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Abstract
In a cloud computing environment, there are many providers offering various services of different quality attributes.

Selecting a cloud service that meets user requirements from such a large number of cloud services is a complex and time-

consuming process. At the same time, user requirements are sometimes described as uncertain (sets or intervals), some-

thing which should be taken into account while selecting cloud services. This paper proposes an efficient method for

ranking cloud services while accounting for uncertain user requirements. For this purpose, a requirement interval is defined

to fulfill uncertain user requirements. Since there are a large number of cloud services, the services falling outside the

requirement interval are filtered out. Finally, the analytic hierarchy process is employed for ranking. The results evaluate

the proposed method in terms of optimality of ranking, scalability, and sensitivity analyses. According to the test results,

the proposed method outperforms the previous methods.

Keywords Cloud service � Quality of service (QoS) � Service selection � Service ranking � Analytic hierarchy process

(AHP)

1 Introduction

Cloud computing allows for the use of resources as ser-

vices on the Internet with no need for any specialized skills

or investment costs [4]. Cloud services provide extensive

and flexible computing and storage capacities that have

come in handy for many companies, especially small and

medium-sized enterprises, SMEs [11, 26]. On the other

hand, cloud providers offer services with various quality

attributes [1]. The growing variety of services has made it

difficult for cloud users to select the most proportionate

service to their non-functional requirements (i.e. quality

attributes) [43].

A cloud layer named the broker is used to collect and

manage service information [25]. This layer is mainly

responsible for helping users to select services based on the

assessment of quality attributes [26]. A cloud broker

receives user requirements and searches for the most

appropriate service within a mass of services [32]. It should

also be able to rank cloud services quickly based on the

user requirements.

Selecting specific attributes necessary for the assessment

of cloud services is a challenge [23, 28, 42]. Every quality

attribute affects ranking; therefore, multi-attribute deci-

sion-making (MADM) methods [8] can be an appropriate

ranking option [11]. The least time complexity and the

highest robustness are the challenges that have attracted the

attention of researchers to rank cloud services [13]. Ana-

lytic hierarchy process, AHP [31] is one of the most rec-

ognized MADM methods that has yielded

acceptable ranking results [1, 3, 11, 39]. In a hierarchical

structure, AHP draws a pairwise comparison of cloud

services based on each quality attribute [17]. Within the

service measurement index cloud (SMICloud) framework,
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service ranking is firstly performed based on the AHP and

user requirements [11]. However, user requirements are not

clear and certain in most cases [36].

Uncertainty in user requirements occurs when the user

cannot make an accurate decision about cloud quality

attributes. The variety in the cloud environment and the

failure in recognizing some of the requirements have made

it difficult for the cloud user to accurately express the

quality requirements. Parameters such as the exact speed of

the processor, the exact number of processors required, the

exact bandwidth, and the exact elasticity may not be pre-

cisely determined by the users [40]. Therefore, uncertainty

in the requirements of the cloud user can be considered

from the two aspects of the importance of quality attributes

and the amount required by the user for each attribute. To

determine the importance of each attribute, the user can

enter linguistic variables instead of the exact weight of the

attribute. Besides, the user must be able to enter their

required values imprecisely. In other words, the required

value of each attribute is sometimes vague (e.g. high

security), or an interval (for instance, the monthly cost is

below $1). For this purpose, researchers have used various

methods by integrating AHP with fuzzy theory to estimate

uncertain requirements [22, 38, 39, 44]. Nevertheless, a

great deal of user requirement information is lost in

fuzzification and defuzzification processes. To solve this

problem, Abdel-Basset et al. [1] employed the neutro-

sophic method [35] and performed decision-making with

higher accuracy. All of the methods face the same con-

straint that is the necessity of comparing and ranking all

services based on user requirements. Given the fact that

fuzzy and neutrosophic computation processes are time-

consuming, the response time of ranking systems with a

large number of cloud services will increase, dramatically.

This paper proposes the fast cloud service ranking

(FCSR) method to reduce the response time of ranking

cloud services. Since many of the services are usually quite

far from user requirements, this paper proposes the concept

of requirement interval based on uncertain user require-

ments to narrow down the search domain. Therefore, the

less relevant services are filtered out. Then, AHP, the

performance of which has been proven, is employed for

ranking. If no services meet user requirements completely,

a service with the highest similarity to user requirements

will be selected. This prevents the service deletion process

from becoming strict; therefore, the services with the most

proportional quality will be selected. The FCSR method

has been assessed in different scenarios such as optimality,

scalability, and sensitivity. According to the results, the

FCSR method shows a shorter execution time and a higher

accuracy rate than other methods.

The rest of the paper is structured as follows. Section 2

presents a brief literature review. Section 3 introduces the

FCSR method proposed to rank cloud services. A com-

parison is drawn between FCSR and other existing methods

in Sect. 4. Finally, the conclusion and future works are

discussed in Sect. 6.

2 Related work

With the increasing number of cloud services, several

attempts have been made at assessing and ranking them

[37]. Many researchers have analyzed service performance

for different purposes such as e-commerce and web

applications in a user-independent manner. For instance, a

service assessment framework is proposed in [30] for ser-

vice selection based on the combination of service cost and

performance. Likewise, Iosup et al. assess cloud service

performance in high workloads by analyzing CPU, I/O,

memory, and network resources [15]. However, these

metrics are not sufficient to assess services.

Since users are the end consumers of cloud services,

selecting the optimal service from a variety of services is a

major challenge. In this regard, a recommender system is

proposed [14] to create a ranked list of services based on

user requirements. In this system, service assessment is

limited to their low-level performance metrics including

processing, memory, bandwidth, and cost. The comparison

metrics of recommender systems performance have been

developed within the CloudCmp framework [24]. To this

end, cloud service comparison metrics have been proposed

including scaling latency, elasticity, response time, and

virtual machine cost. These metrics focus on the profit-loss

measurement of cloud services and disregard many quality

attributes such as user feedback.

