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Abstract
Data availability represents one of the primary functionalities of any cloud storage system since it ensures uninterrupted

access to data. A common solution used by service providers that increase data availability and improve cloud performance

is data replication. In this paper, we present a dynamic data replication strategy that is based on a hybrid peer-to-peer cloud

architecture. Our proposed strategy selects the most popular data for replication. To determine the proper nodes for storing

popular data, we employ not only the feature specifications of storage nodes, but also the relevant structural positions in the

cloud network. Our simulation results show the impact of using features such as data popularity, and structural charac-

teristics in improving network performance and balancing the storage nodes, and reducing user response time.
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1 Introduction

The massive increase in data generation in recent years has

led to the need for cost-effective solutions for data storage

systems [1]. An overriding requirement of such systems is

that timely access to data is guaranteed [2]. Lack of access

to data can have severe consequences. For example, in

medical emergency applications, patients’ vital information

is to be available to physicians whenever required [3]. In

other activities such as research collaboration, it is desired

that researchers share and use their findings wherever

needed [4].

Cloud computing offers on-demand virtualized resour-

ces, such as computing nodes and storage spaces, to users

who are billed on a fee-for-service model with negotiated

service quality. In general, service quality criteria are

expressed in Service Level Agreements (SLAs) between

cloud providers and users. A typical highest priority item in

such SLAs is data availability. This item deals with data

access assurance, and is measured as the probability of data

availability [5]. The second most common item in typical

SLAs is related to system response time.

Cloud providers may have to pay penalties if they fail to

provide users with the negotiated data availability. They

may also face penalties for poor network performance such

as high response times to users’ requests. As a result, it is

important to improve the quality of cloud services to pro-

mote both user satisfaction and cloud profitability.

In distributed storage systems, each node can handle at

most a limited number of requests simultaneously. If a

request is sent to a node with a high workload, the request

may be delayed until the previous requests are completed

[6]. Well-designed strategies distribute users’ requests

among storage nodes to decrease users’ response times. In

this paper, we consider the response time to be the interval

between the request initiation and the time the node

receives the response to that request [8]. One such strategy

is to use well-balanced placement of replicated data on the

storage nodes. This usual results in balanced network node

workloads, which in turn improves network performance

[7].

Data replication strategies aim to improve data avail-

ability by creating identical copies of data, and placing

them in distributed geographical locations. In this way,

requested data can be accessed from any data replica [1, 2].

Data replication strategies have to address four main

challenges [9]:
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1. When is the appropriate time to replicate data? If the

number of requests for data access increases prior to

the creation of data replicas, this can result in increased

response times. Thus, the replication process must be

done before network performance degrades.

2. Which data need to be replicated? Replicating data

which are not frequently accessed has no positive

impact on network performance and will waste storage

space. Although it is recommended that all data have at

least one replica as backup to avoid data loss due to

failure of storage nodes, data having high access rates

should be targeted for the replication process.

Selecting data for replication is mostly based on

prediction and popularity techniques. In the predic-

tion-based methods, the data that are forecast to be

accessed by a majority of users in the near future

using locality properties are replicated. In the popu-

larity-based methods, data that had the highest access

rates in the past are replicated [10].

3. How many replicas should be created? The number of

copies used to reduce response time should be balanced

with the need to minimize the required storage space.

4. Which nodes should be selected to store the replicated

data? The nodes used to store replicated data are

mostly chosen based on various characteristics such as

available storage space and distance from users.

Depending on how they address the challenges listed,

data replication strategies can be grouped into two main

categories: (1) Static replication strategies are those that

executed the same way regardless of changes in network

conditions. Despite their ease of implementation, static

strategies are rarely used in dynamic architectures such as

cloud storage systems; (2) Dynamic replication strategies

consider network conditions such as the status of storage

nodes. Despite their higher computational costs, dynamic

strategies increase network performance more than static

ones [11].

Note that replication strategies can replicate data fully or

partially. While all the data are replicated in full-replication

strategies, partial-replication strategies only focus on high

demand data to reduce related storage costs [10].

Recently, Peer-to-Peer (P2P) architecture has been

considered an attractive alternative for cloud storage sys-

tems. In this type of architecture, nodes of the system are

made up of independent nodes connected via the Internet.

P2P cloud storage systems can offer advantages over those

of traditional client–server architectures. For example, if a

node fails to respond to a user ‘s request, other nodes

holding the same data can respond to that request. How-

ever, a well-positioned node in a P2P structure may fail to

serve any requests due to such features as low processing

capacity. On the other hand, a node may be hard to access

if it is not located in a proper structural position in the

network, even if it has optimal feature characteristic. As a

result, a replication strategy in a P2P storage system must

consider both the features and structural status of nodes.

In this paper, we propose a full dynamic popularity-

based replication strategy for P2P cloud storage systems

that increases data availability and improves network per-

formance in load balancing and response time. Our strategy

aims to select the most popular data for replication and

determine the proper nodes for storing the popular data.

Additionally, the proposed strategy employs both feature

and structural status to select the nodes for storing the

popular data.

The outline of this paper is as follows: A literature

survey is given in Sect. 2, followed by our proposed

methodology in Sect. 3. Simulation results are presented in

Sect. 4, and conclusions and future work are discussed in

Sect. 5.

2 Literature Review

In P2P architecture, the nodes i.e. peers, may act as inde-

pendent nodes if the peer nodes are built from users’ own

computer systems in such a way that each node can act as a

server or client [12, 13].

