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Abstract
The widespread deployment of scientific applications and business services of various types on clouds requires the transfer

of big data with different priorities between geographically distributed cloud-based data centers. As a result, Cloud Service

Providers (CSP) face a significant challenge to fully utilize the expensive bandwidth resources of the links connecting data

centers while guaranteeing Quality of Experience (QoE) for users. Modern data centers are increasingly adopting Software-

Defined Networking (SDN) technology, which provides the capability of advance bandwidth reservation. This paper

focuses on the collaborative scheduling of multiple prioritized user requests, namely, advance bandwidth reservation with a

lower priority and immediate bandwidth reservation with a higher priority, to maximize the total user satisfaction. We

formulate this co-scheduling problem with preemption as a generic optimization problem, which is shown to be NP-

complete. We design a heuristic algorithm to maximize the number of successfully scheduled requests and minimize the

number of preempted advance reservation requests, while minimizing the completion time of each request. Extensive

results from simulations with randomly generated networks and emulation-based experiments on an SDN testbed show that

our scheduling scheme significantly outperforms greedy approaches in terms of user satisfaction degree, a normalized

quantification parameter we define to measure users’ QoE.

Keywords Big data transfer � High-performance networks � Software-defined networks � Quality of Experience �
Bandwidth reservation
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1 Introduction

Over the past decade, we have witnessed an increasing

number of business services and scientific applications

migrating from local computing platforms to cloud

infrastructures, which often comprise geographically dis-

tributed data centers. These migrations necessitate the

transfer of large amounts of data between cloud data cen-

ters for remote storage, analysis, and visualization. In fact,

data transfer between cloud data centers has become a vital

aspect of cloud computing and has a significant impact on

cloud service performance. Consequently, networking for

inter-data center data transfer with performance guarantee

plays a crucial role in high-performance cloud computing.

Various network control and management technologies

have been employed for data transfer between cloud data

centers, among which, bandwidth reservation offers a key

approach to meeting the performance requirements for data

transfer.

The wide variety of applications running upon the cloud

infrastructure may generate diverse requests for data

transfer including various types of data loads with different

performance expectations, which brings challenges to

bandwidth reservation. The data to be transferred between

data centers and their requirements for bandwidth reser-

vation can be generally classified into two common

categories:

– Bulk data that may be accumulated over a certain time

period and are typically on the order of terabytes to

petabytes. Bulk data transfer in general needs to be

completed by a certain deadline, and therefore network

bandwidth is often reserved in advance to meet the

transfer requirement, which is referred to as Advance

Reservation (AR). An example of AR for bulk data

transfer is to transfer the experimental data (up to 30

petabytes per year) generated by Large Hadron Collider

(LHC) to multi-tier collaborating sites at different

geographical locations for further processing and

analysis.

– Time-critical data that typically have a much smaller

size than bulk data but are more delay sensitive.

Examples of this type of data include interactive

communications for online collaborative analysis and

urgent user requests in emergency situations. Transfer

of time-critical data requires on-demand bandwidth

reservation, referred to as Immediate Reservation (IR).

These two types of bandwidth reservation—AR and IR—

for data transfer differ in multiple aspects. AR may achieve

more efficient utilization of network resources through

careful bandwidth scheduling with a global perspective but

lacks prompt responsiveness to user requests. Therefore,

AR is an appropriate choice for maximizing the resource

utilization and revenue profit of Cloud Service Providers

(CSPs). Also, AR may support the Service-Level Agree-

ments (SLAs) between CSPs and users. On the other hand,

IR offers an immediate response to on-demand requests

from users; however, there is no guarantee on the avail-

ability of sufficient bandwidth to meet the stringent per-

formance requirement. Prioritization schemes could be

applied to IR for meeting SLAs, but may need to preempt

some of the bandwidth previously scheduled for AR

requests, thus possibly leading to service degradation or

interruption of other users. Hence, an important problem

arises to minimize the number of preempted AR requests or

the amount of preempted bandwidth to meet diverse data

transfer requirements while fully utilizing network band-

width resources.

The emerging Software-Defined Networking (SDN)

technology, which is being widely adopted in both data

center networks and inter-cloud networks, offers a

promising approach to addressing the challenge of band-

width reservation for meeting diverse data transfer

requirements between data centers. Essentially, SDN

decouples the data plane functions for packet forwarding

from the control/management plane to enable a logically

centralized controller for the entire network domain in

support of network programmability. Flow-based packet

forwarding in SDN provides an effective mechanism to

reserve bandwidth for various types of data transfer

required by different users. The central SDN controller

with a global view of the entire network domain greatly

facilitates decision making for end-to-end path selection

and bandwidth allocation to meet the performance

requirements specified by users. The network pro-

grammability enabled by SDN northbound interface allows

upper layer applications to define data transfer operations

according to user demands without requiring knowledge

about the implementation details of the underlying network

infrastructure.

Although exciting progress in SDN control and man-

agement has been reported in the literature, existing work

mainly focuses on data center networks and wide-area

public networks. Supporting both advance and immediate

reservations for different data transfer requests between

data centers interconnected through SDN still remains

largely unexplored.

In this paper, we investigate a collaborative bandwidth

scheduling problem, referred to as BS-ARIR, which con-

siders a combination of advance reservation (AR) with a

lower priority and immediate reservation (IR) with a higher

priority, to support data transfer between data centers

interconnected through an SDN-based network. The goal is

to maximize the total number of requests (both AR and IR)

that have been satisfied and minimize the number of pre-

empted AR requests, both of which are incorporated into a
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carefully-defined performance metric, namely, overall user

satisfaction (SAT). We show BS-ARIR to be NP-complete

and design an efficient heuristic co-scheduling algorithm.

We conduct extensive experiments based on simulations

and emulations in an SDN environment to evaluate the

performance of the proposed algorithm. The experimental

results demonstrate that the proposed algorithm signifi-

cantly outperforms existing algorithms in terms of the

overall user satisfaction.