Given the importance of cloud service assessment, the

Cloud Services Measurement Initiative Consortium,

CSMIC [34] proposed the service measurement index

(SMI) framework to standardize quality attributes. This

framework was proposed based on the International

Organization for Standardization (ISO) with a hierarchical

structure consisting of 7 attributes and 51 sub-attributes.

Since SMI considers all cloud attributes collectively, a

major part of it is not utilized by users in practice. To

identify the prominent attributes, the quality attributes

proposed by SMI were prioritized in 7 attributes and 21

sub-attributes in [47]. Attribute measurement is performed

through questionnaires. In fact, each attribute is measured

based on its structure and score. However, the measure-

ment might not be accurate because the responses are ini-

tialized optimistically and pessimistically. In addition,

researchers have been drawn toward the classification of

quality attributes as necessary or unnecessary [11]. Dan

et al. [26] has introduced a step called refinement to select

services that satisfy all essential user requirements. Also,
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Jahani et al. [18] added a filtering step to the ranking of

services. The aim is to satisfy the user’s requirements. In

[7], the linear equations used to select appropriate services

based on the user requirements. For this purpose, an

objective function used as a linear equation. The con-

straints specified in the user requirements used to maximize

the objective function and determining the scope of

requirements and eliminating disproportionate services.

However, if a service is slightly different from a user

requirement, it will be deleted strictly. In this case, the

cloud broker may often provide no services meeting user

requirements.

Parallel to identifying essential quality attributes, sev-

eral research studies have been conducted on service

ranking [29]. SMICloud framework relies on AHP to

compare services with regard to quality attributes and user

requirements [11]. In recent years, many efforts have been

made to improve the SMICloud framework. The solution

that most researchers have considered is the use of inte-

gration of MADM methods. In paper [45], an integrated

method for ranking cloud services presented in the SMI-

Cloud framework. In this method, the best worst method

(BWM) used to weigh the quality attributes. Cloud services

ranked using the Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS) method. A case

study with eight cloud services and nine quality attributes

was considered. Their proposed method was compared

with the AHP method in terms of execution time. Kumar

et al. [21] introduced the optimal service selection and

ranking of cloud computing services (CCS-OSSR) method.

They also combined TOPSIS and BWM methods to reduce

computational complexity. In a case study, they ranked 11

cloud services based on five quality attributes. Sensitivity

analysis was used to evaluate the proposed results. In these

methods, the performance of the proposed method in high

demand or increasing the number of services has not been

evaluated. On the other hand, due to the fact that the SMI

structure is hierarchical, the performance of the AHP

method (according to the hierarchical structure of the AHP

method) is better suited than other MADM methods.

According to [13], the main weakness of the TOPSIS

method compared to the AHP method is the high sensi-

tivity of TOPSIS. Also, the uncertain requirements of users

have not been taken into account.

Although SMICloud has attracted researchers, it is

unable to consider uncertainty in user requirements and

attribute values of services. The fuzzy sets theory [47] was

employed to solve this issue [33]. This method benefits

from AHP in giving weight to quality attributes. Based on

expert feedback on cloud services and user requirements,

fuzzy AHP (FAHP) was proposed [46] for cloud service

ranking. Similarly, Cloud-FuSer was proposed to select

top-k services by considering vague user requirements

[38]. This method introduces certain parameters of TOP

(Top rank match count) and MATCH (match count) for

ranking assessment. Moreover, the fuzzy AHP is used by

Tajvidi et al. [39] to compare quality attributes. Then the

resultant weights of each quality attribute and values of

cloud services were employed to perform ranking through

the AHP method. However, the problem is that fuzzy sets

theory imposes too much computation processing on the

system when it is fed uncertain values. At the same time,

the ranking accuracy decreases due to fuzzy transforms. In

[12], the quality of services is aggregated with user feed-

back to improve ranking accuracy by applying indetermi-

nacy parameters to fuzzy sets. This is achieved through

sensitivity analysis and Spearman’s rank correlation anal-

ysis, in which the ranking results of the proposed method

are compared with MADM basic techniques.

To improve ranking accuracy AHP is integrated with

neutrosophic techniques in the NMCDA method [1]. The

neutrosophic set added truth, falsity, and indeterminacy to

the fuzzy set membership functions in order to improve the

accuracy of fuzzy set results to get user requirements with a

lower error rate. Tiwari and Kumar [41] compared the

efficiency of integrating MADM methods with neutro-

sophic in terms of accuracy, sensitivity, and execution time

in ranking services. The results show that the integration of

AHP with the neutrosophic is robust, but in a condition

where the number of services is high, the time complexity

increases.

All these works draw pairwise comparisons between

services based on each attribute for all cloud services. This

translates into a time-consuming process when a large

number of services are being examined. Since there are too

many cloud services nowadays and that the execution time

of AHP-based methods depends on the number of services,

such processes have long response times. In this study, the

FCSR method is proposed to, first, filter inappropriate

services by considering uncertain user requirements, and,

second, rank services in real-time by reducing ranking

computations.

3 Fast cloud service ranking (FCSR)

In this section, the FCSR ranking system describes step by

step. In addition, the FCSR time complexity is calculated.

3.1 Ranking cloud services by FCSR

It is a time-consuming task to select a service from

numerous cloud services with various quality attributes to

meet user requirements. FCSR method first eliminates a

considerable number of services which are slightly pro-

portionate to user requirements. Then the ranking operation
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is performed to compare a few services rather than all of

them. This process reduces the response time.

