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Abstract
Data centers and cloud environments have recently started providing graphic processing unit (GPU)-based infrastructure

services. Actual general purpose GPU (GPGPU) applications have low GPU utilization, unlike GPU-friendly applications.

To improve the resource utilization of GPUs, there is the need for the concurrent execution of different applications while

sharing resources in a streaming multiprocessor (SM). However, it is difficult to predict the execution performance of

applications because resource contention can be caused by intra-SM multitasking. Furthermore, it is crucial to find the best

resource partitioning and an execution set of applications that show the best performance among many applications. To

address this, the current paper proposes K-Scheduler, a multitasking placement scheduler based on the intra-SM resource-

use characteristics of applications. First, the resource-use and multitasking characteristics of applications are analyzed

according to their classification and their individual execution characteristics. Rules for concurrent execution are derived

according to each observation, and scheduling is performed according to the corresponding rules. The results verified that

the total workload execution performance of K-Scheduler improved by 18% compared to previous studies, and individual

execution performance improved by 32%.

Keywords GPU applications � Interference � Co-execution � Co-ScheML scheduler � Resource contention �
GPU utilization

1 Introduction

General purpose graphics processing units (GPGPUs)

perform fast parallel calculations using GPUs in various

fields, including deep learning (DL) and high-performance

computing (HPC). According to a recent report by TOP500

[1], which publishes rankings on the fastest supercomput-

ers in the world twice a year, 141 of the 500 supercom-

puters available for ranking adopted GPU as their

accelerator. There is also increased utilization of GPUs by

researchers and private data centers (e.g., Google [2]);

various large shared clouds (e.g., Amazon EC2 [3], Nimbix

[4], Peer1 Hosting, and Microsoft Azure [5]) have begun to

provide GPU-based infrastructure services to support GPU

clouds.

More and more resources are being integrated with

GPUs; however, the current system software cannot fully

utilize the resources provided by single applications. For

example, Summit, which currently ranks second on the

TOP500 list [1], achieves an improvement of 65% of the

best performance achieved in the GPU node when exe-

cuting the GPU-friendly LINPACK [6] benchmark. By

contrast, it only achieves 1.5% of the best performance for

the High Performance Conjugate Gradients (HPCG) [7]

benchmark, and shows a much lower GPU usage rate for

actual applications [8]. Therefore, the concurrent execution

of multiple applications has been proposed as a measure to

improve resource utilization.

Many vendors have proposed GPU multitasking to

improve the GPU utilization, such as NVIDIA’s multiple

process service (MPS) [9] and AMD’s queue-based multi-

programming [10]. However, multitasking using a simple
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left-over strategy cannot minimize resource utilization, and

shows a low performance compared to the single execution

of individual applications. As the GPU cloud market size

continues to increase, there are an increasing number of

applications that need to be allocated to each host machine

of a data center. Consequently, it has become more

important to select a combination of applications with the

best performance not only from the perspective of finding

the best resource partitioning among the combinations of

multiple applications, but also in terms of overall appli-

cation execution management. In other words, the chal-

lenge is to find a combination of kernels that exhibits the

best performance among multiple combinations of kernels.

However, the larger the number of applications, the more

complex it becomes to find the combination of kernels

having the best performance.

The research to support multitasking is becoming more

active. Spatial multitasking, which divides resources into

subsets of streaming multiprocessors (SMs), was first

studied to share GPU resources among multiple kernels

[11–13]. However, they could not solve the under-utiliza-

tion problem of intra-SM resources. A recent research

subject is intra-SM sharing, which involves sharing intra-

SM resources among multiple kernels [14–16]. Warped

slicer [16] and SMK [15] presented the best resource par-

titioning methodology. However, because they both pre-

dicted the concurrent execution performance using only the

single execution performances of all applications, the the-

oretical performance may differ from the real performance.

Hongwen et al. [14] took note of this, and introduced the

memory request and memory instruction limit to solve

interference among kernels which can lead to sever per-

formance degradation due to resource contention. To

control memory request and memory instruction, the study

required additional hardware and hardware changes; it

cannot be implemented with existing hardware. In order to

maximize intra-SM utilization, we need to predict multi-

tasking performance based on resource usage characteris-

tics and implement a scheduler supported on real hardware.

To solve this problem, the present study proposes

K-Scheduler, a multitasking placement scheduler based on

intra-SM resource-use characteristics for general-purpose

applications. The basic principle of this scheduler is not

only to satisfy the global goal of improving the perfor-

mance of the total workload, but also to satisfy the

expected performance of each single client. To this end, we

need a scheduling technique that minimizes resource con-

tention by reflecting a complex cache access pattern, exe-

cution pattern, and data dependence as well as the amount

of static resources used that are determined at compile

time.

This study uses the following approach. First, the

resource-use characteristics of each application are

analyzed according to the classification and individual

execution characteristics of all the applications. It is gen-

erally known that the performance of compute-intensive

applications improves as more resources are allocated, and

the performance of memory-intensive applications is sat-

urated before all resources are allocated [12, 13]. However,

even among applications that belong to the same category,

the execution performance may differ depending on the

individual execution characteristics and the amount of

resource allocation. Second, the concurrent execution

characteristics are analyzed according to the classification

of applications. Previous studies have proven the excellent

performance of multitasking between applications having

different characteristics. However, the present study

observed that there may be a performance gain owing to

multitasking even between applications having the same

characteristics. Third, rules for concurrent execution are

derived according to each observation, and scheduling is

performed according to the corresponding rules.

The main contributions of this study are as follows.

– The performance change according to the amount of

resource allocation of an application varies by the

characteristics of the application. Hence, applications

are classified according to their individual execution

characteristics and the classification method. In addi-

tion, the performance change is analyzed according to

the allocated SM and the number of thread blocks.

– The state-of-the-art intra-SM sharing shows that the

theoretical performance and real performance may

differ if only the single execution characteristics of an

application is considered. To address this, the multi-

tasking characteristics according to the classification of

applications are observed.

– K-Scheduler, which is a scheduler that guarantees

individual performance and improves the execution

performance of all applications, is proposed. This

avoids resource contention, which may occur when

sharing resources according to the rules derived from

the observation of multitasking characteristics.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the background behind our study. Sec-

tion 3 explains the motivation for the study, and Section 4

analyzes the characteristics of the intra-SM execution

pattern. Then, Section 5 discusses the framework with

K-Scheduler. Section 6 describes the experiments and

presents an analysis of the results. Section 7 discusses

related works, and Sect. 8 concludes the paper.

In the rest of the paper, abbreviations introduced in

Table 1 will be used .
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2 Background

The execution unit of GPU applications is the kernel

function. The kernel produces a large number of threads,

which are grouped into a thread block (TB). The NVIDIA

GPU hardware has another thread group called a ‘‘warp.’’

In recently developed GPUs, a warp is composed of 32

threads [22]. The number of warps (or TBs) that simulta-

neously operate in the GPU is limited by the GPU

resources, such as the number of registers, the size of the

sharing memory, and the maximum number of TBs.