To model the P2P architecture, undirected connected

graphs are considered. We denote the P2P graph as

GðP;EÞ, where P is a non-empty set of graph nodes and E

is a set of links connecting the nodes [14].

In contrast to client–server architecture, there is no

single point of failure in P2P structures. This is because all

nodes can act as a server. A P2P network can also be easily

scaled up by the addition of a new peer node with low cost

[15, 16]. Additionally, the small-world phenomenon

applies to P2P networks, which means the data can be

transferred across the network in a reasonable time. In

general, in the networks having small-world behavior, the

average of the highest distance between two nodes (d) can

be estimated using the following equation:

hdi � lnN

lnhki ð1Þ

where, N is the number of nodes in the network and k is

the average node degree.

Despite the advantages mentioned, P2P architecture

suffers from some drawbacks. It mostly requires a complex

management system, since the network is made up of

different computer systems. Furthermore, each node can

freely and randomly join or leave the network at any time,

which negatively impacts data availability [17].
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P2P structure can be classified into four categories [18]

which are unstructured, structured, super-peer and hybrid

P2P networks. In the following, the replication strategies of

different P2P architectures are discussed in detail.

2.1 Replication strategies in unstructured P2P
networks

In unstructured P2P networks, the nodes do not have the

information related to the geographical locations of other

nodes. In this way, searching for a piece of data is done by

continuous forwarding of search messages from one node

to its neighbors. As a result, successful hits for specific data

are not guaranteed since predefined mappings between data

and their locations are not provided [3, 11].

In [19], a zone-based data replication is introduced

while the whole network is divided into sub-zones based on

the number of nodes in the network. It is assumed that each

node has the information about the number of access

requests for its local data. In this way, the popularity of the

local data is calculated and broadcasted to the network.

Nevertheless, the access time and the size of the data are

not considered. Furthermore, as the nodes have no global

information about the network, data may be replicated in

different sub-zones redundantly. Finally, neither the feature

nor the structural status of nodes is considered for storing

the replicated data.

In [20], a data replication strategy for utilization of

unused storage space is discussed. When the replication

process starts, every node gathers the status of each node

from the network to find the history of data transferred to

other nodes. In this way, data are not replicated only in a

group of well-configured nodes. The nodes having enough

space to store the replicated data are selected. However, the

structural score of each node is not taken into account in

this strategy.

2.2 Replication strategies in structured P2P
networks

In the structured P2P networks, the mappings between the

data and their locations are controlled using key-value

pairs, kept in Distributed Hash Tables (DHT). DHTs can

then be utilized to locate the data faster.

In [21], a replication strategy called CORP is suggested

to decrease the load on busy nodes. CORP replicates the

data that have high access rates. On the other hand, the data

that have frequent updates are replicated as low as possible

to minimize the cost of ensuring consistency among

replicas. In the creation phase, CORP considers both the

data popularity and frequency of update on the data. In the

placement phase, the created replicated data are placed on

nodes with highest load capacities and closest distance to

replicas that store the same data. As a result, CORP strat-

egy reduces the cost of frequent updates. Nevertheless,

storing the replicated data in the same geographical regions

makes the data vulnerable to failures such as natural dis-

asters. This shortcoming reduces the data availability and

influences network performance especially for the requests

originated from different geographical areas.

In [22], a distributed data replication model is presented.

The replicated data is placed on the nodes, where the

lowest delay for data access is obtained. Additionally, this

model uses balanced-tree data structure to search for

replicated data. Nevertheless, it is assumed that no changes

are happened in the network which is not realistic due to

the churning nature of cloud network.

2.3 Replication strategies in super-peer P2P
networks

In the super-peer P2P architecture, the nodes are catego-

rized into groups which are managed by super-peer. The

super-peers are the nodes having more processing power,

bandwidth, and storage spaces compared to others. Each

super-peer keeps the group information such as the nodes

characteristics and the data stored in them. In this way, the

super-peers are able to manage search requests initiated by

the nodes within the groups [3].

In [23], an interest-based data replication strategy

named SWARM is introduced. In SWARM, the nodes are

grouped into colonies using users’ common interests to

share data among them. Each group of nodes are assigned

to a super-node to deal with the replication process.

However, SWARM does not consider the dynamic char-

acteristic of cloud storage system due to its low

dynamicity.

In [24], a data replication strategy is introduced to pre-

pare a predefined level for data availability and minimize

the response time. The network nodes are grouped into

virtual clusters. Stronger nodes, in terms of processing

power and storage capacity, called CH, are selected to

manage each cluster. Initially, each CH computes the local

data availability which means the ratio of the number of

replicas in the cluster to the cluster size. Afterwards, global

data availability is calculated using communications

among CHs. Then, the data with lower availability are

considered as rare data, and selected for replication.

However, this model assumes the nodes have no limitations

in their storage spaces.. Moreover, the structural status of

the nodes is not considered in this model.
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2.4 Replication strategies in hybrid P2P
networks

Unstructured P2P networks are rarely implemented in a

fully-distributed manner. In contrast, a combination of

peer-to-peer and client–server models called the hybrid

P2P networks are used. Hybrid models employ centralized

servers to monitor accessing to data. For example, in P2P

structure of Skype, when a node searches data, it sends

message to the centralized servers [12]. Then, the servers

identify the nodes stored the requested data. Finally, the

initial nodes receive the requested data by direct commu-

nication with the storage nodes [3, 18].