At first, the user requirement is encoded to the proposed

requirement interval, and similarly, cloud service encoding

is performed. By comparing the encodings, many services

might be filtered out. The remaining services are called

candidate services. Consequently, the candidate services

are ranked based on user requirements and quality of ser-

vice. According to Algorithm 1, the FCSR method consists

of five steps.

Algorithm 1: FCSR
Input: User requirement, Service set with quality values
Output: Ranked services
1. Encoding quality attributes
2. Converting user requirement into query
3. Creating user requirement interval
4. Creating quality interval of each cloud service
5. Filtering and Ranking services

The FCSR method receives a set of services with quality

values and user requirements as inputs. The output includes

the ranking of proportional services.

3.1.1 Step 1: encoding quality attributes

Binary encoding is applied to each quality attribute based

on its type and value. Generally, quality attributes are

classified as numeric, set, and interval categories. Numeric

attributes such as a disk capacity can include discrete

numbers. For encoding, the range of possible values is

divided into n intervals, and n can be regulated by the

system. Therefore, n bits are used for encoding the values

so that all bits are zero except the bit that indicates the

interval. The set type includes those attributes that can have

specific values such as portability, which indicates the

names of platforms supporting the cloud service. A few bits

corresponding to the maximum possible values are

employed to encode this type of attribute. The corre-

sponding bits with the values of attribute are considered 1,

whereas other bits are considered zero. Some of the quality

attributes are of the interval type. For instance, elasticity is

regarded as an interval (ranging from 20 to 200 s). To

encode, the range of possible values is partitioned into

n intervals. Then the quality attribute is encoded with

n bits, each of which corresponds to one interval. If the

service value interval overlaps with each of these subin-

tervals, that bit is 1, otherwise, it is 0.

Finally, since different quality attributes might have

codes of different lengths, the longest code (L) is found.

Then the zero bits are added to the right side of other

attributes to make their lengths equal to L.

Service Type: 

Importance of Accountability: …..               Required value: … 

Importance of Agility: …..      Required value: …  

Importance of Capacity CPU: ….. Required value: … 

Importance of Capacity RAM: ….. Required value: … 

Importance of Capacity Disk: …..  Required value: … 

Importance of Elasticity: …..  Required value: … 

 Importance of security: …..   Required value: … 
                . 
 . 
 . 

 Relative importance value:  

Unimportant=0  

Somewhat important=1  

Definitely important=2   

Much important=3  

Extremely important=4 

Fig. 1 Receiving user requirements

3.1.2 Step 2: converting user requirement into query

For each service, quality factors (e.g. response time),

economic factors (e.g. maintenance costs), and technical

factors (e.g. availability) are provided according to the

application of that service [10]. Therefore, in requirement

gathering, the requested service type is selected by the user

so that the services of the same type are ranked. Types of

services are provided as education, management, account-

ing, mobile services, etc. In addition, a user should insert

the attribute values and the importance of each attribute in

requirement gathering.

The user is asked the importance of each quality attri-

bute, which is an integer ranging between 0 and 4 (unim-

portant, somewhat important, important, very important,

and extremely important). If the attribute is unimportant to

the user, it will not be used in encoding user requirements

and cloud services. Then, the value required by the user for

that attribute is entered. It can be a numeric, set, or interval

value. Figure 1 shows an example of how to receive user

requirements for a few attributes.

Afterward, the user requirement is converted into the

query format. Formula 1 shows the query structure of the

mth user.
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Qm;serviceType ¼ fðq1; value1; type1Þ; ðq2; value2; type2Þ; . . .;
ðqi; valuei; typeiÞ; . . .; ðqn; valuen; typenÞg:

ð1Þ

In this formula, n indicates the number of quality attributes,

and qi shows the importance of the ith attribute to the user.

In addition, valuei shows the value that the user requires for

the ith attribute, typei indicates the type of the ith quality

attribute based on user requirement, and serviceType

indicates The type of service specified by the user. The

attributes are sorted from left to right in the order of value.

For instance, consider capacity CPU, capacity memory,

capacity disk, and elasticity attributes. Figure 2a shows

their priorities from the user’s perspective and the required

code of each attribute; Fig. 2b indicates the user require-

ment code, which is saved in the array named sorting.

In addition, the weight of each attribute (w), the

importance of which was determined by the user, is mea-

sured. According to the query, each attribute has an

importance value. Given the importance of quality attri-

butes, their weights are measured in a normal form. For

instance, the weights of attributes shown in Fig. 2 are

presented in Table 1.

3.1.3 Step 3: creating user requirement interval

In some cases, the user requirement code might have two or

more digits of 1 for a cloud attribute. This occurs when the

quality attribute has a set or an interval value, for instance,

the user might select middle and advanced levels for the

security attribute from the set of the basic, middle, and

advanced levels, or the user might select the 20–120 mil-

liseconds (ms) interval for elasticity when the system creates

50 ms length intervals in the possible range between 0 and

200 ms. In this case, if the quality attribute is of the set type,

the number of bits will be equal to the number of possible

values. If the user requirement is proportionate to a value of

the set, the corresponding bit will be 1, otherwise, it is given

0. For instance, if the user requirement includes middle and

advanced levels in the three-level security metric, the

required code of the security attribute will be 110.Moreover,

it is sometimes necessary to determine the importance of

each value for the user. The importance of values is then

employed to determine the location of the bits. For instance,

for the portability attribute if the user selects the importance

of platforms as IOS[Android[Linux[Windows, the bits

of portability are considered for the user in order of impor-

tance from left to right. If the user needs IOS and Android,

then the portability attribute requirement code will be 1100.

Encoding interval quality attributes follows a different

procedure. For each bit of 1, a separate code is considered

for the ith attribute. Hence, each simple code of the attri-

bute has a bit of 1, while the other bits of that attribute are

0. For instance, if the values determined for the elasticity

attribute vary within [0–50), [50–100), [100–150), and

[150–200) and the user requirement value ranges within

20–120, then the binary requirement value will be 0111. As

Fig. 3 shows, attributei is converted into three simple

codes.

