
Migration of CMSWEB cluster at CERN to Kubernetes: a comprehensive
study

Muhammad Imran1,2 • Valentin Kuznetsov3 • Katarzyna Maria Dziedziniewicz-Wojcik2 •

Andreas Pfeiffer2 • Panos Paparrigopoulos2 • Spyridon Trigazis2 • Tommaso Tedeschi4,5 •

Diego Ciangottini5

Received: 22 January 2021 / Revised: 28 April 2021 / Accepted: 31 May 2021 / Published online: 9 June 2021
� The Author(s) 2021

Abstract
The Compact Muon Solenoid (CMS) experiment heavily relies on the CMSWEB cluster to host critical services for its

operational needs. The cluster is deployed on virtual machines (VMs) from the CERN OpenStack cloud and is manually

maintained by operators and developers. The release cycle is composed of several steps, from building RPMs to their

deployment, validation, and integration tests. To enhance the sustainability of the CMSWEB cluster, CMS decided to

migrate its cluster to a containerized solution based on Docker and orchestrated with Kubernetes (K8s). This allows us to

significantly speed up the release upgrade cycle, follow the end-to-end deployment procedure, and reduce operational cost.

In this paper, we give an overview of the CMSWEB VM cluster and the issues we discovered during this migration. We

discuss the architecture and the implementation strategy in the CMSWEB Kubernetes cluster. Even though Kubernetes

provides horizontal pod autoscaling based on CPUs and memory, in this paper, we provide details of horizontal pod

autoscaling based on the custom metrics of CMSWEB services. We also discuss automated deployment procedure based

on the best practices of continuous integration/continuous deployment (CI/CD) workflows. We present performance

analysis between Kubernetes and VM based CMSWEB deployments. Finally, we describe various issues found during the

implementation in Kubernetes and report on lessons learned during the migration process.

Keywords Cluster computing � Kubernetes � Container � CMSWEB � LHC � CMS � Docker

1 Introduction

The CMS [1] is a general-purpose detector at the Large

Hadron Collider (LHC) at CERN, Geneva, Switzerland. It

has a broad physics program ranging from studying the

Standard Model (including the Higgs boson) to searching

for extra dimensions and particles that could make up dark

matter. The CMS experiment is one of the largest inter-

national scientific collaborations in history, involving 5000

particle physicists, engineers, technicians, students, and

support staff from 200 institutes in 50 countries [2].

The CMS experiment runs hundreds of thousands of

jobs on its distributed computing system to simulate,

reconstruct, and analyse the data taken during collision

runs. A dedicated cluster (‘‘CMSWEB’’) is used to host

essential CMS central services that handle the CMS data

management, data discovery, and various data bookkeep-

ing tasks. The cluster is based on virtual machines (VMs)

deployed at the CERN OpenStack cloud infrastructure.

Each service is managed by its own development team.

Due to the complexity of the heterogeneous environment

and different schedules of development teams, only

monthly release cycles can be afforded. Each upgrade

cycle includes the build of RPMs from source code (in-

cluding all dependency chains), the cross-validation of all

software components, and the validation of the correct

interactions of all services. This typically requires a lot of

communication between development teams and operators,

as well as coordination of various efforts in a coherent

manner. By policy, production releases are only deployed

once a month, so developers may have to wait for up to

four weeks before the new version of their services is

deployed into production.

Extended author information available on the last page of the article

123

Cluster Computing (2021) 24:3085–3099
https://doi.org/10.1007/s10586-021-03325-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2979-564X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03325-0&domain=pdf
https://doi.org/10.1007/s10586-021-03325-0

To enhance the sustainability of CMSWEB, CMS

decided to migrate its infrastructure to a containerized

solution based on Docker [3] orchestrated with Kubernetes

(K8s) [4]. With this approach, we can accomplish end-to-

end deployment procedures for our services and allow

developers to quickly deploy new versions of their ser-

vices. This significantly reduces the release upgrade cycle,

unifies deployment procedures, and reduces operational

cost.

Recently, we have performed the migration of the

CMSWEB cluster to the Kubernetes [5]. In this paper, we

give an overview of the CMSWEB services and VM

cluster in Sect. 2. In Sect. 3, we present the proposed

architecture of CMSWEB in Kubernetes and its imple-

mentation strategy. Section 4 presents the proposed

mechanism of horizontal pod auto-scaling based on the

custom metrics of CMSWEB services. In Sect. 5, we dis-

cuss automatic service deployment based on CI/CD

workflows. Section 6 presents the performance analysis of

current and proposed architecture. We discuss our plans for

the future in Sect. 7. Finally, we conclude in Sect. 8.

2 Architecture of CMSWEB

The CMSWEB cluster comprises dozens of services

maintained by CMSWEB operators. The deployment

framework (mostly written in bash scripts) provides the

ability to deploy individual services in a consistent manner.

Each service deployment relies on deploy and manage

scripts, while the entire deployment procedure is abstracted

to deal with many services. The CMSWEB cluster allows:

– independent development and evolution of underlying

services,

– simplified integration and regression testing when

rolling out new service versions,

– building external services that integrate information

from several sources in a clean manner.

Each service in CMSWEB has its own development group

that upgrades the relevant service in the monthly release

cycle. The CMSWEB development life cycle includes all

the hosted services that are actively developed. The

CMSWEB team is not responsible for maintaining indi-

vidual services but only provides the web infrastructure

and manages service deployment.

The architecture of the CMSWEB VM cluster is shown

in Fig. 1. It has two layers of services, i.e., frontend and

backend services. The frontend service is based on Apache

which performs authentication using X509 certificates and

redirects requests to the requested backend service. The

individual backend services perform their relevant tasks.

The frontends follow redirect rules to forward the requests

to the relevant VM node running the backend service. The

backend services only accept requests coming from the

frontend service and perform authorization based on pro-

vided CMS HTTP headers (these headers are constructed

by CMSWEB frontends). We provide the short description

of all CMSWEB services below.

2.1 CMSWEB services

The current list of CMS services deployed in CMSWEB

cluster is given below. Please note, that over lifetime of the

CMSWEB cluster certain services may come and go, and

here we present only list of currently available services.

– ACDCServer A database that contains documents for

failed jobs in production.

– CouchDB A database that is used to store various

documents related to workflow management core

services [6].

– CRAB3 An analysis submission utility that is used to

submit CMSSW jobs to distributed computing

resources [7].

– Crabcache A service used to cache the job files that are

submitted by users for 1 month [8].

– DAS A CMS service that unifies a variety of CMS data-

services into a common layer used by CMS physicists

and production tools to look up the CMS metadata [9].

– DBS A CMS service providing event data catalog for

Monte Carlo and recorded data of the CMS experiment

[10].

– DBSMigration A CMS service used to migrate data

between DBS instances. [10].

– DQMGUI A web based user interface for browsing

CMS Data Quality Monitoring Information [11].

– Exitcodes A web based service returning a list of known

CMS exit codes from various sub-systems.

– Exporters A service that exposes various metrics

related to different services for monitoring purposes.