The GPU consists of the SM, L2 cache, and GPU

dynamic random access memory (DRAM). The SM shares

the device memory through an interconnected network, and

can switch from a warp to another warp without context

switch overhead. Consequently, the warp scheduler can

mask the delay of the warp by switching to a different warp

when one warp is stopped owing to memory work or other

reasons. These warps, which are managed simultaneously

by one SM, are called ‘‘active warps.’’ The number of

active warps is determined by the resource use amount of

the kernel function and hardware constraints. However, not

all active warps can issue the next command. If an active

warp cannot issue a command owing to a barrier or because

it must wait for the result of the previous command, it is

called a ‘‘stall warp.’’ In contrast, if a command can be

issued, the warp is called an ‘‘eligible warp.’’ In other

words, the number of active warps is the sum of the number

of ‘‘stalled warps’’ and ‘‘eligible warps.’’

State-of-the-art GPUs can concurrently execute multiple

GPU kernels in a single GPU hardware, thus enabling

spatial multitasking for GPU hardware. NVIDIA’s Hyper-

Q technology [23] and AMD’s queue-based multi-pro-

gramming [10] are examples of such GPUs. NVIDIA’s

Hyper-Q technology cannot perform concurrent execution

for kernels of other applications; consequently, NVIDIA

enabled the concurrent execution of multiple applications

by providing MPS [9]. However, MPS uses the left-over

strategy, which allocates as many resources as possible to

one kernel and the remaining resources to another kernel.

Therefore, if the front kernel uses many resources and takes

much time, the rear kernel is blocked.

3 Motivation

3.1 Heterogeneity of Kernel

Because the required resources of each kernel differ, intra-

SM multitasking is required to improve utilization, and its

performance is influenced by the combination of kernels.

Table 2 shows the intra-SM resource usage of various

applications and the reason for stall, which occurs at run-

time in the environment of NVIDIA TITAN XP GPU and

i7-5820K CPU. We can observe that the static intra-SM

resource usage of each kernel is heterogeneous. For

example, the QS application shows the largest usage of

registers; it uses approximately 23% of registers in the

entire SM, but it does not use any sharing memory. By

contrast, the CUTCP uses approximately 10% of the total

sharing memory, but less than 5% of the total registers.

Therefore, QS has a limited maximum number of active

TBs owing to the hardware restriction on registers. It can

be seen from this that the intra-SM resources that are

depleted by each kernel are heterogeneous, and the exe-

cution of a single kernel can decrease the utilization of

intra-SM resources.

The runtime behavior of the kernel also has hetero-

geneity. In the case of BlackScholes application and SPMV

application, most stalls are caused by memory dependency;

however, for QS, the memory dependency stall is only

0.15%, and most stalls are caused by the delay of execution

dependency and other reasons. Figure 1a shows the kernel

time result graph when applications SPMV, QS, and BS in

Table 1 Intra-SM resources and runtime stall for each benchmark

application

Abbreviation Meaning

LM LavaMD [17]

BS BlackScholes [18]

CUTCP CUTCP [19]

STENCIL STENCIL [19]

SPMV SPMV [19]

LBM LBM [19]

FT FDTD3D [18]

QS QuasiRandom Generator [18]

NW Needleman-Wunsch [17]

HS Hotspot3D [17]

DX DXTC [18]

BO Binomial Options [18]

CP CP [19]

SG SGEMM [19]

RD Reduction [20]

COV Covariance [21]

SY Syr2k [21]

CONV Convolution-3D [21]

SM Streaming Multiprocessor

TB Thread Block

ANTT Average Normalized Turn-around Time

EPC Eligible Warp Per Cycle

GFLOPS Giga Floating point Operations Per Second

BW Bandwidth
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Table 5 were executed alone. Figure 1b shows the multi-

tasking result of SPMV and QS, and Fig. 1c shows the

multitasking result of SPMV and BS. The rightmost bar

shows the execution time when the applications are exe-

cuted sequentially. It can be seen that even if the same

SPMV application is executed, the concurrent execution

performance varies depending on the application with

which it was executed concurrently. When SPMV and QS

were executed concurrently, the total execution time

improved by approximately 30% compared to the

sequential execution time. However, when SPMV and BS,

which generate the same stall, are executed concurrently,

the performance worsened as the concurrent execution time

increased by 30% compared to the sequential execution

time. Thus, the intra-SM resource utilization can be

improved by concurrently executing applications using

different resources or applications that stop for different

reasons.

Table 2 Intra-SM resources and

runtime stall for each

benchmark application

Application Static resource Runtime stall reason (%)

Registers/block SMem/block (byte) Exec dep Memory dep Others

LM 7168 7200 94.3% 0.15% 4.54%

BS 2944 0 6.36% 73.81% 3.88%

CUTCP 3328 4019 18.23% 0.91% 52.74%

STENCIL 4096 1000 10.45% 59.08% 7.88%

SPMV 5148 0 15.59% 61.31% 15.48%

LBM 4800 0 2.41% 14.9% 46.26%

FT 5120 1500 13.86% 26.25% 38.6%

QS 15360 0 22.43% 0.87% 43.26%

NW 656 2180 29.17% 37.16% 6.43%

HS 8192 0 11.86% 78.18% 13.29%

DX 4032 2048 46.11% 11.08% 3.90%

BO 4096 516 13.03% 0.00% 27.94%

CP 4224 0 35.96% 0.02% 33.42%

SG 5376 512 53.14% 13.38% 4.94%

RD 4608 2000 31.12% 35.69% 3.06%

COV 5632 0 2.10% 96.56% 0.68%

SY 6144 0 0.35% 71.45% 2.12%

CONV 5120 0 20.12% 16.55% 30.17%

Exec dep execution dependency, Memory dep memory dependency

Fig. 1 Variations in the multitasking performance according to the concurrent execution kernel
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3.2 Limitation of existing multitasking
placement technique

Warped-slicer [16] is an intra-SM sharing system, and it

uses the water-filling algorithm to determine the TB par-

titioning between concurrent kernels. It determines the TB

partition inside the SM based on the scalability curve that

represents the performance of active TBs. Here, the TB

partitioning that minimizes performance degradation is

identified as the sweet point. Figure 2 explains that

although excellent resource partitioning can be found, there

is a limitation when considering the performance according

to the resource allocation when an application is executed

alone.

Figure 2a shows the scalability curves of STENCIL and

SPMV. Substituting each application in the scalability

curve of the Warped-slicer, we can identify the sweet spot

that can maximize the performance of concurrent execution

while satisfying the constraints of hardware resources.

When the optimal number of combinations of active TBs,

represented by the sweet spot, is found, STENCIL and

SPMV have 12 and 3 active TBs, respectively. At this time,

the performance normalized against the sequential execu-

tion time, the expected performance, is 1.93. However, as

shown in Fig. 2b, the real performance is 0.94. Because the

performance of concurrent execution was predicted based

only on the result of the single execution of each kernel, the

resource contention that can occur in the application that

was executed concurrently was not reflected. As a result,

the loss in the real performance was larger than that of the

expected performance. Therefore, it is crucial not only to

consider the resource distribution method between appli-

cations, but also to find the combination of applications

that can maximize the real performance by predicting the

contention of resources and the degree of contention that

can occur in the concurrent execution of applications.