In [25], a model named DROPS is studied. DROPS aims

to increase the network performance and improve the

security of users’ data. In DROPS, the users’ data are

divided into blocks to increase data security. Nevertheless,

fragmentation reduces data availability since all storage

nodes holding any blocks of data must be available when

needed. To select the proper node for storing the popular

data, the centrality characteristic related to the structural

status of node is applied. However, only one replicated data

for each fragmentation is created which makes data

availability at risk.

In [26], a distributed strategy named DARS, is sug-

gested for data replication. Each node keeps the access rate

of its stored data. Before the node workload surpasses the

threshold, the data with the highest requests is replicated

using fuzzy logic. Then, the replicated data is placed on the

neighbor nodes with a lower workload and higher degree.

However, the replicas aggregation in one region decreases

the data availability. This is because, the localization

strategy of DARS increases the access time for users in

different geographical areas.

Table 1 illustrates a comparison of the discussed data

replication strategies in the P2P architecture based on the

main criteria.

3 The proposed replication strategy

In this section, we propose a dynamic data replication

strategy using a hybrid P2P architecture for cloud storage

system. In the proposed strategy, any request for accessing

a piece of data will be carried out by supper-peer nodes. In

this way, the specification of the replicas is sent to the user.

The super-peers are aware of the information about each

data such as its size, number of replicas, and the access rate

in each period of time. As a result, the super-peers are able

to calculate the popularity changes for each data. Note that,

any changes on data popularity and the scores related to the

candidate nodes are performed at the start of a fixed period

in the network activity.

Our proposed strategy consists of two main parts:

1. Determining the most popular data for replication: The

most popular data are replicated to reduce the response

time to access the data and distribute the workload

among storage nodes. Additionally, any replicated data

that are no longer in interest of different users is

removed to free the storage spaces and use it

efficiently.

2. Determining the proper nodes for storing the most

popular data: The best nodes are selected according to

the feature specifications and the positional status of all

storage nodes in the network.

In the following, each part of the proposed strategy is

discussed in detail.

Table 1 Comparison of data replication strategies in P2P architecture, that and indicate the parameter is considered and not considered

respectively

Reference P2P architecture type Load balancing Response time Availability Node status

Feature status Structural status

[19] Unstructured 7 7 4 7 7

[20] Unstructured 4 7 4 4 7

[21] Structured 7 4 4 7 4

[22] Structured 7 4 4 4 7

[23] Super-peer 4 7 4 4 7

[24] Super-peer 4 4 4 4 7

[25] Hybrid 7 4 4 7 4

[26] Hybrid 4 7 4 4 4
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3.1 Determining the most popular data
for replication

Generally, different data do not have the same interest to

users. In fact, in practice only a small subset of data is of

interest to a large subset of users. Thus, it is important to

calculate the popularity of each data and replicate only the

data that are of more interest to the users. On the other

hand, the pattern of access requests for a particular data

will not remain constant over the time. For example, ana-

lyzing Google searches on two different programming

languages, the Perl and the Python, from 2004 to 2020

shows that these two programming languages have differ-

ent access ratios. Perl programming language search was a

dominant trend in 2004–2006, but this trend \ lost its

attraction afterwards. In this way, we can consider the data

related to the Perl programming language as ‘‘cool’’ data.

This means these data were only attractive in the past but

no longer. Given that most of the recent searches are now

focused on Python (compared to Perl), we can consider the

data related to Python programming language as ‘‘hot’’

data.

It is important to identify both the hot and cool data in

the replication strategy. This is because, we can replicate

the hot data to increase the network performance, and

remove the replicated data related to the cool data to free

the storage space without downgrading the performance.

The number of access requests for a piece of data affects

its popularity directly. However, the access rate is also

related to the total number of requests sent in the network.

Using the access rate, a more accurate perspective can be

obtained for identifying the popularity of data. On the other

hand, the quantity of used storage space is vital in the P2P

networks. Thus, we must determine the size of each data

before replication. In this way, we consider the smallest

stored data in the network.

Figure 1 is the algorithms of the proposed strategy for

determining the most popular for replication. The popu-

larity change of the ith data in the nth period is calculated in

Eq. (2).

DPn f ið Þ ¼

þ NRn f ið Þ
TNRn � min Size fð Þð Þ

Size f ið Þ

� �
;

NRn [ 0

� a � TNRn � 1

TNRn

� �� �
;

Otherwise

8>>>>><
>>>>>:

ð2Þ

where,

• NRn fið Þ is the number of access requests for the data

file i in the nth period;

• TNRn is the total number of access requests in the nth

period for all the data in the network;

• Sizeðf iÞ is the size of the data file i.

• min Size fð Þð Þ is the smallest data file in the network;

• Parameter a, which ranges from 0 to1.

In our proposed strategy, if the popularity change of a

data file exceeds 1, the data file is considered as ‘‘hot’’.

Note that, the number of replications for a piece of data is

determined based on the integer part of the popularity

changes. On the other hand, when the popularity of a data

file is less than -1, the data file is determined as ‘‘cool’’. In

this way, one of its replicated data is eliminated randomly

provided that the availability of a cool data file does not

become less than the desired threshold for data availability.