Apache Frontends

DBS DAS CRAB CouchDB ReqMgr2 Phedex Wmstat DQM

Backend Services

Users

CERN Network

Fig. 1 The CMSWEB cluster consists of two layers, i.e. the frontend

and backend services. The Frontend service runs an Apache server

that performs certificates-based authentication and redirects requests

to backend services

3086 Cluster Computing (2021) 24:3085–3099

123

– Frontend The Apache server used in CMSWEB for

authentication and authorization [12].

– MongoDB A backend database for the DAS service

[13].

– PhEDEx Web Services A web service that provides

monitoring for PhEDEx CMS Data transfers [14].

– Request Manager 2 A CMS service to create, store and

manage central production workflow descriptions and

their configuration [15].

– Request Manager 2 MS A CMS service containing a set

of small services responsible for some features of the

overall CMS Workload Management system [15].

– T0_WMStats A service that monitors production

requests on Tier-0 CMS management system.

– T0wmadatasvc A REST service used by Tier-0 CMS

management system.

– WorkQueue A service to manage Request Manager

workflows [15].

– WMStats A service to monitor central production

requests [16].

2.2 CMSWEB environments

There are currently three environments available for

CMSWEB services: development, pre-production, and

production environments. The development environment,

which is used for testing, has only a single VM server that

hosts all CMSWEB frontend and backend services, such

that both can co-exists on a single node. Both CMSWEB

operators and developers can use this environment to

deploy their services in a single VM. The pre-production

deployment relies on 2 VMs for frontend and 2 VMs for

backend services.1 Pre-production nodes are used to deploy

monthly releases and perform cross-validation and inte-

gration tests among all CMS services. The CMSWEB

operator deploys all services in the pre-production envi-

ronment and developers test their services after each iter-

ation of the release. After this cycle is finished, the final

stable release is deployed to the production nodes. The

production environment has 4 frontend VMs and 17 VMs

for backend services.2 The specification of CMSWEB

nodes is available in Sect. 2.3. Further detail about these

environments and services hosted on these VMs is avail-

able at [17].

2.3 Specifications of servers in VM clusters

The specification of VM servers in both preprod and pro-

duction VM clusters is shown in Table 1. This table shows

the cluster nodes, the total number of nodes, RAM, CPU

and Disk of each node.

3 Deployment of CMSWEB cluster
to Kubernetes

While the existing VM based deployment procedure serves

the deployment goals quite well, it requires a lot of inter-

actions between CMSWEB operators and developers.

Because of this load, upgrades of the CMSWEB production

nodes could only be done once a month. To reduce this

latency and release control of individual services to

developers, it was decided to migrate the CMSWEB cluster

to Kubernetes infrastructure. For that, we evaluated the

existing Kubernetes infrastructure at CERN which is based

on the OpenStack platform.

We consider a two cluster model for migration of the

CMSWEB cluster to Kubernetes as shown in Fig. 2. It has

the two components:

– frontend cluster (cluster A on a diagram),

– backend cluster (cluster B on a diagram).

The frontend cluster contains the CMSWEB Apache

frontend behind the Nginx ingress controller (server). The

backend cluster contains all CMSWEB backend services

behind its ingress controller. The frontend cluster ingress

controller provides TLS pass-through capabilities to pass

the client’s requests (with certificates) to the Apache

frontend. The Apache frontend performs CMSWEB

authentication and redirects the request to the backend

cluster. On the backend cluster, the ingress controller has

basic redirect rules to the appropriate services and only

allows requests from the frontend cluster.

The reason for selecting two clusters is related to the

structure of Kubernetes, i.e., the mapping of services (in-

gress ¼ [services). Using Apache as an authentication

layer requires keeping redirect rules from Apache to other

nodes. As the Kubernetes host network does not allow for

replicas, the 2 cluster architecture was needed. Plus, it

allows independent maintenance of individual clusters.

To host services in Kubernetes, we need container

images of all services, which are then deployed in

Kubernetes. The Docker images are created using RPMs of

the current VM cluster and are kept in a central repository

that is available at [18]. The directory structure of this

repository is shown in Fig. 3, where each service has its

own directory which contains 4 files: Dockerfile, install.sh,

run.sh and monitor.sh. The Dockerfile contains the

1 The 2� 2 environment for pre-production was sufficient enough to

deploy and run all CMSWEB services and perform integration tests.
2 The 4� 17 combination for the production environment is selected

based on the requirement of services to manage production workload.

Cluster Computing (2021) 24:3085–3099 3087

123

specification of building a service-specific image from the

base cmssw/cmsweb image. The install.sh file contains

instructions to install the RPMs for each service in the

CMSWEB cluster. The run.sh script instructs how to run

services and the monitor.sh script controls how to run

monitoring tools. Even though our images were quite large,

this infrastructure allowed us to keep consistent builds

between VM and Kubernetes clusters as well as to ensure a

common OS layer including all dependency chains for all

pods running within the Kubernetes cluster.

Similarly to the docker area, there is also a kubernetes

area that contains service manifest files used in the

Kubernetes deployment procedure. As shown in Fig. 4 the

central cmsweb directory in the repository contains sub-

directories for all CMSWEB namespaces [19]. Each

namespace directory contains service manifest files for

each service, the service manifest file is represented in

YAML data-format and contains the deployment instruc-

tions of the service container in the Kubernetes cluster.

Figure 5 shows the deployment cycle of individual

services in the Kubernetes cluster. Starting from the users

updating a spec file in the cmsdist repository [20], new

RPMs are then generated. Next, new Docker images are

built based on the new RPMs, and these images are

uploaded to the Docker Hub repository for CMSSW [21].

Finally, the service manifest files are adjusted to deploy

those images in the Kubernetes cluster. This cycle is

repeated for all new releases and CMSWEB upgrades. We

want to emphasize that existing redundancy, e.g. creation

of RPMs followed by image builds, is only required during

the migration phase from the VM cluster to Kubernetes and

present only due to our legacy deployment procedure.

Currently, several services already completely skip the

RPM-based procedure and fully automate their deployment

via the new CI/CD procedure discussed in Sect. 5.

3.1 Namespaces and services

Kubernetes supports namespaces to allow service separa-

tion within a cluster. In the Kubernetes cluster, we com-

bined services into namespaces according to the

developers’ group. For example, we have 5 services for

DBS and we use dbs namespace for all DBS services.

Similarly in DMWM, we have several services that belong

to a single group and we use dmwm namespace for that. In

short, we use various namespaces that have various ser-

vices under their umbrella. These namespaces are confdb,

couchdb, crab, das, dbs, dmwm, dqm, phedex, and tzero.

However, in the frontend cluster, we only use the default

Table 1 Specifications of servers in VM clusters

Cluster # Nodes RAM CPU Disk

Preprod Frontend 2 14.6 8 80

Preprod Backend 1 29.3 8 80

1 14.6 8 80

Production Frontend 4 14.6 8 80

Production Backend 10 29.3 8 80

5 58.6 16 160

2 58.6 32 160

Apache Frontends

DBS DAS CRAB CouchDB ReqMgr2 Phedex Wmstat DQM

Cluster B

Users

CERN Network

nginx

Cluster A

nginx

Fig. 2 The CMSWEB Kubernetes architecture has two clusters: the

frontend cluster (Cluster A) and the backend cluster (Cluster B). The

frontend cluster contains CMSWEB Apache frontend server behind

Nginx ingress controller (server). The backend cluster contains all

CMSWEB back-end services behind its own Nginx ingress controller.