This conversion is performed for all of the interval

attributes having multiple values of 1 in their code. In this

case, it is possible to consider the smallest and largest

values for the lower and upper bounds of the interval. In

the example demonstrated in Fig. 3, 0001 and 0100 are the

smallest and largest codes of the, and there is no need to

keep 0010. Similarly, the codes of interval attributes of the

sorting array which has multiple values of 1 are converted

into simple codes. Then the sorting array is converted into

several separate codes by repeating the single-value or non-

interval attributes. The number of codes is as many as the

maximum number of created simple codes of attributes.

Figure 4 shows the structure of conversion. Accordingly,

the sorting array has 4 interval attributes, each of which

includes 4 bits. Except for the most valuable quality attri-

bute (capacity CPU) in which one bit is 1, other quality

attributes have multiple bits of 1. The simple codes are

Fig. 2 Creating user

requirement and query
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created by considering the smallest and largest values for

interval attributes having multiple bits of 1. Then the sin-

gle-value requirement code is created by repeating the

value of the most valuable quality attribute for the lower

and upper bounds of the interval.

Afterward, the interleaving process [26] is performed for

each code to first put more valuable bits and then less

valuable bits of attributes together. Figure 5 shows how to

interleave the lower code of the single-value requirement

interval shown in Fig. 4.

Each arrow shows where the bit is placed. Since the

values are binary, the interleaving method is employed to

consider the importance of attributes bit by bit. As a result,

the user requirement is saved as two numbers, one of which

indicates the lower bound, whereas the other shows the

upper bound of the user requirement interval. In this case,

the quality interval has been created with respect to user

requirements.

3.1.4 Step 4: creating quality interval of each cloud service

Different conditions of cloud environments cause varia-

tions in the values of quality attributes of cloud services.

Therefore, the quality intervals of services can be created

in this step through the same procedure as user require-

ments (the previous step). For this purpose, the services

with the same type required by the user are encoded based

on their quality values and in order of quality importance

from the user’s perspective. According to Step 3.1, the

quality interval of services is created based on user

requirements.

3.1.5 Step 5: ranking services

Services are ranked and selected in this step. The user

requirement is created as an interval in Step 3, and each cloud

service has a quality interval in accordance with Step 4. In

Step 5, services are classified into three categories, the first of

which includes the services that have nothing in common

with the requirement interval. The services of this category

are disproportionate to user requirements and are thus

eliminated. The second category includes the services which

either cover user requirements thoroughly or fall exactly

within the requirement interval. The services of this category

are included in the Candidate set. The third category includes

the services that their interval overlaps the user requirement

interval. The services of this category are added to the Sec-

ondary set.

If the number of services existing in the Candidate set

(second category services) exceeds one service, the AHP is

employed for service ranking. For this purpose, the impor-

tance of each quality attribute is determined by weights (w)

in the hierarchical structure of SMICloud in the second step.

At the same time, cloud service ranking in the AHP requires

pairwise comparisons of cloud services. The method pro-

posed in [42] is employed to quantify the set-valued attri-

butes (e.g. portability), numeric attributes (e.g. disk

Table 1 Measuring the weight

of each quality attribute
Quality attribute Importance Relative importance value Weight

Capacity CPU Extremely important 4 0.4

Capacity memory Much important 3 0.3

Capacity disk Definitely important 2 0.2

Elasticity Somewhat important 1 0.1

attributeofcodeRequirement

0010

0001

0100

0111

Convert

iattributeofcodesSimple

Fig. 3 Converting an interval requirement of an attribute into simple

codes

Fig. 4 Converting one row of

the sorting array to single-value

requirement codes
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capacity), and interval-valued attributes (e.g. elasticity). The

comparison of two services si and sj is shown as
si
sj
. The value

of the ith service (vi), the value of the jth service (vj), and the

requirement value of that attribute (vr) should be available to

compare two services si and sj for a specific attribute. If the

attribute is numeric, two cases should be considered. If the

larger value is better, then si
sj
will be equal to the result of vivj; if

the smaller value is better, then si
sj
will be equal to the result of

vi
vj
. If the quality attribute is of the set type, the number of si

items satisfying user requirements are denoted as same (vi);

therefore, the value of vi
vj
is shown in Formula 2:

si
sj
¼

same ðviÞ; if same ðvjÞ ¼ 0;

same ðviÞ
same ðvjÞ

; otherwise :

8
<

:
ð2Þ

If the quality attribute is of the interval type, lenðvi
T
vrÞ

shows the intersection between si and user requirement.

Formula 3 indicates the value of si
sj
:

si
sj
¼

len ðvi
T
vrÞ

len ðvj
T
vr

; if vj
T
vr 6¼ ; and vi

T
vr 6¼ ;;

1; if vj
T
vr ¼ ; and vi

T
vr ¼ ;;

wm; if vj
T
vr 6¼ ; and vi

T
vr ¼ ;;

1

wm
; if vj

T
vr ¼ ; and vi

T
vr 6¼ ;:

8
>>>>>>><

>>>>>>>:

ð3Þ

In this formula, wm is the weight measured for the mth

attribute in Step 2 and ranges within [0, 1]. Given the fact

that SMICloud is designed for the hierarchical structure of

quality attributes, the computations of each attribute are

performed at the lowest level. Finally, service ranking is

performed in the Candidate set based on the weights of the

highest-level attributes and the values of cloud services. If

the Candidate set is empty, the cloud services existing in

the Secondary set will be considered (third category). In

this case, service ranking is performed with respect to the

intersection between service intervals and user requirement

intervals. Algorithm 2 shows the service ranking process.

