 0.1604 0.7088

Den 0.6916 0.8558 0.8730 0.7775 0.1791 0.8787

N_0.2 Mod 0.4365 0.5107 0.3542 0.4272 0.1496 0.5995

Den 0.8025 0.7165 0.5224 0.5897 0.1617 0.8116

N_0.3 Mod 0.1580 0.3221 0.4912 0.5626 0.1545 0.4489

Den 0.6409 0.5090 0.6828 0.8095 0.1733 0.8277

N-0.4 Mod 0.1666 0.3221 0.3542 0.3093 0.1346 0.3549

Den 0.5938 0.5090 0.5224 0.4686 0.1562 0.5302

N-0.5 Mod 0.1271 0.1664 0.1336 0.1864 0.1393 0.2275

Den 0.6178 0.3749 0.4671 0.3963 0.1565 0.6242

N-0.6 Mod 0.0649 0.0915 0.0312 0.2084 0.1417 0.1908

Den 0.5247 0.3768 0.5403 0.3891 0.1601 0.5498

N-0.7 Mod 0.0904 0.0551 0.0211 0.2108 0.1529 0.2306

Den 0.5542 0.2756 0.4271 0.3685 0.1715 0.4667

N-0.8 Mod 0.0790 0.0352 0.0086 0.1518 0.1274 0.1775

Den 0.5519 0.3934 0.7151 0.3666 0.1462 0.5615

  
a . b  

Fig. 4 NMI and RI comparison of the compared methods on the LFR benchmark networks with m 2 ½0:10:8�, a l ¼ 0:6 and b l ¼ 0:7
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The NMI and RI results obtained by all algorithms on

LFR-networks 1–5 with attributes 5 and 10 are reported in

Fig. 7. The NMI results of the ASC for all the networks

with 10 node attributes are the highest. For the networks

with 5 node attributes, the ASC has the highest NMI for

graphs with fewer nodes (N = 100, 200, 500) and had the

second-highest NMI for graphs with more nodes (N = 600,

800). GA-Net has results comparable to the proposed

method just for networks with fewer nodes. The KNN

algorithms and SA-Cluster in networks with small sizes

don’t have a good performance based on NMI results. The

SCNCD is the algorithm with the lowest NMI value for

networks with different sizes and different attribute num-

bers. Based on the RI results, the ASC has the highest RI

among all algorithms for all of the network settings except

network 2, where it has the second-highest and its RI is so

close to the highest one.

In Tables 6 and 7 the results of quality metrics (modularity

and density) for networks with 5 and 10 node attributes

respectively are reported. (Here also the best and the second-

best performance are marked in italic and bold, respectively.)

The superiority of the ASC in both tables is clear compared to

the other algorithms. After the proposed method KNN-

Nearest has a good performance for most of the different

network sizes with node attribute numbers 5 and 10.

4.5 Evaluation of real-world datasets

In this section, to have a better comparison of the perfor-

mance of the competitors, their performance is also

aa.. = . 1
bb.. = . 2 cc. = .

d. = 0.4 e. = 0.5 f. = 0.6

 
g.  = 0.7. h.  = 0.8. 

Fig. 5 RI comparison of the compared methods on the LFR benchmark networks with l ¼ 0:6 and, a–h m 2 ½0:10:8�

Cluster Computing (2022) 25:869–888 881

123



examined on the two real-world networks; Cora and Cor-

nell. Table 8 shows the numerical results in terms of

information recovery-based metrics; NMI and RI and also,

quality-based metrics; modularity (Mod), and density

(Den). In this table, the best and the second-best perfor-

mance are marked in italic and bold, respectively. The

results confirm the superiority of the proposed method in

most cases. Therefore, the proposed method has the best or

the second-best performance among others in all cases

except NMI on the Cora network.

As shown in Table 8, the proposed method is the top-

performer in terms of RI and Mod in the Cornell networks,

followed by KNN-Nearest in terms of RI and SCNCD in

terms of Den. Also, it has the best performance in terms of

NMI and Mod after the GA-Net method. On the other

hand, on the Cora network, the proposed method is a top-

performer in the RI, Mod, and Den, while it follows the

KNN-enhance in terms of MNI. The superiority of the

proposed method in terms of quality metrics verifies the

strength of the proposed method for discovering commu-

nities with high quality. Generally, the results on the real-

world networks indicate that the proposed method achieves

the best average rank balance on these networks, which

implies the superiority of the proposed method.

 
a  = 0.1. b  = 0.2. c  = 0.3. 

 
d  = 0.4. 

 
e  = 0.5. f  = 0.6. 

 
g  . 

