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Abstract
Job scheduling in MapReduce plays a vital role in Hadoop performance. In recent years, many researchers have presented

job scheduler algorithms to improve Hadoop performance. Designing a job scheduler that minimizes job execution time

with maximum resource utilization is not a straightforward task. The primary purpose of this paper is to investigate agents

affecting job scheduler efficiency and present a novel classification for job schedulers based on these factors. We provide a

comprehensive overview of existing job schedulers in each group, evaluating their approaches, their effects on Hadoop

performance, and comparing their advantages and disadvantages. Finally, we provide recommendations on choosing a

preferred job scheduler in different environments for improving Hadoop performance.
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1 Introduction

Hadoop is an open-source framework for the parallel pro-

cessing of big data in a distributed environment. Its two

main components are HDFS and MapReduce. HDFS, the

Hadoop distributed file system, divides input data into

blocks of identical size and distributes these blocks

between data nodes. MapReduce is a programming model

for parallel processing on a cluster of computers in a dis-

tributed environment. Jobs consist of two types of tasks:

map tasks and reduce tasks. Map tasks convert input data

into\ key, value[ pairs that are referred to as

intermediate data. Reduce tasks take these intermediate

data as input, then merge values with identical keys to

generate final results. A key idea of MapReduce is to

transport processes instead of data because large dataset

transportation generates excessive network traffic.

Hadoop has a master/slave architecture. Each slave/-

worker node has a fixed number of map slots and reduce

slots in which it can run tasks, and it sends a heartbeat

message every few seconds that reports the number of free

map and reduce slots to the master node. In order to avoid

data transportation through the network, the job scheduler

has the responsibility to assign tasks to worker nodes that

contain the necessary input data. The primary purposes of

the job scheduler are to minimize job completion time and

overhead while maximizing throughput and resource uti-

lization. Therefore, the job scheduler has an essential role

in Hadoop performance.

FIFO is the default job scheduler in Hadoop. A job is

divided into different tasks, and tasks wait in a queue in the

order that they arrived. FIFO then selects the first task from

the queue and assigns it to the first idle worker node. When

processing is complete, FIFO selects the next job in the

queue. Its implementation is easy, but it has the following

limitations:

• It does not consider job priority, job size, or data

locality.
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• It does not yield a balanced allocation of resources

between small and large jobs, so it is possible that

starvation occurs for small jobs.

In recent years, many researchers have proposed job

schedulers to overcome these limitations, and they have

proposed various job scheduler mechanisms that attempt to

improve Hadoop performance. Two fundamental metrics

that are used to measure Hadoop performance are job

execution time and resource utilization. Therefore, the

factors affecting these two criteria should be identified, and

solutions should be provided to optimize them. The goal is

to find job schedulers that minimize job completion time

with maximum resource efficiency.

There are several surveys [1–4] of existing job sched-

ulers that discuss their features, advantages, and limita-

tions. They have classified job schedulers based on

different aspects: strategy (static/dynamic), environment

(homogenous/heterogeneous), time (deadline/delay), etc.

[1, 2]. These classifications are not comprehensive and do

not consider performance issues, therefore we present a

state-of-the-art classification based on performance opti-

mization approaches. In this article, we provide a com-

prehensive overview of job scheduler strategies and

investigate them in terms of performance metrics and their

impact on improving Hadoop performance; as a conse-

quence, we propose a novel classification based on the

approaches to address performance criteria. Finally, we

present guidelines to select a preferred job scheduler in

particular settings. Our contributions in this paper are:

• We identify important factors that affect the execution

time and resource utilization. Our focus is on straggler

tasks, data locality, and resource allocation. We

describe the mechanisms that are applied by job

schedulers for addressing these factors, investigating

their impact on performance.

• A novel classification of job schedulers is proposed,

categorized into three main groups: job schedulers for

mitigating stragglers, job schedulers for improving data

locality, job schedulers for improving resource

utilization.

• For each job scheduler considered, its approach to

improving performance is described and strengths and

weaknesses are discussed.

• We investigate the effect of each job scheduler and

suggest the preferred one in each group.

• We provide novel guidelines for selecting an appropri-

ate job scheduler for different environmental features.

The rest of this article is organized as follows: ‘‘Per-

formance aspects’’ introduces two performance metrics and

their impact on Hadoop applications. We classify existing

scheduler mechanisms based on their approach to

improving Hadoop performance in ‘‘Classification of job

scheduler mechanisms based on approaches for improving

performance’’. ‘‘Overview of job schedulers for mitigating

stragglers’’ considers mechanisms for preventing stragglers

and reducing execution time. In ‘‘Overview of job sched-

ulers for improving data locality’’, we describe and com-

pare job scheduler strategies for improving data locality.

‘‘Overview of job schedulers for improving resource uti-

lization’’ presents and compares job scheduler policies for

improved resource usage. We present guidelines to select a

preferred job scheduler in different operational environ-

ments in ‘‘Guidelines for job scheduler selection’’.

2 Performance aspects

The job scheduler has a vital role in Hadoop performance,

and there are various performance aspects. We consider

two essential aspects: job execution time and resource

utilization, which influence job response time (the time to

complete all of the tasks in a job) and resource efficiency.

Both of these aspects of Hadoop’s performance could be

improved by reducing execution time and optimizing the

use of resources. To this end, key factors that increase the

execution time and result in inefficient use of resources

must be identified, as well as mechanisms that are applied

by job scheduler policies for addressing these factors. In

Hadoop systems, there are three main issues that can lead

to increased job execution time and decreased resource

efficiency:

1. Stragglers: A job ends when all its tasks are

completed, but task execution times differ on different

nodes due to the various computing capacities of the

nodes. Tasks that take longer to execute are known as

stragglers. These stragglers lead to prolonging the

execution time.

2. Non-data locality: If a task is assigned to a node that

does not contain the necessary input data, the required

data must be transferred from a remote data node,

which increases execution time.

3. Unbalanced resource allocation: If a large job uses a

large share of resources in a cluster, then small jobs

may be starved. Therefore, resources should be fairly

distributed among the jobs in the cluster.

For each of the issues described above, there are cor-

responding mechanisms that can be applied by the job

scheduler.

1. Speculative execution: This mechanism attempts to

identify slow nodes and slow tasks in order to avoid the

occurrence of a straggler. When stragglers are
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identified, their impact is mitigated; for example, a

backup task for each slow task may be assigned to fast

nodes.

2. Data locality: Job scheduler policies should assign

tasks to a worker node with the required input data to

avoid the increase in execution time that results from

data transportation through the network. If this is not

possible, the distance that the data must travel should

be minimized.

3. Fair distribution of resources: The job scheduler

mechanism should distribute resources between tasks

based on their demand to increase resource utilization

and avoid resource wastage.

We will discuss each of these issues in more detail in the

following sections.

2.1 Speculative execution and its impact
on performance

Nodes in a cluster have different computing capacities and

resources; hence the execution time of a task can differ

across nodes. In addition, in the MapReduce processing

model, the output of the map tasks is the input of the reduce

tasks; thus, a reduce task is commenced after finishing all

associated map tasks. A task that takes significantly longer

to execute than other tasks associated with the same job is

known as a straggler. When a straggler occurs, the other

tasks must wait, increasing execution time and decreasing

cluster throughput; the reduced performance can be

unacceptable.

One approach to deal with stragglers is speculative

execution, which attempts to identify slow nodes and slow

tasks and launches backup tasks on fast nodes to com-

pensate. Two techniques are used for diagnosing stragglers

and decreasing their effect on performance: reactive and

proactive. In reactive techniques, the job scheduler waits

until the straggler is identified then runs a copy of the slow

task on a fast node. Proactive techniques attempt to predict

the occurrence of stragglers, often with the use of machine

learning methods.

2.2 Data locality and its impact on performance

One motivation for MapReduce is to transport processes

instead of data. Ideally, the job scheduler should assign

tasks to a worker node that contains the requested input

data for processing. The concept of data locality involves

the distance between the computing node that is processing

the task and the data node that contains the corresponding

input data. By increasing this distance, data must be

transported through more network resources, resulting in

high communication costs and increased network traffic;

consequently, data transportation time and job execution

time are increased. The best case is to assign a task to a

worker node that contains the required input data; however,

all such nodes are sometimes busy or do not have a free

slot. In this case, the scheduler should consider neighboring

nodes that have the shortest distance to reduce data trans-

portation delay.

There are three levels of data locality: the first level is

node locality, in which tasks are assigned to a worker node

that contains the required input data. The second level is

rack locality, in which the scheduler assigns tasks to a

worker node in a rack that contains the required input data.

The last level is off-rack locality, in which the scheduler

assigns the task to a machine in the rack that does not

contain the required input data.

We can measure data locality with the data locality rate,

the ratio of the number of local tasks to the total number of

tasks. Different environmental factors influence this

measure.

• The number of tasks: data locality rate is inversely

related to the number of tasks, as increasing the total

number of tasks decreases the probability of assigning

tasks to a local node.

• The number of free slots: The data locality rate and

the number of free slots have a direct relationship. By

increasing the number of slots, we have more free slots

for tasks to be assigned to a node that has the required

input data.

• Data replication factor: Data replication factor deter-

mines the number of copies of the data. By increasing

this factor, the probability of finding a node with both

the required data and a free slot increases.

• Cluster size: By increasing the number of nodes in a

cluster, the number of free slots increases, but the

probability of assigning tasks to nodes that contain the

requested data decreases, so the data locality rate drops.

2.3 Fair distribution of resources and its impact
on performance

There are typically two types of jobs, CPU-bound and I/O-

bound, which require different resources but run simulta-

neously in the same cluster. The cluster nodes have dif-

ferent resources, including CPU time, memory, storage

space on disk, I/O, computational capacity, and job slots. If

a job with a low level of resource requirements is allocated

to a node with a higher level of resources, resource wastage

results, and resource efficiency is decreased. On the other

hand, a job cannot be assigned to a node that lacks the

required level of resources. It must wait for the required

resources, increasing execution time, and decreasing the

utilization of resources.
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The job scheduler can aim to assign a task to a node to

maximize resource utilization; therefore, it should perform

resource management by identification of existing resour-

ces in each node and job requirements. For this purpose,

job schedulers use two strategies: fair distribution of

resources and resource-aware mechanisms.

