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Abstract
The cloud computing environments rely heavily on virtualization that enables the physical hardware resources to be shared

among cloud users by creating virtual machines (VMs). With an overloaded physical machine, the resource requests by

virtual machines may not be fulfilled, which results in Service Level Agreement (SLA) violations. Moreover, the high

performance servers in cloud data centers consume large amount of energy. The dynamic VM consolidation techniques use

live migration of virtual machines to optimize resource utilization and minimize energy consumption. An excessive

migration of virtual machines may however deteriorate application performance due to the overhead incurring at runtime.

In this paper, we propose a normalization-based VM consolidation (NVMC) strategy that aims at placing virtual machines

in an online manner while minimizing energy consumption, SLA violations, and the number of VM migrations. The

proposed strategy uses resource parameters for determining over-utilized hosts in a virtualized cloud environment. The

comparative capacity of virtual machines and hosts is incorporated for determining over-utilized hosts, while the cumu-

lative available-to-total ratio (CATR) is used to find under-utilized hosts. For migrating virtual machines to appropriate

hosts, the VM placement uses a criteria based on normalized resource parameters of hosts and virtual machines. For

evaluating the performance of VM consolidation, we have performed experimentation with a large number of virtual

machines using traces from the PlanetLab workloads. The results show that the NVMC approach outperforms other well-

known approaches by achieving a significant improvement in energy consumption, SLA violations, and number of VM

migrations.
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1 Introduction

Cloud computing continues to evolve as a main paradigm

for delivery of diverse IT services to end users. Its efficient

mechanism for provision of services encompasses access to

computational, storage, networking, and software resour-

ces. Through its economical, scalable, and elastic infras-

tructure, it benefits the users as well as the organizations

providing services [6, 8, 22]. For provision of services, the

data centers in cloud computing are equipped with high

performance servers and other hardware resources. The

resource usage of data centers is characterized with high

monetary costs including operational and power con-

sumption costs. In this regard, the virtualization technology

helps in mapping multiple virtual machines to a physical

machine, thereby amortizing the operational costs and the

capital investment made for purchase of servers.

For efficient and reliable provision of services to end

users, the QoS requirements negotiated with cloud users

are documented and formalized as Service Level Agree-

ments (SLAs). The non-fulfillment of performance

requirements results in SLA violations which must be

avoided to ensure QoS guarantees [4, 11, 23, 27]. While

executing user applications or workloads, the resource

demand for virtual machines may result in over-utilization

of physical machines. Moreover, in data centers, the

physical servers and their cooling systems account for a

high share of power consumption [30, 36, 38]. The data

centers equipped with a large number of IT devices
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consume significant amount of power which ultimately

converts to heat thereby requiring cooling equipment that

also needs electricity. High energy consumption also gives

rise to concerns on Carbon Dioxide (CO2) emission which

is a serious hindrance in attaining a green computing

environment [3, 5, 14, 21, 24, 34, 43]. The high perfor-

mance servers are known to consume significant amount of

energy even for applications with limited workloads

[15, 38].

For effective utilization of cloud resources, the dynamic

VM consolidation and placement techniques attempt to

consolidate virtual machines to minimum possible physical

machines. This is accomplished through live migration of

virtual machines to adequate hosts. The rest of the servers

are turned to low-energy sleep or hibernate modes. The

excessive live migration of virtual machines may however

deteriorate performance. An effective VM consolidation

strategy must therefore optimize resource utilization while

minimizing energy consumption, SLA violations and the

number of VM migrations. A few approaches including

linear programming, genetic algorithms, bin packing, and

constraint programming have been proposed in the litera-

ture to address the issues related to VM consolidation.

The classical bin-packing problem requires items of

different sizes to be packed into bins, while minimizing the

number of bins. The problem of VM mapping is modelled

by using virtual machines as items that are to be packed

into minimum number of bins that represent physical

machines. The evolutionary approaches, in contrast, per-

form population based meta-heuristic optimization to select

solution from search space containing possible solutions.

These approaches include genetic algorithms (GAs), PSO,

and ACO to optimize parameters through computation of

fitness for possible solutions. The genetic algorithm uses

evolutionary operators including crossover, mutation, and

selection on a collection of possible solutions. The VM

mappings are performed by using fitness criteria based on

customized parameters. The PSO algorithm uses the con-

cept of swarm intelligence by adjusting velocity and

position of particles while updating local and global opti-

mum values. The ant-colony optimization (ACO) is also a

bio-inspired technique that simulates the behavior of ants

for solving optimization problems. The VMs are mapped to

physical hosts using pheromone trails and updating them at

each iteration to fit virtual machines in physical hosts. In

contrast to the above-mentioned approaches, this paper

suggests a normalization-based VM consolidation

(NVMC) approach for dynamically consolidating virtual

machines. The proposed approach minimizes energy con-

sumption and SLA violations by reducing the number of

live VM migrations. For minimizing energy consumption,

the virtual machines are migrated from under-utilized hosts

to switch then in sleep/hibernate mode. The SLA violations

which may incur due to host over-utilization or excessive

live migration of virtual machines are limited by using

comparative capacity based criteria for identification of

over-utilized hosts. The overall approach works efficiently

by incurring a small overhead at runtime and outperforms

other approaches in terms of minimizing energy con-

sumption, SLA violations and number of VM migrations.

Overall, this paper makes the following contributions:

– Problem formulation for the dynamic VM consolidation

problem under given constraints

– Algorithm for normalization-based dynamic consolida-

tion of virtual machines aimed at minimizing energy

consumption, SLA violations, and number of VM

migrations

– Performance evaluation of the proposed algorithm

along with the state-of-the-art approaches using diverse

configurations of virtual machines and user workloads

The rest of the paper is organized as follows. Section 2

presents and analyzes techniques proposed to address the

VM consolidation problem. The context of our proposed

approach including the environment and problem formu-

lation is described in Sect. 3. Section 4 describes the pro-

posed normalization-based VM consolidation (NVMC)

algorithm. The parameters and configurations used for

experimentation are given in Sect. 5 along with results

obtained for various implementations. Section 6 concludes

the paper with major findings and future research

directions.

2 Related work

VM consolidation techniques have gained significant

importance with the evolution of the virtualization tech-

nology. Several approaches have been proposed in the

literature including linear programming, heuristics, and

meta-heuristics based algorithms to perform various phases

of VM consolidation including the detection of over-uti-

lized and under-utilized hosts, VM migration and VM

placement. These approaches target diverse goals such as

optimizing energy consumption, resource utilization, SLA

violations and number of VM migrations. A succinct

analysis of these approaches has been presented in this

section.