A minimum replica number for each data file must be

determined and kept unchanged. This number has a direct

correlation with data availability and users’ desired avail-

ability for the data files. In this way, the minimum required

replicas for each data are calculated in Eq. (3):

Rmin f ið Þ ¼ d 1

1� Avth
� P Fð Þ þ Hoff

� �
e ð3Þ

where,

• Avth is the desired threshold for data availability which

is a decimal number;

• Hoff • is the offline hours of the storage nodes which is

related to the churn behavior of peers in the P2P

structure;

• PðFÞ• is the average failure probability of the storage

nodes, calculated in Eq. (4):

PðFÞ ¼
PN

i¼1ðPðFiÞÞ
N

ð4Þ

where,

o PðFiÞ is the failure probability of the storage node i;

o N is the number of nodes in the network.

Note that, the average lifetime of storage nodes or any

hardware is determined by their factories. Thus, the failure

probability for the ith storage node in a year is calculated in

Eq. (5):

PðFiÞ ¼ AFRi ¼ 1� exp
�8760

MTTFi

� �
ð5Þ

where,

• AFRi is the annual failure rate.

• MTTFi is the average failure time.

• 8760 is the number of hours per year [2].

The offline hours, expressed as Hoff in Eq. (3), is the

offline hours of storage nodes in 24 h. Hoff is calculated for

the node i in Eq. (6):
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Hoff ¼
PN

i¼1ð
Hi

off

24
Þ

N
ð6Þ

If the number of replicas for a cool data becomes less

than the number calculated in Eq. (3), the replicated data

related to the cool data is not deleted. In this condition, the

popularity of the cool data is set to 0.

3.2 Determining the proper nodes for storing
the most popular data

It is important to place the created replicated data of the

most popular data on proper nodes. In our proposed strat-

egy, the proper nodes are determined using scores calcu-

lations for each node which are based on two different

scores as the following:

1. The first score is calculated using the nodes feature

specifications called feature score. The feature

specifications include nodes workload and their avail-

able storage space.

2. The second score called structural score, consider the

position of storage node in the network. The structural

score also informs other storage nodes in the network

and the links between them. In other words, the

positional status of all storage nodes effects the

structural score of each node.

The total score of storage nodes is computed based on

the feature and structural scores. This calculation is

demonstrated in Eq. (7):

ScTotal nð Þ ¼ h � ScStructuralðnÞ½ � þ ½ 1� hð Þ
� ScFeature nð Þ� ð7Þ

where,

• Parameter h, called impact factor, determines the

significance of the feature and structural scores. If its

value gets close to 0, it indicates the priority of the

Fig. 1 Determining the most

popular data for replication
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feature score versus the structural score. On the other

hand, the structural score of the storage nodes can be

prioritized over the feature score by assigning its value

close to 1.

Figure 2 is the algorithms of the proposed strategy for

determining the proper nodes for storing the most popular

data. In every time interval of the network activity, all

storage nodes calculate their scores. Each node has all the

information needed for the computation of the feature

score. Moreover, the structural score of each storage node

is computed using super-peer(s) support. Note that, super-

peer(s) has the global information of the P2P network.

Finally, when the feature and.

structural scores of the storage nodes are calculated, the

total scores can be obtained. In the following, each score is

elaborated in detail.

3.2.1 Feature score

In every time interval, the feature score of the storage

nodes is calculated using the feature specifications which is

given in Eq. (8):

ScFeatureðnÞ ¼ b � cn � an
kn � sn

� �
ð8Þ

where,

• b indicates the importance of feature score versus

structural score;

• kn presents the access ratio received by the node;

• sn shows the average response time of the node for the

received access requests;

• cn specifies the number of requests that the node can

respond simultaneously. In general, each node can

respond to a limited number of simultaneous requests;

• an presents the ratio of the node activities in the current

time interval. an is important in the P2P architecture

since a storage node can get offline and inaccessible at

some points.

3.2.2 Structural score

The position of the storage nodes and how they connect

with other nodes determine the structural scores. Note that,

storage nodes are connected via an undirected link in an

internet-based network which indicates the communica-

tions of the nodes in both directions. Moreover, the dis-

tance between two nodes affects their communications

quality. Since shorter connection between two nodes

improves network performance, we consider the reverse of

link length for the weight of each link.

On the other hand, the centrality metric demonstrates the

importance of nodes according to their structure status in

the network graph [27, 28]. If a storage node has a higher

centrality, it has prominent impact on the network. How-

ever, the type of centrality metric is based on the network

topology. In this way, the evidential centrality is one of the

centrality metrics that can be applied to weighted undi-

rected graphs [29] which is accordance to our P2P graph.

The evidential centrality is based on Dempster-Shafer

theory. In this theory, each problem consists of a set of

hypotheses as shown in Eq. (9):

U ¼ fH1;H2g ð9Þ

The power set of the problem set, stated in Eq. (9),

includes all the possible states of the hypotheses which is

named as frame of discernment [29] which are as the

following:

1. No hypothesis occurs.

2. If H1 occurs

3. If H2 occurs

4. Both the H1 and H2 occur

Fig. 2 Determining the proper

nodes for storing the most

popular data

Cluster Computing (2022) 25:401–416 407

123



The possible hypotheses are demonstrated in

Eq. (10):

2U ¼ £; H1f g; H2f g; H1;H2f gf g ð10Þ

Generally, the probability mass function assigns the

value from 0 to1 for each member of the power set. The

assigned value indicates the occurrence probability of each

member [29]. Furthermore, the mass value for the null

member is zero. Finally, the sum of the assigned mass

values is equal to 1. The characteristics of mass function

are presented in Eq. (11):

m : 2U ! 0; 1½ �;m £ð Þ ¼ 0;
X
A22U

m Að Þ ¼ 1 ð11Þ

In the proposed strategy, we employed centrality metric

to calculate the structural score. Based on the Dempster-

Shafer theory, the structural score in our strategy is defined

using the two problems related to degree and weight. The

number of links connected to each node is used in the

degree problem. For the weight problem, the sum of the

weights of links connected to each node is considered.