Fig. 5 Interleaving the binary

query

Algorithm 2: Service ranking
Input: Req:Requirement Interval,|s|:cloud service interval,Services:set of cloud
services, Candidate: set of candidate services, Secondary: set of secondary
services

Output: Ranking the services
2. foreach si ∈ Services do

3. if (Req covers |si|)or(|si| covers Req) then
Candidate = Candidate

⋃{si}
else

if len(|si|
⋂

Req) > 0 then
Secondary = Secondary

⋃{si}

if Candidate �= null then
Candidate is sorted with AHP

else
if Secondary �= null then

secondary is sorted by intersection between service and user requirement
interval.

Cluster Computing (2022) 25:485–502 491

123



3.2 Time complexity of FCSR

To calculate the time complexity of the FCSR, each step

must be considered separately. The steps that are important

in terms of time include requirements interval calculation,

service interval calculation, attributes weight calculation,

candidate services weight calculation, and aggregation the

ranking results.

The calculation of the requirements interval is related to

the number of quality attributes (m), the time complexity is

O(m). The calculation of the services interval is related to

the number of cloud services (n) besides the number of

attributes, the time complexity of which is Oðm� nÞ. The
time taken for calculating the weight for each attribute with

the AHP method is related to the number of attributes.

According to [11], the time complexity is Oðm3Þ. Calcu-
lating the weight of candidate services (c) is related to the

number of candidate services and the number of quality

attributes. Therefore, the time complexity is Oðm2 � c3Þ.
Aggregation of the ranking results is related to the number

of candidate services and the number of quality attributes.

Therefore, the time complexity will be Oðm2 � cÞ. As a

result, the total time complexity of FCSR is

Oðm2 � c3 þ m2 � cþ m3 þ m� nþ mÞ.

4 Performance comparison

The QWS dataset [2], consisting of more than 2500 real

web services and 9 different quality attributes, has been

employed to assess the FCSR. However, this dataset does

not include some of the cloud service attributes such as VM

cost and elasticity. According to the SMICloud framework

[11], these excluded cloud attributes have been added to

the dataset. In total, 16 quality attributes have been used for

cloud services. Amongst them, six attributes exist on the

high level of the hierarchical structure, each one depending

on different factors. Each factor is a quality attribute

existing in the lowest level [11]. The new attributes were

modeled on random variables of the normal distribution,

and the generated values were utilized to complete the

dataset. All of the tests were run on a computer with an

Intel Core i7 processor (2.4 GHz) on Windows 10 x64

Enterprise.

Since this research aims to improve cloud service

ranking based on the AHP-related methods, the FCSR

method was compared with other well-known AHP-based

methods including the AHP [3], FAHP [39], and NAHP

[1]. Also, the proposed method is compared with ANP [40]

and FANP [9] methods. The quality attributes are weighed

in both FAHP and FANP by the fuzzy technique. NAHP

uses the neutrosophic method to weigh them. The FCSR

performance is then assessed in terms of optimality, sen-

sitivity, and scalability. Optimality measurement is based

on the comparison of ranking results with the baseline

ranking [26]. Sensitivity measurement is based on the

effect of changes in quality attributes on ranking results

[20]. Scalability measurement is based on the effects of

changes in the number of services, users, and quality

attributes on ranking execution time [26].

4.1 Optimality

In ranking, optimality means that the best services are

delivered in the best order to the user in order to maximize

user satisfaction. Expert Choice [16] software has been

utilized to assess the AHP results. Since all of the cloud

service comparisons are drawn using precise data, the

resultant ranking is considered as a baseline. Expert Choice

is responsive to a small number of cloud services [18]. The

NDCG parameter [19] and Spearman’s correlation analysis

[12] were employed to compare the FCSR optimality with

that of previous methods. In fact, the NDCG is used

extensively as a ranking quality assessment metric. This

parameter is determined through Formula 4:

NDCG@K ¼ 1

zK

XK

i¼1

RELi � ðK � iþ 1Þ
log2ðmaxði; 2ÞÞ

; ð4Þ

where RELi shows the proportion of ranking to baseline in

the ith rank. If the proportion is met on the ith rank, the

value of RELi is 1; otherwise, it is 0. K shows the list length

of the best services, and ZK is a normalization coefficient,

the value of which is determined through baseline ranking

calculation. The larger the value of NDCG@K, the more

optimal the ranking. In the NDCG parameter, different

lengths of K (such as the list of the best 1, 5, 10, 15, and 20

ranked services) were used. As Fig. 6 shows, FCSR and the

baseline are very similar in ranking. The ranking difference

can be due to the fact that the interval creation priority is
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based on user requirements in all different types of quality

attributes in the FCSR method. If the attribute is numeric in

the AHP method (baseline), user requirements will be

disregarded, and comparison will be based on quality

values. Sometimes in the FCSR method, the quality inter-

vals of cloud services and the requirement intervals do not

cover each other. In this case, services are ranked by

determining their intersection with requirement intervals.

This could make some changes in ranking. At the same

time, due to considering linguistic values, some informa-

tion is eliminated in the pairwise comparisons in the FAHP

and FANP methods. As a result, there are some variations

in the results. The NAHP method has outperformed the

FAHP method, which is resulted from using extra infor-

mation in decision-making. On the other hand, ANP and

FANP methods have different ranking procedures that have

caused differences in ranking compared to AHP.

As shown in Fig. 6, in TOP 1 and TOP 5 the ranking

results are the same between AHP, FAHP, ANP, and

NAHP methods. This is because the AHP, FAHP, and

NAHP methods, have a similar ranking procedure and have

the same results as the AHP. Also, the AHP and ANP

ranking methods produced the same ranking results due to

the similarity in the ranking procedure. In these cases,

similarities in the procedure of ranking overcome differ-

ences. Therefore, maximum optimality is obtained. But

there are some differences in the ranking from TOP 10, and

the reason is the difference in the procedure of weighting

the quality attributes in FAHP, FANP, and NAHP. Con-

sidering the fuzzy and neutrosophic parameters in

weighting the quality attributes causes different weights for

each attribute. Therefore, the ranking results are different.