Various approaches using set of decisions variables,

objective function and constraints through linear pro-

gramming and constraint programming solvers have been

implemented. A comparative analysis of LP, constraint-

programming and heuristic approaches for VM consolida-

tion is shown in Table 1. Speitkamp and Bichler [40]

propose approach for server consolidation by assigning

virtual servers to physical servers. The static server
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assignment problem is then solved using linear program-

ming relaxation based heuristic. Their approach performs

data preprocessing to characterize data patterns that are

subsequently used for deriving estimators and minimizing

the number of parameters required for optimization. Sim-

ilarly, Dupont et al. [13] propose a framework for con-

solidation through energy-aware allocation of virtual

machines. The constraint programming is used to find

solution of the VM placement problem while considering

the idle power and power consumption required for each

virtual machine usage. The approach suggested by Zhang

et al. [47] uses constraint programming for virtual resource

allocation. The problem of resource allocation is repre-

sented as a set of variables and constraints. For provi-

sioning and placement of virtual machines, the existing

resources and workload requirements are considered for

evaluating a satisfaction level which is used for optimiza-

tion through constraint programming. The linear

programming and other related approaches are however

considered inefficient as the number of variables increases.

Several approximation and heuristic algorithms have

been developed to perform VM consolidation. Beloglazov

and Buyya [5] suggest several algorithms for dynamic VM

consolidation aiming at minimizing energy consumption

and SLA violations. The overloaded hosts are found using

statistical measures of median of absolute values, inter-

quartile range, local regression, and local robust regression.

The host with minimum resource utilization is tagged as

underloaded host. For migration, several policies are pro-

posed to select virtual machines randomly, having the

minimum migration time or the maximum correlation. The

VM placement approach uses power-aware best-fit

decreasing (PABFD) algorithm that allocates host requiring

minimum power consumption. Ding et al. [11] propose

host overload detection for VM consolidation using avail-

able computational capacity of host with the highest

Table 1 A comparative analysis of VM consolidation strategies in terms of approach, resources, and objectives

References Approach Resources Objectives

Speitkamp

and Bichler

[40]

LP-relaxation based

algorithm

CPU and memory Minimization of server costs using constraints specifying server capacity

Dupont et al.

[13]

Constraint Prog. based

framework

CPU, RAM and storage Optimizing energy efficiency and Carbon emissions

Zhang et al.

[47]

Constraint Prog. CPU, RAM and

bandwidth

Optimizing cost function (related to resource utilization) for VM

provisioning and minimizing number of physical nodes for VM packing

Beloglazov

and Buyya

[5]

Heuristic algorithms CPU, memory and

bandwidth

Minimizing SLA violations and energy consumption by finding

overloaded and underloaded hosts, selecting their VMs for migration

and placing VMs using power-aware best-fit decreasing heuristic

Ding et al.

[11]

Heuristic algorithms CPU, memory and

bandwidth

Minimizing energy consumption, migration cost and SLA violations by

detecting overloaded and underloaded hosts and placing VMs through

heuristics

Yadav et al.

[45]

Heuristic algorithms CPU and bandwidth Detecting overloaded host using gradient-descent based regression and

correlation precentage, and bandwidth-aware VM selection

Lin et al. [28] Heuristic algorithm CPU Minimizing power consumption using dynamic Round-Robin and First-

Fit based approaches

Mastroianni

et al. [31]

Heuristic using Bernoulli

trial

CPU and RAM Consolidation using assignment and migrations based on trial success

probabilities

Chen et al. [9] Heuristic for stochastic

bin packing

CPU and memory Minimizing active servers using first-fit decreasing, best-fit decreasing

and history-aware bin packing algorithms

Hsieh et al.

[23]

Heuristic algorithm CPU Reduce energy cost and number of active hosts by predicting CPU

utilization

Dong et al.

[12]

Heuristic alogirthm

using hierarchical

clustering

CPU, memory, storage

and network interface

Minimizing energy, migration and link utilization costs using clustering

based on minimum-cut

Al-Dulaimy

et al. [1]

Heuristic algorithm CPU, RAM, storage

and bandwidth

Minimizing energy consumption using multiple choice Knapsack

problem based heuristic

Azizi et al. [2] Heuristic algorithm CPU and RAM Minimizing power consumption and resource usage using multi-

dimensional resource usage model

Li et al. [25] Heuristic algorithm CPU and RAM Minimizing energy consumption using multi-dimensional space

partitioning
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performance to power ratio (PPR). For live migration, the

virtual machines requiring minimum data transfer are

selected to be transferred to other hosts. Similarly, the

under-utilized hosts are detected using Z-score values

based on the CPU utilization and PPR value. The VM

placement strategy considers allocation of VMs to hosts

with higher PPR values. Another similar approach of VM

consolidation by Yadav et al. [45] uses resource utilization

based heuristic for detecting over-utilized hosts and selects

VMs from these hosts that minimize VM migration time.

The dynamic round-robin algorithm proposed by Lin et al.

[28] restrains servers from accepting more VMs if any of

the VMs has completed its job and allows to shutdown the

machines after migration. Their hybrid algorithm uses first-

fit during rush hours while resorting to round-robin for

consolidation during non-rush hours.

Mastroianni et al. [31] use Bernoulli trial whose success

probability depends upon actual resource utilization and

the utilization threshold. A low probability indicates the

host to be over-utilized or under-utilized. The approach

uses threshold values to be set by data center administrators

for gradual migration of virtual machines. Chen et al. [9],

in contrast, use the concept of effective sizing of virtual

machines incorporated for server consolidation. The

effective sizing estimates aggregate resource requirements

by considering VM resource requirements and its correla-

tion with resource requirements of other VMs. Similarly,

for resource allocation and minimizing the number of

physical machines, other bin-packing based algorithms

have also been devised [39].

Markov Chain based models have also been incorpo-

rated for different phases of VM consolidation. Hsieh et al.

[23] propose approaches for host overload and host

underload detection using Gray-Markov based forecasting

model. The Markov chain is used to determine error in

forecasting. The overload and underload host detection

algorithms use CPU utilization history for prediction and

make decision based on specified thresholds. Similarly,

another approach in [4] uses Markov Chain model for

optimizing delay between VM migration while using

workloads whose state transition delays are exponentially

distributed.