4 Analysis of characteristics of Kernel’s
intra-SM execution pattern

For the efficient multitasking of applications, a combina-

tion of kernels that can effectively divide the intra-SM

resources and maximize the performance of concurrent

execution must be identified. It is impossible to explore all

combinations of kernels because the number of target

applications and the number of resources in the GPU

increase with time. Therefore, this study classifies kernels

by employing the classification method presented in [24]

using possible reasons for which a stall can occur during

the execution of the kernel. We extract observations after

analyzing the time at which the performance is saturated

and the characteristics of concurrent executions. Table 3

shows the classification result according to the eligible

warps per cycle (EPC) and kernel classification method

[24] of the benchmark in Table 2. For example, LM and

CUTCP are both ‘‘compute,’’ and hence, they are compute-

intensive kernels. They involve many integer and floating

point computations. The EPC of LM is 0.17. When the

number of eligible warps in each cycle is less than 1, it

Fig. 2 a Scalability curve of Warped-slicer and b performance difference between actual and expected performance
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implies that many stalls occur. Meanwhile, the EPC of

CUTCP is 5.67; thus, it is an application with relatively

few stalls.

4.1 Characteristics of application execution
according to static resource allocation

The LM and CUTCP described in the previous section are

both computationally intensive kernels; however, they have

different EPCs. The experiment result for this is shown in

Fig. 3. This experiment shows that even the same com-

putationally intensive kernels have different performance

saturation points depending on their resource allocation.

Figure 3a shows a graph of the kernel execution time by

the active SM/TB of LM. It can be seen that the LM with

0.17 EPC does not have a performance gain owing to stalls

even if many active TBs are allocated. As shown in this

figure, the kernel execution time is 64 ms when the

resource of 30SM-1TBs is allocated, and 58 ms when

30SM-2TBs are allocated. Thus, the performance improves

when two TBs are activated. However, if 30SM-4TBs are

allocated, the kernel execution time is 58 ms. This shows

that the performance does not improve even if more

resources are allocated. By contrast, as shown in Fig. 3b,

the kernel execution time of CUTCP having 5.67 EPC with

30 active SMs is approximately 237 ms when one TB is

allocated, approximately 123.974 ms when two TBs are

allocated, and approximately 69 ms when four TBs are

allocated. Thus, the performance improves almost linearly.

When 10 TBs are allocated, the performance improves to

approximately 46 ms. However, when 12 TBs are allo-

cated, the performance decreases to 57 ms. This indicates

that when 10 TBs are activated in CUTCP, the perfor-

mance is saturated. Because the EPC is large, even if the

number of active TBs increases, the performance is not

affected by stalls; the performance improves when more

resources are allocated.

Observation 1 The performance of a kernel with a low

number of eligible warps per cycle (EPC) does not improve

because of stalls, even if many resources are allocated.

4.2 Characteristics of multitasking
of applications according to system
performance requirement

The performance supply and requirement of each applica-

tion for data transfer and computation varies according to

the environment in which applications are executed.

A GPU has a very fast memory transfer speed compared to

the memory performance of a CPU. However, each

Table 3 Intra-SM resources and runtime stall for each benchmark application

Application Runtime stall reason (%) Eligible

warps/cycle

Type

Execution

dependency

Intruction

fetch

Memory

dependency

Others Synch-

ronization

Texture

cache

LM 94.30% 0.53% 0.15% 4.54% 0.46% 0% 0.17 Compute

BS 6.36% 1.89% 73.81% 3.88% 0% 0.20% 4.04 Memory

CUTCP 18.23% 13.83% 0.91% 52.74% 7.31% 0% 5.67 Compute

STENCIL 10.45% 1.99% 59.08% 7.88% 12.31% 0% 5.68 Memory

SPMV 15.59% 0.92% 61.31% 15.48% 0% 5.01% 0.72 Memory

LBM 2.41% 1.03% 14.90% 46.26% 0% 46.26% 0.59 L1

Cache

FT 13.86% 3.69% 26.25% 38.60% 17.30% 0% 0.55 Compute

QS 22.43% 2.12% 0.87% 43.26% 0% 0% 10.06 Compute

NW 29.17% 4.94% 37.16% 6.43% 20.82% 0.23% 0.31 Memory

HS 11.86% 1.30% 78.18% 13.29% 0.00% 0.01% 2.32 Memory

DX 46.11% 7.43% 11.08% 3.90% 20.27% 0% 3.75 Compute

BO 13.03% 9.25% 0.00% 27.94% 43.05% 0% 5.93 Compute

CP 35.96% 27.29% 0.02% 33.42% 0.00% 0% 3.41 Compute

SG 53.14% 3.46% 13.38% 4.94% 20.21% 0% 4.02 Compute

RD 31.12% 4.97% 35.69% 3.06% 12.89% 0% 0.53 Memory

COV 2.10% 0.57% 96.56% 0.68% 0% 0% 0.08 Memory

SY 0.35% 0.24% 71.45% 2.12% 0% 25.79% 0.12 Memory

CONV 20.12% 1.34% 16.55% 30.17% 0% 31.64% 0.86 L1

Cache
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hardware has a different available memory bandwidth, and

if this is exceeded, the memory access time becomes a

bottleneck for application execution. The float point oper-

ations per second (FLOPS) is an index used to represent the

GPU performance. Each hardware has a different compu-

tation ability, and if this is exceeded, the computing per-

formance becomes a bottleneck and increases the kernel

execution time. The memory bandwidth of TITAN XP,

which is the experimental environment of this study, is

547.6 GB/s; single-precision and double-precision are

supported up to 12.15 and 379.7 Gflops, respectively.

One application usually does not maximize the use of

the entire supplied performance. However, when two or

three kernel instances are executed simultaneously, the

available bandwidth and amount of computation are

insufficient to satisfy the demand. Figure 4 shows the

performance when the number of instances was increased

for the BS kernel and LavaMD, which uses a 266-GB/s

memory bandwidth per instance and requires 200.26

GFLOPS per instance, respectively. As shown in Fig. 4a,

when two instances of BS are executed concurrently, the

sum of the required bandwidth of each instance does not

exceed the supply performance. Thus, there is no signifi-

cant difference between this execution time and the exe-

cution time of one instance. However, if three instances are

executed concurrently and the bandwidth demand exceeds

the available bandwidth, the concurrent execution perfor-

mance decreases rapidly. In Fig. 4b, which shows the

variation in the number of instances of LavaMD, when

floating-point operation below the supply performance was

performed by concurrently executing two instances, the

execution time is not much different from the performance

time of one instance; the performance is almost double the

performance of sequential execution. However, when three

instances are executed concurrently and the supplied per-

formance is exceeded, the floating point operation becomes

a bottleneck, and the kernel execution time increases. This

indicates that if the hardware cannot satisfy the bandwidth

and computation requirements of applications, the resour-

ces are saturated and contention for resources occurs,

resulting in lower performance of concurrent execution.

Observation 2 The cumulative DRAM bandwidth usage

and computation amount (GFLOPS) of each application

exceeds the supplied hardware performance, and the per-

formance of concurrent execution is not improved.