As can be seen, there are differences in rankings for K[ 5

between AHP and ANP. The AHP ranking method is

similar to the ANP. However, in ANP, in addition to the

AHP procedure, comparisons are made between quality

attributes for each service. As can be seen, the ranking

result of the FANP method in the TOP 5 is also different

from the baseline. The reason is that FANP, in addition to

the difference in the ranking procedure with AHP, weights

the quality attributes differently. Therefore, the difference

in ranking results increases.

Spearman’s rank correlation analysis (qr) is a metric

employed to assess the correctness of the ranking. This

parameter is measured by using Formula 5 through calcu-

lating the difference between the ranks of each cloud ser-

vice in two ranking methods:

qr ¼ 1� 6Rd2i
mðm� 1Þ ; ð5Þ

where m indicates the number of services, and di shows the

difference between the ranks of a service in ranking

methods. In this test, 15 cloud services were selected at

random. Table 2 shows the results of Spearman’s rank

correlation analysis. Accordingly, the correlation of AHP

and FCSR is 0.882 (qrðAHP;FCSRÞ ¼ 0:882), a value that

outweighs the correlations of AHP with FAHP and NAHP.

This could be due to the loss of certain information for

fuzzy operations. Moreover, if 0:8\qr � 1:0, then the

correlation is interpreted as very strong; however, if

0:6\qr � 0:8, then the correlation is interpreted as strong

[12]. The correlation of all methods exceeds 0.613.

As can be seen, the correlation between AHP and FAHP

is 0.703. The difference of 0.297 in the ranking is due to

the use of fuzzy values in FAHP. It caused different

weights for each attribute and thus caused a change in

ranking results. The ANP method has more ranking dif-

ferences with AHP, FAHP, NAHP, and FCSR, which is

due to the difference in ranking procedures. The FANP

method has the most differences from the AHP method in

ranking due to the different procedures in ranking the

services and weighting the attributes. The FCSR method is

more similar to the AHP method in the ranking results.

This indicates that the service selection has been done

correctly in the preprocessing phase. The difference is

related to the cases when there is no cloud service in the

Candidate set and the ranking is based on the intersection

of the requirement interval with the service interval in the

Secondary set.

Table 2 Spearman’s rank correlation analysis

AHP FAHP NAHP ANP FANP FCSR (proposed method)

AHP – 0.703 0.797 0.691 0.633 0.882

FAHP 0.703 – 0.903 0.613 0.74 0.72

NAHP 0.797 0.903 – 0.663 0.711 0.754

ANP 0.691 0.613 0.663 – 0.778 0.682

FANP 0.633 0.74 0.711 0.778 – 0.71

FCSR (proposed method) 0.882 0.72 0.754 0.682 0.71 –

FCSR is a proposed method. Therefore, its results are set bold in the table
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4.2 Sensitivity analysis

Sensitivity analysis is conducted to perceive how many

slight changes can affect decisions on a set of equal

assumptions [12]. If these changes have negligible effects

on ranking, then the ranking method is robust; otherwise, it

is sensitive [6]. The sensitivity analysis is useful in cases

where there are uncertain and vague values in ranking

methods [20]. This test analyzes the effects of changes in

the number of quality attributes on ranking results.

According to SMICloud [11], the number of quality attri-

butes has been set to range between 1 and 16. These

attributes are tested on 15 cloud services selected ran-

domly. Figure 7 draws a comparison of FCSR, FAHP,

ANP, FANP, and NAHP with the baseline in the correla-

tion of ranking results. For this purpose, qr is employed by

calculating Spearman’s correlation analysis metric. Like

the optimality test, the AHP result is used as the baseline

[18]. Accordingly, increasing the number of quality attri-

butes decreases the ranking optimality in the FCSR

method. In fact, increasing the number of quality attributes

might increase the mismatch between requirement intervals

and service intervals. Therefore, some differences in

ranking might emerge with the baseline; however, differ-

ences in cloud service ranking are smaller than 0.118. It

can also be concluded that fuzzy and neutrosophic initial-

ization can change the ranking results more than FCSR. As

the qr in FCSR is larger than 0.8 (i.e. very strong) it is

robust. Nonetheless, since qr exceeds 0.6 in other methods,

it can be interpreted as strong.

4.3 Scalability

The scalability test analyzes the reactions to three param-

eters, which are the number of services, the number of

users, and the number of quality attributes. In all of the

tests, user requirements were considered constant to assess

the execution times and number of computational and

logical operations of different methods while only

increasing one parameter.

Increasing the Number of Services here, the tests were

conducted with 2000, 10000, 20000, 40000, 60000, 80000,

and 100000 services. The computational complexity of the

methods can be evaluated based on the number of multi-

plications and logical operations in the algorithms

according to [5, 27]. Computations performed in the AHP

method include pairwise comparisons of services based on

each attribute, weight calculations on each attribute, weight

calculations on each service, and a final ranking of services

[11]. Computations performed in the FAHP method

include pairwise comparisons of services, mean value

calculation for each service, fuzzy weight calculation of

each attribute, de-fuzzification, weight calculation of each

attribute, calculation of the final weight of each service,

and the final ranking [5]. In the NAHP method, computa-

tions include pairwise comparisons of services, calculation

of the mean value of each service, calculation of neutro-

sophic weight, conversion of neutrosophic numbers to real

numbers, calculation of the final weight of each service,

and ranking [41]. The ranking procedure of the ANP

method includes pairwise comparisons of services based on

each attribute, pairwise comparisons of attributes based on

each service, weight calculations on each attribute, weight

calculations on each service, and aggregation of results in

the final matrix [40]. In the FANP method besides all the

steps of the FAHP method, pairwise comparisons of quality

attributes per service, and aggregation of results are also

considered in the ranking procedure [9]. The FCSR method

involves the preprocessing and ranking stages. The pre-

processing stage, includes sorting attributes, constructing

the requirement interval, constructing the service interval,

and comparing the service interval with the requirement

interval. The ranking stage is done with the number of

candidate services similar to the AHP method. Figure 8a

shows the effect of the number of services on computa-

tional and logical operations.