The ingress controller only provides routing functionality and does

not perform TLS termination

install.sh
run.sh
monitor.sh

CMSKubernetes

docker

das

dbs
crabserver
reqmgr2
xxx
yyy

monitor.sh
controls how
to run
monitoring tools

contains specs
how to build
image from
cmsw/cmsweb

install.sh
contains
instructions
how to install
cmsweb RPMs

run.sh instructs
how to run
service, e.g.

Fig. 3 The CMSWEB Docker repository is structured based on the

services, i.e. each service has 4 files located in their own directory: the

Dockerfile, install.sh, run.sh and monitor.sh scripts that are respon-

sible for installation, service management, and monitoring,

respectively

3088 Cluster Computing (2021) 24:3085–3099

123

namespace for frontend service, which is available by

default in every Kubernetes cluster.

3.2 Summary of resource usage

Table 2 shows the resources which are currently being used

by the three environments of CMSWEB VM clusters and

the new Kubernetes preprod/prod clusters. These resources

are given in terms of the total number of VMs, total RAM

(GB), total CPUs, and the total size of storage volumes

(TB) attached to the nodes. The new clusters were created

according to the service requirement of the VM production

cluster. The resources were determined via the monitoring

profile of each service and its average usage within the VM

cluster. Autoscalers in the proposed Kubernetes cluster

dynamically allocate service resources and provide effi-

cient utilization of resources. In the K8s cluster, there are

some services/daemonsets which are provided by CERN IT

by default with every cluster. The examples of these are

Nginx-ingress-controller, metrics-server, csi-cephfsplugin-

provisioner, calico-node and many others in the kube-sys-

tem namespace. All these services need some resources in

the form of CPUs/memory. Therefore, additional resources

are required for them in K8s cluster which was not the case

in the VM cluster.

3.3 Resource allocation of CMSWEB services

The resource allocation for CMSWEB services in the

Kubernetes production cluster is shown in Fig. 6. The pie-

charts show the total number and the percentage of the

replicas of the services, the maximum CPUs allocated to

various services, and the maximum memory allocated to

various services. For instance, currently, DBS pods are the

most resource-hungry services.

We selected the values for resources of CMSWEB ser-

vices based on the actual usage of the resources in the VM

production cluster. The monitoring infrastructure at CERN

IT provides these statistics [22]. For example, the CMS

frontend service [23] received on average 2000 requests/s.

Therefore, we used 4 frontend nodes in the VM production

cluster evenly spreading the load and working in a regime

of 500 requests/s per node. Similarly, the same number of

replicas were selected for the Kubernetes frontend service.

Likewise, the minimum and maximum values for CPUs

and RAM for a given service are based on the utilization of

this service as obtained in the VM cluster.

If the resource requirement is greater than the maximum

value assigned to it, then the Kubernetes infrastructure will

kill the container and start a new container.

We consider Cinder and Ceph File System (CephFS)

storage in the CMSWEB Kubernetes cluster. Cinder is

block storage for OpenStack. It virtualizes the management

of block storage devices and provides end-users with a self-

CMSKubernetes/

kubernetes/

services/

ingress/

monitoring/

storages/

crons/
scripts/

cmsweb/ monitoring/ nats/ rucio/ whoami/

Fig. 4 The CMSWEB Kubernetes repository contains sub-directories

for all CMSWEB namespaces. In each namespace directory, there are

service manifest files for each service that specify the deployment

instructions of the container image in the Kubernetes cluster

CMS k8s cycle

build RPMs
build new docker image

and upload it to docker hub

and deploy new image to k8s

1

23

4

Fig. 5 The CMSWEB Kubernetes cycle representing the mechanism

of how services are deployed in CMSWEB Kubernetes cluster

Table 2 Summary of resource

usage for various CMSWEB

cluster environments

Cluster environments Total nodes Total RAM (GB) Total CPUs Total volume (TB)

VM Dev 1 7.3 4 0.15

VM Preprod 4 73.1 32 2.5

VM Production 21 794.4 256 16

Kubernetes Preprod 8 240 128 2

Kubernetes Prod 18 540 288 2

Cluster Computing (2021) 24:3085–3099 3089

123

service API to request and consume those resources with-

out requiring any knowledge of where their storage or type.

It can be attached or detached to or from a VM without

losing the persistence of data [24]. The CephFS is a

POSIX-compliant file system built on top of Ceph’s dis-

tributed object store, Reliable Autonomic Distributed

Object Store (RADOS). CephFS endeavors to provide a

state-of-the-art, multi-use, highly available, and performant

file store for a variety of applications, including traditional

use-cases like shared home directories, High-Performance

Computing (HPC) scratch space, and distributed workflow

shared storage [25]. We used CephFS for logs and cache

data, and these are cross mounted in the Kubernetes pods

and a VM.3 The users can access these logs in real-time

directly from the VM. We consider Cinder storage for

storing data for services that require a lot of disk space, e.g.

database files or caching areas. This space is available to us

in the form of Cinder storage which can be mounted to a

single Kubernetes node.

3.4 Cluster monitoring

We organize cluster monitoring using three open-source

solutions: the Prometheus [26] to scrape the metrics from

our services, the Filebeat daemons to read local log files

and push their content to Logstash service, and the Log-

stash service to preprocess logs and push their content to

the CERN MONIT infrastructure. The monitoring archi-

tecture is presented in Fig. 7, and it is part of a more

complex CMS Monitoring infrastructure [27]. The Pro-

metheus servers are integrated into each (frontend and

backend) CMSWEB cluster. The collected metrics are

accessible via the Prometheus data-source in the CERN

MONIT infrastructure, and various metrics are visualized

as different dashboards. The service logs are pushed into

Elasticsearch instance and later used to build dashboards of

various users’ access patterns, e.g. for monitoring top-10

IPs, APIs, queries, etc. This infrastructure requires minimal

effort from the operator and was proven to be reliable for

our needs.

4 Horizontal pod autoscaling
via Prometheus

As of today, Kubernetes natively exports only RAM or

CPU-based metrics. In order to scale applications on the

basis of custom metrics, the usage of third-party compo-

nents becomes necessary: in fact, Kubernetes’ Horizontal

Pod Autoscaler (HPA) [28, 29] makes it possible to scale

deployments according to any metrics as long as they are

exposed through the Custom Metrics API (or the External

Metrics API [28]). The full workflow is depicted in Fig. 8.

First, a Prometheus exporter that exposes metrics from

single pods is needed. A Prometheus server will then reg-

ularly collect all metrics from various exporters in the form

of time series. To make these values retrievable by HPA, a

6
6

34

16

8

11

8
monitoring
8.8%
wma
2.2%
tzero
12.1%

frontend
8.8%

dmwm
17.6%

crab
6.6%
das

6.6%

dbs
37.4%

Services Replicas

(a) The total number of replicas of various services.t

6

16.8

58.4
22

12

11

20

monitoring
13.5%
wma
1.3%
tzero
7.4%

frontend
8.1%

dmwm
14.8%

crab
4.0%
das

11.3%

dbs
39.4%

Max CPUs

(b) The total maximum CPUs allocated to various services.