The work in this paper conducts a thorough investiga-

tion into bandwidth scheduling of high-priority IR requests

and low-priority AR requests, and has potential to support

and facilitate inter-cloud data transfer for high-perfor-

mance cloud services.

The rest of the paper is organized as follows. We first

review some representative work on bandwidth scheduling

in Sect. 2. Then, we formulate the BS-ARIR problem with

complexity analysis in Sect. 3. We design a heuristic co-

scheduling algorithm for BS-ARIR in Sect. 4. We present

performance evaluation results through simulations and

emulation-based experiments in Sect. 5. We conclude our

work in Sect. 6.

2 Related work

The emerging SDN paradigm offers a promising network

control and management platform to support various

bandwidth scheduling strategies. Recent developments in

SDN technologies provide a variety of mechanisms that

can be employed for realizing traffic flow scheduling or

bandwidth scheduling.

There are several studies on traffic flow scheduling

within data center networks. SMART [2] is an architectural

enhancement aiming to realize resilient transfer for critical

flows. It leverages redundancy through SDN and FlowTags

middlebox architecture to ensure timely delivery of critical

flows. QJump [3] applies Internet QoS-inspired techniques

to data center applications and allows critical network

flows to jump the queues, hence ensuring the satisfaction of

SLA.

Bandwidth scheduling based on SDN for data transfer in

an inter-cloud network environment has been extensively

studied in the literature. Many efforts have been made to

perform AR bandwidth scheduling to guarantee QoE for

users. The work in this direction aims to maximize the

number of accepted user requests, maximize the ratio of

successfully scheduled bandwidth reservation requests

(BRR), or minimize the earliest completion time (ECT). In

[4], Zuo et al. investigated the problem of intelligent and

flexible scheduling to achieve the optimal ratio of suc-

cessfully scheduled BRRs and the average ECT of sched-

uled BRRs. In [5], Zuo et al. studied bandwidth scheduling

problems in dedicated networks to maximize both the total

amount of transferred data and the number of successfully

scheduled requests. In [6], to minimize the ECT of a BRR,

Lin and Wu investigated bandwidth scheduling with an

exhaustive combination of different path and bandwidth

constraints including (i) fixed path with fixed bandwidth

(FPFB), (ii) fixed path with variable bandwidth (FPVB),

(iii) variable path with fixed bandwidth (VPFB), and (iv)

variable path with variable bandwidth (VPVB).

Some existing work on AR bandwidth scheduling con-

siders prioritized reservation requests and allows preemp-

tion between AR. In [7], Zuo et al. studied the problem of

scheduling AR requests with different priorities to mini-

mize the number and then the total bandwidth of existing

bandwidth reservations to be preempted, and minimize the

total bandwidth and then the number of existing bandwidth

reservations to be preempted. Xie et al. proposed a pre-

emption scheme between high- and low-priority AR

requests with a fixed transmission window using a heuristic

access control algorithm based on an integer linear pro-

gramming (ILP) model to determine an available path [8].

Bandwidth scheduling for a mixture of AR and IR

requests with different priorities has also been studied in

the literature. In [9], Dharam investigated the preemption

of IR requests by AR requests using the Global Network

View (GNV) in SDN and proposed several bandwidth

scheduling and preemption schemes to solve the problems

of IR preemption and AR blocking.

In this paper, we focus on a collaborative scheduling

problem that considers low-priority AR requests reserved

in advance and high-priority IR requests scheduled on-

demand, and conduct emulation-based experiments on a

Mininet-based SDN testbed to evaluate the effectiveness of

the proposed bandwidth scheduling algorithm. This band-

width preemption problem differs from the existing work

in that the bandwidth of on-going data transfer for low-

priority AR requests may be preempted by the arrival of an

IR request with a higher priority. IR requests with higher

priority may be made by a variety of applications that

require real-time or near real-time data transfer, such as

online collaborative analysis, interactive communication,

urgent user request/response, and delay-sensitive data

transfer. Such applications play a critical role in providing

high-performance, on-demand cloud services.

3 Problem formulation

In this section, we first construct cost models for SDN-

based big data transfer between data centers, and then

formulate a problem of bandwidth scheduling for advance/

immediate reservation with complexity analysis.
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3.1 Network model

As shown in Fig. 1, an SDN-based networking system for

inter-data center transfer consists of three planes. The data

plane is composed of a set of OpenFlow-enabled switches

and transmission links between them, which form the

underlying infrastructure of the network. The control plane

provides a network operating system that allows upper

layer applications to define the operational behaviors of the

network infrastructure. The controller communicates with

the data plane via a southbound interface (typically the

OpenFlow protocol) to set up and update flow tables in

switches to control flow-based packet forwarding. The

controller also regularly collects network states, including

bandwidth availability on switches and links, and maintains

a global view of the entire network domain. A variety of

SDN control applications may run upon the operating

system thus forming an application layer. The control

applications are the actual brain of the SDN network that

utilizes the global network view provided by the controller

via the northbound interface to make decisions regarding

various network operations such as routing and bandwidth

allocation.

Considering the scenario of bandwidth management for

data transfer between cloud data centers, a bandwidth

scheduler may be realized as an SDN control application,

which maintains a list of existing bandwidth reservations

(including the transfer path, the amount of reserved band-

width, and the flow active period on the path). Upon

receiving a request for bandwidth reservation from a cloud

data center, the scheduler exams the current network states

and the existing reservations to determine how to make a

new reservation to satisfy the request. The scheduler

informs the controller once such a reservation decision has

been made. The controller then updates the flow tables in

all involved switches on the transfer path to set up a flow

and configures these switches to allocate the required

amount of bandwidth for the flow.

We denote a backbone network as a graph G(V, E) with

Vj j nodes and Ej j links. Figure 2 shows an example net-

work graph, where the corresponding bandwidth of each

link across different time slots from 0 to 2 is annotated on

the link, respectively.