Several strategies transform consolidation steps to other

problems with known efficient solutions. Dong et al. [12]

present an approach that places VMs on physical machines

considering physical resources and VM requirements while

using a hierarchical clustering algorithm based on min-cut

for traffic between VMs. Ghobaei-Arani et al. [20] use

algorithm based on best-fit decreasing to reduce energy

consumption and minimize SLA violations in cloud data

centers. A learning automata based actions are used for

selection of hosts while considering energy consumption

for allocation. Al-Dulaimy et al. [1] use the static and

dynamic thresholding for resource in order to find under-

loaded and overloaded hosts, while the VM placement is

mapped as the multiple choice knapsack problem to cope

with multiple resource constraints.

A dimension-aware approach by Azizi et al. [2] opti-

mizes resource wastage and power consumption for allo-

cating virtual machines to physical machines. Their

algorithm uses multi-dimensional model for resource usage

to categorize usage states into domains. The host capacity

and resource usage factor are used for allocating virtual

machines and replacing them for balancing the utilization

of resources. The strategy by Li et al. [25] also uses a

multi-dimensional space model to represent resource uti-

lization for VM placement. The distances of usage states

are categorized into pre-defined domains that are subse-

quently used to determine resource leakage and priorities

for resource allocation. Zhang and Ansari [48] have how-

ever shown the approach with clustering of dominant

resources to perform similar to dimension-aware approa-

ches with low complexity.

The evolutionary algorithms that use population based

meta-heuristic optimization have been widely used despite

their complexity and requirements for tuning of parame-

ters. A comparison of meta-heuristic approaches for VM

consolidation is shown in Table 2. Li et al. [26] suggest

algorithms simulating artificial bee colony foraging

behavior to address the issues of energy consumption and

quality of service. The VM consolidation is addressed

through optimization of multiple objectives including the

number of migrations, energy consumption, and host

overload probability while considering the CPU, RAM, and

bandwidth resources. Mi et al. [32] propose another

mechanism for consolidation through dynamic reconfigu-

ration of virtual machines aimed at improving resource

utilization and minimizing power consumption. The

approach uses genetic algorithm with selection, crossover,

and mutation operations being applied to the population

containing solutions. The fitness function uses computation

of power consumption and CPU usage to improve overall

utilization while conserving energy.

Wu et al. [44] use genetic algorithm based approach for

dynamic consolidation while optimizing migration cost and

power saving. Their genetic algorithm uses swapping and

the best-fit heuristic based operations while optimizing

fitness function that is based on migration cost and power

saving. The approach by Ye et al. [46] also incorporates an

energy efficient evolutionary algorithm for optimizing

allocation of VMs to physical machines. Other approaches

given in [27, 33] propose genetic algorithms where the

population contains possible mappings between VMs and

physical machines. Their objective functions attempt to

optimize expected energy consumption of physical

machines in addition to other parameters such as SLA
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violations and/or related costs. The approach proposed by

Tarahomi et al. [41] uses an agile version of genetic

algorithm with reduced steps for allocating virtual

machines. Their fitness function uses total power con-

sumption that is based on CPU utilization. In contrast,

Torre et al. [42] propose algorithm based on NSGA-II with

multiple populations that evolve independently for place-

ment of virtual machines. The initial population is divided

into two generations that are later merged to find the best

offsprings using the ranks and crowd distance metrics.

Similarly, Gao et al. [18] use criteria based on resource

wastage and power consumption for minimization. The

algorithm takes as input the resource demands and

thresholds of resource utilization to generate non-domi-

nated solutions for mapping virtual machines to hosts.

Other population-based meta-heuristics using ant-colony

optimization (ACO) have also been used for addressing

VM consolidation. Ferdaus et al. [17] use ACO with multi-

dimensional vector packing while considering resource

wastage and power consumption as main parameters for

optimization. Similarly, Shabeera et al. [37] propose to

allocate VMs to physical machines that are close to data.

The adjacent physical machines having accumulative

capacity equal to the resource demand are selected for

allocation using ACO. Gharehpasha et al. [19] propose a

hybrid approach for improved exploration and exploitation

using the Sine-Cosine and Salp Swarm algorithms. These

algorithms are combined with chaotic functions to search

for solutions while optimizing power consumption,

resource wastage and SLA violations. Liu et al. [29] pro-

pose ant-colony system based approach for consolidation

using CPU and RAM resources. The approach attempts to

minimize the number of active servers. A preference value

computed from the pheromone between two VMs is used

for selection of server for a virtual machine. Farahnakian

et al. [16] incorporate categorization based on CPU uti-

lization and energy for input to ACO based algorithm that

is used for generating migration plan. These population-

based meta-heuristics require a large number of customized

parameters for exploring the search space, thereby making

them inappropriate for online VM consolidation, as

addressed in this paper.

Table 2 A comparative analysis of meta-heuristic based VM consolidation strategies in terms of approach, resources, and objectives

References Approach Resources Objectives

Li et al. [26] Artificial Bee Colony based

algorithm

CPU, memory and

bandwidth

Minimizing power consumption, number of migrations and

overload probability

Mi et al. [32] Genetic algorithm CPU Maximizing CPU utilization and minimize power consumption

Wu et al. [44] Genetic algorithm CPU and memory Maximizing consolidation score based on migration cost and

power savings

Ye et al. [46] Genetic algorithm CPU, memory and

bandwidth

Minimizing energy consumption and load variance, while

maximizing robustness and resource utilization

Mosa and

Paton [33]

Genetic algorithm CPU, memory and

bandwidth

Maximimizing profit while minimizing costs related to energy,

SLA violations and migration

Tarahomi

et al. [41]

Micro-genetic algorithm CPU and memory Minimizing power consumption and SLA violations

Torre et al.

[42]

FFD and NSGA-II CPU and memory Minimizing resource wastage, resource overcommitted ratio and

migrations cost

Gharehpasha

et al. [19]

Salp Swarm and Sine-Cosine

with chaotic functions

CPU, memory, storage

and bandwidth

Minimizing power consumption, resource wastage and SLA

violations

Gao et al. [18] Ant Colony Optimization CPU and memory Minimizing resource wastage and power consumption using

multi-objective ant colony system

Ferdaus et al.

[17]

Ant Colony Optimization CPU, memory and

network I/O

Maximizing resource utilization and minimizing power

consumption

Shabeera et al.