3 Classification of job scheduler
mechanisms based on approaches
for improving performance

We propose a classification of job schedulers based on

approaches for improving Hadoop performance. Corre-

sponding to the discussion in the previous section, we

consider three main groups:

• Job schedulers for mitigating stragglers

• Job schedulers for improving data locality

• Job schedulers for improving resource utilization

The first group can be further divided into two subcat-

egories based on the techniques used for solving the

straggler problem. These two subcategories are job

schedulers that use reactive techniques and job schedulers

that use proactive techniques. The second group aims to

reduce data transmission and improve job execution time

and can be divided into three subcategories based on the

scope of data locality. These are data locality for the map

task, data locality for the reduce task, and data locality for

the job. The third group aims to improve resource utiliza-

tion and can be divided into two subcategories, fair

resource distribution mechanisms and resource-aware

mechanisms.

In the following, we describe existing job schedulers in

each group and their impact on Hadoop performance. We

also discuss their strengths and weaknesses.

4 Overview of job schedulers for mitigating
stragglers

As mentioned earlier, improving execution time has a

positive effect on performance; solving the straggler

problem addresses this directly. The straggler problem can

be broken down into three sub-problems: (1) How to

reduce the occurrence of straggler tasks? (2) How to

identify straggler tasks? (3) How to mitigate the impact of

straggler tasks? There are two approaches to answering

these questions, reactive and proactive techniques. We

classify schedulers into two categories according to which

technique they employ, beginning with job schedulers that

use reactive techniques.

4.1 Job schedulers employing reactive
techniques

In reactive techniques, the job scheduler waits until a

straggler occurs, then launches a copy of the straggler on a

fast node, with a goal of reducing overall response time.

We describe a number of job schedulers that use this

technique.

Longest approximation time to end (LATE) [5] was

designed by Zaharia et al. in 2008. This scheduler tries to

minimize response time by identifying slow tasks that

cause excessive resource consumption on a node. The main

idea is to identify straggler tasks, then launch a speculative

task on an available node such that the execution time is

reduced. For this purpose, LATE first approximates the

remaining time to finish for each task by using the task

progress rate. It uses a fixed weighted combination of the

stages of the map and reduce tasks, considering two stages

for the map phase (copy input data and map function) and

three stages for the reduce phase (copy intermediate data,

sort data, and reduce function). Subsequently, it considers

two threshold values: a slow node threshold and a slow task

threshold for identifying slow nodes and slow tasks. It then

ranks the slow tasks based on their progress rate below the

slow task threshold. Finally, LATE launches a backup task

for the highest-ranked slow task on an available node.

This method can increase resource utilization and

decrease response time. However, it has some drawbacks.

Due to its static nature and the use of constant weights for

the stages, it is not appropriate for heterogeneous envi-

ronments. LATE also cannot be used in dynamic envi-

ronments as it does not consider different types of jobs. For

launching speculative map tasks, it does not consider data

locality, leading to increased data transmission through the

network. In some cases, it is unreliable in identifying

stragglers—it may not approximate the time to completion

of running tasks well. As a result, it may choose the wrong

slow task and launch backup tasks for fast tasks leading to

poor performance.

Self-adaptive mapreduce scheduling (SAMR) [6] was

presented by Chen et al. in 2010 to address the drawbacks

of LATE and improve the accuracy of identifying straggler

tasks. It calculates the progress rate of tasks dynamically

and adapts to changing environments. This method

employs historical information stored in each node to tune

the weights for the map and reduce stages, updating these

weights after each task execution to compute the task

progress rate. The result is greater accuracy than LATE. In

SAMR, the slow tasks are divided into two groups: slow

map tasks and slow reduce tasks; moreover it can distin-

guish slow nodes. This allows it to launch backup tasks on

fast nodes.
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The benefits of SAMR include good detection of

stragglers, scalability, reduced execution time, reduced

resource usage, and the calculation of task progress in a

dynamic manner such that it is compatible with environ-

mental changes and appropriate for heterogeneous envi-

ronments. This approach faces some challenges, for

instance, it does not consider some potentially important

features such as different types of jobs and size of the

dataset when calculating the weights of the map and reduce

stages. It does not consider data locality for launching

speculative map tasks. It is also necessary to tune some

parameters manually, such as parameters for finding slow

tasks and slow nodes and the maximum number of backup

tasks to launch.

Ananthanarayanan et al. have deployed Mantri [7] in

2010, which monitors tasks by considering real-time pro-

gress reports and, as a result, can detect stragglers early in

their lifetime and free up resources. For detecting the cause

of a straggler, it considers node characteristics, network

characteristics, and the job structure. Mantri includes three

parts: (1) restarting stragglers, (2) network-aware place-

ment, (3) avoiding recomputation by protecting outputs of

valuable tasks. It kills and restarts a straggler or dispatches

a speculative copy when appropriate.

A positive feature of Mantri is the early identification of

outliers by integrating static information about job struc-

ture and the dynamic progress report. This early action

allows resources to be released in a timely manner,

resulting in better resource utilization. It improves job

completion time. A key drawback of Mantri is that there is

no guarantee that a backup task will complete earlier as it

needs to kill and restart the speculative task on multiple

cluster nodes.

Combination re-execution scheduling technology

(CREST) [8] was introduced in 2011. In this strategy,

instead of running a single backup task, a combination of

backup tasks execute on a group of nodes to decrease job

response time, so a min–max optimization problem is

solved for minimizing job response time. For this purpose,

it uses a graph for modeling a Hadoop cluster and re-ex-

ecutes a combination of speculative map tasks by finding a

path from the straggler to the available node; it kills the

running tasks on the start node and re-executes the strag-

gler on the end node.

Optimizing running time for speculative map tasks and

decreasing the job response time are some of the strong

points of CREST. It also considers data locality for re-

executing speculative tasks on target nodes. It may require

launching more than one task, which could lead to resource

wastage. It has a time complexity of O(|V|2) where V is the

number of vertices in the graph, as it uses Dijkstra’s

algorithm. This method is more complex than LATE and

can be difficult to control because it runs multiple tasks

rather than just one.

Enhanced self-adaptive mapreduce (ESAMR) [9] was

developed in 2012 to address the limitations of SAMR by

taking many factors into account that could impact the

stage weights. It is similar to SAMR in that it uses his-

torical information; however, ESAMR considers job fea-

tures such as the size of the dataset and the job type for

adjusting the weights of each job’s stages. ESAMR uses a

clustering method (K-means) to classify historical infor-

mation. It updates the average weight for each group and

calculates job execution time on each node based on the

cluster’s weight; consequently, it can identify slow tasks

and slow nodes, and it avoids running slow tasks on slow

nodes.

The merits of this technique are that it can identify

stragglers with high accuracy and can reduce error in

approximating completion time. As a result, it tends to

more accurately recognize slow tasks and slow nodes;

therefore, it is appropriate for heterogeneous environments.

However, the drawbacks of ESAMR are that it requires

tuning some parameters such as the percentage of finishing

tasks for map tasks and reduce tasks and the number of

clusters for the K-means algorithm. The use of the

K-means algorithm requires additional overhead and this

technique is limited to this clustering algorithm.

MapReduce reinforcement learning (MRRL) [10] was

presented in 2015. This job scheduler uses a classical

reinforcement learning algorithm, SARSA, for finding

straggler tasks in a heterogeneous environment. It first

calculates a progress score and time to complete for both

map tasks and reduce tasks. A reward function is used in

training a model to allocate slow tasks to fast nodes.

The great advantage of MRRL is that it can produce a

model of the system without any prior knowledge about

environment characteristics; thus, it is suitable for

unknown environments. It can reduce job execution time.

This method does take some time to learn the model from

interacting with the environment, resulting in significant

overhead.

Tolhit [11] was introduced in 2016. It is similar to

ESAMR, the main difference being that Tolhit uses a

genetic algorithm for classifying historical data on each

node. It can recognize slow map tasks and reduce tasks by

calculating their progress; a backup task is then launched

for a slow task on an optimal node that has high resource

efficiency and the least distance to the data node. It uses

NwGraph and ResourceInfo to determine optimal nodes for

backup tasks. NwGraph is a data structure that contains

information about the cluster, such as the number of nodes

in the cluster and their minimum distance from the

scheduler. ResourceInfo includes resource utilization
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information for the cluster nodes, such as memory and disk

utilization.

By considering data locality for backup tasks and

selecting an optimal node for processing these tasks, the

job execution time can be reduced. Tolhit uses a genetic

algorithm to avoid achieving locally optimal solutions. The

disadvantages of this method are that it does not consider

some potentially useful features for selecting the optimal

node, and it requires some parameter tuning, such as

threshold values for the map and reduce task progress.

Progress and feedback based speculative execution

algorithm (PFSE) [12], from 2017, is based on LATE. The

main idea of PFSE is to improve the estimation of the task

execution time in order to reduce the number of unneces-

sary backup tasks. It uses the current phase and feedback

from the completed phases to estimate the completion time

of running tasks.

This method has high accuracy in estimating task

completion times, reduces unnecessary backup tasks, and

avoids resource wastage; however, this strategy focuses

only on map tasks, which is a significant limitation.

4.2 Job schedulers with proactive techniques

In proactive techniques, the job scheduler predicts the

likelihood of a straggler event. Consequently, it can iden-

tify slow tasks and slow nodes before the job scheduler

makes its assignments. In this manner, it can avoid the

occurrence of stragglers. In what follows, we discuss job

schedulers that employ this mechanism.