Each link l 2 E maintains a list of residual bandwidths

specified as a segmented constant function of time [6]. A

time-bandwidth (TB) list can be represented as

ðtl½i�; tl½iþ 1�; bl½i�Þ, where bl½i� denotes the residual band-

width of link l during the ith time-slot (i.e., the time

interval ½tl½i�; tl½iþ 1��), where i ¼ 0; 1; 2; . . .; Tl � 1, and Tl
is the total number of time slots in l. We combine the TB

lists of all links to build an Aggregated TB (ATB) list,

where we store the residual bandwidths of all links in each

intersected time-slot, denoted as ðt½0�; t½1�; b0½0�; b1½0�;
. . .; bjEj�1½0�Þ; . . .; ðt½T � 1�; t½T �; b0½T � 1�; b1½T � 1�; . . .;
bjEj�1½T � 1�Þ, where T is the total number of new time-

slots after the aggregation of TB lists of all |E| links.

Without loss of generality, we set the smallest time-slot to

be 1 time unit. Figure 3 shows the ATB table created by

combining the TB tables of three links in the example

network shown in Fig. 2.

The network path is an ordered set of nodes that consist

of one or more links from the source node to the destination

node. The bandwidth of a path is the bottleneck bandwidth

of all links on it. For example, in Fig. 2, the bandwidth of

path vs � v1 � vd in time slot 0 (i.e., time interval

(t[0], t[1])) is the minimum bandwidth of link vs � v1 and

v1 � vd in this time slot, i.e., Bvs�v1�vd ½0� ¼ minðbvs�
v1½0�; bv1�vd ½0�Þ ¼ minð4; 5Þ ¼ 4:

3.2 BS-ARIR problem formulation

3.2.1 Model of AR (Advance Reservation) request

The bandwidth scheduler receives a batch of bandwidth

reservation requests in advance and places them in a set

AR over a period of time ½TS; TE�. Each AR request is

denoted as a 5-tuple arðvsr; vdr ;Dr; ½tSr ; tEr �; p1Þ, requesting

the transfer of Dr amount of data from vsr to vdr , during a

time window from the earliest transfer start time tSr to the

latest transfer end time (deadline) tEr , with a specified

Fig. 1 SDN-based network architecture for data transfer between data

centers Fig. 2 A simple topology of HPN
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priority p1. The total transfer duration of all AR requests is

½TS; TE� ¼ ½minðtS0; tS1; . . .; tSn�1Þ;maxðtE0 ; tE1 ; . . .; tEn�1Þ�.
Let AAR be a set of successfully scheduled AR

requests. Each element in AAR is denoted as

aarðpr; br; ½tsr; ter �; p1Þ, meaning that aar has reserved br
amount of bandwidth on path pr during time interval ½tsr; ter �.
Each aar has the same satisfaction coefficient, which is

equal to the priority p1 of the request, and satisfies the

following conditions:

br � ðter � tsrÞ ¼ Dr;
tSr � tsr\ter � tEr :

�

We define the satisfaction of each aar as

p1 �
tEr � tSr

½ter � tSr � þ ½tEr � tSr �
;

where tEr and ter represent the data transfer deadline and the

actual data transfer end time, respectively, tSr is the required

earliest transfer start time, and p1 is the satisfaction coef-

ficient. For example, considering p1 ¼ 1, when ter is equal

to tEr , the satisfaction of the AR request is 0.5; when ter is

close to tSr , its satisfaction approaches 1.

If the reserved bandwidth of aar is preempted by an IR

request with a higher priority, it is denoted as par, and the

set of all preempted AR requests is denoted as PAR. We

set the satisfaction coefficient of each element in PAR to

be a negative value of �p3 (generally, p3 � p1). A negative

satisfaction of any preempted par reflects a certain degree

of punishment for preemption. The satisfaction of each

preempted request par is then defined as �p3 � tEr �tSr
½ter�tSr �þ½tEr �tSr �

.

For example, if an ar has reserved bandwidth success-

fully, then it is denoted as aar; when the actual transfer end

time ter is equal to tEr , its satisfaction is 0.5; if its reserved

bandwidth is preempted by an IR request, it is then denoted

as par. Considering p3 ¼ 2 ðp3 � p1), the satisfaction of

this par then becomes �1. Therefore, we should design a

collaborative scheduling strategy by considering not only

the number of successful scheduled requests, but also the

number of preempted AR requests.

3.2.2 Model of IR (Immediate Reservation) request

During time interval ½TS; TE�, the number of randomly

arriving IR requests follows Poisson distribution [9]. Each

IR request irðvsr; vdr ;Dr; t
a
r ; dr; p2Þ desires to transfer Dr

amount of data from vsr to vdr with the priority value of p2
(p2 � p1). The arrival time tar of IR is a random number

between ½TS;TE�. We set the default transfer start time of

IR to be the begin of the next time slot, and consider a

maximum duration of dr. The bandwidth scheduler

attempts to compute an appropriate path from vsr to vdr for

the IR to meet its requirement and complete the transfer as

soon as possible. If the bandwidth of the computed path is

insufficient to complete the desired transfer in time, then

for the remaining data, the scheduler has to preempt the

bandwidth of AAR with a lower priority p1 located within

its required transfer duration. The set of all successfully

scheduled IR is denoted as AIR, where each element is

denoted as airðdr; tar ; ter ; p2Þ. We can also take the priority

value p2 as the satisfaction coefficient of each air, whose

satisfaction is defined as p2 � dr
½ter�tar �þdr

. Considering p2 ¼ 2,

if the transfer end time ter is close to its arrival time tar , then

its satisfaction is close to 2; if the transfer end time ter is

equal to its deadline tar þ dr, then its satisfaction is 1.