4.3 Characteristics of concurrent execution
according to classification of applications

The characteristics of concurrent execution according to

the classification of applications are analyzed based on the

pairing of applications in each group and the result of the

concurrent execution of applications. In each graph in this

section, the application in front of plus (‘‘?’’) belongs to

the first group, and the application after the plus belongs to

the second group. This result shows the performance

speed-up obtained by normalizing the performance time of

two applications executed sequentially with respect to the

concurrent execution time. In other words, if the speed up

is larger than 1, there is a concurrent execution compared

to sequential execution; otherwise, there is no performance

gain, or the performance decreases.

4.3.1 Multitasking of computationally intensive application
and memory-intensive application

The concurrent execution time of computationally inten-

sive applications and memory-intensive applications was

shortened by approximately 27% on average compared to

the sequential execution time. Previous studies have found

that multitasking between kernels that belong to different

categories results in good performance [24]. The result of

this experiment shows that the performance improves the

most when multitasking is performed for applications with

many stalls. Because these applications have a low EPC,

their performance does not improve owing to stalls even if

many resources are provided. However, it can be seen that

Fig. 3 Number of active SMs of a LM and b CUTCP. The kernel

execution time changes according to the number of TBs launched per

SM
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when applications using difference resources are grouped

together, their performance can be improved by each

application complementing each other’s stalls.

4.3.2 Multitasking between L1 cache-intensive application
and applications of other categories

As shown in Fig. 5 [24], the concurrent execution of L1

cache-intensive applications with other applications shows

a performance that is mainly similar to or worse than the

performance of sequential execution. This is because the

L1 cache is saturated. In the case of QS, the L1 cache

transaction is close to 0, thus showing a performance

improvement of approximately 11% by concurrent execu-

tion. This indicates that the performance gain of L1 cache-

intensive applications can be expected only by concurrent

execution with applications that use less L1 cache. This is

also observed in a study using a simulator [16], which

showed that the hardware also operated in the same way as

the simulator.

Observation 3 The L1 cache-intensive application has no

performance improvement of multitasking by concurrent

execution with applications for which the number of L1

cache transactions exceeds the baseline.

4.3.3 Multitasking between memory-intensive applications

Table 4 shows the DRAM throughputs of memory-inten-

sive kernel pairs. Figure 6 shows a graph for the multi-

tasking result of each pair. The sum of the DRAM

throughputs of the pairs in the table does not exceed the

bandwidth of the system, but they all exhibit performances

that are the same as or lower than the sequential execution

performance. For example, the sum of DRAM throughputs

of the NW?HS pair is 441 GB/s, showing the best multi-

tasking performance, which improved by approximately

3% compared to sequential execution. The HS?RD pair

that showed the worst performance is 376.951, which

decreased by approximately 9% compared to the sequential

performance. This result shows that the sum of DRAM

throughputs of every pair does not exceed the bandwidth of

the system, but there was no performance gain resulting

from concurrent execution because the performance was

similar to or lower than that of sequential execution.

Fig. 4 Kernel performance time according to the number of instances of BS and LavaMD: a Kernel performance time according to the number of

instances of BS. b Kernel performance time according to the number of instances of LM

Fig. 5 Multitasking

performance between L1 cache-

intensive application and

applications of other categories

[24]
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Furthermore, these results indicate that it is insufficient to

consider only the sum of DRAM throughputs when deter-

mining the performance. It can be inferred that this is due

to the DRAM bandwidth as well as the fact that there is no

contention for resources among different memory systems,

such as cache and sharing memories.

Observation 4 Multitasking between memory-intensive

applications shows a lower performance than the sequential

execution of each application.

4.3.4 Multitasking between computationally-intensive
applications

Figure 7 shows the result of the concurrent execution of

computationally intensive applications. The result of this

experiment indicates that the concurrent execution of

computationally intensive applications may result in per-

formance gain. However, not all pairs show performance

improvement compared to sequential execution. Figure 7a

shows the multitasking performance between CUTCP,

which is a computationally intensive application, and other

computationally intensive applications. It can be seen that

except for the LavaMD and finite-difference time domain

(FDTD) pair, the applications exhibit a performance that is

similar to or lower than that of the sequential execution.

This is because CUTCP is an application with the highest

EPC, and almost no stall occurs when CUTCP is executed

alone. Hence, there are not many stalls to hide by con-

current execution. Therefore, the performance of CUTCP,

which has an EPC smaller than 1, improved only by mul-

titasking with LavaMD and FDTD. Figure 7b shows the

multitasking performance of FDTD, whose EPC is less

than 1, and other computationally intensive applications. It

can be seen that the performance improved because the

stalls occurring in FDTD can be hidden through concurrent

execution with other applications. Therefore, it can be

observed that if two applications both have large EPCs,

there is no performance gain because there are not many

stalls to hide through concurrent execution. However, it

was observed that if any one application has a small EPC,

there is a stall to be hidden, and performance improvement

can be expected by performing concurrent execution.

Observation 5 If multiple computationally intensive

applications whose EPC is larger than they are executed

concurrently, there is no performance improvement

through concurrent execution.

5 Framework architecture with K-Scheduler

This section introduces a resource sharing execution

framework to solve low utilization problem of intra-SM

resources. A kernel scheduler proposed in this study is

named K-Scheduler. After describing the overall structure

design with K-Scheduler, we define rules based on the

Table 4 Sum of DRAM throughputs for each multitasking pair

HS?RD RD?NW SY?STENCIL SPMV?NW NW?HS

376.951 96.991 390.922 429.715 441.12

Fig. 6 Multitasking

performance between memory-

intensive applications
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observation in Section 4.3 and K-Scheduler is introduced

based on this.

5.1 K-Scheduler-based system structure

Application has dominant intra-SM resources; the concur-

rent execution of applications with different dominant

resources can obtain a performance gain if applications

with different dominant resources are placed together. The

static profiling information, including the intra-SM

resources used by the kernel, is obtained from Static Pro-

filer using the NVIDIA CUDA Compiler (NVCC) [25] at

compile time at the kernel level. The GPGPU application

shares resources such as cache and global memory band-

width, and must perform dynamic profiling as well as static

profiling because stalls occur for different reasons. Thus,

K-Scheduler, which classifies applications using the

acquired profiling information, and which performs

scheduling based on the classified applications, was

developed. To this end, kernels are classified into prede-

fined categories using static and dynamic profiling infor-

mation. For example, when K1 kernel is submitted to the

structure shown in Fig. 8, it is transformed to KC1,

including the kernel classification information through the

kernel classifier. K-Scheduler performs rule-based

scheduling using the kernel classification information and

profiling information. As shown in Fig. 8, when the sub-

mitted kernel KC1 passes through K-Scheduler and sub-

mitted to the GPU, it is transformed to kernel K 0
C1 after

receiving the amount of allocated resources and informa-

tion regarding the SM placement to be performed. In this

way, concurrent execution is carried out with minimized

resource contention. SmCompactor [26] is used to maxi-

mize resource utilization while sharing intra-SM resources.