Dolly [13] was developed by Ananthanarayananet et al.

in 2013. It attempts to forecast stragglers, launching mul-

tiple clones of every task of a job and using the result of the

clone that completes first. Cloning of small jobs can be

accomplished with little overhead, and typically the

majority of the tasks are small. Delay assignment is a

technique for solving the problem of contention for inter-

mediate data between extra clones, by the usage of a cost–

benefit analysis.

When the majority of jobs are small, the small jobs

consume a small fraction of the resources, resulting in

resource efficiency and little overhead. Extending Dolly in

a cluster that contains multiple computational frameworks

is a challenge, as the workloads tend to have highly vari-

able job sizes.

Yadwadkar et al. presented Wrangler [14] in 2014. It is a

system that learns to predict nodes that create stragglers by

using an interpretable linear modeling technique and

avoids creating stragglers by rejecting bad placement

decisions. Wrangler includes two primary components: (1)

Model builder: By using job logs and resource usage

counters that are regularly collected from the worker nodes,

a model is built for each node. These models predict if a

task will become a straggler given its execution environ-

ment; they also attach a confidence measure to their pre-

dictions. (2) Model-informed scheduler: Using the

predictions from the models built in the first step a model-

informed scheduler then selectively delays the start of task

execution if that node is predicted (exceeding the minimum

required confidence) to create a straggler. This reduces the

likelihood of creating stragglers by preventing nodes from

becoming overloaded.

While Wrangler reduces both job completion times and

resource consumption, the fact that it builds separate

models for each node and workload creates some chal-

lenges. In particular, each new node and workload requires

new training data, which can be extremely time-

consuming.

Speculative execution algorithm based on decision tree

(SECDT) [15] was introduced in 2015. With the assistance

of decision trees, it considers node attributes and execution

information to discover similar nodes and better predict the

execution time. CPU speed, memory, the quantity of input

data, and network transmission speed are influential factors

in task execution. These characteristics with weights are

stored and used to construct the tree iteratively. First, the

information for each node is mapped to the decision tree

then searches in each branch are performed for estimating

weights and calculating the remaining execution time.

One problem with this method is that traversing the tree

can be time-consuming due to the large amount of stored

information. To address this, the algorithm clears stored

information at regular intervals. An additional problem is

that the pruning of branches causes information loss and,

consequently, can lead to incorrect estimation of the

remaining time.

Multi-task learning (MTL) [16] was proposed by Yad-

wadkar et al. in 2016 to reduce training time by sharing

information between nodes and workloads. Each task has

its own training data set, although typically all training

points of all tasks live in the same feature space. The goal

of MTL is to leverage this relationship to improve the

performance or generalization of all the tasks.

Reducing parameters and training data, improving gen-

eralization, facilitating interpretability, and more accurate

prediction of stragglers are plus points of this technique.

On the other hand, it is embedded in an environment of

related tasks, and the learner aims to leverage similarities

between the tasks and share this information. The result is

significant computational overhead and memory usage.

4.3 Analysis and comparison of job schedulers

In this section, we analyze the schedulers introduced so far

and compare them based on their features and limitations.
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Job schedulers that use reactive techniques to avoid

stragglers include two steps: straggler identification and

launching speculative tasks on fast nodes. On the other

hand, job schedulers that use proactive techniques to avoid

stragglers include one step: straggler identification.

There are two main challenges in reactive techniques;

we compare job schedulers based on these. The first chal-

lenge is how to determine the weights of different stages

for a job to recognize slow tasks. LATE uses constant

weights in calculating the progress rate for each task; this

approach is static and is not suitable for heterogeneous

environments. SAMR uses historical information, but it

does not consider some potentially significant job features

such as job type and size of data. ESAMR first classifies the

historical information from each node by use of K-means

classification then applies some features to calculate stage

weights, but it is limited to K-means classification. How-

ever, this strategy has high reported accuracy for identi-

fying stragglers. Tolhit uses historical information and

performs classification by the use of a genetic algorithm.

Mantri monitors the system based on real-time progress

reports and estimates the remaining time. In SECDT,

information from each node is mapped to a decision tree

using the constructed branch weights; it then re-executes

more than one task on target nodes. MRRL uses rein-

forcement learning to identify straggler tasks and launches

the backup tasks on fast nodes. No prior knowledge is

required about the environment. PFSE uses feedback

information received from completed tasks in addition to

the progress of currently processing tasks to approximate

task completion times and to identify stragglers. The

accuracy of the estimation increases as the number of

completed tasks increases.

The second challenge in reactive techniques is how to

select a target node on which to launch backup tasks. LATE

and PFSE do not consider any features for target nodes.

SAMR, ESAMR, and MRRL select a fast node for launching

backup tasks by classification of nodes into two groups,

slow and fast. CREST selects target nodes considering data

locality. Tolhit chooses an optimal node by use of network

characteristics and resource information.

We choose the preferred job scheduler for identifying

straggler tasks with high accuracy and reliability, and we

select the preferred job scheduler for launching speculative

tasks by considering data locality and the determination of

fast nodes. ESAMR and PFSE have the highest accuracy in

straggler identification, but the accuracy of PFSE increases

as the number of completed tasks from the same job

increases; therefore, we suggest that ESAMR is preferred

for straggler identification. Tolhit is preferred for selecting

target nodes that launch backup tasks because it uses net-

work and resource information to identify an optimal target

node.

Reactive techniques rely on a wait-speculative re-exe-

cution mechanism; therefore, they lead to delayed straggler

detection and inefficient resource utilization. Proactive

techniques have a superior effect on performance as they

predict stragglers before they happen; therefore, they avoid

resource wastage. Recent approaches have used machine

learning methods to predict situations that result in strag-

glers. Dolly clones small jobs; on the other hand, the other

job schedulers considered use different machine learning

methods for predicting stragglers. For example, SECDT

uses a decision tree that increases in size as the number of

nodes in the cluster increases. Wrangler predicts stragglers

by the use of linear modeling and Support Vector Machines

but requires significant training time because it learns a

model for each node and workload. MTL is similar to

Wrangler, but it shares data between different models

based on the similarity of the tasks; therefore, it signifi-

cantly reduces the training time, from four hours to 40 min

in the scenarios considered in [16].

We choose the preferred job scheduler for predicting

straggler tasks with respect to two aspects: high accuracy in

prediction and low training time. Wrangler and MTL have

high accuracy and reliability in straggler prediction; how-

ever, Wrangler has a longer training time than MTL. As a

result, the preferred existing proactive technique appears to

be MTL.

4.4 Straggler detection and mitigation:
performance impact

As mentioned earlier, straggler tasks can increase execu-

tion time, with a resulting negative effect on performance;

therefore, many job schedulers are designed to mitigate the

performance impact of these tasks. In this section, we

consider different performance factors and investigate the

impact of the previously discussed schedulers on these

factors based on their reported experimental results.

Table 1 presents the evaluation of these schedulers

concerning the performance metrics. We briefly explain

some of these parameters. Load balancing means that tasks

are assigned to all nodes such that all processing nodes are

in use as much as possible. Resource sharing reflects

whether resources are divided fairly among jobs. Execution

time is the time to complete all of the tasks in a job.

Execution time is categorized into three levels, according

to the improvement over FIFO: Low (less than 30%),

Medium (between 30 and 60%), and High (greater than

60%). Overhead is any combination of excess or indirect

computation time, memory, bandwidth, or other resources

that are required to perform a specific task. Note that these

aspects are in general not independent from each other. We

also emphasize the final column of Table 1 reflects the

experimental results reported in the corresponding
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reference. With this in mind, one must exhibit caution in

using them for cross-comparison, but with that caveat, we

believe that the given information is instructive.

As can be seen in Table 1, reactive methods improve

execution time by 30% on average; however, proactive

techniques improve execution time by 50% on average.

CREST has the greatest impact on performance in the

reactive technique category, reducing execution time by up

to 50% on average because it runs a group of speculative

tasks instead of one task; however, it has higher com-

plexity. Wrangler has the best impact on performance in

the proactive techniques group and decreases completion

time by up to 61%; however, it requires significant training

time.

5 Overview of job schedulers for improving
data locality

As mentioned earlier, improved data locality has a positive

effect on performance because it avoids data transportation

through the network, resulting in decreased execution time.

Many researchers have proposed job schedulers for

improving data locality. Here we categorize such sched-

ulers into three classes based on the type of task for which

data locality is considered: data locality for map tasks, data

locality for reduce tasks, and data locality for jobs (both

map tasks and reduce tasks). In the following, we describe

the job scheduler strategies in each group and discuss their

advantages and disadvantages.

Table 1 Comparison of job scheduling algorithms with respect to performance metrics

Job

scheduler

Load balancing Data

locality

Resource sharing Execution

time

Overhead Effect on performance (experimental results)

LATE Avoids

overloading

the network

No By considering a

limited number of

speculative tasks

Low No On average 27% faster than Hadoop’s native

scheduler (FIFO) [5]

SAMR Selecting fast

nodes for

speculative

tasks

No By classifying slow

nodes into map and

reduce slow nodes

Medium Yes

(historical

info.)

Reduces response time by up to 25% compared

with Hadoop and up to 14% compared with

LATE [6]

Mantri No No By use of resource-

aware techniques

Medium Medium Improves job completion times by 32%

compared with LATE [7]

CREST Yes Yes By launching a group

of speculative tasks

High Yes (graph) Reduces execution time by 70% (best case) and

50% (average case) compared with LATE [8]

ESAMR Yes No By classifying slow

nodes into map and

reduce slow nodes

Medium Yes (K-

means)

Decreases the execution time by up to 27%

compared with LATE [9]

MRRL By sufficient

exploitation

and

exploration

No By considering slow

and fast nodes in the

reward function

N/A No Has not been implemented

Tolhit By use of

resource

information

Yes By use of network

information and

resource information

Medium Yes (network

and

resource

info.)