[37]

Ant Colony Optimization CPU, memory and

storage

Optimizing sum of PM distances for VM and data placement

Liu et al. [29] Ant Colony Optimization CPU and memory Minimizing number of active servers for VM placement using

Ant Colony System

Farahnakian

et al. [16]

Ant Colony Optimization CPU, memory and

network I/O

Optimizing migration plan while minimizing number of active

PMS using ant colony system
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3 Context and problem formulation
for dynamic VM consolidation on cloud
platforms

Modern data center operators rely heavily on virtualization

that enables execution of multiple virtual machines on a

physical machine for effective utilization of physical

resources. A cloud environment containing a large number

of high performance computing equipment suffers from

energy inefficiency due to inadequate usage of cloud

resources. An analysis of the utilization of high perfor-

mance servers in cloud environments shows their utiliza-

tion to rarely approach 100% [5]. On the one hand, the

under-utilization of cloud resources decreases revenue of

cloud service providers, and on the other hand, the servers

despite being in idle state consume significant amount of

their peak power [15]. Moreover, the extra power for

cooling the servers with high power consumption incurs

monetary cost and also deteriorates the green computing

environment [36, 38].

The under-utilization of resources is addressed through

virtualization that enables to host multiple instances of

virtual machines on a physical machine. Consequently, the

cost of operations, power consumption and greenhouse

effects mitigate significantly. The under-utilized hosts may

then be switched to low-power modes (hibernate/sleep) by

migrating remaining virtual machines from under-utilized

hosts to any other host.

A generic view of the system model used for consoli-

dation of virtual machines is shown in Fig. 1. The virtual

machine consolidation techniques aim at finding minimum

number of physical hosts for virtual machines and generate

migration maps to be used for live migration. The con-

solidation through excessive migration of virtual machines

may however deteriorate performance and response time of

applications. Moreover, the Service Level Agreements

(SLAs) established between cloud service providers and

customers are violated while attempting to minimize

energy through VM consolidation.

To cope with the above-mentioned issues, this paper

proposes a novel approach for dynamic consolidation of

virtual machines. The proposed NVMC approach consoli-

dates VMs by improving live migration while minimizing

energy consumption and SLA violations. The energy con-

sumption is minimized by identifying under-utilized hosts

and migrating their VMs to other hosts. The resource

capacity of hosts and virtual machines is used to find over-

utilized hosts and migrate the virtual machines subse-

quently. For the VMs to be migrated, the target hosts are

found while ensuring to meet the required resource con-

straints. The VM placement phase uses the criteria based

on normalized resource parameters of hosts and virtual

machines, and a migration map is subsequently generated

for live migration.

For dynamic VM consolidation, we assume a cloud

environment with m physical hosts, each having q resource

parameters whose capacity is represented by P. Each vir-

tual machine is characterized with resource requirements v,
for placement on a host. With n virtual machines to be

allocated to a host, the following constraints must be

fulfilled:

Xn�1

i¼0

vij �Pj8j ¼ 0; 1; . . .; q� 1 ð1Þ

The execution of user workloads through virtual machines

results in power consumption by physical machines which

are usually high performance servers. With the resource

requirement such as CPU exceeding the capacity of the

host, an SLA violation occurs. The physical machines may

be over-utilized due to a large number of virtual machines

being hosted on the machines. To cope with the increasing

resource demand, a few virtual machines need to be

migrated from over-utilized hosts. Similarly, the virtual

machines from the under-utilized hosts must be migrated to

bring those hosts to idle state, thereby making hosts to

consume negligible power. Assuming Ce
i;k, C

s
i;k and Cv

i;k to

be respectively the costs of energy consumption, SLA

violations and live VM migrations corresponding to host k

at i-th instance of time, the total cost Ctotal becomes:

Ctotal ¼
Xt

i¼1

Xm

k¼1

Ce
i;k þ

Xm

k¼1

Cs
i;k þ

Xm

k¼1

Cv
i;k

 !
; ð2Þ

where t is the total time which may be divided into multiple

time frames. The dynamic consolidation determines

migration maps describing the mapping of virtual machines

to hosts for which the total cost Ctotal is minimized.

The SLA violations (SLAV) are measured as a product

of the time percentage of a host being active during full

utilization of CPU and the CPU utilization incurred due to

migration [5, 7], as given below:

SLAV ¼ 1

q

Xm

i¼1

Tf
i

Ta
i

� 1
n

X

i¼1

n
Um

i

Uf
i

ð3Þ

where, Tf is the time for full CPU utilization, Ta is the time

during which the host is active, Um is the CPU utilization

during migration, and Uf is the total CPU utilization

requested by a virtual machine.
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4 Normalization-based VM consolidation
algorithm

In a virtualized environment, the cloud service providers

attempt to optimize resource utilization to meet cloud

users’ demands. Migration of virtual machines from over-

utilized and under-utilized hosts helps in meeting SLA

constraints and in reducing the energy consumption. A

large number of VM migrations may however affect the

quality-of-service (QoS) by increasing SLA violations.

Through consolidation, the VM migrations need to be

leveraged to find a trade-off between performance and

energy. The normalization-based VM consolidation

(NVMC) algorithm aims at generating migration plan that

consolidates virtual machines to physical machines while

minimizing energy consumption, number of VM migra-

tions and SLA violations.

Algorithm 1 Normalization-based VM Consolidation (NVMC) Algorithm

1: /* Let ∀m−1
i=0 Hi be the set of m physical hosts and let ∀n−1

i=0 Vi be the set of n virtual
machines. Let ∀q−1

j=0 Pj(h) be the set of q resource parameters for each host h ∈ H. Let
φ represent the set of available hosts. */

2: φ ← H // Initialize available hosts
3: for j = 0, 1, . . . , q − 1 do
4: P max

j ← Double.MIN VALUE, P min
j ← Double.MAX VALUE

5: for i = 0, 1, . . . , m − 1 do
6: if Pj(Hi) > P max

j then
7: P max

j ← Pj(Hi)
8: else if Pj(Hi) < P min

j then
9: P min

j ← Pj(Hi)
10: end if
11: end for
12: end for
13: /* Let R reresent a map with host as a key and a resource weight as value. Let Wj ,

∀j = 0, 1, . . . , q − 1 represent the resource weight values for parameters */
14: for i = 0, 1, . . . , m − 1 do
15: for j = 0, 1, . . . , q − 1 do
16: if P max

j == P min
j then

17: Wj(Hi) ← Double.MIN VALUE
18: else

19: Wj(Hi) ← Pj(Hi)−Pmin
j

Pmax
j −Pmin

j

20: end if
21: end for
22: R.put Hi,

q
j=1 Wj(Hi)