18

340

81

40

33
20

monitoring
3.6%
tzero
6.0%
frontend
7.2%
dmwm
14.7%

crab
3.3%

dbs
61.6%

Max Memory (GB)

(c) The total maximum memory (GB) allocated to various
services.

Fig. 6 These plots show the number and percentage of replicas,

maximum CPUs, and maximum memory of CMSWEB services in

their namespaces. The DBS services consume a major portion of the

resources

3 Each service in Kubernetes is represented by a pod. Within a pod, it

writes log files to CephFS storage. Finally, we mount this area outside

of K8s to allow unified access to all service logs.

3090 Cluster Computing (2021) 24:3085–3099

123

Prometheus Adapter [30] application selects certain time

series from the Prometheus Server and exposes them

through Custom Metrics API. Finally, HPA resources are

used to determine which deployments need to be scaled

and what metric values should be used to scale them

accordingly. A detailed explanation of each one of the

steps above will be discussed in the next section.

4.1 Workflow details

The first step is to deploy an application (generally only a

single replica is sufficient) along with its specific Pro-

metheus exporter. Exporters are application-specific ser-

vers that export internal metrics from the application of

interest, converting them to a predefined format. These are

then served at the /metrics path. General rules and

exposition formats can be found at [31, 32] while a non-

comprehensive list of existing Prometheus exporters can be

found at [33, 34]. The monitoring task is then performed by

the Prometheus server collecting all the metrics from var-

ious exporters in the form of time series, regularly making

HTTP calls to each /metrics target which may be

statically configured or dynamically discovered. Then, the

Prometheus Adapter [30] application is deployed. It has a

key role, acting as the link between Prometheus and

Kubernetes. In fact, it queries the Prometheus server

looking for certain time series that are manipulated and

exposed through the Custom Metrics API. The Adapter

makes use of the following set of rules:

– Discovery, which tells the Adapter how to find

metrics for this rule.

– Association, which tells the Adapter how to

associate Kubernetes resources and metrics.

– Naming, which tells the Adapter how to expose

metrics in the custom metrics API.

– Querying, which tells the Adapter how to query

Prometheus server.

Filebeat
Service app

Monitor exporter

Filebeat
Service app

Monitor exporter

Logstash

Prometheus

Filebeat
Service app

Monitor exporter

CERN MONIT
Infrastructure

ElasticSearch

Grafana

Filebeat
Service app

Monitor exporter

Filebeat
Service app

Monitor exporter

Logstash

Prometheus

Filebeat
Service app

Monitor exporter

CERN MONIT
Infrastructure

ElasticSearch

Grafana

Fig. 7 The CMSWEB

Kubernetes monitoring

architecture is based on the

Prometheus server for collecting

live service metrics and

Logstash for offloading service

logs to the CERN MONIT

infrastructure

Fig. 8 Horizontal pod autoscaling based on custom metrics collected

by Prometheus

Cluster Computing (2021) 24:3085–3099 3091

123

Finally, one can turn on autoscaling based on arbitrary

metrics by deploying an HPA (making use of the

autoscaling/v2beta2 API version). The HPA is basically a

control loop that periodically queries a metrics API. In this

case, it searches for a custom metric when regularly

querying the Custom Metrics API. When the queried

metric values are found above thresholds (set by the user),

HPA scales up the targeted deployment creating additional

replicas (up to a maximum) until the metric values go

below the previously mentioned threshold. Then a cool-

down policy is used to decide when to scale down after the

scaling up is over. Maximum and minimum number of

replicas are also set by the user, and parameters regarding

scale-down or scale-up policies can be specified.

4.2 Benchmark tests

The full workflow has been tested with different applica-

tions (deployments) and thus different exporters [35]. A

benchmark test was performed to explore scaling-up times

as a function of container image size. This gives us a hint

about how image size affects scaling times. This is

important since the effectiveness of autoscaling depends on

how much time it takes to increase the number of replicas.

In systems where the load (and hence the metric value)

rapidly increases, having a slow scaling could be critical.

We used three Docker images that contained the same

service (an httpgo server and a process exporter) and only a

different underlying OS stack:

– ttedesch/httpgo_and_exporter-small

(19.17 MB),

– ttedesch/httpgo_and_exporter-medium

(325.96 MB),

– ttedesch/httpgo_and_exporter-big

(2.73 GB).

For this benchmark test, we used a Kubernetes cluster with

1 master (2 CPUs, 4 GB) and 8 slaves (4 CPUs, 8 GB)

deployed at the ReCaS-Bari data center [36]. We used anti-

affinity rules and a clean-up mechanism to be sure that each

container was deployed in a different node in which the

image was not already present: in this way, the autoscaling

time we measured (i.e. the time it takes to Kubernetes to

scale from 1 to 8 replicas of the httpgo deployment after

HPA is triggered) included both pulling and deploying

times. Results averaged across 5 autoscaling experiments

are shown in Fig. 9.

As foreseen, the bigger the image size, the more time it

takes to scale up the deployment, since downloading and

creating the corresponding pod in each node require much

heavier actions. In an environment characterized by very

short load peaks, autoscaling can be effective only if the

process of creation of replicas is fast enough. Hence the

size of the image could play an important role in scenarios

where the speed of the response to heavy load is critical.

5 CI/CD workflows

To automate service deployment, we rely on best practices

of CI/CD workflows. Originally, we applied the following

procedure to all services. All our manifest files resides in

the CMS Kubernetes/docker area [19]. As was discussed in

Sect. 3 each service docker area contains a corresponding

Dockerfile, and services of auxiliary scripts. All images are

built centrally, pushed to the Docker hub repository, and

then used in K8s deployment. Even though this procedure

works perfectly it still requires manual steps, like tagging

code in the repository, building the corresponding image,

and pushing it into the Docker hub repository. Recently, we

automated all of these steps via a GitHub Action [37]

workflow. Each workflow manifest file contains the series

of steps associated with a given package. For example, it

performs compilation, testing, and building the service

executable as well as the service image. Then, the image

can be uploaded to Docker hub, and, optionally, the HTTP

POST request can be placed to the imagebot service [38]

(deployed within our Kubernetes cluster) to upgrade the

service image within specific cluster namespace.4 Cur-

rently, we apply this procedure only in the testbed cluster

to allow developers to quickly test their service with every

git tag push action. For the production cluster we still rely

on the manual upgrade procedure. This is because in the

production cluster, we deploy service only when it is ready

after being tested in the testbed cluster after various iter-

ations of service updates using CI/CD.

6 Performance analysis

We used the hey tool [39] to evaluate the performance of

the VM based clusters (both testbed and production) and

the new testbed clusters in Kubernetes. The initial Kuber-

netes cluster used version 1.15 and showed a severe net-

work degradation caused by a faulty network driver

(‘‘flannel’’). This issue was fixed in Kubernetes version

1.17, which uses the calico network driver. In the following

comparison, we label the clusters using Kubernetes version

1.15 as ‘‘old cluster’’, and the ones using version 1.17 as

‘‘new cluster’’.