Improvement of approximately 27% in

execution time over the Fair scheduler [11]

PFSE No No By reducing

unnecessary backup

tasks

N/A No Reduces unnecessary backup tasks [12]

Dolly No No No Medium No Small jobs sped up by 34–46% compared with

LATE [13]

Wrangler Yes No By resource utilization

counter

High Yes (training

model for

each node)

Improves resource consumption by up to 55%

and job completion time by up to 61%

compared to speculative execution [14]

SECDT Yes No Yes Medium Yes (decision

tree)

Improves job execution time [15]

MTL No No By sharing

information between

related tasks

High Yes (training

data)

Improves job completion time up to 59% and

reduces resource usage by up to 40% compared

with Wrangler [16]
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5.1 Job schedulers with data locality for map
tasks

In these approaches, the job scheduler attempts to increase

the number of local map tasks, those that are assigned to

nodes with the required data present.

Delay [17] was proposed by Zaharia et al. in 2010. This

mechanism uses job postponement to increase the fre-

quency of local tasks. When a node requests a job, if the

head-of-line job in the queue cannot start a local task, it

should wait, so the job scheduler skips this job and

examines subsequent jobs in the queue in order to launch a

local task. This strategy considers a threshold value on

waiting time to prevent starvation. If the waiting time for a

job reaches this threshold value, it allows a non-local task

to start.

Its implementation is simple, has little overhead, and

avoids starvation. Delay faces some problems, for instance,

the threshold value needs to be manually tuned. If its value

is too large, then jobs may wait for a long time, so there is a

risk of job starvation. On the other hand, if the value is too

small, then the number of non-local tasks is increased. This

method is not appropriate for jobs that have high execution

times and for environments with limited free slots in nodes

as this combination will mean it is highly likely that the

threshold is exceeded, resulting in poor performance.

Matchmaking [18] was presented by He et al. in 2011 to

address some of the limitations of the Delay scheduler. In

this technique, nodes use locality markers to ensure that

each node has an equal chance to acquire a local map task.

In the second heartbeat of the node, if the node could not

launch a local map task, then it assigns a non-local task to

avoid wasting computing resources. All locality markers

will be cleared when a new job is added to the job queue.

The advantages of this method are that it leads to higher

data locality rates and better response times for map tasks,

and there is no need to tune any parameters. It shares

resources fairly. However, this method does not consider

rack locality and job priority and does not scale well for

large clusters.

Zhang et al. have designed next-K-node scheduling

(NKS) [19] for homogeneous environments in 2011. It

considers three levels of data locality (node locality, rack

locality, off-rack locality) for map tasks. First, it predicts

the next K nodes that will request a job by calculating the

progress of tasks. Then it estimates the likelihood of data

locality for map tasks in these K nodes; finally, it assigns

tasks according to these probabilities.

The main benefit of NKS is decreased network load. A

key drawback is the need to tune K. If its value is too large,

high computational overhead results. If the value is too

small, then it may not recognize the correct nodes for task

requests. In addition, this mechanism is not appropriate for

heterogeneous environments because it does not consider

different node features.

Ibrahim et al. introduced Maestro [20] in 2012 for

improving data locality for map tasks. The main idea of

this method is running map tasks to be aware of data

replication; for this purpose, it keeps track of the locations

of chunks along with the locations of their replicas, as well

as the number of additional chunks hosted by each node.

Map task scheduling is done in two steps. In the first step,

free slots for each node are filled based on the number of

map tasks and the replication scheme of their input data. In

the second stage, the probability of scheduling map tasks

on a node that contains replicas of its input data is

estimated.

Maestro can schedule map tasks with low impact on

other nodes, it provides a good distribution of intermediate

data in the shuffling phase, and it reduces the number of

non-local map tasks. However, this method is only suit-

able for known environments as we should know how data

replication is performed. Maestro has some overhead

because it stores information about the location of input

data and their replicas.

Bu et al. developed the interference and locality-aware

(ILA) [21] scheduling strategy for virtual MapReduce

clusters in 2013. The main idea of this strategy is to reduce

interference between virtual machines and improve data

locality for map tasks by combining interference-aware

scheduling and locality-aware scheduling. It consists of

four modules: (1) the interference-aware scheduling mod-

ule (IASM): By using a task performance prediction model,

it decreases the interference between running tasks on

VMs. (2) the locality-aware scheduling module (LASM)

improves data locality for map tasks by using the Adaptive

Delay Scheduling algorithm; (3) the task profiler stores the

demand of each task and passes task information to the

IASM and LASM modules; (4) the ILA scheduler coordi-

nates the IASM and LASM modules to achieve interfer-

ence-free high-locality task management and collects

runtime information from the virtual machines by moni-

toring their resources.

The strong point of this technique is that it improves

data locality for map tasks, and it has high system

throughput. The drawback of this strategy is that it does not

consider HDFS interference and has significant overhead.

High-performance scheduling optimizer (HPSO) [22]

was deployed by Sun et al. in 2015. This strategy attempts

to improve data locality for map tasks by the use of a

prefetching mechanism. Suitable nodes for future map

tasks are predicted depending on the current pending tasks

and the required data is preloaded to memory to avoid

delay in launching new tasks. First, it forecasts free and

occupied slots by the use of predictive modules that
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compute the remaining time of map tasks, but it does not

use historical information (as is done for cloud computing

environments). It then prefetches necessary input data for

map tasks from a remote data node or local disk to avoid

delay in starting new tasks.

This strategy reduces network overhead by overlapping

data transmission for the next map task with data pro-

cessing of the running map task and reduces waiting times

of map tasks with rack locality and off-rack locality. The

main challenge of the prefetching mechanism is deter-

mining which data should be prefetched. The prefetching

accuracy is an essential factor that limits its performance.

Wang et al. designed the Joint [23] scheduler in 2016.

Joint is a scheduler /routing algorithm that views the data

locality problem from a network perspective and attempts

to solve it using routing data from the cluster’s commu-

nication network. It uses a queueing architecture that

captures both the data transmission in the communication

network and the task execution by machines, and it uses the

shortest queue policy to assign incoming tasks to nodes and

to route tasks in the communication network.

This strategy improves the throughput and performance

because it utilizes resources efficiently by balancing the

tasks assigned to local machines and remote nodes. It

avoids network congestion by balancing the traffic load.

This method is not applicable in more heterogeneous

environments, as it does not consider different link band-

widths and the various structures of the connections

between machines.

In 2017, Benifa et al. proposed efficient locality and

replica aware scheduling (ELRSA) [24] to improve data

locality and to perform consistently in heterogeneous

environments. It consists of two parts: (1) A data placement

strategy is formulated to compute dynamically the avail-

able space in the nodes for positioning the data. The task

scheduling algorithm is designed to satisfy data locality

constraints and to place the task in a node that holds the

data. (2) An autonomous replication scheme (ARS), which

decides data objects that should be replicated by consid-

ering their popularity and replicas that should be removed

when they are idle.

ELRAS improves throughput, data locality, and reduces

execution time and cross-rack communication. This algo-

rithm is simple and adapts to dynamic environments if new

nodes are added or removed. However, the computational

overhead is significant.

In 2018, Merabet et al. introduced the predictive map

task scheduler [25] for optimizing data locality for map

tasks. It uses a linear regression model for predicting

execution times of map tasks and future free slots on all

nodes in the cluster. It consists of two main modules: (1) A

task scheduler that uses the information sent by predictive

and prefetching agents to build a scheduling scheme for

future map tasks for high data locality; (2) A prefetching

manager that collects information from prefetching agents

about input data present in all nodes.

This method improves data locality and execution time

for map tasks; however, it is more useful for large jobs

because by increasing the number of map tasks, prediction

accuracy is increased. The drawback of this method is that

it needs training data, and it has low accuracy in predicting

execution times when job sizes are small.

Hybrid scheduling mapreduce priority (HybSMRP) [26]

was presented by Ghandomi et al. in 2019 and is a hybrid

scheduler that combines dynamic job priority and data

localization. It determines job priority based on three

parameters: running time, job size, and waiting time.

HybSMRP uses a localization marker for each node to give

a fair chance to be assigned a local task. After two

unsuccessful attempts to obtain a local task, a node obtains

a non-local task.

Increasing the data locality rate for map tasks,

decreasing completion time, and avoiding wastage of

resources are merits of this approach. However, it does not

consider some environmental features for job priority and it

assumes only one queue for jobs.

5.2 Job schedulers with data locality for reduce
tasks

In the MapReduce framework, we are aware of the location

of input data for map tasks, and we can use this information

to schedule map tasks. In contrast, the location of inter-

mediate data that is generated by map tasks is unknown.

Therefore, data locality for reduce tasks is a challenge.

Despite this challenge, there are several job schedulers that

consider data locality for reduce tasks. In this section, we

discuss job scheduler strategies that use this approach.

Locality-aware reduce task scheduler (LARTS) [27] was

proposed by Hammoud et al. in 2011. It is a strategy that is

aware of the size and network partition locations. This

mechanism uses early shuffling to improve performance, so

it starts scheduling reduce tasks after completion of a

particular proportion of map tasks. This strategy suggests

scheduling reduce tasks on a maximum-node in a maxi-

mum-rack. A maximum-rack of reduce task R is a rack that

maintains one or more data partitions for R with an

aggregate size larger than the partitions held at other racks.

A node that holds the largest partition for R at the maxi-

mum-rack is defined as a maximum-node.

This method has some positive points, for example, it

improves the three levels of data locality (node locality,

rack locality, and off-rack locality) for reduce tasks and

decreases network traffic. It has some weak points such as

reduced system utilization and a low degree of parallelism.
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Hammoud et al. have developed the center-of-gravity

reduce scheduler (CoGRS) [28] in 2012. The main idea of

this strategy is to reduce network traffic by assigning

reduce tasks to the center of gravity node determined by

network location. It combines data locality awareness, and

partition skew awareness for scheduling reduce tasks.

This method can reduce execution time and off-rack

network traffic, in particular when the partition skew is

high, but it does not consider network congestion and slot

utilization for simultaneous jobs.