23: end for
24: Vo ← , Vu ←
25: for i = 0, 1, . . . , m − 1 do
26: flag ← false
27: while isOverUtilized(Hi) do
28: flag ← true
29: Υ ← virtual machine to be migrated with minimum migration time
30: Vo Υ
31: Remove virtual machine Υ from host Hi

32: end while
33: if (flag == true) then
34: φ ← φ - Hi

35: end if
36: end for
37: ψo ← findVmPlacement (Vo, φ)
38: while (h=getUnderUtilizedHost(φ)) && (h = NULL) do
39: φ ← φ - h
40: for each virtual machine Υ on host h do
41: Vu ← Vu Υ
42: Remove virtual machines Υ from host h
43: end for
44: end while
45: ψu ← findVmPlacement (Vu, φ)
46: Return ψo ψu
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The NVMC algorithm (Algorithm 1) takes as input the

sets of m hosts (H) and n virtual machines (V). The hosts

are equipped with a set of q resource parameters (P) whose

utilization is demanded by virtual machines executing user

applications. Initially, the NVMC algorithm computes

resource weights through normalization that scales

resource parameters for both physical hosts and virtual

machines. The scaled values are subsequently used in

detecting over-utilized hosts while comparing with a

threshold value, as given in Algorithm 2.

The set of available hosts / is initiaized at step 2. The

maximum and minimum values of resource parameters are

determined corresponding to each host using steps 3–12.

For each host, the resource weights are computed and

placed in a map R, using loops in steps 14–23. The resource

weights represent normalized values that are scaled to exist

in interval [0,1]. The map R is filled with the host as key

and the sum of its resource weights as the value. The sets of

virtual machines executing on over-utilized and under-

utilized hosts are represented by Vo and Vu, respectively.

The isOverUtilized algorithm (Algorithm 2) is invoked at

step 27 to check whether the input host is over-utilized in

terms of resources. For each over-utilized host, the virtual

machines are selected, added to the set Vo, and then

removed from the host until the host is no longer over-

utilized. The set of available hosts / is subsequently

updated, at step 34. The findVMPlacement algorithm (Al-

gorithm 4) is then invoked to determine appropriate hosts

for the virtual machines in the set Vo. The algorithm returns

the migration map wo, containing virtual machines and

their corresponding hosts. In the next step, the under-uti-

lized hosts are found by using the function getUn-

derUtilizedHost (Algorithm 4). All the virtual machines

from the underutilized hosts are then added to the set Vu in

steps 40–43. The algorithm findVMPlacement is once again

invoked to determine the migration map wu, representing

mapping of virtual machines to hosts. The maps wo and wu

are then merged to generate final migration map that is

returned by the NVMC algorithm.

Algorithm 2 isOverUtilized Algorithm

Input: Host h
Output: Value true or false
1: // Let ∀q−1

j=0χj(v) be the resources requested by a virtual machine v and let T be the
threshold value to be used for detecting over-utilized host.

2: for each virtual machine v running on host h do
3: χmax

j (v) ← Double.MIN VALUE, ∀j = 0, 1, . . . , q − 1
4: χmin

j (v) ← Double.MAX VALUE, ∀j = 0, 1, . . . , q − 1
5: for j = 0, 1, . . . , q − 1 do
6: if χj(v) > χmax

j (v) then
7: χmax

j (v) ← χj(v)
8: end if
9: if χj(v) < χmin

j (v) then
10: χmin

j (v) ← χj(v)
11: end if
12: end for
13: end for
14: /* Let S represent the sum of normalized values for each resource requested by the

virtual machines on the host h */
15: S ← 0
16: for each virtual machine v running on host h do
17: for j = 0, 1, . . . , q − 1 do
18: if χmax

j (v) == χmin
j (v) then

19: Wj(v) ← 0
20: else

21: Wj(v) ← χ
j
(v)−χmin

j
(v)

χmax
j

(v)−χmin
j

(v)

22: end if
23: S ← S + Wj(v)
24: end for
25: end for
26: Wh ← R.get(h) // Retrieve resource weight from the map R

27: Return S−Wh
q

≥ T
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The isOverUtilized algorithm (Algorithm 2) takes as

input a host h and returns whether a host is over-utilized,

thereby requiring the virtual machines to be migrated to

other hosts. The maximum and minimum values for each

resource requested by the virtual machine are initialized at

steps 3–4. Subsequently, these values are updated in an

iterative manner (steps 5–12) to find values for all virtual

machines running on the host h. The values for requested

resources are normalized to exist in the interval [0,1] using

steps 18–21. The sum of the normalized resource weights is

accumulated for all the virtual machines. The step 26

retrieves the resource weight corresponding to the host

h from the map, as stored by the NVMC algorithm. The

isOverUtilized algorithm then computes the difference of

the normalized resource weights of the host and its virtual

machines, corresponding to a single resource. It then

returns true or false depending upon the computed value

exceeding the threshold value T.Fig. 1 Overview of VM consolidation on cloud platforms

Algorithm 3 findVmPlacement Algorithm

Input: Set of virtual machines V to be migrated, Set of available hosts φ
Output: Map (ψ) containing hosts and virtual machines
1: Sort virtual machines V w.r.t. CPU utilization in descending order
2: /* Let Ak(h) represent value of available resource k on host h ∈ φ, and let χk(v)

represent the value of resource k demanded by virtual machine v ∈ V . Pk(h) represents
the capacity of resource k on host h, while μ represents CDTR values */

3: β ← null // host to be allocated
4: for each virtual machine v ∈ V do
5: μmin ← Double.MAX VALUE
6: for j = 0, 1, 2, . . . , |φ| − 1 do
7: flag ← true
8: for k = 0, 1, 2, . . . , q − 1 do
9: if Ak(φj) +χk(v) > Pk(φj) then
10: flag ← false
11: break
12: end if
13: end for
14: if (flag == true) then

15: μ(φj , v) ← q−1
k=0

χ
k
(v)

Pk(φj)

16: if μ(φj , v) < μmin then
17: β ← φj

18: μmin ← μ(φj , v)
19: end if
20: end if
21: end for
22: ψ.put(v,β)
23: Update available resources Aj(β), ∀j = 0, 1, . . . , q − 1
24: end for
25: Return ψ
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The findVmPlacement algorithm (Algorithm 3) takes as

input the set of virtual machines and the set of available

hosts to generate a map w, containing virtual machines and

the hosts on which these virtual machines should be hosted.