The normalized overall user satisfaction for collabora-

tive bandwidth scheduling of AR–IR is defined as follows:

SAT ¼ 1

ðjARj þ jIRjÞ �
� X
r2AAR

p1 �
tEr � tSr

½ter � tSr � þ ½tEr � tSr �

þ
X
r2AIR

p2 �
dr

½ter � tar � þ dr

�
X

r2PAR

p3 �
tEr � tSr

½ter � tSr � þ ½tEr � tSr �
�
:

ð1Þ

The collaborative bandwidth scheduling problem of IR and

AR considers the following factors: (i) maximize the

number of satisfied requests, (ii) finish the transfer of each

request as early as possible, and (iii) reduce the negative

effect of preempted requests on the overall satisfaction.

The problem of collaborative bandwidth scheduling of

AR–IR is formally defined as follows:

Definition 1 BS-ARIR (Bandwidth Scheduling for

Advance Reservation and Immediate Reservation):

Given a topology of HPN G(V, E) with the ATB list of all

links and the total transfer time interval ½TS; TE� for a batch
of AR and IR requests with different priorities, our

objective is to co-schedule the AR requests for bulk data

transfer and time-critical IR requests to maximize the

normalized overall user satisfaction as defined in Eq. 1.

Fig. 3 An ATB with three links
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3.3 BS-ARIR complexity analysis

BS-ARIR aims to maximize the overall user satisfaction

SAT in HPNs. We consider the following objectives:

(i) maximize the number of successfully scheduled AR and

IR requests while minimize the transfer end time of each

request; (ii) minimize the number of preempted AAR and

the sum of preempted bandwidths by IR requests.

Theorem 1 BS-ARIR is NP-complete.

Proof The decision version of BS-ARIR is as follows:

given an HPN and a set of AR and IR requests, is there a

preemption strategy that returns the overall user satisfac-

tion no less than sat? Given the sets of AR, IR, AAR,

AIR, and PAR, it is easy to calculate the overall user

satisfaction using Eq. 1 and compare the result with a

certain SAT. We know that BS-ARIR 2 NP. Since the

factor 1
ðjARjþjIRjÞ is constant, we omit this constant factor in

Eq. 1 in our proof.

First, we consider a special case of BS-ARIR: suppose

that the arrival time of each IR request tar is a given specific

value in ½TS; TE�, and irðvsr; vdr ;Dr; t
a
r ; dr; p2Þ can be repre-

sented as irðvsr; vdr ;Dr; ½tar ; tar þ dr�; p2Þ.
In this case, the IR request actually becomes an AR

request arðvsr; vdr ;Dr; ½tSr ; tEr �; p2Þ, and the BS-ARIR problem

reduces to the problem of maximizing SAT of scheduling

multiple AR arðvsr; vdr ;Dr; ½tSr ; tEr �; p1=p2Þ requests with

different priority (p1 or p2) in HPNs.

We then consider a special case where all AR requests

are of the same priority (i.e., p2 ¼ p1), i.e.,

arðvsr; vdr ;Dr; ½tSr ; tEr �Þ:
Obviously, no bandwidth preemption is needed. There-

fore, maximizing the overall user satisfaction SAT reduces

to maximizing SAT 0:

SAT 0 ¼
X

r2AAR

p1 �
tEr � tSr

½ter � tSr � þ ½tEr � tSr �
: ð2Þ

We further suppose that the earliest transfer start time

tSr ¼ 0, and denote the AR request as ar0ðvsr; vdr ;Dr; ½0; tEr �Þ.
We consider a particular HPN topology in our special case

as shown in Fig. 4 [10] with a unique destination node vd

and the bandwidth Dr=t
E
r for each link vsr � vd. The transfer

end time of each request ar0 on the unique path vsr � vd is

tEr , and BS-ARIR to maximize SAT 0 is further transformed

to maximizing the number of requests scheduled success-

fully, as shown in Eq. 3:

SAT 00 ¼
X

r2AAR

p1=2: ð3Þ

It is essentially equivalent to the maxR problem in [5].

That is to say, the maxR problem is a special case of our

BS-ARIR problem. The maxR problem is NP-hard [5], so

is our BS-ARIR problem. Along with the fact that BS-

ARIR is in the class of NP, we conclude that BS-ARIR is

NP-complete. h

4 Algorithm design and analysis for BS-ARIR

The NP-completeness of BS-ARIR indicates that there

does not exist any polynomial-time optimal algorithm for

BS-ARIR unless P ¼ NP. In this section, we focus on the

design of a heuristic algorithm and propose a collaborative

scheduling algorithm, Max-S-ARIR. A fixed path with a

fixed bandwidth is computed for each of the AR requests

considering the minimum resource occupancy, and more

uninterrupted bandwidth resources can be made available

for future IR requests. A flexible scheduling scheme using

variable paths with variable bandwidths is adopted for

high-priority IR requests for the earliest completion time. If

bandwidth resources become insufficient, an IR with a

higher priority needs to preempt the path bandwidth of AR

requests that have been previously scheduled in the over-

lapped time period. The overall scheduling solution is

divided into the following two phases:

Phase 1: advance reservation of AR requests. Given a

batch of AR requests, we design a periodic scheduling

algorithm with the objective to maximize the overall sat-

isfaction of AR requests by using a minimum resource first

scheduling strategy, referred to as Min-R-AR, for multiple

AR requests. We also design a comparison algorithm using

the existing MBDPA algorithm in [11], referred to as Min-

BHP-AR. The design details are provided in Sect. 4.1.

Phase 2: immediate reservation of IR requests. For an

incoming IR request, we first compute a path with the

Fig. 4 An instance of a particular network structure
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maximum bandwidth during the requested time periods. If

this path is insufficient to complete the entire data transfer

in time, we need to preempt the bandwidth of AAR

reserved in the corresponding overlapped time window to

transfer the remaining data. We propose a minimum pre-

emption algorithm to identify the AARs that can be pre-

empted in the current time window to release the

bandwidths for the transfer of the IR request. A greedy

algorithm for IR scheduling is also designed for compari-

son. The design details are provided in Sect. 4.2.