In 2014, Arslan et al. designed LONARS [29] to

improve data locality of reduce tasks and reduce network

traffic for data-intensive applications. It considers locality

and network-awareness for scheduling reduce tasks. First,

it defines a cost function to determine the cost of assigning

reduce tasks to each node; it then uses the K-means algo-

rithm to group nodes based on the cost function. Finally, it

schedules reduce tasks to a node with minimum cost.

The advantages of this technique are optimizing the

shuffle phase and reducing network traffic. The disadvan-

tage of this method is that it introduces some overhead as it

requires network information such as bandwidth capacity.

5.3 Job schedulers with data locality for jobs

In these approaches, data locality is considered for both

map and reduce tasks. In this part, we discuss several job

schedulers that use this approach.

In 2013, Wang et al. have proposed a scheduling

mechanism to improve the data locality of tasks by the use

of online simulations and predictive mechanisms [30]. This

mechanism consists of two modules: (1) A task predictor

that uses system state information to predict future events

such as data node availability and job completion time; (2)

A job simulator that simulates the behavior of the sched-

uler. This mechanism has two limitations. First, it uses a

simple linear regression model that only considers input

data size. As a result, its estimates tend to be somewhat

inaccurate. Second, it only predicts execution time for

submitted jobs.

Suresh et al. developed optimal task selection [31] in

2014 that tries to assign tasks with high data locality. It

considers several criteria to choose the optimal task for

assignment, such as the replica count of the input data, the

predicted arrival time of the next task to a node that has

free slots, and the load of the disk that contains the input

data. This method is not efficient for small jobs, and it does

not consider some factors to determine optimal nodes, such

as the size of the cluster.

In 2014, multithreading locality [32] was presented to

address the data locality problem using a parallel search

under a multithreaded architecture. In this method, a cluster

is divided into N blocks, and each block is scheduled with a

specific thread. When a job arrives, all threads start to

search for a node with high data locality. Whenever a

thread finds a node, it then informs the other threads to

finish their search. If no thread can find an appropriate

node, then a non-local task is started. The advantages of

this method are high scalability and parallel search, but it

does not consider the load of the cluster.

Hybrid job-driven scheduling scheme (JOSS) [33],

introduced in 2016, considers data locality for both map

tasks and reduce tasks. JOSS classifies MapReduce jobs

based on job size and job type into three groups: small job,

map-heavy, and reduce-heavy jobs, then designs corre-

sponding scheduling policies. The strong points of JOSS

are increased data locality, improved job performance, and

avoidance of job starvation. However, JOSS does not

consider dynamic, heterogeneous environments.

Deadline guarantee and influence-aware scheduler

(DGIA) [34] was introduced in 2018 and includes two

stages: (1) A preliminary stage to determine a data locality

allocation plan to satisfy the deadline requirements of new

tasks. (2) A modification stage to reallocate tasks that

cannot meet their deadline requirements. For this purpose,

it uses a graph to model network flow and uses a minimum

cost maximum flow (MCMF) solution.

The benefits of this strategy are increased data locality

and improved resource usage, however there is additional

overhead, including the computation time for allocation

decisions.

5.4 Analysis and comparison

In this section, we analyze these schedulers and compare

them based on their strategy and limitations.

Many researchers focus on data locality for map tasks

because there is information about the location of input

data. Data locality for reduce tasks is challenging because

the output of the map tasks serves as input data for the

associated reduce tasks. As a result, there is no prior

information about the location of input data for the reduce

tasks.

In the first subcategory, NKS and HPSO cover three

levels of data locality (node locality, rack locality, and off-

rack locality). There are different strategies for considering

data locality in assigning map tasks such as applying delay,

replication-aware techniques, prediction, and prefetching.

Each of the mechanisms has some challenges, for

example in Delay, the delay time needs to be tuned. Data

locality-aware and replication-aware mechanisms require

information about input data and their replica locations,

which generates some overhead. Predictive mechanisms

use different machine learning methods to learn how to

assign the task to a node considering data locality; there-

fore, they need training data and require time to learn the
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model. In the prefetch mechanism, it should be determined

which data and when to fetch.

For improving data locality for reduce tasks, a scheduler

should be aware of the network location of partitions. It

should use this information to find a node that contains

input data for reduce tasks, then assign reduce tasks to this

node. In this subcategory, all of the methods cover three

levels of data locality, and only LONARS uses a machine

learning method (the K-means algorithm) for clustering

nodes. In the third group, prediction, classification, and

parallel search are used for improving data locality for both

map and reduce tasks. In the prediction method, job

information is used to predict job completion time, the next

node with a free slot, and the arrival time for the next job,

resulting in some overhead. In the classification method,

jobs are classified into three groups: small map, heavy map,

heavy reduce. These groups are then scheduled based on

their characteristics, however, the overall efficiency

depends on classification accuracy.

5.5 Impact on hadoop performance

As mentioned earlier, increased data locality has a positive

effect on performance. In Table 2, we evaluate these job

scheduling algorithms with respect to the performance

metrics. The evaluations are based on the reported results

of their experiments. The data locality rate has a direct

effect on execution time improvement. For job schedulers

that consider data locality for map tasks, Maestro, HPSO,

and ELRSA have the highest reported data locality rates for

their scenarios, more than 80%. LARTS has the highest data

locality rate among the job schedulers that consider data

locality for reduce tasks. Predictive is the best strategy

amongst those that consider data locality for map tasks,

with a reported decrease in execution time of up to 57%.

The best strategy in terms of impact on execution time

among the job schedulers with data locality in reduce tasks

is CoGRS, with a reported reduction of the execution time

of up to 23.8%. Again, as these numbers are based on the

reported experiments, one has to use some caution in

making cross-comparisons.

6 Overview of job schedulers for improving
resource utilization

As mentioned before, resource utilization means the opti-

mal use of available resources on each node. Some worker

nodes do not have enough capacity to perform an assigned

task; therefore, such a node cannot continue to execute

tasks until the system releases resources, which leads to

poor performance. In Hadoop, the resource allocation

problem is typically an NP-Complete problem. For this

problem, two approaches are introduced: fair resource

distribution mechanisms and resource-aware mechanisms.

In the following, we describe job scheduler methods for

each approach, their impact on Hadoop performance, and

their strengths and weaknesses.

6.1 Job schedulers with fair resource distribution

Some jobs need computational resources, whereas other

jobs require I/O resources. Some tasks cannot be completed

until resources used to execute other tasks are released,

leading to increased response times and poor performance.

In this section, we provide an overview of strategies that

address this performance issue.

Fair scheduler [35] was introduced in 2011 by Face-

book. This scheduler is a method for assigning resources to

jobs such that all jobs have equal resource shares. For this

purpose, jobs are grouped into pools based on their priority;

each user has its own pool with associated minimum

resource share. The number of concurrently running jobs

per pool and user can be limited. If one pool has idle

resources they are divided among other pools to avoid

resource wastage and prevent starvation.

This strategy works well in both small and large clus-

ters. By considering job priorities and the fair allocation of

resources between jobs, it avoids resource wastage and

starvation. However, it does not consider the size of a job,

potentially leading to unbalanced performance in the

nodes. Pools have a limitation on the number of concurrent

jobs.

Capacity scheduler [36] was proposed in 2013 by

Yahoo!. This scheduler aims to maximize resource effi-

ciency and cluster throughput. This scheduler is similar to

the Fair scheduler, but it uses multiple queues instead of

pools and assigns jobs into queues. Resources are divided

between these queues. A minimum capacity of resources is

guaranteed by limiting the running tasks and jobs from a

single queue and scheduling jobs based on their priority.

For resource efficiency, resources can be moved from an

empty queue to a queue with a heavy load, and after fin-

ishing a job, these resources are returned to the main queue.

Some advantages of this scheduler are fair resource

allocation, high resource efficiency, improved cluster

throughput, and the consideration of job priority. At the

same time, it can be difficult to configure, and it can be

difficult to select the appropriate queue for job

assignments.

Cross-task coordination mapreduce (COOMR) [37] was

designed to increase the coordination between tasks to

improve the use of shared resources on computation nodes.

This scheduler selects consistent jobs that have minimal

interference, as task interference can cause prolonged

execution time for map tasks. At the same time, excessive
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I/O requirements can degrade the disk I/O bandwidth.

COOMR consists of three components: (1) Cross task

opportunistic memory sharing (COMS) increases the

coordination among map tasks with the usage of shared

Table 2 Comparison of scheduling algorithms for improving data locality with respect to performance metrics

Job scheduler Load balancing Data

locality

Resource

sharing

Exec.

time

Overhead Effect on performance

Delay Yes Map

task

No Medium No Improves execution time by 40% relative to FIFO

[17]

Matchmaking No Map

task

Yes Medium No Improves response time by 44% and increases

data locality rate compared with FIFO [18]

NKS Net. load-balance Map

task

No N/A Uses task

progress

Reduces non-local map task up to 78% and

reduces network load up to 77% compared with

FIFO [19]

Maestro Balance

intermediate

data for the

shuffle phase

Map

task

Based on

hosted

map tasks

Medium Locations of

input data and

replicas

Improves execution time by up to 34% and

improves local map tasks by up to 95%

compared with FIFO [20]

ILA Prevents

interference

between virtual

machines

Map

task

Interference-

aware

scheduling

High Info. on

interference

and locality

Speedup by a factor of 1.5–6.5 for individual jobs,

improves system throughput by a factor of up to

1.9 and improves data locality by up to 65%

compared with Delay [21]

HPSO Overlaps

transmission and

processing

Map

task

No N/A No Improves data locality by at least 88.7% and

improves performance by 6% [22]

Joint Balances the

traffic

Map

task

Yes N/A Routing info Improves throughput

ELRSA No Map

task

No N/A Statistics table Locality rate of approximately 82% [24]

Predictive Overlaps the task

execution and

data transfer

phases

Map

task

No Medium Uses linear

regression to

predict

execution time

Improves data locality by at least 73.33% and total

execution time by 57% compared with FIFO

[25]

HybSMRP No Map

task

Yes Low No Improves completion time by 11.51% compared to

Fair and 29.15% compared to FIFO and has a

data locality rate of 58.7% [26]

LARTS Early shuffling Reduce

task

Early

shuffling

N/A No Improves localities of node, rack, and off-rack by

34.45, 0.32 and 7.5%, respectively compared

with FIFO [27]

CoGRS No Reduce

task

Yes Low Partition Info Improves execution time up to 23.8%, increases

node-local data by 34.5%, and decreases rack

locality and off-rack locality by 5.9% and 9.6%,

on average compared to FIFO [28]

LONARS No Reduce

task

No Low Network

bandwidth info

Increases the rack level shuffle ratio by 22%

compared to FIFO, 19% compared to

RackAware, and 17% compared to CoGRS.