The virtual machines are initially sorted w.r.t their CPU

utilization. The host to be allocated to a virtual machine is

initialized at step 3. The loop at steps 4–24 finds host for

each virtual machine and subsequently adds both the vir-

tual machine and host to the map w. The algorithm uses the

notion of cumulative demand-to-total ratio (CDTR), rep-

resented as l. Corresponding to a host h and a virtual

machine v, it is computed as follows:

lðh; vÞ ¼
Xq�1

k¼0

vkðvÞ
PkðhÞ

; ð4Þ

where vðvÞ represents the set of q resources requested by

the virtual machine v, and P(h) represents the capacity of

resources of host h. The minimum CDTR value lmin is

initialized at step 5. The suitability of host for a virtual

machine is found at steps 7–13, using resources available

on host /j, the resources v requested by the virtual

machine, and the total resources P existing on the host. The

CDTR value for the host /j, represented as lð/jÞ, is

computed at step 15. The host with the minimum CDTR

value, b, is then found and subsequently added to the map

w along with the virtual machine v. The map w containing

mappings of virtual machines to hosts is then returned by

the algorithm.

The getUnderUtilizedHost algorithm (Algorithm 4)

takes as input the set of available hosts / and returns the

under-utilized host b. The algorithm uses the notion of

cumulative available-to-total ratio (CATR), represented as

k. Corresponding to a host h, having q number of resource

parameters, it is computed as follows:

kðhÞ ¼
Xq�1

k¼0

AkðhÞ
PkðhÞ

; ð5Þ

where A represents the values for available resources and

P(h) represents the capacity of resources existing on host h.

The minimum value of CATR, represented as kmin and

the under-utilized host are initialized at step 1 and 2,

respectively. For each available host, the CATR values are

determined at step 4. Subsequently, the minimum CATR

value is found using steps 5–8. The algorithm then returns

the host with the minimum CATR value.

Considering q resource parameters, m hosts and n virtual

machines, the loops at steps 3–12 and 14–23 have time

complexity of Oðq � mÞ. The loop at steps 25–36 and 38–

44 for finding over-utilized and under-utililized hosts, both

work with the complexity of Oðm � n � qÞ. The invocations
of VM placement algorithms also incur a cost of

Oðn � m � qÞ. The overall complexity of the algorithm

therefore becomes Oðm � n � qÞ. Limiting the resource

parameters of the cloud environment to be small constants,

i.e. q \\ n and q \\ m, the complexity of the proposed

algorithm reduces to Oðn � mÞ.
Moreover, the steps 2–23 (highlighted) in the NVMC

algorithm are performed offline, prior to dynamic online

consolidation, thereby further enhancing the overall effi-

ciency of the proposed algorithm.

5 Experimentation setup and results

For experimentation, the proposed NVMC approach has

been implemented in the CloudSim framework [7]. Our

experiments have been performed with a PowerDatacenter

containing 800 hosts. The NVMC approach considers

CPU, memory, bandwidth, and storage resources while

Algorithm 4 getUnderUtilizedHost Algorithm

Input: Set of available hosts φ
Output: The under-utilized host β
1: λmin ← Double.MAX VALUE
2: β ← null
3: for j = 0, 1, 2, . . . , |φ| − 1 do

4: λ(φj) ← q−1
k=0

Ak(φj)
Pk(φj)

5: if λ(φj) < λmin then
6: λmin ← λ(φj)
7: β ← φj

8: end if
9: end for
10: return β
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placing virtual machines on hosts. The user requests are set

to execute on virtual machines with the workloads being

characterized with resource requirements from the real

system traces obtained from the CoMon [35] project, a

monitoring system for the PlanetLab testbed [10]. The

configurations used for experimentation containing hosts

and virtual machine parameters are given in Table 3.

For virtual machines, the Amazon EC2 instances are

used that are categorized into micro (500 MIPS), small

(1000 MIPS), extra large (2000 MIPS) and high-cpu (2500

MIPS). The performance results of the proposed NVMC

algorithm have been compared with the dynamic energy-

aware consolidation (EAC) implemented in the CloudSim

framework [5, 7] while using interquartile range (IQR),

Median Absolute Deviation (MAD) and Local Regression

Robust (LRR) strategies for host overload detection. The

online deterministic algorithms for dynamic VM consoli-

dation implemented in the CloudSim framework are shown

to achieve significant competitiveness1 over optimal offline

algorithms.

The IQR strategy uses statistical measure of dispersion

as the difference of quartiles for setting upper threshold of

utilization for finding over-utilized hosts. The MAD strat-

egy uses a customized threshold for CPU utilization to

detect over-utilized hosts. It controls the frequency of VM

consolidation to impact the number of VM migrations and

SLA violations. The LRR strategy attempts to fit a poly-

nomial to the data of CPU utilization in order to estimate

the future utilization. It uses the robust estimation method

with weights that are computed iteratively to fit data. The

safety parameter and estimated utilization are then used to

detect overloaded hosts and perform VM migrations

subsequently.

The strategies used for comparison, their parameters, the

workloads and the number of virtual machines used for

evaluation are given in Table 4. The PlanetLab workloads

(W1–W6) contain date-wise traces of execution (repre-

senting utilization of resources at several instances) on

cloud platform, as obtained for different days of March and

April (2011). These workloads, set to work with diverse

configurations of virtual machines, are widely used for

evaluating the performance of dynamic VM consolidation

strategies.

5.1 Metrics for performance evaluation

For evaluation, we use the metrics of energy consumption,

SLA violations (SLAV), number of VM migrations, Cost

Impact Factor (CIF) and Overall Performance Enhance-

ment (OPE). The first metric represents the energy con-

sumed by physical machines of the data center while

executing user workloads. The SLA violation results are

computed as the product of the SLA time per active host

and performance degradation due to migration, as given in

Table 3 Experimental setup and

configuration parameters
Experimentation platform

Framework Simulation platform Operating system

CloudSim-4.0 Framework [7] Intel Core i7-720q 64-bit Windows

Hosts configuration

Power models Host

RAM

Number of

cores

HP Proliant-ML110-G4 with Intel Xeon 3040 & HP Proliant-ML110-G5 with

Intel Xeon 3075

4 GB 02

Core frequency (MHz) Host BW Host storage

1860, 2660 MHz 1 Gbps 1 TB

Virtual machines configuration

VM CPU (MIPS) Number of cores RAM (MB)

2500, 2000, 1000, 500 01 870, 1740, 1740, 613

VM bandwidth VM size (MB) Hypervisor

100 Mbps 2500 Xen

1 With upper bound for competitive-ratio being

1þ ðm � c=ð2 � ðmþ 1ÞÞÞ, where m is the maximum number of

virtual machines that may be allocated to a host demanding maximum

CPU capacity, and c is the cost of SLA violations.
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Eq. 3. The third metric represents the number of VM

migrations performed from one physical machine to other

during consolidation.