4.1 Min-R-AR algorithm design for scheduling
ARs

We consider periodic scheduling of multiple AR requests r

in the form of ðvsr; vdr ;Dr; ½tSr ; tEr �; p1Þ, where tSr and tEr are the

earliest transfer start time and the latest transfer end time,

respectively. It requests the transfer of Dr amount of data

from source vsr to destination vdr within a time interval

½tSr ; tEr �. The transfer time interval, the reserved bandwidth,

and the number of links on the computed path are all

variables in this AR scheduling problem. A general policy

would be to minimize resource occupancy and bandwidth

fragmentation to support subsequent bandwidth reserva-

tions. Occupied resources include three factors: bandwidth,

transmission time, and the number of links (i.e., the number

of hops on a path).

Taking these three factors into consideration, we design

a minimum resource first scheduling algorithm with the

minimum product of data size and number of path hops,

referred to as Min-R-AR, whose pseudocode is provided in

Algorithm 1. This algorithm differs from Min-BHP-AR

(Minimum Bandwidth Hops Product first for AR) proposed

in [1], whose optimization strategy follows the Bandwidth

and Distance Product Algorithm (MBDPA) proposed in

[11], which considers two factors of network resources

(i.e., Bandwidth and number of hops). In Min-BHP-AR,

each AR request is scheduled by the minimum bandwidth-

hop product, while ignoring the impact of data transfer

time on the amount of resources occupied. Typically, the

data size to be transferred in a given AR request is known,

so the minimum bandwidth leads to the maximum transfer

time and a low degree of satisfaction.

We provide an explanation of some notations used in

Algorithm 1 as follows:

– tS denotes the earliest possible transfer start time of all

requests, and tE denotes the latest possible transfer start

time of all requests;

– pr denotes the path for an AAR, br denotes the

bandwidth of path pr, t
s
r denotes the actual data transfer

start time of ar, and ter denotes the actual data transfer

end time of ar;

– AR denotes the set of Advance Reservation requests,

SAR denotes the set of Sorted AR by product of

bandwidth and number of hops, AR0 denotes the set of
remaining unscheduled AR, AAR denotes the set of

Accommodated AR, and PAR denotes the set of

preempted AAR;

– jAARj denotes the total number of AARs, and jPARj
denotes the total number of PARs;

– rr denotes the product of minimum bandwidth and

minimum number of hops for a request r in AR;

– IR denotes the set of Immediate Reservation requests,

and AIR denotes the set of Accommodated IR;

– jIRj denotes the total number of IRs, and jAIRj denotes
the total number of AIRs;

– pr½i� denotes a path for an IR in time slot i, and br½i�
denotes the bandwidth of path pr½i�;

– p1 denotes the priority of AR, and p2 denotes the

priority of IR;

– SAT1 denotes the normalized satisfaction of all ARs,

and SAT denotes the normalized satisfaction of all ARs

and IRs.

The reserved bandwidth for each request is br �Bmin
r .

Reducing the completion time of every single request

would increase the user satisfaction. The main logic flow of

the algorithm is described as follows. In lines 4–13, we

compute the product rr of data size and number of path

hops for each request ar in AR0. In lines 14–16, we select

the request ar in AR0 with the minimum rr, and allocate

bandwidth br on paths pr during a virtual transfer time

interval ½tsr; tsr�, which lies within the required transfer

interval ½tSr ; tEr �. In lines 17–18, we add the successfully

scheduled request to the set AAR. In lines 19–21, we

update the bandwidth of links on the corresponding paths

during time interval ½tsr; tsr�, and the remaining unscheduled

AR set AR0, respectively. We then continue to the next

iteration and recompute the product rr of minimum

bandwidth and minimum number of hops for a request

ar 2 AR0, due to the bandwidth change on affected links,

until we obtain the set AAR of successfully scheduled

requests, denoted as ðpr;Bmin
r ; ½tsr; ter �Þ. In line 22, we com-

pute the normalized overall user satisfaction SAT1 of all

ARs.
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4.2 Design of co-scheduling algorithm for BS-
ARIR

During the transfer of an AAR, an IR request with a higher

priority in the form of ðvsr; vdr ;Dr; t
a
r ; dr; p2Þ may arrive and

request immediate bandwidth reservation. If the bandwidth

of the computed path for it is insufficient to transfer Dr

amount of data within time interval ½tar ; tar þ dr�, we may

need to preempt the bandwidth of existing AARs to meet

the demand of the IR request. A general guideline is to

avoid preempting the bandwidth that has been reserved

successfully for an AR request. This is a collaborative

scheduling problem between advance reservation and

immediate reservation. Our goal is to maximize the overall

Quality of Experience for all users.

We first consider the heuristic algorithm, Greedy-ARIR

based on a greedy strategy proposed in [1]. The main idea

of this greedy algorithm is to preempt the bandwidth of the

AAR with the longest overlapping time with the IR, and if

there are multiple AARs with the same overlapping time

period, we choose the one with the maximum bandwidth

for preemption to minimize the number of preempted

AARs.

To minimize the number of preempted AARs, the above

greedy algorithm preempts the maximum bandwidth of the

AAR that meets the criteria. However, this is not beneficial

for AR transmission. Hence, we attempt to minimize the

number of preempted AARs and meanwhile minimize the

sum of preempted bandwidths to improve the overall user

satisfaction. Furthermore, we prefer the AAR for preemp-

tion, which has transferred a less amount of data than

others. We first design an algorithm with minimum pre-

emption within time window [ts[i], ts[j]], as shown in

Algorithm 2 in Sect. 4.2.1, and then design an algorithm

with maximum user satisfaction, as shown in Algorithm 3

in Sect. 4.2.2.