3–4% improvement in total job completion time

compared to FIFO [29]

Online

Simulation

Yes Job No N/A Yes Has 95% accuracy in prediction [30]

Multi

Threading

Locality

No Job Parallel

processing

Medium No Improves energy consumption by about 29%

compared to Matchmaking on average, about

31% compared to Delay, and about 47%

compared to FIFO [32]

JOSS Yes Job No N/A No Improves data locality rate by 33.44, 32.16%

compared with FIFO and Fair [33]

DGIA Yes Job Yes Low Modeling graph For large tasks, the number of deadline misses can

be reduced by 20–30% [34]
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memory, (2) Log-structured I/O consolidation (LOCS)

reorganizes intermediate data in the shuffling phase, and

(3) A novel merging method for pairs without movement,

key-based in-situ merge, reduces the I/O load.

The strengths of COOMR are reduced task interference,

improved I/O performance, scalability, and decreased

execution time. There is less improvement for map tasks as

they have less interference in reading input data from

HDFS, the focus is on merging intermediate data for reduce

tasks.

DynMR [38] was presented by Tan et al. in 2014. This

mechanism uses interleaving for running map and reduce

tasks. It consists of three components: (1) Identifying

unused resources in the shuffling phase and allocating these

resources to the next task; (2) Assembling the reduce tasks

in a progressive queue and executing them in an inter-

leaved order; (3) Merging the threads of all partial reduce

tasks.

While this strategy improves resource performance and

decreases execution time, it focuses only on reduce tasks.

6.2 Job scheduler mechanisms for resource-
awareness

These mechanisms are aware of existing resources in each

node and the job resource demands; they prevent assigning

jobs to nodes with excess resources. Therefore, they avoid

resource wastage and reduce task waiting times for

obtaining required resources, leading to decreased com-

pletion times and improved performance. In this section,

we provide an overview of these strategies.

Resource-aware scheduling (RAS) [39] was designed in

2009 and monitors available resources in each node to

perform dynamic resource allocation. It consists of three

steps: (1) Dynamic free slot advertisement: it calculates

available computation slots dynamically in each node

based on the associated metrics obtained from monitoring

the node, as opposed to considering a fixed number of

available slots. (2) Free slot priorities: nodes are sorted

such that those with higher resource availability are pre-

sented to the job scheduler. (3) Energy-efficient schedul-

ing: the energy consumption in the scheduler is less than

for the Hadoop basic scheduler.

This strategy improves resource utilization, and load

balancing through dynamic resource allocation leads to

significantly reduced job response times. The drawbacks of

this mechanism are the lack of support for preemption of

reduce tasks, the need for additional monitoring, and the

need for forecasting capabilities to manage network bot-

tlenecks. These last two issues create significant overhead.

Resource-aware adaptive scheduler (RAAS) [40] was

introduced in 2011 and uses job profiling information to

dynamically allocate resources at runtime. This mechanism

utilizes the job slot instead of the task slot that is bound to a

particular task of the job. This method aims to determine

the best placement of tasks to nodes for maximizing

resource utilization while considering the completion time

goal for each job. It consists of five components: (1)

placement algorithm; (2) job utility calculator; (3) task

scheduler; (4) job-status updater; (5) completion time

estimator.

This technique allocates resources dynamically at run-

time and assigns slots for jobs to maximize resource uti-

lization with a consequent improvement in completion

times. It relies on the job profile based on information from

previous execution, therefore the profile accuracy plays an

important role in the performance.

Context-aware scheduler (CASH) [41] was proposed in

2012. In this strategy, jobs are classified into two groups,

CPU-bound and I/O-bound, based on information from

summary logs. It classifies nodes into two groups, com-

putational or I/O-efficient. It attempts to assign CPU-bound

jobs to computational-efficient nodes and I/O-bound jobs to

I/O-efficient nodes.

This strategy avoids resource wastage and increases

resource efficiency. However, this strategy requires each

job to be executed one time to determine its type.

Rasooli and down designed classification and opti-

mization-based scheduler for heterogeneous hadoop sys-

tems (COSHH) [42] to achieve competitive performance

with minimum resource share satisfaction. for this purpose,

it considers heterogeneity in the system and makes

scheduling decisions based on fairness and minimum

resource shares. COSHH consists of two main components:

(1) A queuing process that assigns arriving jobs to the

appropriate queue, (2) A routing process, finding the best

assignment between a job and free resources. COSHH uses

K-means to classify jobs into two classes: I/O-bound and

CPU-bound, and it solves a linear programming problem

for scheduling decisions.

COSHH has benefits, for instance, minimizing job

completion time, high data locality, scalability, and fair-

ness in resource distribution. However, it suffers from the

requirement that a significant number of parameters must

be estimated, classification is by K-means, and solving a

linear program generates some overhead, which increases

as a function of the number of resources.

Phase and resource information-aware scheduler for

mapreduce (PRISM) [43] was presented for resource-aware

scheduling at the phase level of tasks. For this purpose, it

divides tasks into multiple phases and uses a phase-based

scheduler and a job progress monitor for gathering phase

progress information. Its accuracy depends on the profile

that contains the resources required for each phase.

The advantages of this strategy are improved resource

utilization, decreased completion time, a higher degree of
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parallelism, and high flexibility. Splitting tasks into an

increased number of phases increases the complexity and

generates scheduling overhead.

Workload characteristics and resource aware (WCRA)

[44], developed in 2015, considers workload status and

node capabilities according to a set of performance

parameters. Time for data parsing, map operation, sorting,

and merging results are considered for map tasks, and for

reduce tasks, time to merge, parse, and perform the reduce

operation are considered to classify jobs into two cate-

gories, CPU-bound, and I/O-bound. For acquiring node

capabilities, several node features are considered, such as

CPU capacity, I/O performance, and physical memory

available, then nodes are categorized into two pools of

resources: CPU busy and I/O busy nodes. When a job

arrives job demands are obtained by running sample tasks

of the job on a small data set, and a job profile is con-

structed that is used for scheduler decisions. WCRA

assigns CPU-bound jobs to I/O busy nodes and vice versa.

The benefits of this method are improved resource uti-

lization, workload balancing, consideration of job priori-

ties, all with a consequence of reduced completion times.

The drawback of this method is the need to run sample

tasks of a job on a small dataset, generating overhead.

Job allocation scheduler (JAS) [45] was introduced by

Hsieh et al. in 2016 for balancing resource utilization. It

categorizes jobs into two groups: CPU-bound and I/O-

bound by calculating map data throughput as a function of

the map input data, map output data, shuffle output data,

and shuffle input data. If the throughput is less than the disk

average I/O rate, then the job is classified as CPU-bound.

The CPU and I/O capabilities of nodes are calculated from

the execution times of completed tasks. Jobs are then

assigned according to their classification and the node

capabilities.

On the positive side, it reduces execution time and

balances resource utilization. However, JAS has some

potential problems, for instance, it does not consider data

locality in assigning tasks, increases the network traffic,

and generates some computational overhead.

dynamic grouping integrated neighboring search

(DGNS) [46] was developed in 2017 and considers the

MapReduce and HDFS layers and heterogeneous work-

loads and environments. It consists of four phases: (1) Job

classification: It divides jobs into two groups, CPU-bound,

and I/O-bound. (2) Ratio table creation: It creates a capa-

bility ratio table for nodes that contain CPU and I/O slots

for each node in the map layer and a capability ratio

table for each data node in the HDFS layer. (3) Grouping

and data block allocation: It uses a strategy that groups

nodes according to CPU-slot numbers and allocates data

blocks based on the storage capacity of data nodes. (4)

Neighborhood search: it assigns tasks to nodes through a

neighborhood search; if the required data block is not

present in the first group, it considers non-local nodes.

The main advantages are that it improves performance

and has high data locality. However, it does not consider

different types of jobs.

Energy-efficient mapreduce scheduling algorithm for

YARN (EMRSAY) [47] was proposed in 2020 to minimize

energy consumption by considering deadline constraints.

This strategy consists of two phases. In the first phase,

separate deadlines for map and reduce tasks are estimated.

In the second phase, a heuristic is used to calculate the

average power consumption for each node in the cluster.

Map and reduce tasks are assigned according to the cal-

culated average power consumption for nodes (higher

priority to lower values).

Minimizing energy consumption is the main benefit of

this method, however, one drawback is related to the

dynamic nature of the average power consumption,

requiring recalculation at the start of each round, leading to

overhead.

6.3 Analysis and comparison of job schedulers

In this section, we analyze these schedulers and compare

them based on their strategy and limitations.

As mentioned before, there are two techniques for

resource utilization: fair resource distribution mechanisms

and resource-aware mechanisms. Fair resource distribution

attempts to give equal chances to users or jobs in resource

distribution; however, resource-aware mechanisms allocate

resources based on job requirements and resource charac-

teristics. Schedulers in the first group do not use informa-

tion about the characteristics of jobs and available

resources; therefore, they have much less overhead. The

second group classifies jobs into two groups: I/O-bound

and CPU-bound with the use of different methods and

based on the capabilities of the resources, an appropriate

matching is performed.

In the first group, the two schedulers Fair and Capacity

are extremely popular. These methods are similar, but the

Fair scheduler uses pools, and fair resource sharing among

users, while the Capacity scheduler uses multiple queues

and fair resource sharing among jobs.