Similar to Eq. (9), the hypotheses l and h for the degree

problem is illustrated in Eq. (12):

di ¼ fl; hg ð12Þ

where,

• The hypothesis l indicates the probability that the node i

is low-effective in the network based on its degree;

• The hypothesis h show the probability that the node i is

high-effective in the network based on its degree.

Similar to Eq. (10), the power set of the degree problem

set for the node i is shown in Eq. (13):

2di ¼ £; lf g; hf g; l; hf gf g ð13Þ

The probability mass function assigns a value between 0

and 1 (inclusively) to each member of the power set. In this

way, the max–min normalization is used which is displayed

in Eq. (14) [30]:

Anormal ¼
jA� min Sð Þj

max Sð Þ � min Sð Þ � U � Lð Þ þ L ð14Þ

where,

• S is the set of numbers;

• A is a member of the set S;

• U is the upper bound of the range;

• L is the lower bound of the range;

• max(S) is the maximum value in the set S;

• min(S) is the minimum value in the set S.

The lower and upper bounds of the mass function are 0

and 1, respectively. When all members have equal value,

the denominator of min–max normalization gets 0. To

avoid this condition, a small positive value as e is added to

denominator. Hence, the modified form of normalization

function is illustrated in Eq. (15):

Anormal ¼
jA� minðSÞj

max Sð Þ � min Sð Þ þ e
ð15Þ

To determine the probability that member A is a high-

effective member in the set, the value of member A is

compared to the minimum value of the set members. In this

way, the probability that storage node i with the hypothesis

h is a high-effective node according to its degree can be

calculated using Eq. (16):

mdiðhÞ ¼
jki � kmj

kM � km þ e
ð16Þ

where,

• ki is the degree of node i;

• km and kM are the lowest and the highest degrees of the

nodes in the network respectively.

This is also shown in Eq. (17) and Eq. (18):

km ¼ minfk1; k2; . . .; kNg ð17Þ
kM ¼ maxfk1; k2; . . .; kNg ð18Þ

A member is compared to the maximum value in the set

to detect the probability of its low-effectiveness which is

illustrated in Eq. (19):

Anormal ¼
jA� maxðSÞj

max Sð Þ � min Sð Þ þ e
ð19Þ

The probability that a storage node is a low-effective

node using its degree is calculated similarly. The value of

the hypothesis l in the degree problem is obtained in

Eq. (20):

mdiðlÞ ¼
jki � kMj

kM � km þ e
ð20Þ

Since the total value of the mass function for a power set

should be equal to 1, the value of mdiðl; hÞ can be calcu-

lated using Eq. (21):

mdi l; hð Þ ¼ 1� ½mdi lð Þ þ mdi hð Þ� ð21Þ

Additionally, the weight problem of the node i can be

defined using Eq. (22):

wi ¼ fl; hg ð22Þ

where,

• The hypothesis l shows the probability that node i is

low-effective in the network based on its weight;

• The hypothesis h indicates the probability that the node

i is high-effective in the network based on its weight.
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Moreover, the problem power set for the weight problem

is presented in Eq. (23):

2wi ¼ £; lf g; hf g; l; hf gf g ð23Þ

The probability that node i is a high-impact node

according to its weight is calculated according to Eq. (15).

Specifically, the value of hypothesis h for the weight

problem is obtained in Eq. (24):

mwiðhÞ ¼
jwi � wmj

wM � wm þ e
ð24Þ

where,

• wi is the weight of the node i;

wm and wM are the minimum and maximum weights of

the nodes in the network as shown in Eq. (25) and (26):

wm ¼ minfw1;w2; . . .;wNg ð25Þ
wM ¼ maxfw1;w2; . . .;wNg ð26Þ

The probability that a storage node such as node i has a

low-effect in the network based on its weigh is calculated

in Eq. (27):

mwiðlÞ ¼
jwi � wMj

wM � wm þ e
ð27Þ

Using Eq. (11), the total value of the mass function in

each power set problem should be equal to 1. Hence, the

value of mwiðl; hÞ is calculated in Eq. (28):

mwi l; hð Þ ¼ 1� ½mwi lð Þ þ mwi hð Þ� ð28Þ

The probability that a node is high-effective in the

network is obtained by combining the hypotheses h for

both degree and weight problems. This is done by applying

the Dempster rule of combination theory given in Eq. (29).