4.2.1 Algorithm design with minimum preemption
within time window [ts[i], ts[j]]

We first design a minimum preemption algorithm Min-

Preemption within time window [ts[i], ts[j]]. If there is no

sufficient network bandwidth to meet the demand of an IR

request, we need to preempt the bandwidths of AARs that

have been reserved successfully within the corresponding

time window [tp[i], tp[j]]. We design a scheduling strategy

that minimizes the number of preempted AARs, and if

there exists more than one AAR that meets the conditions,

we select the one with less bandwidth. Furthermore, if

there are multiple existing AARs in S½i;j� that result in the

same amount of bandwidth, we then choose the one with

the least transferred data size. The pseudocode of Min-

Preemption is provided in Algorithm 2, where some nota-

tions are defined as follows:

– S½i; j� denotes the subset of AAR within the time

window [ts[i], ts[j]], namely, S½i; j� � AAR. An IR

request with priority value p2 needs to preempt the

allocated bandwidth of S[i, j] to satisfy its immediate

reservation demand;

– TDS denotes the set of time dots, in which the

available bandwidths are not sufficient to satisfy the

required bandwidth b within the corresponding time

window [tp[i], tp[j]];

– bm denotes the bandwidth of the candidate request aarm
for preemption, and b(n) denotes the maximum avail-

able bandwidth from source vsr to destination vdr in the

nth time slot;

– S0½i; j� denotes the set of preempted AARs within time

window [tp[i], tp[j]].
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4.2.2 Algorithm design with maximum satisfaction for BS-
ARIR

We design a co-scheduling algorithm in Algorithm 3,

which contains two main phases:

Phase 1: we schedule AR requests in advance periodi-

cally. we call Algorithm 1 for minimum resource occu-

pancy to reserve an FPFB path for each AR request as early

as possible, since an FPFB path can maintain continuous

bandwidth for future use.

Phase 2: we schedule IR requests immediately as they

arrive. During the time interval ½TS; TE� that aggregates all
time intervals of AR requests, we calculate a VPVB path

for an arriving IR request, since an VPVB path can fully

utilize the available bandwidth resources, and help maxi-

mize the number of successfully scheduled IR requests

meanwhile minimizing the completion time of each

request. If there is no sufficient bandwidth for the IR

request, namely, the bandwidth of the calculated VPVB

path for the IR request cannot complete the data transfer

before the deadline, the scheduler calls Algorithm 2 to

preempt some bandwidths from the AAR that have been

reserved within the transfer duration of the IR request for

the remaining data transfer. Preempting an AAR means

releasing all bandwidths on the reserved FPFB path. We

design a scheduling strategy to minimize the impact of

preemption on the overall user satisfaction. To minimize

the number of preempted AARs, we select the AAR with

less bandwidth if there is more than one AAR. In sum, the

algorithm uses the VPVB path and multiple FPFB paths

preempted for the IR data transfer to maximize the overall

user satisfaction of ARs and IRs collectively.

The pseudocode of Max-S-ARIR is provided in Algo-

rithm 3, as briefly described below:

In line 1, identify time points corresponding to the

reserved time interval of all AARs within time interval

½TS; TE�, and sort these time points as tp½0�; tp½1�; . . . in the

ascending order.

In line 2, call Algorithm 1 Min-R-AR to schedule the

ARs within time interval ½TS; TE� in advance, and add the

AR requests that are successfully reserved to set ARR.

For an IR request with a higher priority arriving during

the time interval ½TS; TE� of the scheduled ARs, the

scheduler calculates a VPVB path for it immediately. If the

calculated bandwidth is insufficient to transfer the data of

the IR request, then call Algorithm 2 to preempt the

bandwidths of the AARs overlapping with the transfer

duration of the IR request. The successfully scheduled IRs

are placed in set AIR and the AARs preempted by IRs are

placed in set PAR.

In line 4, since the beginning of an IR’s transfer start

time tp[i] is the next time slot of its arrival time, the

required transfer time is dr, and its transfer end time is

tp½i� þ dr. We identify the transfer time interval tp[i], tp[j]

(i.e., time slot interval ½i; j� 1�) for the IR request.

In line 5, in each time slot k within ½i; j� 1�, calculate a
path pr½k� with the maximum bandwidth br½k� for the

transfer of the IR request. We then obtain a VPVB path set

during time slot ½i; j� 1� for the IR request.

In lines 6–9, if these VPVB paths can complete the data

transfer for the IR request in time, we add the successfully

scheduled IR to set AIR; otherwise, we need to identify the

AARs that overlap with time slot ½i; j� 1� as candidates to
be preempted, and put them in set S½i;j�.

In line 10, within a temporary time slot window ½i; j0�,
initialize the sum of bandwidth variable B00

sum ¼ þ1, the

set of preempted AARs S00
½i;j0 � ¼ NULL, and the cardinality

of jS00
½i;j0�j ¼ þ1.

In lines 11–19, within time window [i, j], starting from

time slot i, sliding time slot j0, call MinPreemption

i; j0;
D0

r

tp½j0 ��tp½i�

� �
in each time window ½i; j0� to achieve the

minimum number of preemptions. If the preempted band-

width is sufficient to provide the bandwidth needed for the

IR transfer, then the preemption process ends.

In line 20, add the successfully scheduled IR to set AIR,

and update the bandwidths on the corresponding paths.
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In line 21, remove the preempted AARs from set AAR

and add them to set PAR:

In lines 22–23, compute the overall user satisfaction of

all AR and IR requests and return the result.

Since the complexity of Dijkstra’s algorithm is

Oð Ej j � lgð Vj jÞÞ, the complexity of Algorithm 3 is OðT �
ð Ej j � lgð Vj jÞ þ Ej jÞÞ in the worst cases.

5 Performance evaluation

For performance evaluation, we implement the proposed

algorithms and conduct (i) simulations in randomly gen-

erated networks in Sect. 5.1, and (ii) proof-of-concept

experiments on an emulated SDN testbed based on Mininet

[12] system in Sect. 5.2.