It is a TB-based scheduling framework that enables intra-

SM sharing in the hardware. SmCompactor enables the

intra-SM multitasking of applications by allowing the

submission of each TB to the desired SM. As shown in

Fig. 8, each TB of the kernel that received the amount of

resources and placement information is mapped to the task

and waits in the hardware queue of the GPU through

smCompactor. The hardware queue submits the TB to the

corresponding SM according to the SM placement infor-

mation. A sequence diagram to describe the interaction

among components of K-Scheduler framework is shown in

Fig. 9. When K-Scheduler requests profiling information,

Kernel classifier acquires static and dynamic profiling

information from Profiler. After Kernel classifier classifies

kernels using profiling information, it returns kernel

information which includes classification and profiling

information to K-Scheduler. K-Scheduler decides place-

ment of kernels according to scheduling algorithm using

the information and let smCompactor runtime launch ker-

nels. smCompactor runtime transforms kernels for intra-

SM sharing.

5.2 Performance saturation point identification
according to resource allocation

This section introduces a method of finding the resource

allocation for each application when multiple applications

are executed in SM. When the amount of allocated

resources is increased for the GPGPU application, its per-

formance may not improve or degrade further when a

certain point is reached even if more resources are allo-

cated [24]. Furthermore, the performance saturation point

for the resource allocation varied according to the char-

acteristics of the application. To maximize the benefit of

concurrent execution in multitasking, the performance loss

of each application must be limited to the permissible level,

and as many applications as possible should be executed

concurrently in one SM. To do this, it is important to

identify the performance saturation point where the per-

formance is not improved or improved only insignificantly

even if the resource allocation is increased. In this study, if

the performance is not improved at a certain rate when the

Fig. 7 a Multitasking performance of FDTD and computationally intensive application; b multitasking performance of CUTCP and

computationally intensive applications
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amount of resources allocated to each application is

increased, it is determined that the performance saturation

point was reached and no more resources are allocated. The

vector Perf stores the performance according to the number

of active SMs and TBs of each application. Perfi;j indicates

the performance when i active SMs and j active TBs are

allocated. Ratetb is the rate at which the point of saturated

performance is assessed, and it determines the allowable

level of performance loss. A smaller value means that a

smaller performance loss is allowed. w denotes the window

size. In the case of a specific application, the performance

may not increase much when one active TB is added;

however, the performance gain may be large when two or

three TBs are added. Hence, this is considered for the

window size. When the following equation is satisfied, the

number of TBs where the performance is saturated for i

active SMs is determined as j.

Perfi;j � ð1þ RatetbÞw �Perfi;jþw

w ¼ 1; 2; :::;win size
ð1Þ

The value of w is increased from 1 to the window size

(win size). This equation determines whether the perfor-

mance is improved for a certain ratio (Rate tb) when the

number of active TBs increases from j to j?w for i active

SMs. If this equation is satisfied for every w value, it means

that the performance did not improve for a certain ratio in

the given window. Thus, it is determined that it is mean-

ingless to give more resources, and the number of TBs that

saturate the performance is determined as j. To find the

saturated point by applying this algorithm, the performance

value based on the number of active SMs and the number

of active TMs is required. To measure performance

according to the resource allocation, the profiling method

proposed in [16] can be used to obtain the performance

value with a small profiling overhead.

Fig. 8 System structure based

on K-Scheduler

Fig. 9 Sequence diagram of

K-Scheduler framework
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5.3 K-Scheduler

This section explains the K-Scheduler algorithm, which

places multiple heterogeneous kernels in one SM by con-

sidering the static resource usage and runtime execution

pattern to improve the performance of concurrent execu-

tion. In addition, the rules that are required to apply this

algorithm are defined.

5.3.1 Algorithm

The algorithm for K-Scheduler is shown in Algorithm 1.

The input of this algorithm is workload, which is a set of

kernels for which the identification and classification of

performance saturation points are completed. The input

kernels are sorted, where the L1 cache-intensive applica-

tion has the highest priority, the memory-intensive appli-

cation has the next priority, and the computationally

intensive application has the lowest priority. If applications

of the same category have the same priority, they are sorted

with the longest job as the first (line 2). The set of appli-

cations for concurrent execution are found by repeating this

process until no kernel remains in the SK List (line 3). The

combination of applications to be found in this repeated

process is called CK, which is initialized to an empty set

(line 4). To find the kernel to be included in CK, the ele-

ments of SK List, SKi are checked to determine whether

the kernel satisfies rules #1 to 5. If all the rules are satisfied

and it is determined as a kernel for concurrent execution,

SKi is moved from SK List to CK (lines 5–9). Once the For

loop is completed, a CK is composed of kernels for mul-

titasking and is added to CK List (line: 10). The output of

the algorithm is CK List, which is a list of the combina-

tions of kernels for concurrent execution; multitasking is

performed according to the sequence and combinations of

this list. =To analyze its time complexity, sorting ker-

nels(line: 1) takes O(NlogN). The worst case in line 2-10 is

executing all the kernels exclusively and its time com-

plexity is OðN2Þ. Therefore, the overall time complexity of

Algorithm 1 is OðN2Þ.
Figure 10 shows the scheduling method of K-scheduler

when the kernels of K0; . . .;K5 are sequentially submitted,

and the results are compared with the conventional

scheduling method. Figure 10a shows the single execution

method supported by the conventional hardware queue,

which does not support multitasking and the sharing of

intra-SM resources without the assistance of special skills.

Therefore, every kernel exclusively occupies SM and is

executed sequentially. Figure 10b shows the Warped-slicer

method. The number of concurrent execution kernels of

Warped-slicer is always set to K. In this figure, the

scheduling layout shows the case where K is set to 3. Three

kernels form a combination according to the order of

submission, and the best resource partitioning is found

according to the mechanism of single profiling and

Warped-slicer for each kernel. Figure 10c shows the

method employed by K-Scheduler. The result of

CK List ¼ ffK0;K3;K5g; fK2;K4g; fK1gg is obtained by

applying the scheduler algorithm to the submitted kernels,

and the TBs of each kernel are dispatched to the SM

according to the scheduling information. K-Scheduler may

not dispatch TBs to every SM dynamically according to the

kernel profiling information, and the number of kernels

allocated to the SM is also not fixed. As shown in the

figure, for both Warped-slicer and K-Scheduler, all

Fig. 10 Comparison of scheduling method for a hardware queue,

b Warped-slicer, and c K-Scheduler
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applications in one application set must be completed

before the next application set can be started. A dynamic

SM sharing method using preoccupation has been proposed

[27], but it is not supported by the current hardware, and

the effects were proven through simulations. Dynamic

scheduling in hardware is a major issue to be addressed in

the future.

5.3.2 Static Rules

Rule # 1 A kernel cannot use static resources of the GPU

that exceed the provided amount.