Fig. 6 RI comparison of the compared methods on the LFR benchmark networks with l ¼ 0:7 and, a–h m 2 ½0:10:8�
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5 Conclusion

Since community structures frequently disclose both

topological and functional relationships between various

components of a complex system, community detection is a

fundamental and essential problem in network science. In

this study, the authors have proposed a new affinity matrix

for spectral clustering in the attributed network, which

combines structural and attributed information and does

Table 3 Numerical results of

the modularity and density

comparison of compared

methods on the LFR benchmark

networks with m 2 ½0:10:8� and
l ¼ 0:6

N-m Metrics SCNCD KNN-K KNN-N SA-Cluster GA-Net ASC

N-0.1 Mod 0.1145 0.3002 0.3154 0.2127 0.1347 0.3101

Den 0.2104 0.3644 0.3712 0.2471 0.1248 0.3712

N-0.2 Mod 0.0174 0.2611 0.2639 0.2222 0.1167 0.2809

Den 0.1811 0.3013 0.3138 0.2529 0.1269 0.3543

N-0.3 Mod 0.0104 0.2305 0.2384 0.2308 0.1112 0.2615

Den 0.0594 0.2661 0.2825 0.2613 0.1191 0.3511

N-0.4 Mod 0.0250 0.1659 0.1731 0.2049 0.1208 0.1952

Den 0.1672 0.2104 0.2273 0.2483 0.1321 0.2586

N-0.5 Mod 0.0120 0.0755 0.1001 0.1996 0.1176 0.1982

Den 0.1751 0.1118 0.1510 0.2414 0.1255 0.2493

N-0.6 Mod 0.0116 0.0729 0.0989 0.2081 0.1177 0.2023

Den 0.0616 0.1153 0.1667 0.2420 0.1274 0.2484

N-0.7 Mod 0.0106 0.3316 0.0718 0.2119 0.1152 0.2842

Den 0.0816 0.3696 0.1388 0.2451 0.1242 0.3616

N-0.8 Mod 0.0082 0.0128 0.0550 0.1544 0.1173 0.1623

Den 0.1117 0.1210 0.1503 0.2488 0.1287 0.3682

Table 4 Numerical results of

the modularity and density

comparison of compared

methods on the LFR benchmark

networks with m 2 ½0:10:8� and
l ¼ 0:7

N-m Metrics SCNCD KNN-K KNN-N SA-cluster GA-Net ASC

N-0.1 Mod 0.0153 0.1767 0.2032 0.1577 0.1144 0.1759

Den 0.0611 0.2115 0.2448 0.1897 0.1283 0.3175

N-0.2 Mod 0.0120 0.1341 0.1531 0.1623 0.1577 0.1661

Den 0.2010 0.1701 0.1982 0.1948 0.1897 0.1971

N-0.3 Mod 0.0166 0.1069 0.0951 0.1616 0.1521 0.1620

Den 0.2719 0.1227 0.1393 0.1943 0.2516 0.3856

N-0.4 Mod 0.0134 0.0828 0.0645 0.1507 0.1169 0.1581

Den 0.3230 0.1431 0.1116 0.1925 0.1277 0.3442

N-0.5 Mod 0.0093 0.1794 0.0477 0.1420 0.1136 0.1442

Den 0.2678 0.2317 0.1227 0.1926 0.1227 0.3672

N-0.6 Mod 0.0085 0.0354 0.0261 0.1608 0.1130 0.1639

Den 0.5030 0.1523 0.0868 0.1968 0.1227 0.4381

N-0.7 Mod 0.0158 0.0227 0.0247 0.1587 0.1103 0.1614

Den 0.3214 0.1200 0.0918 0.1990 0.1202 0.3185

N-0.8 Mod 0.0089 0.0248 0.0129 0.1578 0.1130 0.1463

Den 0.3980 0.1358 0.1733 0.1928 0.1234 0.3817

Table 5 LFR benchmark networks with numerical node attributes,

l ¼ 0:6 and m ¼ 0:5

Networks K N E NC N-attr

Net-1 10 100 526/529 3/4 5/10

Net-2 10 200 974/987 5/6 –

Net-3 15 500 3918/3948 19/15 –

Net-4 15 600 4549/4767 19/20 –

Net-5 15 800 6117/6060 27/29 –
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not need any parameter. For this purpose, first, the graph is

weighted by using the similarity of the attributes of the

pairs of nodes, and then the biased random walking is

utilized to calculate the similarity between nodes on a

weighted graph. The similarity matrix can capture high

accuracy similarity between nodes according to structure

and attribute. We conducted a comparative experiment on

real and artificial networks based on parameters such as

modularity, density, NMI, and RI to demonstrate the

effectiveness of our proposed method. These studies

explicitly demonstrate the benefits of our proposed method.