To test the performance, three scenarios were consid-

ered: in the first scenario, a configuration with n ¼ 10 and

4 Each request is authenticated via a limited lifetime token, and

provides all necessary meta-data information about the new deploy-

ment such as image tag, corresponding namespace, etc.

3092 Cluster Computing (2021) 24:3085–3099

123

c ¼ 5 was chosen, where n is the number of requests to run

and c is the number of workers to run concurrently. Ini-

tially, this small load was sufficient to investigate the

network degradation issue. In latter scenarios, a more

realistic benchmark with n ¼ 1000 requests and c ¼
f100; 200g concurrent clients was used, which represents a

typical load in our daily operations.

The performance results of this first scenario are shown

in Fig. 10: various services of CMSWEB are shown on the

x-axis while the resulting requests/s are shown on the

y-axis. A comparative analysis of the VM production

cluster, VM testbed cluster, old Kubernetes cluster, and

new Kubernetes cluster was performed. The old and new

Kubernetes clusters were studied with different numbers of

replicas of the frontend (FE) i.e. (4, 6, 8) to see the impact

of replicas on the overall performance. It can be seen that

the new Kubernetes cluster performs much better as com-

pared to the production, testbed, and old Kubernetes clus-

ter. The main purpose of this scenario is to demonstrate the

network problem in the ‘‘old k8s cluster’’. This small load

was sufficient to investigate the network degradation issue,

and variations in number of FE replicas have no effect in

this case. The increase in number of FE replicas matters

when the load is very high and this is demonstrated in the

second/third scenario as in Fig. 11a, b.

For the second scenario, only the frontends at a very

heavy load were considered. We used n and c i.e.

n ¼ 1000, and c ¼ f100; 200g options for the hey tool; the

results are shown in Fig. 11. We performed benchmark

tests with and without reusing TCP connections, see

Fig. 11a and b, respectively. As can be seen from these

plots that the new Kubernetes cluster outperforms the VM

cluster benchmarks when we increase the number of FE

replicas. Based on these results we can find the optimal

configuration of frontends to be used in the production

cluster. It can also be noted that with an increase in the

number of concurrent clients, the Kubernetes setup per-

forms better than the VM one as the Kubernetes efficiently

utilizes application resources and performs load balancing.

The impact of reusing and not using existing TCP con-

nections can also be seen here. By using existing TCP

connections, we get better performance as compared to the

scenario when the existing TCP connections are not used.

This is because of the additional latency that is incurred to

establish a TCP connection when the cache is not used.

During stress testing, we noticed a few services with

poor performance results. To investigate this issue, we

explored various parameters of Nginx ingress controller

settings. The Nginx uses two types of connections, i.e.

connections with the clients and connections with the

upstream server. The Nginx multiplexes requests from

various clients to the upstream server. However, since we

use Apache in addition to Nginx, which handles the con-

nections with servers as well, the Nginx upstream con-

nections caused performance degradation. This issue was

resolved after disabling the connections to the upstream

server and use Nginx as the proxy only. The relevant

parameter for this is upstream-keepalive-connections

(UKC) in the Nginx setting. This issue was observed when

we run stress tests in K8s cluster using Nginx UKC! = 0

and UKC = 0 values and compared these results with the

production VM cluster, see Fig. 12. In this test, we used the

same number of K8s instances and VM production

instances for various services. We found that by disabling

Nginx upstream connections with UKC= 0, the perfor-

mance issue was resolved and the K8s cluster outperformed

the VM one in this case. Due to old architecture some of

the CMSWEB services do not scale well when they are

deployed in the K8s infrastructure. However, service

developers are working on this issue and they are

improving their services. For example, there are undergo-

ing migration from Python2 to Python3, re-writing some

services from Python in Go language to improve their

scalability, etc. As we run services in the K8s infrastructure

now, the newer versions of the services are expected to

perform well in new infrastructure.

6.1 Issues faced during migration

During this migration process various issues were

encountered, which are categorized into two categories:

– Infrastructure issues,

– Service issues.

Fig. 9 Average autoscaling time for small (19.17 MB), medium

(325.96 MB) and big (2.73 GB) image from 1 to 8 replicas

Cluster Computing (2021) 24:3085–3099 3093

123

Services

R
eq

ue
st

s/
se

co
nd

0

100

200

300

frontend reqmgr2 dbs das

VM Testbed cluster

VM Production Cluster

Old K8S Cluster (4FEs)

New K8S Cluster (4FEs)

Old K8S Cluster (6FEs)

New K8S Cluster (6FEs)

Old K8S Cluster (8FEs)

New K8S Cluster (8FEs)

Performance Benchmark

Fig. 10 The performance benchmark results in the form of requests/s

(y-axis) of some of the commonly used CMSWEB services (x-axis)

for various clusters (i.e. VM production cluster, VM testbed cluster,

old Kubernetes cluster, and new Kubernetes cluster using a different

number of replicas). A total of 100 tests were performed for each

configuration and results show average values from these tests

Configurations

N
o

of
 R

eq
ue

st
/s

ec

0

1000

2000

3000

4000

n=1000 and c=100 n=1000 and c=200

Testbed VM cluster Production VM Cluster K8S Cluster (2FE Pods)
K8S Cluster (4FE Pods) K8S Cluster (6FE Pods) K8S Cluster (8FE Pods)

Performance Benchmarks [Reusing TCP Connection]

(a) Performance Benchmark using existing TCP connections in cache

Configuration

N
o

of
 R

eq
ue

st
s/

se
c

0

500

1000

1500

2000

n=1000 and c=100 n=1000 and c=200

Testbed VM cluster Production VM Cluster K8S Cluster (2FE Pods) K8S Cluster (4FE Pods)
K8S Cluster (6FE Pods) K8S Cluster (8FE Pods)

Performance Benchmarks [Without Reusing TCP Connection]

(b) Performance Benchmark without using existing TCP connections in cache

Fig. 11 The performance

benchmark results as a function

of requests/s (y-axis) of various

frontend service configurations.

Plot (a) shows performance

numbers using existing TCP

connections, while plot

(b) shows numbers without

keep-alive TCP connections. A

total of 100 tests were

performed for each

configuration and results show

average values from these tests

3094 Cluster Computing (2021) 24:3085–3099

123

6.1.1 Infrastructure issues

The following issues related to Infrastructure were found:

– Network degradation A major issue of network degra-

dation was identified by us and other groups. The issue

was found to be caused by the network drivers in

Kubernetes 1.15 version. The issue was resolved in a

new Kubernetes cluster using version 1.17.

– Cluster creation issues With the new Kubernetes

version 1.17, cluster creation failed because of timeout.

This issue was related to storage volumes on servers

that were in different availability zones and had higher

latencies, causing timeouts. Availability zones are an

end-user visible logical abstraction for partitioning a

cloud without knowing the physical infrastructure.5

This issue was related to infrastructure use and was

subsequently fixed by experts in CERN IT.

– Ceph mount issues A problem with CephFS mounts

showed up after migrating clusters to the new Kuber-

netes version. This issue was caused by a version of the

cloud client which is provided for the management and

creation of clusters in the network, which was not

compatible with the new version of Kubernetes. Also,

this issue was fixed by the experts in CERN IT by

upgrading the cloud client to a compatible version.