Rule #1 checks whether there are sufficient static

resources in the GPU considering static profiling infor-

mation. As described in Sect. 2, the maximum number of

TBs that can be activated in one SM is determined by the

static resource constraints of the GPU (number of registers,

size of sharing memory, and limited maximum number of

TBs). Therefore, in Rule #1, the set of kernels selected up

to the present for concurrent execution for scheduling Ki is

CK ¼ fCK1;CK2; . . .;CKmg. Here, m is the number of

kernels that are selected up to the present. Whether or not

Ki can be added as an element of the CK set based on the

static profiling information is determined as follows:

Xm

j¼1

CKj
reg þ Ki

reg\MAX REG ð2Þ

Xm

j¼1

CKj
smem þ Ki

smem\MAX SMEM ð3Þ

Xm

j¼1

CKj
tb þ Ki

tb\MAX TB ð4Þ

The first equation determines whether the sum of the total

number of registers requested by the selected kernels until

now and Ki
reg, which is the number of registers requested

by Ki, does not exceed MAX REG, which is the maximum

number of registers that can be provided by the hardware at

present. The second equation determines whether the sum

of the total sharing memory size of selected kernels and the

Ki
smem, which is the sharing memory size used by Ki, is not

smaller than MAX SMEM, the maximum size of the

sharing memory. The third equation determines whether

the sum of the total number of allocated TBs of the kernels,

which are elements of the CK set, and the number of

allocated TBs of Ki, is smaller than MAX TB, the maxi-

mum number of TBs. If these three equations are all sat-

isfied, Rule #1 is satisfied, and this means that concurrent

execution with the kernels of CK is possible when only the

static profiling information of Ki is considered.

Rule # 2 A kernel performance cannot exceed the total

system performance.

Rule #2 checks to determine whether there is sufficient

available bandwidth and FLOPS (floating point operations

per second) in the GPU considering the system perfor-

mance requirement according to Observation #2. As

described earlier, the set of kernels selected until now is

CK. When scheduling for Ki is performed, the following

equations are used to verify whether the supply perfor-

mance of the theoretical DRAM bandwidth and GFLOPS

(Giga FLOPS) is not exceeded when the kernels are

scheduled:

Xm

j¼1

CKj
BW þ Ki

BW\MAX BW ð5Þ

Xm

j¼1

CKj
GFLOPS þ Ki

GFLOPS\MAX GFLOPS ð6Þ

The first equation checks whether the sum of the bandwidth

requirements of the selected kernels until now and the

bandwidth requirements required for performing Ki

exceeds the DRAM bandwidth provided by the hardware.

In addition, the second equation schedules concurrent

execution when the calculated performance of the

requirements of the current and selected kernels is lower

than the supply of GFLOPS provided by the system. The

issue of whether or not to perform concurrent execution is

determined by comparing the system performance

requirements of kernels and the amount of supply for the

system.

5.3.3 Dynamic rules

Based on Observations #3, 4, and 5, Rules #3, 4, and 5 are

defined as follows:

Rule # 3 A L1 cache-intensive kernel does not multitask

with a kernel exceeding the reference point based on the

number of L1 cache transactions.

Rule # 4 Multitasking among memory-intensive kernels is

not desirable.

Rule # 5 A computation intensive kernel for which the

EPC exceeds the reference point (max threshold) cannot

multitask with a kernel for which the EPC is higher than

the reference point (base threshold).

The method of applying Rules #3, 4, and 5 is described

using the algorithm in Algorithm 2.

The set of kernels selected until now is CK. The

scheduling for Ki is performed according to the categories

of Ki (line 2). First, if Ki is a L1 cache-intensive kernel,

whether a L1 cache-intensive kernel exists in CK is
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checked using the L1 in CKðÞ function. If L1 in CKðÞ is
true, L1 cache-intensive kernels cannot be placed together,

and the algorithm returns false (lines 3–7). If Ki is not a L1

cache-intensive kernel, we first check whether the L1

cache-intensive kernel exists in CK. If there is an L1 cache-

intensive kernel, Can placed with l1 (Ki), which tests

whether it is possible to place the cache transaction and L1

cache-intensive kernel together, is called. If multitasking is

impossible because the L1 cache transaction exceeds the

base line, the algorithm returns false according to Rule #3

(lines 9–10, 16–17). Consequently, the L1 cache-intensive

kernel, whose performance in concurrent execution may be

the worst of the kernels, will be scheduled with the highest

rank. If Ki is a memory-intensive kernel, the M in CKðÞ
function is used to determine whether a memory-intensive

kernel exists in CK. If this function returns true, the con-

current execution of memory-intensive kernels is not

allowed according to Rule #4, and the algorithm returns

false (lines 11–13). If the category of Ki is Compute,

Over max in CKðÞ is used to verify whether a kernel

whose EPC is higher than the max threshold exists in CK.

When this condition is satisfied, false is returned if Ki
epc

exceeds the BASE according to Rule #5 (line 18–19). If

there is a kernel exceeding the base threshold, whether Ki
epc

exceeds MAX is tested according to Rule #5, and false is

returned if it exceeds MAX (line 20–21). If the aforemen-

tioned detailed conditions are satisfied, Ki can obtain the

gain of concurrent execution while minimizing resource

contention with the kernels of CK, and true is returned. The

time complexity of the algorithm is O(1) for judging

whether Kj is included in CK.

6 Experiments and analysis

6.1 Experiment method

6.1.1 Experimental setup

This experiment was performed using NVIDIA CUDA

version 10.0 in an Ubuntu 16.04 environment equipped

with a NVIDIA Titan XP GPU having 12 GB of memory.

The static resources of the GPU are listed in Table 5. The

K-Scheduler is implemented on the scheduling framework

based on the TB of smCompactor [26].

6.1.2 Experimental workload

The applications used in this experiment are listed in

Table 2, which are the benchmarks of NVIDIA CUDA

Sample [18], Rodinia GPU benchmark suite [17], Parboil

benchmark [19], Polybench [21], and SHOC benchmark

[20]. All applications were executed using the standard

data input set.

Nine workloads were selected for the corresponding

benchmarks. The characteristics of each workload are

summarized in Table 6.

6.1.3 Evaluation metrics

– Weighted speedup [16]: The total execution time nor-

malized by the sequential execution time. A higher

value indicates a better performance.

– Average normalized turnaround time (ANTT) [14]: The

average of each application’s turnaround time. A lower

value indicates a better performance.

– Fairness [15]: (Min speedup)/(Max speedup) This

indicates the difference between the minimum and

maximum speedups. It has a value between 0 and 1. A

value closer to 1 means higher fairness.

6.1.4 Baseline scheduler

The compared schedulers are even partitioning scheduler,

which allocates the same amount of intra-SM resources to

Table 5 Static resources of GPU

GPU memory 11.91 GB Warps per SM 64

GPU speed 1582 MHz Thread blocks per SM 32

GPU architecture Pascal Shared Memory per SM 96 KB

PCIe bandwidth 32 GB/s Threads per SM 2048
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each application, and Warped-slicer [16], which was

described in Sect. 3.2.

6.2 Scheduling performance

6.2.1 Comparison of scheduling performance

6.2.1.1 Comparison of weighted speedup Figures 11a

and 12 show the weighted speedup of the baseline sched-

uler compared with K-Scheduler; the sequential execution

time is expressed as 1 (the higher, the better). As shown in

Fig. 11a, K-Scheduler, Warped-slicer, and even partition-

ing increases the performance by 32%, 16%, and 9%,

respectively, on average compared to sequential execution.

First, even partitioning could increase the resource uti-

lization compared to the conventional hardware queue

method, which is executed sequentially. Warped-slicer

exhibited an improved performance compared to even

partitioning by recognizing the performance loss according

to the resource allocation of each kernel for scheduling.