5.1 Simulation-based performance evaluation

5.1.1 Simulation setup

Within a given time interval ½TS; TE�, we generated mul-

tiple random AR data transfer requests of different sizes in

advance, and followed Poisson distribution to generate a

series of IR requests within this period. In each network

instance, we generated the ATB of all links randomly.

Our simulation experiments used random networks of

different sizes, as shown in Table 1. The scheduling

workloads in terms of the number of ARs/IRs are provided

in Table 2.

We set the total time slot ½TS; TE� to be 20 time units,

and the start time TS ¼ 0. The bandwidths of links follow

the normal distribution: b ¼ bmax � e�1
2
ðxÞ2 , where bmax is set

to 100 Gb/s, and x is a random variable within (0, 1]. The

number k of IR requests within a time unit follows Poisson

distribution: PðX ¼ kÞ ¼ e�kkk

k! , indicating that the proba-

bility of the actual number k of request arrivals is P(k)

under the condition of the average arrival number k per unit
time.

Each parameter of AR ðvsr; vdr ;Dr; ½tSr ; tEr �; p1Þ is ran-

domly generated, where vsr and vdr are two random nodes in

the network, data size Dr is a random integer, ½tSr ; tEr � is a
random interval among time interval [0, 20 s], and all ARs

have the same priority p1 ¼ 1. During the time interval [0,

20 s], the ratio between the numbers of IRs and ARs is set

to be 10% in our simulations, and the parameters of IR

ðvsr; vdr ;Dr; t
a
r ; dr; p2Þ are set as follows: the arrival time tar is

a random integer between [0, 20 s], the longest transfer

time dr is less than 20� tar , and the priority of all IRs is set

to be the same value p2 ¼ 2. The way to generate all other

parameters including vsr; v
d
r and Dr is the same as in AR.

We considered p3 ¼ 2p1 in our simulations.

5.1.2 Performance evaluation of Max-S-ARIR for co-
scheduling ARs and IRs

Similarly, in each of the random networks of different sizes

as shown in Table 1, using different numbers of random

AR and IR requests as shown in Table 2, we run our

proposed Min-R-AR algorithm to schedule a batch of ARs

in advance during the time interval [0, 20 s], and then

Table 1 Network scales for testing

Index of network size 1 2 3 4 5 6

Number of nodes 10 30 60 100 150 200

Number of links 20 60 120 200 300 400
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follow Poisson distribution to generate IR requests within

the time interval [0, 20 s].

According to [13], bulk transfers of big data (terabytes

to petabytes) account for a large proportion of traffic, e.g.,

85–95% in some inter-data center (inter-DC) WANs.

However, very few literatures offer us an evidence on the

ratio between the numbers of different types of transfer

requests, and their actual numbers would vary widely due

to the dynamics in the number of users in public clouds.

Since inter-DC WANs are under increasing pressure to

provide service-level agreements (SLAs), considering the

requirements of SLAs and fairness, many shared produc-

tion networks generally do not admit too many high-pri-

ority requests. For simplicity, we set the ratio between the

numbers of IRs and ARs to be 10% in our simulations.

We run Max-S-ARIR and Greedy algorithms for 10

times, respectively. The overall user satisfaction normal-

ized SAT measurements are provided in Figs. 5, 6, 7, 8, 9

and 10 for different network sizes. These simulation results

show that:

(i) The overall user satisfaction normalized SAT of

our proposed algorithm is consistently better than

the greedy algorithm.

(ii) Similarly, the network size has little effect on the

performance of the algorithm because the transfer

performance is primarily determined by the link

bandwidth.

(iii) We also observe that Min-R-AR achieves a

marginal performance improvement over the

comparison algorithm with the increase of data

loads in smaller networks as shown in Figs. 5 and

6. This is because a small network does not have

sufficient resources to support large data transfer,

and neither algorithm is able to perform well in

this case.

It is worth pointing out that, although the network sizes

in the simulations are limited, our approaches are scalable

to larger network sizes because of their low time com-

plexity and potential use in centralized controllers with a

Global Network View (GNV) of SDN for data transfer

between data centers.

Table 2 Scheduling workloads
Index of workload 1 2 3 4 5 6 7 8

Number of ARs 100 200 400 600 800 1000 1200 1500

Number of IRs 10 20 40 60 80 100 120 150

Fig. 5 In Network 1: normalized SAT evaluation with different

workloads of ARs and IRs

Fig. 6 In Network 2: normalized SAT evaluation with different

workloads of ARs and IRs

Fig. 7 In Network 3: normalized SAT evaluation with different

workloads of ARs and IRs
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5.2 Experiment-based performance evaluation

5.2.1 Mininet testbed setup

We construct a virtual network testbed using the Mininet

emulation tool to evaluate the efficacy of the proposed

bandwidth scheduling scheme in an SDN environment.

Mininet is an emulation tool that has been widely used for

building virtual networks [14]. The overhead introduced by

the scheduling process in Mininet emulation is marginal

compared to the scheduling algorithm running time and is

almost negligible in large cases [15]; therefore, it offers a

suitable tool for evaluating the performance of bandwidth

scheduling algorithms.

In our Mininet-based testbed, we emulate an SDN

environment for data transfer between three data centers.

As shown in Fig. 11, the network comprises three Open-

Flow switches under the control of an SDN controller and

each switch is connected to a data center. Each data center

is represented by a gateway server shown as a host (de-

noted as hi; i ¼ 1; 2; 3) in the figure. we emulate each

switch as an instance of Open vSwitch [16] and choose

OpenDaylight [17] as the SDN controller. We set the

bandwidth capacity of the link between each pair of

OpenFlow switches to be 10 Gbps. The bandwidth capac-

ity of each link between an OpenFlow switch and a data

center is limited by the gateway server capacity and is set

to be 1 Gbps.