– Permission mount issues Permission issues of the

mount point in /etc/grid-security in the new Kubernetes

version were found to be related to the security context

of an unconfigured pod. A security context defines

privilege and access control settings for a Pod or

Container. This was fixed after adjusting the manifest

files by configuring the security context according to

the new Kubernetes version with the help of CERN IT.

– Nginx-ingress controller Issues A problem with Nginx-

ingress controller was encountered when we performed

stress tests on the K8s cluster. It was related to the low

value of file descriptors in the Nginx-ingress controller.

During stress tests, many requests failed because of

that. This was fixed and updated in the new configu-

ration of Nginx-ingress controller provided by CERN

IT. Another issue was related to the upstream connec-

tions in the Nginx servers. The Nginx uses two types of

connections i.e. connections with the clients and

connections with the upstream server. The Nginx

multiplexes requests from various clients to the

upstream server. However, since we use Apache in

addition to the Nginx which handles the connections

with servers as well, the Nginx upstream connections

caused the performance degradation. This issue was

resolved after disabling the connections to the upstream

server and use Nginx as the proxy only. This setting

was applied by setting upstream-keepalive-connections

parameter in the Nginx setting to 0.

– DNS caching issue During stress tests, we noticed a

large number of queries for the backend cluster from

the frontend cluster are sent to the central DNS server.

This was because of the low value of caching (30 s) in

the coredns settings of the cluster provided by the

CERN IT. This issue was resolved by increasing

caching value to 900 s.

– CephFS plugin issue Occasionally, we noticed some

CephFS plugin crashed for some reason and did not

restore automatically by the Kubernetes. A CMSWEB

operator had to manually drain the node on which the

CephFS plugin crashed and then uncordon the node

after restart fixed that issue. This issue was fixed in the

new Kubernetes version 1.19. However, CERN IT also

provided the fix to apply to the previous versions.

6.1.2 Service issues

We observed following issues that were related to the CMS

services.

– CouchDB issue We noticed that CouchDB crashed in

the Kubernetes cluster. Handling things like databases

imposes specific requirements, like consistency and

persistence across distributed service. That makes it

challenging to run a database in a distributed environ-

ment. The best option is to use a VM which is also

called the full-ops option, where the operators take full

responsibility for building the database, scaling it,

managing reliability, setting up backups, and more.

While this is usually a lot of work, it has the advantage

R
eq

ue
st

s/
se

c

0

100

200

300

400

Production VM Cluster K8s Cluster with Nginx
UKC!=0

K8s Cluster with Nginx
UKC=0

dbs reqmgr2 t0_reqmon crabserver crabcache reqmon
t0wmadatasvc

Performance Benchmarks with/without Nginx UKC

Fig. 12 The performance benchmark results in the form of requests/s

(y-axis) of some commonly used CMSWEB services for VM and K8s

clusters (x-axis) using Nginx UKC! = 0 and UKC = 0 setting). A total

of 100 tests were performed for each configuration and results show

average values from these tests

5 CERN has 4 availability zones which are cern-geneva-a, cern-

geneva-b, cern-geneva-c, and nova located at different data-centers.

Cluster Computing (2021) 24:3085–3099 3095

123

that all the features and database flavors are at our

disposal [40]. It was therefore decided to keep this

service in the VM cluster and all CouchDB requests are

redirected to the VM cluster.

– PhEDEx issue The PhEDEx service is one of the legacy

application we are required to support during the

transition to Kubernetes. As it is an Apache?Perl based

application with its own security authentication mod-

ule, it was decided to not spend time on porting it to the

new infrastructure and keep it in the dedicated VMs.

– DBS issue The DBS service requires individual

accounts in each cluster. Initially, in the Kubernetes

cluster, we used the same accounts as the ones of the

VM-based clusters, which caused issues with our

workflows in the production VM cluster. In order to

avoid potential overwrite of data in production DBS DB

instances, we were asked by DBS team to use separate

accounts of DBS for the Kubernetes cluster.

– DBS load balancing issue During stress tests of the

DBS service only, we noticed that most of the requests

are forwarded to a single pod and are not uniformly

distributed across the cluster. After investigation of the

load balancing techniques/settings of the Kubernetes

cluster, it was confirmed that the issue itself is in the

DBS application and not in K8s infrastructure.

6.2 Lessons learned

The existing VM-based deployment procedure requires a

lot of interactions between the CMSWEB operator and

developers. In addition, a lot of manual interventions from

the CMSWEB operator for service deployment and to

maintain the clusters is required. Using the new Kubernetes

infrastructure greatly reduces the efforts and workload on

the CMSWEB operator. The new Kubernetes infrastructure

automates the procedure of service deployment as the

developers are able to deploy their services directly in the

Kubernetes cluster without needing input from the

CMSWEB operator. Furthermore, developers will not have

to wait for a month before their services are put into

production.

The auto-scaling feature of Kubernetes scales up cluster

resources as soon as they are required and scales them back

down once they are not needed any more. The current VM

cluster lacks this feature; every service is deployed on the

particular VM nodes and the resources are assigned on the

VM level instead of the service level. When the services

are overloaded, they often become unresponsive, then the

CMSWEB operator manually interferes and restarts indi-

vidual services. The auto-scaling feature of Kubernetes,

however, automatically manages the resources based on the

workload. This greatly simplifies the manual tasks of the

CMSWEB operator and also enhances the overall avail-

ability of the CMSWEB services. However, there was also

a standard limitation of the Kubernetes auto-scaler: it

performs auto-scaling based on CPU and RAM usage,

while we need auto-scaling based on service-specific

matrices. We implemented this feature as discussed in Sect.

4, and can now scale down/up services based on the custom

metrics of CMSWEB services.

Manifest files in Kubernetes require verification: a small

typo and wrong indentation leads to failures. Therefore, the

manifest files need to be carefully written with proper

indentation, and ideally verified automatically in a CI

process.

7 Future work

After the migration of CMSWEB cluster to Kubernetes

infrastructure, we plan to work on the following items:

– Single cluster model we plan to replace the present two

cluster model with a single cluster model that will run

frontend apache service as a daemonset. This model

will not use Nginx, which causes an additional layer of

complexity and will need fewer resources as compared

to the current two cluster model.

– Service-mesh deployment the service-mesh provides

plenty of benefits to Kubernetes, including traffic

encryption within the cluster, traffic routing between

different releases, canary deployment, and rolling

release cycles. We would like to bring this functionality

to our infrastructure either via the Istio or the Gloo

middlewares.