However, it showed a real performance that is different

from the theory because it did not consider resource con-

tention among the kernels, and it shows that there is a limit

to the performance improvement. Meanwhile, K-Sched-

uler, which minimizes resource contention between the

performance and kernels according to the resource alloca-

tion of each kernel, showed the best performance. For in-

depth analysis, Fig. 12 shows the weighted speedup for

each workload. Among all the workloads, W1 is composed

of computationally intensive applications. With respect to

W1, there is little difference in performance between even

partitioning and Warped-slicer. This indicates that it is

more important for multitasking to determine with which

application to perform concurrent execution rather than the

resource allocation method. The scheduler proposed in this

study could maximize performance under the given

workload because it performs scheduling while recognizing

the potential for resource contention owing to concurrent

execution, although concurrent execution between com-

putationally intensive applications can realize a perfor-

mance gain. The workload W2 is composed only of

memory-intensive applications, and shows that multitask-

ing between memory-intensive applications has no gain of

concurrent execution. Because K-Scheduler does not per-

form concurrent execution between memory-intensive

applications, it shows the same performance as that of

sequential execution. The workload W7 is composed of

applications with a low EPC and applications with a high

EPC at the ratio of 1:1. Thus, it does not exhibit much

difference in performance between schedulers. There is a

gain of concurrent execution when applications that have a

high EPC are executed concurrently with applications that

have a low EPC. Meanwhile, because the workload has a

balanced mixture of different applications in the same

proportions, K-Scheduler does not have many opportuni-

ties to improve performance compared to Warped-slicer

and even partitioning.

6.2.1.2 Comparison of ANTT Figures 11b and 13 show

the ANTT of each scheduler. A value closer to 1 means

that individual performance is preserved. As shown in

Fig. 11b, K-Scheduler, Warped-slicer, and even partition-

ing have average ANTT values of 1.31, 2.23, and 2.57,

respectively. Even partitioning exhibited a significantly

delayed response time because it was slowed down by a

factor of 2.56 times in terms of individual application

because it performed scheduling by evenly distributing

only static resources. Warped-slicer did not show a sig-

nificant improvement in ANTT compared to even parti-

tioning, thus showing that the service response time is not

guaranteed. Meanwhile, K-Scheduler guarantees the qual-

ity of service (QoS) for individual applications. In partic-

ular, in the case of W7, the weighted speedup of

K-Scheduler only improved by approximately 0.3% and

Table 6 Intra-SM resources and runtime stall for each benchmark application

Workload sequence Characteristics of workload

W1 Compute intensive applications

W2 Memory intensive applications

W3 Compute intensive applications ? Memory intensive applications (1 : 1)

W4 Compute intensive applications ? Memory intensive applications (2 : 1)

W5 Applications with large number of EPC (EPC[1)

W6 Applications with small number of EPC (EPC\1)

W7 Applications with large number of EPC ? Applications with small number of EPC (1:1)

W8 Applications with large number of EPC ? Applications with small number of EPC (1:2)

W9 Applications with large number of EPC ? Applications with small number of EPC (2:1)
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5% compared to Warped-slicer and even partitioning as

shown in Fig. 13. Thus, the performance improvement of

the total workload was not large. However, the ANTTs

improved by 22% and 166%, respectively, showing the

excellence of K-Scheduler. In the case of W2, the ANTTs

of the baseline scheduler were 4.95 and 0.06, respectively.

Thus, the multitasking of the memory-intensive application

shows a decrease not only in the total workload perfor-

mance, but also in the performance of the individual kernel.

The workload W6 is only composed of kernels with a low

EPC, showing the smallest values of ANTT with 1.02, 1.8,

and 1.9 for K-Scheduler, Warped-slicer, and even parti-

tioning, respectively. The degradation of individual per-

formance is the smallest because many stalls occur for the

kernels with a low EPC, and these are hidden owing to

multitasking.

6.2.1.3 Comparison of fairness Figures 11c and 14 show

the average fairness and the fairness of each scheduler. A

fairness value closer to 1 means that the difference between

the speedups of each application is not large. As shown in

Fig. 11c, the fairness of K-Scheduler is 0.48, whereas the

Fig. 11 Scheduling

performances of K-Scheduler,

warped-slicer, and even

partitioning based on

a weighted speedup, b ANTT,

and c fairness

Fig. 12 Comparison of weighted speedup for each workload Fig. 13 Comparison of ANTT for each workload
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fairness values of Warped-slicer and even partitioning are

0.28 and 0.25, respectively. This indicates that K-Sched-

uler can perform more fair resource sharing between

applications than Warped-slicer and even partitioning. In

W7, the fairness was low because there is a pair comprising

an application with a long execution time and an applica-

tion with a short execution time. However, excluding this

workload, K-Scheduler showed the fairest results under

every workload.

6.2.2 Evaluation and analysis of K-Scheduler design

6.2.2.1 Variable number of concurrent execution kernels
This section describes how the variable number of con-

current execution kernels of K-Scheduler affects the

scheduler’s performance. First, as mentioned in Sec-

tion 5.3.1, Warped-slicer, which is the baseline scheduler,

performs scheduling with a fixed number of concurrent

execution kernels, K. This scheduler has a trade-off

depending on the K value in terms of the performance of

the total workload and the performance of individual ker-

nels. As shown in Fig. 15a, from the perspective of the

weighted speedup, it is 1.02 when K is set to 2, and 1.09

when K is set to 3. When the K value is increased, multiple

kernels share resources with low utilization. As a result, the

performance of the total workload improved, and this

increased the weighted speedup. However, as shown in

Fig. 15b, the ANTT is 1.4 at K = 3 and 1.73 at K = 2. Thus,

when the K value increases, the performance of the indi-

vidual kernel decreases. This is because when the number

of kernels for concurrent execution increases, limited

resources must be shared by multiple kernels; the perfor-

mance of individual kernels decreases as a result. However,

K-Scheduler solved this problem by dynamically changing

the K value instead of fixing it. The weighted speedup and

ANTT of K-Scheduler were 1.2 and 1.3, respectively.

Thus, the weighted speedup improved compared to warped

slicer at K = 3 and K = 2, respectively. K-Scheduler

increases the number of concurrent execution kernels for

the combination of kernels with low resource contention,

and decreases the number of kernels for a combination of

kernels with a high resource contention. This variable

number of K results in good performance in terms of both

the total workload and the workload of individual kernels.

6.2.2.2 Hierarchical scheduling with rules This section

describes the change of performance according to the

K-Scheduler’s scheduling rules (Fig. 16). First, K-Sched-

uler (rule 1) only considers static resources. The weighted

speedup is 0.55, which is a performance that is two times

worse than the sequential performance. In terms of single

kernel, it has an ANTT of 2.88, showing a significant

degradation of the performance of individual applications.

Multitasking, which only considers static resources, exhi-

bits severe performance degradation owing to contention

among resources used by each application. In particular,

K-Scheduler does not set the number of multitasking ker-

nels, and kernels using static resources perform multi-

tasking with multiple kernels using static resources.