Let E, S and V represent the energy consumption, SLA

violations, and number of VM migrations, respectively.

The normalized values of energy consumption, SLA vio-

lations and number of VM migrations, represented

respectively, by EN
j and SNj , and VN

j corresponding to j-th

consolidation strategy are computed as:

EN
j ¼1þ ðEj � EminÞðk � 1Þ

Emax � Emin
; ð6Þ

SNj ¼1þ ðSj � SminÞðk � 1Þ
Smax � Smin

; ð7Þ

VN
j ¼1þ ðVj � VminÞðk � 1Þ

Vmax � Vmin
; ð8Þ

where k is the total number of strategies considered for

evaluation. The Cost Impact Factor (CIF) representing the

combined incurred costs for a strategy may be computed

as:

CIFj ¼ EN
j þ SNj þ VN

j ; 8j ¼ 1; 2; . . .; k: ð9Þ

The Overall Performance Enhancement (OPE) achieved by

the NVMC strategy over any other j-th strategy is descri-

bed as the ratio of CIF values, and is computed as:

OPENVMC ¼ CIFj

CIFNVMC
: ð10Þ

5.2 Performance results

For energy consumption using workloads W1, W2 and W3,

the performance results are shown in Fig. 2. The NVMC

strategy significantly minimizes energy consumption.

Using NVMC_4.0, the minimum energy 91.58 kWh, 68.6

kWh and 94.20 kWh is consumed for workloads W1, W2

and W3, respectively. The performance of NVMC variants

is followed by the EAC_LRR_1.0 consolidation strategy.

In terms of energy consumption, the NVMC_4.0 variant

performs 1.42, 1.43 and 1.54 times better than the

EAC_LRR_1.0 strategy.

The number of VM migrations performed through

consolidation for workloads W1, W2 & W3 are shown in

Fig. 3. The dynamic consolidation using NVMC results in

minimum number of VM migrations. The performance of

NVMC variants is followed by the performance of

EAC_MAD_3.0 for workload W1. Similarly, for the

workloads W2 and W3, the EAC_LRR_1.0 and

EAC_IQR_1.0 strategies perform better than other energy

aware consolidation strategies. Overall, the NVMC_4.0

variant outperforms all other variants. It performs 10.33,

8.84 and 6.95 times better than the best performing

strategies EAC_MAD_3.0, EAC_LRR_1.0 and

EAC_IQR_1.0 for workloads W1, W2 and W3,

respectively.

The percentage of SLA violations incurred during exe-

cution of workloads W1, W2 and W3 is shown in Fig. 4.

As shown in the figure, the NVMC_4.0 strategy outper-

forms other strategies by producing lowest number of SLA

violations. For the workload W1, the performance of

NVMC_4.0 variant is followed by NVMC_3.5 and

EAC_IQR_2.0. Similarly, for the workload W2, the per-

formance of NVMC variants is followed by the perfor-

mance of EAC_MAD_3.0. For the workload W3, however,

the NVMC_4.0 performs better than all other strategies,

and is followed by the performance of EAC_MAD_3.0 and

EAC_IQR_2.0.

Table 4 Strategies, their parameters and workloads used for

evaluation

Evaluated workloads and strategies with parameters

Workloads and number of VMs

W1 W2 W3

2011/03/03 1052 2011/03/06 898 2011/03/22 1516

W4 W5 W6

2011/04/03 1463 2011/04/09 1358 2011/04/20 1033

Strategies and

parameters

EAC_IQR =[ 1.0,

2.0, 3.0

EAC_MAD =[ 1.0,

2.0, 3.0

EAC_LR =[ 1.0,

1.2, 1.4

EAC_THR =[ 0.6,

0.8, 1.0

NVMC =[ 3.0, 3.5, 4.0

Fig. 2 Energy consumption (kWh) by physical machines for work-

loads W1, W2, & W3 corresponding to different VM consolidation

strategies
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Overall, for the workloads W1, W2 and W3, the results

for the energy consumption, number of VM migrations and

SLA violations show that the NVMC strategy outperforms

other strategies by significantly optimizing all the

objectives.

Using workloads W4, W5 and W6, the results for energy

consumption are shown in Fig. 5. The results show that the

NVMC strategy significantly minimizes energy consump-

tion. Using NVMC_4.0, the minimum energy 118.81 kWh,

98.88 kWh and 68.24 kWh is consumed for workloads W4,

W5 and W6, respectively. The NVMC variants outperform

other strategies in terms of energy consumption. The per-

formance of NVMC variants is followed by EAC_LRR_1.0

strategy. In terms of energy consumption, the NVMC_4.0

variant performs 1.49, 1.46 and 1.61 times better than the

EAC_LRR_1.0 strategy.

Figure 6 shows the number of VM migrations per-

formed during consolidation. The NVMC strategy outper-

forms other strategies by producing minimum number of

VM migrations. The performance of NVMC variants is

followed by the performance of EAC_MAD_3.0 for

workloads W4 and W5, and EAC_IQR_1.0 for workload

W6. Overall, the NVMC_4.0 variant outperforms all other

variants. It performs 10.17, 9.22 and 7.36 times better than

the variants performing best among other strategies for

workloads W4, W5 and W6, respectively.

The results of percentage of SLA violations incurred

during execution of workloads W4, W5 and W6 are shown

in Fig. 7. As shown in the figure, the NVMC_4.0 outper-

forms other strategies by producing lowest number of SLA

violations. The performance of NVMC_4.0 strategy is

followed by EAC_THR_0.8, EAC_MAD_3.0 and

EAC_IQR_1.0 for the workloads W4, W5 and W6,

respectively.

It is evident that the best performing energy aware

strategies do not perform consistently in optimizing all the

objectives. In contrast, the NVMC strategy is able to

minimize the energy consumption, number of VM migra-

tions and SLA violations, simultaneously.