As shown in Fig. 8a, the number of computations

increases as the number of cloud services increases. The

FCSR method has the lowest number of computations due

to the reduction in the number of services in the prepro-

cessing stage. Also, the AHP method has less computation

than ANP. The reason is pairwise comparisons between

quality attributes in each service and aggregation compu-

tations in ANP. On the other hand, AHP and ANP methods

have the lowest number of computations after FCSR.

Therefore, it can be seen that fuzzification and de-fuzzifi-

cation operations require more computations. On the other

hand, the NAHP method has the highest number of
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computations. The main reason is the consideration of

more operations in the neutrosophic than the fuzzy method.

Figure 8b shows the mean result of 30 executions for

each case. Accordingly, FCSR shows lower execution time

and higher scalability in comparison with other methods.

This is due to the fact that in the FCSR method the dis-

proportional services are eliminated before ranking. The

execution times of AHP, FAHP, ANP, FANP, and NAHP

increase dramatically when the number of services has

exceeded 10,000 cloud services. At the same time, FAHP,

FANP, and NAHP methods show longer execution times

than the AHP and ANP methods due to fuzzy and neu-

trosophic calculations.

The FCSR computations process mainly includes

selecting proportionate services and ranking cloud services.

For the selection of proportional services, both user

requirement intervals and quality intervals of all services

are measured. In the ranking process, the residual services

are compared. Table 3 shows the details on the FCSR

execution time. It includes the number of services selected

for ranking, the time spent for selecting proportional ser-

vices (service selection process), and ranking execution

time (ranking process). For instance, 1937 proportional

services were selected for ranking from 10,000 cloud ser-

vices. It took the system 0.3140 seconds (s) to select this

number of services. Moreover, service ranking takes

0.7871 s; thus, the whole execution time is 1.1011 s.

The purpose of scalability measurement is to quantify

the behavior of a cloud-based system when the number of

cloud services increases or demand increases. Here, system

behavior refers to the average system response time. We

also interpolated the diagrams in Fig. 8b to examine the

scalability of the proposed method. The interpolation result

is given in Formulas 6–11.

FCSR : f ðxÞ ¼ 0:1374x3 þ 1:194x2 þ 5:56xþ 5:715;

ð6Þ

AHP : f ðxÞ ¼ 1:828x3 þ 3:888x2 þ 11:4xþ 12:83; ð7Þ

ANP : f ðxÞ ¼ 2:154x3 þ 3:72x2 þ 11:54xþ 14:05; ð8Þ

FAHP : f ðxÞ ¼ 2:075x3 þ 5:872x2 þ 18:01xþ 18:84;

ð9Þ

FANP : f ðxÞ ¼ 2:14x3 þ 5:754x2 þ 18:6xþ 20; ð10Þ

NAHP : f ðxÞ ¼ 2:161x3 þ 7:371x2 þ 26:27xþ 27:66:

ð11Þ

As can be seen, with the increasing number of cloud ser-

vices, the FCSR method increases with a smoother slope

than previous methods.

Increasing the number of users in this test, a large

number (100,000) of cloud services were considered to

perform ranking for a variable number of users (1–50). The

values of user requirements were considered randomly. It

was assumed that users receive their responses sequentially

(in a queue). As Fig. 9 shows, the FCSR method is more

scalable than other methods as the number of users

increases. Since all methods are based on matrix compar-

isons, increasing the number of users affects the number of

computational and comparative operations. The FCSR

method tolerates the time to select appropriate services. As

a result, FCSR ranks candidate services instead of all

services.

According to Fig. 9a, filtering the services reduces

computational and logical operations. Therefore, increas-

ing the number of users has less effect on execution time.

AHP and ANP methods have less execution time than

FAHP, FANP, and NAHP methods. The reason is the

additional parameters for fuzzy and neutrosophic methods

that have a large impact on computational and logical

operations as the number of users increases.

As shown in Fig. 9b, the FCSR method outperforms

other methods, by significantly decreasing the execution

time. The difference in execution time of AHP and ANP

methods (also FAHP and FANP methods) is due to the

difference in the number of calculations and comparisons

Table 3 Details of execution time for FCSR

Number of services Number of services selected for ranking Service selection process (s) Ranking process (s)

2000 461 0.056 0.11

10,000 1937 0.31 0.79

20,000 7876 0.62 1.26

40,000 13,823 1.71 2.49

60,000 21,735 2.44 4.857

80,000 32,391 3.81 7.29

100,000 41,634 5.3 10.4
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Fig. 9 Effect of number of users

on scalability
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of the ANP method with the AHP method. Since the NAHP

method uses the neutrosophic method, because the neu-

trosophic method uses more parameters than the fuzzy

method, it has more computations than the FAHP and

FANP methods. As a result, NAHP has more execution

time.

The number of quality attributes in this test, the number

of quality attributes was changed from 1 to 16. These

attributes were tested on a dataset of a large number

(100,000) cloud services.