Resource-aware job schedulers consist of three main

phases: (1) Gathering information about job demands and

resource capabilities; (2) Classification of jobs and nodes

based on collected data; (3) Matching jobs and resources.

In the first phase, different information is used to obtain job

states, for example, RAS monitors nodes, RAAS and WCRA

use job profilers, while DGNS constructs a ratio table. In

the second phase, job classification is done with different

methods such as K-Means for COSHH and the calculation

of job throughput for JAS.
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6.4 Impact on hadoop performance

As mentioned earlier, increasing resource efficiency and

reducing resource wastage have a positive effect on per-

formance. In Table 3, we evaluate job scheduling algo-

rithms that have these concerns with respect to the

performance metrics. As before, these observations are

based on their reported experimental results.

In the first group, fair resource sharing among jobs

reduces the waiting time for resources. Capacity has the

greatest effect on completion time.

In the second group, resource-aware schedulers, where

some information about node capabilities and job demands

are known and used for assigning tasks to suitable nodes, a

positive effect on performance is observed. COSHH and

WCRA have the best impact on performance however both

of them generate significant overhead. Further evaluation

of tradeoffs for these two policies is warranted, in partic-

ular over a wider range of systems.

7 Guidelines for job scheduler selection

In this section, we consider different environmental fea-

tures to select a preferred job scheduler for different

operating environments. We present a guideline for each

classification that determines which job scheduler is suit-

able for each environment. It is worth mentioning that there

are three levels of heterogeneity: cluster, users, and

workload. In this section, we consider cluster heterogeneity

which means the nodes have different capabilities such as

CPU capacity, memory, and bandwidth. Moreover, we

consider some features of the job scheduler like flexibility,

scalability, and complexity. Depending on the size of the

cluster and the workload, we determine three levels for

scalability such that low scalability corresponds to both

small job and cluster size, medium scalability corresponds

to either the job size or cluster size is large (but not both)

and high scalability corresponds to job and cluster size both

being large. For this purpose, we consider a cluster as a

small cluster for less than 50 nodes otherwise it is a large

cluster, and input data are defined as small size whenever

Table 3 Comparison of job scheduling algorithms for improving resource utilization with respect to performance metrics

Job

scheduler

Load

balancing

Data

locality

Resource

sharing

Overhead Execution

time

Effect on performance (experimental results)

Fair Yes No Yes No Medium Achieves a 37.72% decrease in average completion time

compared to FIFO [35]

Capacity Yes No Yes No Medium Improves average completion time by 40% compared to FIFO

[36]

COOMR Yes No Yes No Medium Improves performance up to 44%, execution time for reduce tasks

as much as 57.4%, and the total execution time by 38.7%

compared to FIFO [37]

DynMR Yes No Yes No N/A Improves resource utilization

RAS Yes No Yes No N/A Improves response time and resource utilization

RAAS Yes No Yes Monitoring High Improves completion time by a factor of 1.2–2.5 and improves

resource utilization (compared to Fair) [40]

CASH Yes No Yes Log info N/A Improves performance by around 40% and avoids overloading

nodes (compared with FIFO) [41]

COSHH Yes Yes Yes K-means,

linear

program

High Improves average completion time by 31.27 and 42.41% over

FIFO and Fair [42]

PRISM Yes No Yes Splitting tasks

into phases

High Improves resource utilization by up to 18% and completion times

by up to 1.3 times (compared to Fair [43])

WCRA Yes Yes Yes Run sample

task

Low 30% improvement in performance compared to FIFO, Fair, and

Capacity [44]

JAS No No Yes Computational Low Improves performance by nearly 15–18% compared with FIFO

[45]

DGNS Yes Yes Yes Ratio table Medium Improves completion time and resource utilization

EMRSAY Yes No Yes Calculating

energy

consumption

Medium Improves energy efficiency by 35% against Delay [47]
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its size less than 20 GB else it has a large size. In addition,

we determine the complexity according to the computa-

tional and job scheduler method’s complexity. For conve-

nience, we have categorized the types of environments into

four groups: homogenous, heterogeneous with small size

jobs, heterogenous with medium size jobs, and heteroge-

neous with large size jobs. We have then allocated the

appropriate job scheduler to each environment category

and have selected the preferred one in each group.

7.1 Job scheduler selection for mitigating
stragglers

We present a guideline to select the appropriate job

scheduler to overcome straggler problems in each envi-

ronment. Table 4 shows some environmental features and

whether particular job schedulers consider them. We have

distributed job schedulers among four environmental cat-

egories as follows:

1. Homogenous environment: LATE is the job scheduler

that only works well in this environment, due to its

static manner in tuning stage weights for computing the

remaining time of tasks. It is suitable for jobs where the

reducer does more work, and map tasks are a smaller

fraction of the total load. Therefore, LATE is the

preferred choice for this environment because of its

simplicity.

2. Heterogeneous with small size jobs: SAMR, Mantri,

CREST, ESAMR, and Tolhit from the reactive subcat-

egory and Dolly from the proactive subcategory are in

this group. SAMR is suited to jobs where reduce tasks

have longer execution times, while ESAMR is suit-

able for different job types. CREST is suitable for small

jobs; however, it is not scalable as by increasing the

number of nodes in the cluster, the resultant graph will

significantly increase the time to find the path, and it

cannot launch more than seven tasks. Mantri is

suitable for a known environment as it requires

machine and network characteristics. Tolhit is ideal

for heterogeneous environments that have information

available for the network and resources to launch

backup tasks on optimal nodes. Dolly is suitable for

interactive small jobs; however, it results in resource

wastage. Therefore, ESAMR appears to be the preferred

choice for straggler detection in this environment

because of its high accuracy, and Dolly is preferred for

straggler prediction.

3. Heterogeneous with medium size jobs: MRRL from

the reactive subcategory and Wrangler, MTL from the

proactive subcategory are in this group. MRRL is

appropriate for an unknown heterogeneous environ-

ment because no prior knowledge is required about

environmental characteristics. Wrangler is not appro-

priate for environments that change continuously, as it

builds a separate model for each node and workload.

On the other hand, MTL is appropriate for an environ-

ment with related tasks and requires less training data.

The preferred choice for this environment is MTL

because it requires less training time than Wrangler.

4. Heterogeneous with large-size jobs: PFSE is the only

job scheduler that is specifically for this situation. It is

designed for the identification of stragglers with high

accuracy in data-intensive cloud computing

Table 4 Guidelines for job scheduler selection for mitigating stragglers

Job

scheduler

Environment Job size Job type Input

size

Cluster size

(nodes)

Flexibility Scalability Complexity

LATE Homogenous and static Small Single type Small 9 No Low Low

SAMR Heterogenous and

dynamic

Small Reduce tasks

dominate

Small 6 Yes Low Medium

Mantri Heterogenous/known Small Different types Large 40 Yes Low Medium

CREST Heterogenous Small Different types Large 10 Yes Low High

ESAMR Heterogenous and

dynamic

Small Different types Small 6 Yes Low High

MRRL Heterogenous/unknown Medium Different types N/A N/A Yes Medium Medium

Tolhit Heterogenous Small Different types Small 5 Yes Low High

PFSE Heterogenous Large Single type Small N/A Yes Medium Medium

Dolly Homogenous Small Interactive jobs Small 150 Yes Medium High

Wrangler Heterogenous Medium Repetitive jobs High 50 Yes High High

MTL Heterogenous Medium Related tasks Small 50 Yes High High
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environments with a single type of job. It uses

completed task information to estimate execution time;

therefore, by increasing the number of completed tasks,

its accuracy is increased.

7.2 Job scheduler selection for improving data
locality

We present guidelines to select the appropriate job sched-

uler to improve data locality in each environment. Table 5

presents some environmental features that we consider for

choosing a job scheduler for improving data locality for

map tasks, reduce tasks, and both map and reduce tasks.

We have divided job schedulers among these four envi-

ronmental categories as follows:

1. Homogenous environment: Delay, Matchmaking,

NKS, and Joint from data locality for map tasks, and

LARTS from data locality for reduce tasks are appro-

priate for this environment. Delay is suitable for small

jobs in a homogenous environment because it improves

response times for small jobs by a factor of 5 in a

multi-user workload and can double throughput in an

I/O-heavy workload. However, it is not effective if a

significant fraction of tasks is much longer than the

average job, or if there are limited slots per node.

Matchmaking is similar to Delay, but it does not need

to tune delay time. NKS is very suitable for homoge-

nous environments with high network loads because it

aims to reduce network load. Joint is not appropriate in

heterogeneous network environments because it does

not consider different link bandwidths and the various

structures of the connections between nodes. LARTS

decreases the network traffic significantly, so it is

suitable for an environment with high network traffic.

With this in mind, NKS, LARTS could be considered

preferred options.

2. Heterogeneous with small size jobs: ILA, HPSO, and

HybsMRP from data locality for map tasks, and

LONARS from data locality for reduce tasks are

suitable for this environment. ILA performs better for

small jobs because the degree of parallelism (and hence

the performance degradation due to the increased

parallel degree) is limited by the number of tasks in

small jobs. HPSO is a scheduler that uses a prefetch

mechanism; therefore, it is appropriate for I/O-bound

jobs and heterogeneous environments. LONARS

Table 5 Guidelines for job scheduler selection for improving data locality

Job scheduler Environment Job

size

Job type Input

size

Cluster size

(nodes)

Flexibility Scalability Complexity

Delay Homogenous Small I/O-heavy

workload

Small 100 No Medium Low

Matchmaking Homogenous Small Different job types Small 30 No Low Low

NKS Homogenous with high

network load

Small Different job types Small 10 Yes Low High

Maestro Both Small I/O-bound Small 100 Yes Medium Medium

ILA Heterogeneous Small CPU-bound and

I/O-bound

Small 72 Yes Medium High

HPSO Heterogeneous Small I/O-bound N/A N/A Yes Low Medium

Joint Homogenous Small N/A N/A 200 No Medium Medium

ELRSA Heterogenous Various I/O-bound, CPU-

bound

Large 28 Yes Medium Medium

Predictive Heterogenous Large All job types N/A 5 Yes Medium High

HybSMRP Heterogenous Small Different job types Large 20 Yes Low Low

LARTS Homogenous Small Different job types Small 14 Yes Low Medium

COGRS Both Small Different job types Small 14 Yes Low High

LONARS Heterogenous Small Different job types Small 12 Yes Low High

Online

simulation

Both Small Single job type Small 3 No Low High

Multithreading

locality

Both Large Different job types Large N/A Yes High High

JOSS Homogenous Various Different job types Small 30 Yes Medium Medium

DGIA Heterogenous Large Different job types High 1000 Yes High Medium
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generates significant overhead for large jobs and has

relatively high complexity.