Figure 8 shows the Cost Impact Factor (CIF) results, as

computed by Eq. 9, for the VM consolidation strategies. It

represents the collective cost for comparative evaluation

while considering all three objectives of minimizing energy

consumption, number of VM migrations and SLA viola-

tions. It is evident that the NVMC strategy performs better

than all other strategies, while the NVMC_4.0 produces the

lowest value of CIF. Among other energy-aware consoli-

dation strategies, the EAC_LRR_1.2, EAC_IQR_1.0 and

EAC_MAD_2.0 perform better than other strategies.

Fig. 3 Number of VM migrations performed through VM consoli-

dation strategies using workloads W1, W2, & W3

Fig. 4 Percentage of SLA violations incurred during execution of

workloads W1, W2, & W3 corresponding to VM consolidation

strategies

Fig. 5 Energy consumption (kWh) by physical machines for work-

loads W4, W5, & W6 corresponding to different VM consolidation

strategies

Fig. 6 Number of VM migrations performed through VM consoli-

dation strategies using workloads W4, W5, & W6
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5.3 Analysis of results

The cumulative values of energy consumption, number of

VM migrations and SLA violations for all workloads cor-

responding to threshold values are shown in Table 5. The

cumulative results show that for energy consumption, the

EAC_IQR_1.0, EAC_MAD_1.0, EAC_LRR_1.0,

EAC_THR_1.0 and NVMC_4.0 variants perform better

than variants with other threshold values. Similarly, for the

number of VM migrations, the EAC_IQR_1.0, EAC_-

MAD_3.0, EAC_LRR_1.2, EAC_THR_0.8 and

NVMC_4.0 variants produce better results. For the SLA

violations, the EAC_IQR_2.0, EAC_MAD_3.0,

EAC_LRR_1.4, EAC_THR_0.8 and NVMC_4.0 show

better results than other variants.

The Overall Performance Enhancement (OPE) values as

computed using Eq. 10 obtained by the NVMC_3.0 variant

are shown in Fig. 9. The OPE values correspond to the

performance enhanced in terms of all three objectives of

energy consumption, number of VM migrations, and SLA

violations. As shown in the figure, the NVMC_3.0 per-

forms better than all other energy-aware strategies. On

average, it performs 1.63 times better than all other

strategies.

Figure 10 shows the OPE values obtained by the

NVMC_3.5 variant over other energy-aware variants. As

shown in the figure, the NVMC_3.5 performs better than

all other energy-aware strategies by producing average

OPE value of 2.70.

The OPE values obtained by the NVMC_4.0 variant are

shown in Fig. 11. The NVMC_4.0 variant outperforms all

energy-aware consolidations strategies. Moreover, it per-

forms better than other NVMC variants as well. On aver-

age, it performs 3.61 times better than the energy-aware

consolidation strategies.

6 Conclusion

For cloud service providers, the energy efficiency and

quality-of-service (QoS) have become pivotal in order to

reduce energy costs, support green computing environ-

ments, and meet user requirements as per Service Level

Agreement (SLA). The VM consolidation techniques aim

at improving energy efficiency by finding a trade-off

between energy and performance. These techniques con-

solidate VMs to minimum number of hosts to save energy

while maintaining SLA, through migration of VMs from

over-utilized and under-utilized hosts. The complexity of

finding optimal placement for virtual machines makes

heuristic-based approaches more appropriate for dynamic

VM consolidation. In this paper, we propose a normaliza-

tion-based VM consolidation (NVMC) approach that aims

Fig. 7 Percentage of SLA violations incurred during execution of

workloads W4, W5, & W6 corresponding to VM consolidation

strategies

Fig. 8 Cost impact factor (CIF) computed using Eq. 9, corresponding

to the VM consolidation strategies

Table 5 Performance analysis in terms of cumulative values of

energy consumption, number of VM migrations, and SLA violations

for all workloads

Cumulative performance results

EAC_IQR EAC_MAD EAC_LRR EAC_THR NVMC

1.0 1.0 1.0 0.6 3.0

E 1110.23 1064.63 803.72 1341.59 589.79

V 165,689 227,889 192,793 193,836 60,976

S 0.02259 0.04955 0.16404 0.03034 0.11227

2.0 2.0 1.2 0.8 3.5

E 1197.97 1108.39 1036.01 1158.62 554.37

V 169,224 166,984 175,879 163,509 31,113

S 0.02065 0.02295 0.02798 0.02015 0.03767

3.0 3.0 1.4 1.0 4.0

E 1286.98 1148.62 1182.42 989.27 540.31

V 184,027 162,636 176,911 286,175 18,473

S 0.02424 0.01955 0.02322 0.1635 0.00685
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at minimizing energy consumption, number of VM

migrations and SLA violations during execution of user

applications. Our approach uses normalized values of

resource parameters for consolidation. The over-utilized

hosts are found by considering criteria based on virtual

machines and physical machines resources. The approach

uses the notions of cumulative available-to-total ratio

(CATR) and demand-to-total ratio (CDTR) for finding

under-utilized hosts and subsequent placement of virtual

machines.

We have performed large scale experimentation using

real world data obtained from execution traces of

Fig. 9 Overall performance

enhancement (OPE) obtained by

NVMC_3.0 over other

approaches

Fig. 10 Overall performance

enhancement (OPE) obtained by

NVMC_3.5 over other

approaches

Fig. 11 Overall performance

enhancement (OPE) obtained by

NVMC_4.0 over other

approaches
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PlanetLab virtual machines. The experimentation results

show that the proposed NVMC approach outperforms other

VM consolidation strategies. It significantly optimizes the

energy consumption, number of VM migrations and SLA

violations. The NVMC approach is able to achieve 1.61,

10.33 and 6.82 times improvement over other energy-

aware strategies with best performance corresponding to

energy consumption, number of VM migrations, and SLA

violations, respectively. Moreover, the NVMC variants

NVMC_3.0, NVMC_3.5 and NVMC_4.0 obtain average

overall performance enhancement (OPE) values of 1.63,

2.70 and 3.61, respectively.

The NVMC approach currently uses threshold value for

detection of over-utilized hosts. We intend to extend the

approach to dynamically adapt the threshold value through

estimation based on regression analysis. By maintaining

performance history in terms of energy and SLA violations,

the runtime adaptation of threshold value would allow to

further enhance the performance of consolidation. It would

however require to consider a trade-off between perfor-

mance and estimation overhead.

Data availability The datasets used for experimentation in this

research work are available with the well-known CloudSim simulator

that may be accessed from the repository: https://github.com/Cloud

slab/cloudsim/releases.
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