5.2.2 Performance comparison of Max-S-ARIR on the SDN
testbed

We conduct a bandwidth scheduling experiment on this

emulated testbed over a period of total 10 time slots

denoted as Ti ði ¼ 0; . . .; 9Þ. The available amounts of

bandwidth of the network links across time slots ½T0; T9� are
provided in Table 3. The controller receives various data

Fig. 8 In Network 4: normalized SAT evaluation with different

workloads of ARs and IRs

Fig. 9 In Network 5: normalized SAT evaluation with different

workloads of ARs and IRs

Fig. 10 In Network 6: normalized SAT evaluation with different

workloads of ARs and IRs

Fig. 11 A Mininet emulated testbed
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transfer requests from users running on different data

centers and controls all OpenFlow switches for bandwidth

allocation. In this experiment, we consider five transfer

requests AR ðvsr; vdr ;Dr; ½tSr ; tEr �; p1Þ for advance bandwidth

reservation during the period ½T0; T9� and one immediate

request IR ðvsr; vdr ;Dr; t
a
r ; dr; p2Þ as follows:

– ar1 : ðh1; h2; 13Gb; ½6; 10�; 1Þ
– ar2 : ðh1; h2; 11Gb; ½3; 8�; 1Þ
– ar3 : ðh2; h3; 15Gb; ½3; 9�; 1Þ
– ar4 : ðh1; h3; 16Gb; ½5; 9�; 1Þ
– ar5 : ðh1; h3; 10Gb; ½2; 7�; 1Þ
– ir : ðh1; h3; 7Gb; 3; 4; 2Þ
In the emulated virtual SDN environment shown in Fig. 11,

the controller receives AR requests from applications

running on three data centers and reserves bandwidth for

them using Min-R-AR according to the bandwidth avail-

ability in Table 3. During the AR transfer periods ½T0; T9�,
we randomly generate an immediate request IR with higher

priority. We schedule them using Max-S-ARIR and the

greedy heuristic algorithms for performance comparison.

The scheduling outcomes and corresponding performance

measurements of Max-S-ARIR and the greedy heuristic are

presented in Tables 4 and 5, respectively. In both of these

tables, we use �� to denote the AR requests that have

reserved bandwidth but are preempted by the immediate

request. The actual bandwidth that these AR requests

obtain is less than the amount listed in the tables, and

therefore their data transfer might fail due to insufficient

bandwidth allocation.

From the results of our testbed emulation in Tables 4

and 5, we observe that the proposed Max-S-ARIR

algorithm significantly outperforms the greedy heuristic

algorithm in terms of normalized user’s satisfaction (SAT).

Specifically, the former achieves a normalized SAT of

0.52, while the latter achieves a normalized SAT of 0.31.

This is because when an IR request arrives during the AR

transfer period, these two algorithms apply different

strategies in the following two aspects:

(i) The proposed Max-S-ARIR algorithm computes a

series of variable paths with maximum variable

bandwidth (i.e., VPVB) in different time slots,

while the Greedy algorithm computes a fixed path

with the maximum fixed bandwidth (i.e, FPFB)

across transfer periods. Adopting a VPVB path with

flexible transfer bandwidth results in less transfer

time than a FPFB path.

(ii) If there is no sufficient bandwidth for the transfer of

an arriving IR, Max-S-ARIR identifies those AARs

that have the same pair of source and destination

and overlapped transfer period with the arriving IR,

and then preempts the one with the least scheduled

bandwidths for the transfer of the remaining data of

the IR. The greedy algorithm identifies those AARs

that have the same path and overlapped transfer

period with the arriving IR and then preempts the

one with the largest bandwidth. Hence, these two

preemption strategies result in different levels of

negative satisfaction. Obviously, Max-S-ARIR has

less negative satisfaction than Greedy as it pre-

empts less bandwidth.

Table 3 Available link

bandwidths in Gb/s in Fig. 11

across [0, 9] time slots

Links Time slots

0 1 2 3 4 5 6 7 8 9

S1 � S2 5.53 4.93 6.12 3.46 7.21 4.11 5.09 7.32 4.64 2.92

S1 � S3 6.34 4.47 4.19 6.28 6.72 4.53 8.05 9.22 8.61 4.19

S2 � S3 6.89 3.18 4.52 7.83 3.18 7.17 7.12 8.32 7.13 5.28

Table 4 Performance

measurements of Max-S-ARIR

on the emulated testbed

Requests Time slots Paths Bandwidths (Gb/s) ECT (s) Normalized SAT

ar1 6–9 S1 � S3 � S2 3.52 9.69 0.52

ar2 3–6 S1 � S2 3.46 6.18

ar3 3–7 S2 � S3 3.18 7.72

ar4 5–8 S1 � S3 4.53 8.53

ar5ð��Þ 2–4 S1 � S3 4.19 4.39

ir 3–4 S1 � S3 3.50 5.00
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6 Conclusion

In this paper, we investigated a collaborative scheduling

problem for a batch of AR and IR requests, referred to as

BS-IRAR. This problem includes two subproblems: peri-

odic scheduling of AR requests and immediate scheduling

of IR requests arriving on the fly. If the bandwidth is

insufficient to accommodate an IR request, the IR request

with a higher priority may preempt the bandwidths of

lower-priority AR requests that have been previously

reserved. We proved both of these problems to be NP-

complete. We proposed a heuristic algorithm Min-R-AR

for periodic scheduling of AR requests, which outperforms

Min-BHP-AR based on an existing algorithm for periodic

scheduling of AR requests. We further proposed Max-S-

ARIR, a collaborative scheduling algorithm for BS-ARIR.

For comparison, we also designed a heuristic algorithm

Greedy-ARIR for collaborative scheduling of BS-ARIR.

The performance superiority of Max-S-ARIR over Greedy-

ARIR was verified by extensive simulations in randomly

generated networks in terms of overall user satisfaction

We plan to implement and test the proposed bandwidth

scheduling solution in real-life high-performance networks

such as OSCARS of ESnet [18]. It is also of our future

interest to combine the proposed scheduling solution with

existing high-performance transport methods to support big

data transfer between data centers over wide-area

networks.
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