Consequently, this study performed multitasking with up to

seven kernels, thus showing a significant performance

degradation. Thus, scheduling that considers static resour-

ces only can result in a significant performance degrada-

tion. The scheduler (Rules 1 and 2) that considers the

system performance supply and static resources shows a

speedup that is approximately 8% higher than sequential

execution; individual applications show a 54% lower per-

formance on average. This is better than the performance

of K-Scheduler (Rule 1), which does not consider dynamic

resources; however, there is a limit to the improvement in

the performance in terms of both the total workload per-

formance and individual kernels. Complex contention

occurs not only for the supply of global memory bandwidth

and computing resources, but also in other resources, and

scheduling needs to consider this. K-Scheduler can achieve

a weighted speedup of 1.2 and an ANTT of 1.3. Therefore,

K-Scheduler can achieve a good performance through

scheduling that considers static and dynamic resources, the

classification of applications, and runtime characteristics.

7 Related studies

As NVIDIA introduced the Hyper-Q technology that sup-

ports spatial diversification [25], there have been ongoing

studies on developing a method that effectively performs

spatial diversification using it. Spatial diversification

techniques are classified into methods that divide and use

subsets of SM [11–13], and ones that do the space inside

SM [14–16].

CD-Search [13] classifies applications into computa-

tionally intensive and memory-intensive applications toFig. 14 Comparison of fairness for each workload
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efficiently divide the subsets of SM. Although previous

studies classify applications based only on the DRAM

throughput, this study classified applications by consider-

ing the off-SM bandwidth as well. Furthermore, a power

mode that can save power was proposed by considering the

fact that the memory-intensive application can achieve a

similar performance, even when a small number of SMs are

allocated. Thomas et.al. [28] utilizes a roofline model to

find resource bottleneck, which allows for more efficient

resource allocation, compared to CD-Search.

Themis [29] proposes a four-layer neural network for

predicting slowdown in multitasking. It limits the number

of parameters to reduce over heads. However, it performs

hundreds of floating-point operation to predict single value.

HSM [12] creates a performance model by combining

white box and black box methods, and predicts the per-

formance when the SM subsets are divided and executed

simultaneously, compared to the independent execution of

each application. This method predicts the utilization of

DRAM bandwidth, and they propose a multitasking

scheduler that achieves fairness of QoS based on it. Laius

[11] predicts the work performance to achieve the QoS of

queries for users, and allocates resources that recognize the

contention of resources accordingly. Furthermore, the

progress of jobs is monitored continuously. If there is a

delay in the progress of a task relative to the predicted

value, the allocated amount of computation resources is

increased to compensate for the delay. To this end, they

introduce an online method as well as an offline method to

build a runtime system. For the multitasking method that

divides SM subsets, there is a limit to performance

improvement in terms of resource utilization and

throughput compared to the method of sharing intra-SM

resources [15].

Warped-slicer [16] focuses on the method of efficiently

sharing resources in the SM. Applications are classified

using L2 miss per kilo warp instruction. The most efficient

allocation method is found when sharing resources by two

applications using the water-filling algorithm. [15] converts

the context in the TB unit for resource sharing in the SM;

they propose a scheduling algorithm using static resource

usage and a dynamic computing cycle. However, the

dynamic resource allocation method using the computing

cycle assumes a linear increase when estimating the exe-

cution time. The observations of this paper indicate that the

performance does not increase linearly with the resource

Fig. 15 Comparison of fairness

for each workload based on

a weighted speedup and

b ANTT

Fig. 16 Comparison of

scheduling by rule application

step based on a weighted

speedup and b ANTT
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allocation, and there is a section where performance is

saturated. This indicates the need for a resource allocation

method that recognizes these sections. In Refs. [15, 16], the

authors introduce a methodology for allocating intra-SM

resources, but does not consider interference that occur

between jobs that are placed together. Hence, the concur-

rent execution performance degrades owing to contention

for resources. Dai el.al. [14] points out that theoretical and

real performances differs because the interference between

concurrent kernels cannot be solved using only the method

that allocates resources for sharing intra-SM resources. To

solve the interference issue, they proposed the balanced

submission of memory requests and the restriction of

memory commands executed in individual kernels. This is

impossible to implement in actual hardware because

additional hardware and hardware changes are required to

control the memory request and memory commands.

However, the method proposed in our study attempted to

minimize interference while working in actual hardware.

Alizadeh et. al. [30] predicts interference which may be

caused by resource contention in fine-grained sharing of

SMs using machine learning. It shows up to 91.7% accu-

racy. It only classifies applications and is not about

scheduling mechanism.

Refs. [14–16, 11–13] all conducted experiments in

simulators, and the study results may differ from the actual

hardware experiment results. Furthermore, a dynamic SM

sharing method using preoccupation has been proposed

[27]. However, its effect has been demonstrated only

through simulations; it is not currently supported by

hardware. smCompactor [26] proposed a scheduling

framework that is based on TB to share SMs and intra-SM

resources. This study improved the utilization of intra-SM

resources by enabling the sharing of intra-SM resources in

actual hardware, but it did not consider the placement

method that recognizes the resource contention of each

kernel. Furthermore, studies on various fine-grained

scheduling methods are compared with this study in

Table 7.

8 Conclusion

Existing studies have limitation with respect to achieving

performance improvements through scheduling when many

requests from clients are received because they focused on

a partition technique of intra-SM resources. This study

proposed K-Scheduler, which is a multitasking placement

scheduler. The characteristics of resource use and the

concurrent execution of applications were analyzed

according to the individual execution characteristics of

applications, and a scheduling method was introduced by

inferring rules according to each observation. Experiment

results demonstrated that K-Scheduler improved the total

workload execution performance by 18% compared to

previous studies. In addition, it improved the performance

Table 7 Comparison of fine-grained scheduler

K-Scheduler smCompactor [26] Warped-slicer [16] HSM [12] Hongwen et al.

[14]

Sharing

method

Intra-SM sharing Intra-SM sharing Intra-SM sharing Spatial

multitasking

Intra-SM sharing

Evaluation

benchmarks

Rodinia, Parboil, polybench,

CUDA SDK, SHOC

Rodinia, CUDA SDK Rodinia, Parboil, ISPASS,

CUDA SDK

Rodinia, Parboil,

PolyBench,

Mars, CUDA

SDK

Rodinia, Parboil,

CUDA SDK

Evaluation

tools

Experiment on real GPU

using Persistent thread

model

Experiment on real

GPU using

Persistent thread

model

Simulation Simulation Simulation

Advantage Minimize interference by

predicting multitasking

performance on real GPU

Make intra-SM

sharing possible on

real GPU

Propose Intra-SM sharing

method

Predict

multitasking

performance

Propose methods

for minimizing

interference

Disadavantage Not include

scheduling

mechanism for

intra-SM sharing

May be different between

actual performance and

theoretical performance

Show low internal

utilization of SM

Need hardware

modification

Performance

metrics

ANTT, Speed up, Fairness Execution time IPC, ANTT, Fairness Fairness, ANTT,

STP

System

Throughput,

ANTT
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of individual execution by 32%. Thus, the performance did

not decrease significantly when it was executed indepen-

dently. Using this scheduler, each application could receive

fast responses, and the total workload throughput was also

improved. For future research, we will conduct experi-

ments by subdividing the application characteristics to

generalize the proposed scheduling framework.
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