The experimental findings from tests on various real and

artificial networks with varying sizes revealed that our

proposed plan outperformed other algorithms. We would

attempt to provide a new systematic way to maximize the

quality of the new method on vast volumes of data in future

studies by providing a procedure that can be applied in

parallel and will significantly increase the efficiency.

Besides, With the feature selection approach, the node

attribute information can be optimally picked to calculate

Table 6 The numerical results

of comparison methods on the

Net-1 according to modularity

(Mod) and density (Den). 5 Dim

N-m Metrics SCNCD KNN-K KNN-N SA-Cluster GA-Net ASC

Net-1 Mod 0.0289 0.0762 0.0175 0.1068 0.1180 0.1474

Den 0.6445 0.7643 0.8883 0.5722 0.1423 0.8992

Net-2 Mod 0.0406 0.1003 0.0269 0.1831 0.1370 0.1934

Den 0.5996 0.3974 0.7857 0.4168 0.1517 0.7895

Net-3 Mod 0.0197 0.2175 0.2524 0.2067 0.1047 0.2369

Den 0.1279 0.3174 0.3369 0.2637 0.1174 0.3698

Net-4 Mod 0.0245 0.2034 0.2245 0.2015 0.1172 0.2093

Den 0.2653 0.3089 0.3111 0.2565 0.1310 0.3937

Net-5 Mod 0.1160 0.2453 0.2656 0.2225 0.1187 0.2675

Den 0.3475 0.2903 0.3165 0.2607 0.1314 0.4013

Table 7 The numerical results

of comparison methods on the

Net-1 according to modularity

(Mod) and density (Den). 10

Dim

N-m Metrics SCNCD KNN-K KNN-N SA-cluster GA-net ASC

Net-1 Mod 0.0946 0.1464 0.0189 0.0555 0.1099 0.1932

Den 0.7297 0.5017 0.8773 0.4197 0.1323 0.8336

Net-2 Mod 0.0492 0.1359 0.1117 0.1824 0.1335 0.1994

Den 0.6282 0.3366 0.4184 0.3982 0.1512 0.7217

Net-3 Mod 0.0413 0.2564 0.2758 0.1690 0.1073 0.2778

Den 0.2690 0.3518 0.3635 0.2373 0.1211 0.4825

Net-4 Mod 0.0596 0.2532 0.2924 0.1754 0.1087 0.2536

Den 0.3951 0.3460 0.3566 0.2320 0.1208 0.4053

Net-5 Mod 0.1260 0.2760 0.2926 0.1978 0.1193 0.2983

Den 0.2469 0.3134 0.3406 0.2355 0.1299 0.3551

Table 8 Numerical results of

the NMI, RI, Mod, and Den

comparison of compared

methods on the real-world

networks

Networks Metrics SCNCD KNN-K KNN-N SA-cluster GA-net ASC

Cornell NMI 0.0938 0.0952 0.0265 0.0457 0.2385 0.1228

RI 0.7176 0.6871 0.7181 0.6111 0.7176 0.7195

Mod 0.1797 0.2800 0.0768 0.0282 0.4326 0.2858

Den 0.7497 0.5831 0.4372 0.3055 0.4836 0.8200

Cora NMI 0.1125 0.3569 0.3469 0.1190 0.1839 0.2136

RI 0.7603 0.8134 0.8116 0.8042 0.8086 0.8136

Mod 0.1445 0.4785 0.2305 0.2835 0.4243 0.6489

Den 0.8101 0.6626 0.5349 0.1233 0.4263 0.8639
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the similarity between pairs of attribute nodes, and this

optimal information can be employed in future works.

Furthermore, we plan to study replacing the final step of

this algorithm, c-means instead of k-means, to tackle

overlap community detection problems.
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