3. Heterogeneous with large size jobs: Predictive and

ELRSA from data locality for map tasks, and JOSS,

DGIA from data locality for jobs are well-suited for

this environment. Predictive uses a linear regression

model to predict the task execution time, so has better

prediction accuracy for larger jobs. Therefore, it is

better to use this method for large size jobs in a

heterogeneous environment. ELRSA is designed for a

heterogeneous cluster environment that can support

various workloads and I/O-bound and CPU-bound

jobs. JOSS is ideal for different job sizes and varied

workloads, and it can be used when the jobs are not

small. DGIA can reduce the number of deadline misses

for large workloads.

4. Combined environment (Homogenous and Hetero-

geneous): Maestro from data locality for map tasks,

CoGRS from data locality for reduce tasks, and Online

simulation, MultiThreading Locality from data locality

for jobs appear to work well in these environments.

Maestro can be applied to both homogenous and

heterogeneous environments; it performs best for I/O-

bound jobs. However, this method is not suitable for

unknown environments because we require knowledge

of how data replication is performed. COGRS has

demonstrated excellent performance on a dedicated

homogenous cluster and shared heterogeneous cloud,

and it is useful for reduce tasks with high partition

skew to reduce network traffic. It performs best when

map outputs are divided among reduce tasks non-

uniformly. A limitation of the Task Predictor in the

Online simulation method is that it predicts execution

time based on the completion time of previous tasks

from the same job. Therefore, it is best used for a

single type of job so that execution time predictions

have high accuracy, and it is more suitable for small

clusters as it generates significant overhead for large

clusters.

7.3 Job scheduler selection for improving
resource utilization

We present guidelines to select an appropriate job sched-

uler to improve resource utilization in each environment.

Table 6 presents some environmental features that we

consider for choosing the best job scheduler for each

group: fair distribution and resource-aware. We have dis-

tributed job schedulers among five environmental cate-

gories as follows:

1. Homogenous environment: Capacity, COOMR, and

DynMR are appropriate for this environment. COOMR

is ideal for data-intensive applications with heavy

reduce phases and large clusters in a homogenous

environment as it focuses on reduce tasks and has high

scalability.

2. Heterogeneous with small size jobs: CASH is suit-

able for heterogeneous, dynamic, and shared environ-

ments because it supports dynamic changes in the

availability of resources.

Table 6 Guidelines for job scheduler selection for improving resource utilization

Job

scheduler

Environment Job size Job type Input

Size

Cluster size

(nodes)

Flexibility Scalability Complexity

Fair Homogenous Small Different Small 5 No Low Low

Capacity Homogenous Small Different Small 5 Yes Low Medium

COOMR Homogenous Small Data-intensive with heavy

reduce phase

High 25 Yes Low High

DynMR Homogenous Small Different Small 4 Yes Low Medium

RAS Both Different Different kinds of workloads Small 5 Yes Medium Medium

RAAS Both Different Multi-job workloads High 22 Yes Medium Medium

CASH Heterogeneous Small Different Small 4 Yes Low Medium

COSHH Heterogeneous Large Different High 6 Yes Medium High

PRISM Both Same

size

Wide range of workloads Small 10 Yes Low High

WCRA Heterogeneous Different Different Small 6 Yes Medium High

JAS Heterogeneous Different Various job workloads High 7 Yes Medium Medium

DGNS Heterogeneous Different Different Small 15 Yes Medium High

EMRSAY Heterogeneous Large Different High 5 Yes Medium Medium
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3. Heterogeneous with large size jobs: COSHH and

EMRSAY are appropriate for large size jobs and large

clusters in a heterogeneous environment because

COSHH reduces communication cost and overhead,

and EMRSAY saves energy.

4. Heterogeneous with different size jobs: Fair can be

used for both small and large size jobs. WCRA is

suitable for various workloads on small clusters in a

heterogeneous environment as it considers workload

status before tableeous and multi-user environment.

5. Combined environment (Homogenous and Hetero-

geneous): RAS improves resource utilization in both

homogenous and heterogeneous environments when

different kinds of workloads run on the cluster. RAAS is

appropriate for jobs that run periodically on different

size data with uniform characteristics in both environ-

ments. PRISM is ideal for an environment where jobs

are executed repeatedly with the same input size

because the accuracy of the job profilers can be

improved over time.

A brief of job scheduling techniques in various Hadoop

system types is presented in Table 7 which summarizes

Hadoop system features with the most appropriate job

scheduler techniques and the best situation that users can

use. In addition, it shows which schedulers have been

implemented or simulated, or only theoretically studied.

8 Conclusion and future work

We have provided an overview of different MapReduce job

schedulers in Hadoop and have classified them into three

groups based on approaches to improve performance:(1)

Mitigating stragglers, (2) Improving data locality, (3)

Improving resource utilization. The first category uses two

strategies, reactive and proactive, in reducing the adverse

effects on performance. A proactive strategy is typically

Table 7 A brief of scheduling techniques in different hadoop types

Hadoop system

type

Job scheduling techniques Best for situation Implementation Simulation Formally

study

Homogenous LATE (straggler detection) delay,

matchmaking, NKS, joint, and

LARTS (data locality) capacity,

CooMR, DynMR (resource

utilization)

Capacity is common for

resource utilization, Delay is

common for data locality,

NKS, LART are suitable for

environment with high

network load, COOMR for

data-intensive application and

large cluster

LATE, Delay,

Matchmaking,

NKS, LARTS,

Capacity,

CooMR,

DynMR

Joint N/A

Heterogeneous

with small size

jobs

SAMR, Mantri, CREST, ESAMR,

Tolhit, and Dolly (Straggler

detection) ILA, HPSO, and

HybsMRP, and LONARS (Data

locality) CASH

Dolly for interactive jobs and

common for straggler

prediction, ESAMR is

common for straggler

detection, HPSO is

suitable for I/O- bound jobs,

CASH for a dynamic

environment

SAMR, ESAMR,

ILA, HybsMRP,

LONARS,

CASH

Mantri, CREST,

Tolhit, Dolly

HPSO

Heterogeneous

with medium

size jobs

MRRL, Wrangler, and MTL

(Straggler detection)

MRRL for the unknown

environment, MTL has the

best accuracy for straggler

prediction

Wrangler N/A MRRL,

MTL

Heterogeneous

with large size

jobs

PFSE (Straggler detection)

predictive and ELRSA, JOSS, and

DGIA (Data locality) COSHH,

EMRSAY (Resource utilization)

PFSE for data-intensive cloud

computing environments,

COSHH for large cluster

ELRSA, JOSS,

DGIA,

EMRSAY

PFSE, COSHH Predictive

Heterogeneous

with different

size jobs

Fair, WCRA, and JAS (Resource

utilization)

Fair is common, JAS for a

multiuser environment,

WCRA for a small cluster

Fair, WCRA JAS N/A

Combined

system

(Homogeneous

and

Heterogeneous)

Maestro, CoGRS, Online

simulation, and MultiThreading

Locality (Data locality) RAS,

RAAS, and PRISM (Resource

utilization)

Maestro is suitable for I/O-

bound jobs, PRISM for

repeated execution

Maestro, COGRS,

RAS, RAAS,

PRISM

Online

simulation,

multithreading

locality

N/A
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better than a reactive strategy because it predicts and pre-

vents the occurrence of a straggler; therefore, it avoids

resource wastage. The second category is for improving

data locality and is divided into three subcategories: (1)

Data locality for map tasks, (2) Data locality for reduce

tasks, and (3) Data locality for both map and reduce tasks.

Improving data locality for reduce tasks is more complex

than data locality for map tasks because the output of the

map tasks serves as input data for the associated reduce

tasks. As a result, prior information about the location of

input data for the reduce tasks is not available. The last

group is for improving resource utilization, divided into

two subgroups: (1) Fair resource distribution, and (2)

Resource-aware mechanisms. The first group does not use

information about the characteristics of jobs and available

resources; therefore, the schedulers in this group do not

generate significant overhead. Using different methods, the

second group classifies jobs into two groups: I/O-bound

and CPU-bound, and assigns them to the appropriate nodes.

We presented guidelines to select a job scheduler based

on scheduler features and the performance impact in dif-

ferent operational environments. Amongst reactive tech-

niques, ESAMR is preferred for straggler identification, and

Tolhit is preferred for selecting target nodes on which to

launch backup tasks. Amongst proactive techniques,

Wrangler and MTL have high accuracy and reliability in

straggler prediction; however, Wrangler requires a longer

training time than MTL; therefore, the preferred existing

proactive technique is MTL. CREST and Wrangler have the

best impact on performance. Maestro, HPSO, and ELRSA

have the highest data locality rate for map tasks, and

LARTS has the maximum data locality rate for reduce

tasks. Predictive and COGRS have the greatest impact on

performance.

All of these job schedulers focus on one performance

aspect. In some cases, optimizing one performance metric

can result in significant degradation in another metric.

However, no scheduling algorithm considers all of these

performance metrics. One of our future goals is to design a

hybrid job scheduler that considers a combination of these

performance aspects; for example, JASL is a job scheduler

that considers both data locality with resource utilization;

the result can be a superior impact on Hadoop

performance.
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