The Dempster rule of combination for our hypotheses is

also shown in Table 2.

mi hð Þ ¼ 1

1� k

X
A¼miðhÞ

mdiðhÞ:mwiðhÞ; k

¼
X
A¼£

mdi hð Þ:mwi hð Þ;A ¼ mdiðhÞ \ mwiðhÞ ð29Þ

The probability that the node i is low-effective in the

network, is calculated by unifying the hypotheses l for both

degree and weight problems as is shown in Eq. (30):

mi lð Þ ¼
1

1� k

X
B¼miðlÞ

mdiðlÞ:mwiðlÞ; k ¼
X
B¼£

mdi lð Þ:mwi lð Þ;B

¼ mdiðlÞ \ mwiðlÞ
ð30Þ

Finally, the structural score of the storage node i is

calculated based on the evidential centrality given in

Eq. (31):

ScStructural ið Þ ¼ mi hð Þ � miðlÞ ð31Þ

In the following, the structural score in a sample net-

work, illustrated in Fig. 3) is calculated using the proposed

strategy.

As discussed, the minimum and maximum degree of this

sample network are achieved using Eq. (17) and Eq. (18)

respectively:

km ¼ min 1; 2; 3f g ¼ 1

kM ¼ max 1; 2; 3f g ¼ 3

The probability that the storage node A is a high-ef-

fective node in the network based on its degree is calcu-

lated using Eq. (16).

mdA hð Þ ¼ 1� 1j j
3� 1þ 0:01

¼ 0

Using Eq. (20), the probability that the node A is a

valuable storage node according to its degree is shown in

the following:

mdA lð Þ ¼ 1� 3j j
3� 1þ 0:01

¼ 2

2:01

Hence, the value of mdAðl; hÞ according to Eq. (21) is

illustrated below:

mdA l; hð Þ ¼ 1� 0þ 2

2:01

� �
¼ 0:01

2:01

Table 2 The probability mass

functions based on the

Dempster rule of combination

mdi

mwi

l; hf g ¼ 1� lf g þ hf g½ � fhg flg

flg lf g \ lf g ¼ flg
mdi lð Þ � mwiðlÞ

hf g \ lf g ¼ £

mdi hð Þ � mwiðlÞ
l; hf g \ lf g ¼ flg

mdi l; hð Þ � mwiðlÞ
fhg lf g \ hf g ¼ £

mdi lð Þ � mwiðhÞ
lf g \ hf g ¼ £

mdi lð Þ � mwiðhÞ
l; hf g \ hf g ¼ fhg

mdi l; hð Þ � mwiðhÞ
fl; hg lf g \ l; hf g ¼ flg

md lð Þ � mwiðl; hÞ
hf g \ l; hf g ¼ fhg

mdi hð Þ � mwiðl; hÞ
l; hf g \ l; hf g ¼ fl; hg

mdi l; hð Þ � mwiðl; hÞ
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In the proposed strategy, the weights of nodes are

specified as: AB ¼ 1
10
, BC ¼ 1

40
, BD ¼ 1

10
, and CD ¼ 1

25
.

Furthermore, the normalized links weights are AB ¼ 4,

BC ¼ 1, BD ¼ 4, and CD ¼ 1:6. Using Eq. (25) and

Eq. (26), the minimum and maximum weights are obtained

as the following:

wm ¼ min 2:6; 4; 5:6; 9f g ¼ 2:6

wM ¼ max 2:6; 4; 5:6; 9f g ¼ 9

Using Eq. (24), the probability that node A is a high-

effective node in the network based on its weight is com-

puted as what is below:

mwA hð Þ ¼ 4� 2:6j j
9� 2:6þ 0:01

¼ 1:4

6:41

Using Eq. (27), the probability that the storage node A

does not have structural impact according to its weight is

calculated as the following:

mwA lð Þ ¼ 4� 9j j
9� 2:6þ 0:01

¼ 5

6:41

mwA l; hð Þ ¼ 1� 1:4

6:41
þ 5

6:41

� �
¼ 0:01

6:41

Using Dempster rule of combination given the Eq. (29),

Eq. (30), and Table 2, we obtain mA hð Þ ¼ 0:0014 and

mA lð Þ ¼ 0:9983. Consequently, the structural score of node

A is obtained as what is below:

ScStructural Að Þ ¼ 0:0014� 0:9983 ¼ �0:9969

This negative value shows that the structural status of

storage node A is unsuitable in the network. In other words,

accessing the data stored in node A is not affordable for

users. Similarly, the structural score of node B is 1.0015.

Thus, the node B is an important node in the network

which is aligned with Fig. 3 that the node B acts as a hub in

the network. Using Eq. (7) and Eq. (8), the total score of

node A and B is demonstrated in Table 3.

As shown in Table 3, if the parameter h gets close to 0,

the total score of node A increases to more than node B

score. This is because, the feature score of node A is higher

than node B. On the other hand, by increasing the param-

eter h, the importance of node B compared to node A is

proved.

In our proposed strategy, the parameter h controls the

impact of feature or structural scores of storage nodes.

Hence, the best value for the parameter h can be adjusted

flexibly according to the network conditions.

4 Model evaluation

To evaluate the proposed strategy, we have used the

CloudSim simulation toolkit. Table 4 shows the configu-

ration specifications of the virtual machines used in the

simulation.

The configuration specifications of the storage nodes are

given in Table 5.

In CloudSim, users’ access requests are sent as cloudlets

in the network. The configuration specifications of cloud-

lets are shown in Table 6.

The number of data files is randomly applied in this

simulation with its size ranging from 1 to 1024 MB. To

simulate the users’ access rate for each data, the normal

distribution function is used.