8 Conclusions

In CMS at CERN, we have performed the migration of the

CMSWEB cluster from the VM cluster to the Kubernetes

cluster. In this paper, we give an overview of the

CMSWEB VM cluster and the issues we faced during this

transition. We discuss the new architecture of the

CMSWEB cluster and its implementation strategy in the

Kubernetes. Kubernetes perform horizontal pod autoscal-

ing based on CPUs and memory. However, in this paper,

we propose horizontal pod autoscaling based on the custom

metrics of CMSWEB services and evaluated its perfor-

mance on the testbed. We implemented service deployment

automation based on the best practices of CI/CD work-

flows. We have done a performance analysis of the

CMSWEB cluster in Kubernetes and also performed a

comparison with VM based CMSWEB cluster. The results

show better performance of the new cluster in Kubernetes

3096 Cluster Computing (2021) 24:3085–3099

123

as compared to the VM cluster. We describe various issues

found during the implementation in Kubernetes and report

on lessons learned during the migration process. We also

give insight into the future direction of this work.

The new cluster of CMSWEB in Kubernetes enhances

sustainability and reduces the operational cost of

CMSWEB. With the containerized approach, developers

will not have to wait long for the operators to deploy their

services, they can deploy new versions of their services in a

few seconds. This allows CMS to significantly reduce the

release upgrade cycle, follow the end-to-end deployment

procedures, and reduce operational cost. The migration to

K8s infrastructure has also saved hardware resources

(CPU, memory, and disk) by decommissioning them from

VMs.

Funding Open Access funding provided by CERN.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Data availability Data sharing not applicable to this article as no

datasets were generated or analysed during the current study.

References

1. Collaboration, C.M.S.: The CMS experiment at the CERN LHC.

JINST 3, S08004 (2008)

2. CMS experiment at CERN. https://home.cern/science/experi

ments/cms. Accessed 13 April 2020

3. Rad, B.B., Bhatti, H.J., Ahmadi, M.: An introduction to Docker

and analysis of its performance. Int. J. Comput. Sci. Netw. Secur.

17(3), 228 (2017)

4. Luksa, M.: Kubernetes in Action. Manning Publications, Shelter

Island (2018)

5. Imran, M., Kuznetsov, V., Marcella, L., Maria Dziedziniewicz-

Wojcik, K., Pfeiffer, A., Paparrigopoulos, P.: Migration of

CMSWEB cluster at CERN to Kubernetes. In: PoS ICHEP2020,

p 911 (2021). https://doi.org/10.22323/1.390.0911

6. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive

Guide: Time to Relax. O’Reilly Media, Inc., Newton (2010)

7. Mascheroni, M., Balcas, J., Belforte, S., Bockelman, B., Her-

nández, J., Ciangottini, D., Konstantinov, P., Silva, J., Ali, M.,

Melo, A.: CMS distributed data analysis with CRAB3. J. Phys.

Conf. Ser. 664, 062038 (2015)

8. Cinquilli, M., Spiga, D., Grandi, C., Hernandez, J.M., Kon-

stantinov, P., Mascheroni, M., Riahi, H., Vaandering, E.:

CRAB3: establishing a new generation of services for distributed

analysis at CMS. J. Phys. Conf. Ser. 396, 032026 (2012)

9. Giffels, M., Guo, Y., Kuznetsov, V., Magini, N., Wildish, T.: The

CMS data management system. J. Phys. Conf. Ser. 513, 042052
(2014)

10. Afaq, A., Dolgert, A., Guo, Y., Jones, C., Kosyakov, S., Kuz-

netsov, V., Lueking, L., Riley, D., Sekhri, V.: The CMS dataset

bookkeeping service. J. Phys. Conf. Ser. 119, 072001 (2008)

11. De Guio, F.: The CMS data quality monitoring software: expe-

rience and future prospects. J. Phys. Conf. Ser. 513, 032024

(2014)

12. Laurie, B., Laurie, P.: Apache: The Definitive Guide. O’Reilly

Media, Inc., Newton (2003)

13. I. MongoDB, Mongodb, URL https://www. mongodb. com/.

Cited on (2014) 9 (2014)

14. Rehn, J., Barrass, T., Bonacorsi, D., Hernandez, J., Semeniouk, I.,

Tuura, L., Wu, Y.: Computing in High Energy and Nuclear

Physics (CHEP), vol. 2006 (Citeseer, 2006)

15. Boudoul, G., Franzoni, G., Norkus, A., Pol, A., Srimanobhas, P.,

Vlimant, J.: Monte Carlo production management at CMS.

J. Phys. Conf. Ser. 664, 072018 (2015)

16. Spinoso, V., Missiato, M.: A flexible monitoring infrastructure

for the simulation requests. J. Phys. Conf. Ser. 513, 032092

(2014)

17. CMSWEB environment at a glance. https://cms-http-group.web.

cern.ch/cms-http-group/activity.html. Accessed 4 April 2020

18. CMS repository for Docker. https://github.com/dmwm/CMSKu

bernetes/tree/master/docker. Accessed 4 April 2020

19. CMSWEB Kubernetes repository. https://github.com/dmwm/

CMSKubernetes/tree/master/kubernetes. Accessed 4 April 2020

20. CMSDIST repository. https://github.com/cms-sw/cmsdist.

Accessed 4 April 2020

21. Docker Hub repository for CMSSW. https://hub.docker.com/u/

cmssw. Accessed 5 May 2020

22. Aimar, A., Corman, A.A., Andrade, P., Fernandez, J.D., Bear,

B.G., Karavakis, E., Kulikowski, D.M., Magnoni, L.: MONIT:

monitoring the CERN data centres and the WLCG infrastructure.

EPJ Web Conf. 214, 08031 (2019)

23. Monitoring of CMSWEB frontend nodes. https://bit.ly/2BIKvJf.

Accessed 6 Sep 2020

24. Cinder storage in OpenStack. https://wiki.openstack.org/wiki/

Cinder. Accessed 14 April 2020

25. Mascetti, L., Rios, M.A., Bocchi, E., Vicente, J.C., Cheong,

B.C.K., Castro, D., Collet, J., Contescu, C., Labrador, H.G., Iven,

J.: CERN disk storage services: report from last data taking,

evolution and future outlook towards Exabyte-scale storage. EPJ

Web Conf. 245, 04038 (2020)

26. Turnbull, J., et al.: Monitoring with Prometheus. Turnbull Press,

Brooklyn (2018)

27. Ariza-Porras, C., Kuznetsov, V., Legger, F.: The CMS monitor-

ing infrastructure and applications. Comput. Softw. Big Sci. 5, 5
(2021). https://doi.org/10.1007/s41781-020-00051-x

28. Horizontal pod autoscaler. https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale. Accessed 17 Sep 2020

29. Horizontal pod autoscaler walkthrough. https://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale-walk

through. Accessed 17 Sep 2020

30. Prometheus adapter. https://github.com/DirectXMan12/k8s-pro

metheus-adapter. Accessed 17 Sep 2020

31. General rules for writing Prometheus exporters. https://pro

metheus.io/docs/instrumenting/writing_exporters/. Accessed 7

Dec 2020

32. Prometheus exporter exposition formats. https://prometheus.io/

docs/instrumenting/exposition_formats/. Accessed 7 Dec 2020

33. Prometheus exporters. https://prometheus.io/docs/instrumenting/

exporters. Accessed 17 Sep 2020

Cluster Computing (2021) 24:3085–3099 3097

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://home.cern/science/experiments/cms
https://home.cern/science/experiments/cms
https://doi.org/10.22323/1.390.0911
https://cms-http-group.web.cern.ch/cms-http-group/activity.html
https://cms-http-group.web.cern.ch/cms-http-group/activity.html
https://github.com/dmwm/CMSKubernetes/tree/master/docker
https://github.com/dmwm/CMSKubernetes/tree/master/docker
https://github.com/dmwm/CMSKubernetes/tree/master/kubernetes
https://github.com/dmwm/CMSKubernetes/tree/master/kubernetes
https://github.com/cms-sw/cmsdist
https://hub.docker.com/u/cmssw
https://hub.docker.com/u/cmssw
https://bit.ly/2BIKvJf
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Cinder
https://doi.org/10.1007/s41781-020-00051-x
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exporters
https://prometheus.io/docs/instrumenting/exporters