Figure 10a shows the number of computational and log-

ical operations in each method by increasing the number of

quality attributes. As mentioned earlier, FCSR has fewer

computational and logical operations than other ranking

methods because other methods perform rankings on all

cloud services. The FCSR performs rankings on selected

appropriate services, which reduces the number of compu-

tational and logical operations. In addition, with increasing

the number of quality attributes, calculations in fuzzy and

neutrosophic methods increase due to the consideration of

fuzzy and neutrosophic parameters and variables. The neu-

trosophic method has more parameters than the fuzzy

method, so it has more calculations. The ANP method has

more calculations than the AHP because the pairwise com-

parison of quality attributes is performed for each service in

the ANP, while the AHP method does not have this step and

this factor increases the number of ANP calculations com-

pared to the AHP. As can be seen, the number of calculations

of the FANP method is up to three quality attributes more

than theNAHPmethod. This is because fuzzy operations and

calculations of the ANP method are more than neutrosophic

operations in less than three quality attributes. By increasing

the number of services to over three attributes, the number of

computational and logical operations of NAHP increases

compared to FANP. This is because increasing the number of

quality attributes has a greater impact on the number of

neutrosophic operations.

Figure 10b compares the mean response time of 30

executions on each method. In the FCSR method, increasing

the number of quality attributes has less effect than other

methods because of less computational and logical opera-

tions. Since the operations of AHP-based methods are

matrix-based, fewer services are effective in computational

and logical operations. With increasing the number of

quality attributes, execution time in FAHP, FANP, NAHP

methods has more increase than AHP and ANP. The reason

is the use of fuzzy and neutrosophic methods to weigh

quality attributes. As can be seen, the execution time in

NAHP has increased by five quality attributes compared to

other methods. The reason is the effect of the number of

quality attributes on the neutrosophic operation.

5 Discussion

In this study, a solution is proposed to address the limita-

tion of uncertainty in user requirements as an opportunity

to rank cloud services efficiently. For this purpose, the

uncertain requirements are converted into requirement

intervals. Services that are not at requirement intervals are

then filtered. The FCSR method was evaluated in terms of

optimality, sensitivity analysis, and scalability.

To evaluate the optimality of the FCSR method, two

parameters of NDCG and Spearman’s correlation analysis

are used. The results in Fig. 6 show that the FCSR opti-

mality at K = 1 and 5 is 100%. At K = 10, the optimality is

98%. At K = 15 and 20, it is 92% and 86%, respectively.

However, the previous methods have less than 80% opti-

mization at K = 20. Spearman’s correlation analysis

parameter is used to calculate the similarity of the results of

the ranking methods in pairs. Table 2 shows that the

ranking similarity of the FCSR method to the AHP method

is 0.882, which is the highest similarity compared to other

methods. The extent of this similarity is interpreted as very

strong. The results show that the operations of fuzzy and

neutrosophic methods reduce the similarity of the ranking

results. For example, the similarity of AHP and FAHP is

0.703 and the similarity of AHP with NAHP is 0.797. The

similarity of AHP with ANP and FANP is 0.691 and 0.633,

respectively. Comparison of the ranking results of different

methods with baseline shows that the FCSR method is

more optimal than other methods. It can be concluded that

the preprocessing stage selects the appropriate services

with high accuracy.

Sensitivity analysis was used to evaluate the effect of

small changes in the ranking results. For this purpose,

Spearman’s correlation analysis parameter was used to

calculate the similarity of ranking results. As shown in

Fig. 7, the sensitivity of the FCSR method is finally 0.118.

The reason for this difference is that increasing the number

of quality attributes causes a mismatch between the

requirements interval and service quality interval. How-

ever, the sensitivity of the NAHP, FAHP, ANP, and FANP

methods is finally 0.203, 0.297, 0.34, and 0.39, respec-

tively. This shows that the FCSR is more robustness than

other methods.

To evaluate scalability, two parameters of execution

time and the number of computational and logical opera-

tions are used. As the number of cloud services increases,

Figs. 8, 9, and 10 show that the number of computational

and logical operations in the FCSR is significantly lower

than in previous methods, which reduces response time.

For example, with the increase in the number of cloud

services, Fig. 8 shows that the number of computational

and logical operations with 105 cloud services for FCSR
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and AHP methods are 1:7� 1011 and 8:1� 1011, respec-

tively. This shows that the FCSR method has an 81%

reduction in the number of computational and logical

operations compared to the AHP method. In addition,

scalability experiments show that fuzzy and neutrosophic

operations have a large effect on the number of computa-

tional and logical operations in numerous cloud services,

which increases execution time. The number of computa-

tional and operational operations of NAHP and FAHP

methods are 3:96� 1012 and 2:9� 1012, respectively.

Therefore, the number of computational and logical oper-

ations of NAHP and FAHP methods is 4.89 and 2.58 times

the AHP method, respectively. Similarly, the effect of

preprocessing, fuzzy and neutrosophic operations with an

increasing number of users, and the number of quality

attributes can be seen in Figs. 9 and 10.

6 Conclusion

This paper has proposed the FCSR method to rank cloud

services efficiently, by eliminating the services that are

disproportionate to user requirements. It is based on the

creation of user requirement intervals. Correspondingly,

the interval of cloud services is created on the basis of user

requirements and service quality. Accordingly, the services

that are more proportionate to user requirements are

selected for ranking. The evaluations have considered

scalability, optimality, and robustness. According to the

scalability test results, the FCSR runtime has been much

shorter than those of the previous methods when performed

for a large number of cloud services. At the same time, the

ranking optimality analysis has indicated that the FCSR

method is highly correlated with the baseline ranking (very

strong). Finally, FCSR has a considerable rate of robust-

ness to changes in the number of quality attributes.

As user feedbacks affect service selection in addition to

the quality attributes of cloud services, we intend to expand

our method by considering users feedbacks on the services

that have been used. User feedback is taken into account to

show the level of user satisfaction with the service. It could

be considered as a multi-objective problem apart from

quality values by integrating multi-objective algorithms

and the FCSR method.
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