We compared our proposed strategy with DROPS [25],

since DROPS is based on hybrid P2P architecture. Addi-

tionally, the random placement strategy is used for com-

parison. This strategy places the created replicated data

randomly on the storage nodes [22].

Figure 4 compares the average number of replicas ver-

sus the time interval for the proposed strategy, DROPS [25]

Fig. 3 A sample network

Table 3 The scores of nodes A and B related to the network shown in

Fig. 3

Storage node A B

Feature score 1.7 1.1

Structural score - 0.9969 1.0015

Total score (h ¼ 0:1Þ 1.4303 1.0901

Total score (h ¼ 0:2Þ 1.1606 1.0803

Total score (h ¼ 0:3Þ 0.8909 1.0704

Total score (h ¼ 0:5Þ 0.3515 1.0507

Total score (h ¼ 0:9Þ - 0.7272 1.0113
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and random placement strategy. Note that, the unavail-

ability probability of the storage nodes in the proposed

strategy is set to 0.3.

As shown in Fig. 4, the consumption of the storage

spaces in the proposed strategy are more than the other

models.

This is because, the proposed strategy considers the

users’ offline hours and the nodes failure probability. This

accommodates with the real condition since it is related to

the churn behavior of the P2P networks’ users. Addition-

ally, DROPS [25] and random placement strategy generate

a fixed number of replicas for all the data which is not

appropriate for the dynamic nature of cloud network.

For the proposed strategy, the average number of

replicas compared to the file removal rate i.e., the param-

eter a in Eq. (2), is illustrated in Fig. 5.

Note that, PF notation denotes the failure probability of

storage nodes in Eq. (4) and Hoff is the average ratio of the

node offline hours per day as described in Eq. (6). The sum

of these two parameters shows the unavailability proba-

bility of the storage nodes. In other words, the number of

replicas can be examined compared to the unavailability

probability of nodes using Fig. 5.

As shown in Fig. 5, using a constant value for parameter

a, when the unavailability of storage nodes increases, the

average number of replicas increases.

For example, if the parameter a is 0.2 and the sum of PF

and Hoff are 0.1 and 0.5, the average number of replicas of

the data files are 4.4 and 11.9, respectively. Moreover, by

increasing the parameter a and keeping a constant value for

Table 5 The specifications of storage nodes

Storage capacity (GB) 15–25

Maximum transfer rate (MB/s) 100–150

Latency (s) 3–5

Annualized failure rate (%) 3–5

Table 6 The specifications of cloudlets

Cloudlet length (million instructions) 1000–5000

Cloudlet size (byte) 100–400

Processing elements count 1–2

Fig. 4 The average number of replicas versus the network activity in

the proposed strategy compared to DROPS [25] and random

placement strategy

Fig. 5 The average number of replicas versus the file removal rate (a
in Eq. (2)) in the proposed strategy

Table 4 The specifications of virtual machines

Processing elements (PE) 1–2

PE capacity (MIPS) 1000–1500

RAM (MB) 512–1024

Bandwidth (bit/s) 1000–4000

Virtual machine monitor Xen
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the node’s unavailability probability, the number of repli-

cas reduces. For instance, if the parameter a is 0.1 and 0.9

and the sum of PF and Hoff are equal to 0.1, the average

number of replicas is 4.3 and 2.9, respectively.

The load balancing of storage nodes versus the param-

eter h (in Eq. (7)) using the proposed strategy is shown in

Fig. 6. Parameter h is the impact factor related to the

impact of feature and structural scores. When the param-

eter h gets close to 1, the structural score of nodes is pri-

oritized over the feature score, and vice versa.

Note that, Std notation indicates the standard deviation

of data access in a normal distribution. The lower values

for Std denotes that many accesses are requested for a small

group of data. On the other hand, a more distributed access

pattern for the data results in higher values for Std.

As presented in Fig. 6, the load balancing of nodes is

increased by considering both the feature and structural

scores of storage nodes in the proposed strategy. This is

because, regardless of the parameter Std, by setting up the

parameter h between 0 and 1, a more balanced workload is

achieved than setting the parameter h to 0 or 1. For

instance, if the parameter h gets close to 0, the load bal-

ancing of the nodes increases since more distributed access

pattern for the data is happened. On the other hand, when a

small group of data are more popular to many users, this

shows that the parameter h is close to 1.

As illustrated in Fig. 6, the feature score has more

influence than the structural score for higher values of Std.

Alternatively, for lower values of Std, the structural scores

of storage nodes have greater impact than the feature one.

For example, assigning 0.3 and 10 for the parameter h and

Std respectively, the nodes workload is at their highest

balanced states.

If we decrease Std, the workload mostly gets higher for a

constant value of the parameter h. For example, if the

parameter h is assigned to 0.4, the lowest load balancing of

the network occurs for Std ¼ 0:1.

Note that, if the parameter h is set to 0, the feature score

is only considered for storage nodes. On the other hand, by

assigning the value of 1 for the parameter h, the feature

score is not used. Clearly, considering both the feature and

structural scores has more advantages over using only one

score and is taken into account for selecting the nodes to

store the replicated data.

Our proposed strategy is flexible in balancing the nodes

workload. In this way, according to the data access rates

and the network workload, we can change the parameter h
to reach our desired goals.

For the proposed strategy, the response time versus the

parameter h in Eq. (7) is shown in Fig. 7 for a variety of std
values.