34. Prometheus exporters assigned ports. https://github.com/pro

metheus/prometheus/wiki/Default-port-allocations. Accessed 17

Sep 2020

35. HPA via Prometheus walkthrough. https://github.com/Cloud-PG/

prometheus-hpa. Accessed 17 Sep 2020

36. ReCaS data center. https://www.recas-bari.it/index.php/en/.

Accessed 5 Dec 2020

37. Kinsman, T., Wessel, M., Gerosa, M.A., Treude, C.: How Do

Software Developers Use GitHub Actions to Automate Their

Workflows? arXiv preprint (2021). arXiv:2103.12224

38. Imagebot. https://github.com/vkuznet/imagebot. Accessed 7 Dec

2020

39. Hey tool. https://github.com/rakyll/hey. Accessed 4 April 2020

40. To run or not to run a database on Kubernetes: what to consider.

https://bit.ly/37eB9k9. Accessed 27 April 2021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Muhammad Imran received a

Ph.D. Degree in Electronic

Engineering from Dublin City

University, Ireland, in 2017. He

is currently working in CMS

Offline Computing Group at

CERN, Geneva, Switzerland

since October 2019. In addition,

he holds a permanent position as

a Senior Scientific Officer in

National Centre for Physics,

Pakistan since July 2008. His

research interests include cloud

computing, cluster computing,

big data, data science, software

engineering, SDN, and optical networks.

Valentin Kuznetsov received a

Ph.D. Degree in Physics from

the Joint Institute of Nuclear

Research (JINR). Dubna, Russia

in 1999. He is currently

employed by Cornell Univer-

sity, Ithaca, NY, USA and

working in CMS Offline Com-

puting Group at CERN, Geneva,

Switzerland. His research inter-

ests include data discovery, data

management, security, Machine

Learning, Big Data, Analytics,

and various aspects of Data

Science.

Katarzyna Maria Dziedziniewicz-
Wojcik received a M.Sc. Degree

in Computer Science from

Warsaw University of Technol-

ogy, Poland, in 2008. She has

held a position in the Informa-

tion Technology Department at

CERN, Geneva, Switzerland

since 2008. She is currently

working in the Database Group.

Her research interests include

databases, big data, distributed

systems, and cloud computing.

Andreas Pfeiffer got his Ph.D. in
Physics from the University of

Heidelberg, Heidelberg, Ger-

many in 1988. He has been

employed by CERN, Geneva,

Switzerland since 1999, and is

currently working in the CMS

experiment on computing and

web-based collaborative ser-

vices. His research interests

cover web service architecture

and development, microser-

vices, data management, data

analysis, and security/privacy.

Panos Paparrigopoulos is a

Computing Engineer at CERN

who studied Informatics and

Telecommunications at the

University of Athens. He is a

Member of the CERN WLCG

Team and he is currently work-

ing on the CMS Web Services

Group, CRIC, the Computing

Resource Information Catalog,

and the Operational Intelligence

Initiative. His research interests

cover web services development

and architecture, machine

learning, and data science.

3098 Cluster Computing (2021) 24:3085–3099

123

https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/Cloud-PG/prometheus-hpa
https://github.com/Cloud-PG/prometheus-hpa
https://www.recas-bari.it/index.php/en/
http://arxiv.org/abs/2103.12224
https://github.com/vkuznet/imagebot
https://github.com/rakyll/hey
https://bit.ly/37eB9k9

Spyros Trigazis is a Computing

Engineer and a Member of the

CERN Cloud Infrastructure

Team which provides comput-

ing resources to the High

Energy Physics community. He

has been contributing to open-

source projects like Fedora,

Kubernetes, and OpenStack.

Tommaso Tedeschi received his

Master’s and Bachelor’s

Degrees in Physics from the

University of Perugia (Italy) in

2019 and 2017, respectively.

Currently, he is a Ph.D. Student

in Physics at the University of

Perugia and collaborates with

local CMS experiment comput-

ing and analysis groups. His

research interests include High

Energy Physics data analysis,

Machine Learning, Big Data

management, cloud, and dis-

tributed computing, and other

Data Science-related fields.

Diego Ciangottini (m) got his

Ph.D. in Physics (2015) in

Perugia. He is working as INFN

Computing Researcher at Peru-

gia to develop innovative

workflow and data management

solutions for large scale science

and to investigate the impact of

a distributed cache layer in a

future WLCG data lake. He is

also involved in the design of

automatic and on-demand

deployments involving comput-

ing and cache storage resources

for different scientific commu-

nities at INFN.

Authors and Affiliations

Muhammad Imran1,2 • Valentin Kuznetsov3 • Katarzyna Maria Dziedziniewicz-Wojcik2 • Andreas Pfeiffer2 •

Panos Paparrigopoulos2 • Spyridon Trigazis2 • Tommaso Tedeschi4,5 • Diego Ciangottini5

& Muhammad Imran

muhammad.imran@cern.ch

Valentin Kuznetsov

vkuznet@protonmail.com

Katarzyna Maria Dziedziniewicz-Wojcik

katarzyna.maria.dziedziniewicz@cern.ch

Andreas Pfeiffer

andreas.pfeiffer@cern.ch

Panos Paparrigopoulos

panos.paparrigopoulos@cern.ch

Spyridon Trigazis

spyridon.trigazis@cern.ch

Tommaso Tedeschi

tommaso.tedeschi@pg.infn.it

Diego Ciangottini

diego.ciangottini@pg.infn.it

1 National Centre for Physics, Islamabad, Pakistan

2 CERN, Geneva, Switzerland

3 Cornell University, New York, USA

4 Università degli Studi di Perugia, Perugia, Italy

5 INFN - Sezione di Perugia, Perugia, Italy

Cluster Computing (2021) 24:3085–3099 3099

123

http://orcid.org/0000-0002-2979-564X

	Migration of CMSWEB cluster at CERN to Kubernetes: a comprehensive study
	Abstract
	Introduction
	Architecture of CMSWEB
	CMSWEB services
	CMSWEB environments
	Specifications of servers in VM clusters

	Deployment of CMSWEB cluster to Kubernetes
	Namespaces and services
	Summary of resource usage
	Resource allocation of CMSWEB services
	Cluster monitoring

	Horizontal pod autoscaling via Prometheus
	Workflow details
	Benchmark tests

	CI/CD workflows
	Performance analysis
	Issues faced during migration
	Infrastructure issues
	Service issues

	Lessons learned

	Future work
	Conclusions
	Data availability
	References