Fig. 6 The load balancing of nodes versus the impact factor (h in

Eq. (7)) in the proposed strategy

Fig. 7 The response time versus the impact factor (parameter h in

Eq. (7)) in the proposed strategy
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As presented in Fig. 7, when Std is equal to 10, the

lowest response time occurs value the parameter h is equal

to 0.3. Similarly, for different values for Std, the lowest

response time is achieved when the parameter h is between

0 to 1 exclusively.

Having a more distributed access rate for the data results

in lower response time. Furthermore, access to a small

group of data increases the response time. As a result, the

idea of considering both the feature and the structural score

in the proposed strategy improves the network performance

in terms of the response time. This is attained using the

parameter h in the proposed strategy. Thus, the proposed

strategy can flexibly adjust the parameter h according to the
data access rate.

In Fig. 8, the nodes’ load balancing versus the number

of cloudlets in the proposed strategy, DROPS [25] and

random placement strategy are depicted and compared.

As shown in Fig. 8, when the number of cloudlets sent

to the network is 1500, the percentage of load balancing in

the proposed strategy, DROPS [25] and random placement

strategy are 87.4, 81.8 and 78.4 respectively.

The proposed strategy improves the network perfor-

mance by increasing the nodes load balancing, compared to

DROPS [25] and the random placement strategy. This is

because, only the structural score is considered in DROPS

[25]. On the other hand, the random placement strategy

does not use any feature or structural status of nodes for

selecting the storage nodes.

In Fig. 9, the response time versus the number of

cloudlets is illustrated in the proposed strategy, DROPS

[25] and random placement strategy.

The proposed strategy benefits from lower response time

in comparison with DROPS [25] and random placement

strategy. For instance, when the number of cloudlets is

3000, the average response time in the proposed strategy,

DROPS [25] and the random placement strategy is 24.050,

39.360 and 84.550 s respectively.

In the following, the time complexity of the proposed

strategy is evaluated. The first part of the proposed strategy

is related to the data popularity determination. If m indi-

cates the number of data in the network, the smallest data is

initially searched in linear time, i.e., O(m),.

Afterwards, the data popularity for each data is calcu-

lated according to Eq. (2) which is done at linear time i.e.,

O(m). Finally, all the data are sorted based on their popu-

larity which is accomplished in time Oðm � logmÞ. Con-
sequently, the total time complexity for calculating the data

popularity is equal to O m � logmð Þ.
The second part of the proposed strategy is related to the

proper nodes determination for storing the most popular

data. In this process, the lowest and highest degrees of the

storage nodes are found using divide and conquer

approach. This is performed in 3
2
n� 2

� �
steps and has a

linear time complexity equal to OðnÞ with n showing the

number of storage nodes in the network.

Fig. 8 The nodes load balancing versus the number of cloudlets in the

proposed strategy compared to DROPS [25] and random placement

strategy

Fig. 9 The response time versus the number of cloudlets in the

proposed strategy compared to DROPS [25] and random placement

strategy
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As stated in [15], the average node degree in the Internet

network graph is 6.34. Hence, the total number of network

links is equal to 6:34
2
n

� �
. In this way the lowest and highest

weights links are detected in 3
2

6:34
2
n

� �
� 2

� �
steps.

The feature and structural scores of each storage node

are computed in constant time C. Additionally, the storage

nodes are sorted according to their total score in the time

Oðn � lognÞ. Consequently, the total time complexity for

determining the proper nodes for storing the most popular

data is equal to Oðn � lognÞ.
Figure 10 illustrates the number of execution cycles

versus the number of nodes in the network when deter-

mining the proper nodes for storing the most popular data

in the proposed strategy.

When only the feature score is considered, i.e., h ¼ 0,

the time complexity decreases significantly. Thus, calcu-

lating the structural score of storage nodes takes consid-

erable amount of time in the proposed strategy.

Figure 11 depicts the execution cycles versus the num-

ber of storage nodes and data files in the network of the

proposed strategy.

As depicted in Fig. 11, when the number of the storage

nodes is close to 500, the execution time is independent of

parameter h. However, by increasing the number of data

files, the execution time of the proposed strategy increases

linearly and are affected more by the parameter h. This is
because, a high portion of the time cost is related to the

computation of structural scores.

5 Conclusions and Future Work

In this paper, we have proposed a novel dynamic data

replication strategy to improve data availability and net-

work performance. In our proposed strategy, data files with

the most frequent access rates are selected for replication.

These popular data are then placed on the storage nodes

with higher structural and feature scores. The feature score

considers the configuration specifications of storage nodes.

The structural score uses the position of storage nodes in

the network.

Our simulation results shows that the introduced scores

have significant impacts on the network performance. This

is due to the fact that when we consider both the feature

and structural characteristics of storage node, the data

access rate distributes more uniformly in the network. As a

result, more balanced workload in the storage nodes and

lower response time are achieved. Moreover, the proposed

strategy has the flexibility to adjust the impact of feature

and structure scores according to the network conditions.

As part of a future work, one can consider the nodes

proximity to determine the proper nodes for storing the

most popular data. This can provide the ability to capture

the structural status of nodes more precisely. Additional

improvement to the proposed strategy would be also to

balance between the communication and computation

overhead in the storage nodes.Fig. 10 The number of execution cycles versus the number of nodes

in the network when determining the proper nodes for storing the

most popular data in the proposed strategy

Fig. 11 The number of execution cycles versus the number of nodes

and data files in the network of the proposed strategy
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