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Abstract
Cloud Infrastructure as a Service (IaaS) has been known as a suitable platform for the execution of workflow applications.

Quality of service (QoS) in such platforms is considered a challenging problem from both customers’ and service

providers’ perspectives to perform workflow schedules. This paper proposes Budget Deadline Delicate Cloud (BDDC) and

Budget Deadline Cloud (BDC) algorithms to consider both budget and deadline constraints for scheduling scientific

workflows on cloud IaaS platforms. Methods for distribution of budget and deadlines under task leveling are proposed.

Four metrics (success rate, time ratio, cost ratio, and utilization rate) are utilized to evaluate the proposed algorithms’

performance. Results of our proposed algorithms are compared with the BDHEFT, DBCS, and BDSD algorithms under

various scenarios. Simulation results demonstrate that BDDC outperforms other algorithms in achieving cheaper costs

while earning a higher success rate and utilization rate, and BDC accomplishes higher success rates and faster makespan.

The performance of the proposed methods is confirmed using a real cloud environment.

Keywords Scheduling � Workflow applications � Deadline � Budget � Quality of services

1 Introduction

Speed of data transferring and calculation has become

essential in human life; therefore, the need for fast and easy

processing has been emphasized even more. Distributed

systems, especially cloud computing, emerged as a suc-

cessful response of essence. Cloud computing mainly

supports three types of services: Platform as a service,

Infrastructure as a service (IaaS), and Software as a Service

[10]. Nowadays, cloud computing is better-known to pre-

sent on-demand models of computation and storage

services. Therefore, it causes an ongoing migration from

high-performance computing systems to the cloud.

One of the vital challenges of cloud computing is per-

formance under-utilization, which causes costly problems.

Cloud providers usually present hourly charging compu-

tation services that are also known as the pay-per-use

charging model. They offer IaaS charge-based services like

CPU, memory, storage, and bandwidth usage. Elasticity

and cost models of cloud computing cause economic

challenges from clients’ and cloud provider’s perspectives

[15].

Cloud provides a better capacity to automate workflows

and execute complex computation-intensive and data-in-

tensive tasks produced by scientific experiments. This

capability must follow an appropriate resource provision-

ing and schedule plan to avoid costly penalties and ineffi-

cient utilization; these are substantial cloud challenges.

Moreover, financial problems caused by disorganized

schedules arise, especially in dynamic cloud markets like

the Amazon spot market [8].

Different QoS issues for workflow schedules are the

objective of many research endeavors [26, 30]. Most of the

presented solutions consider a single objective like
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makespan [26] or cost [31]. Therefore, the need for satis-

fying various parameters of QoS in workflow scheduling

has become inevitable. Knowing that even a single objec-

tive scheduling problem is NP-complete [12, 13], consid-

ering multiple constraints such as budget and time over an

unlimited heterogeneous set of resources exposes even

more challenging situations. Thus, considering ‘Cost’ and

‘Time’ as two conflicting constraints simultaneously is

very challenging. The time complexity of the stated prob-

lem demands a long time to acquire any sensible schedule

such as decreasing makespan and provisioning of expen-

sive resource instances; therefore, designing efficient

heuristics is necessary [8].

A limited number of works such as DBCS, BDHEFT,

and BDSD have considered both budget and cost con-

straints simultaneously. DBCS and BDSD evaluate the

Planning success rate, which is the probability of a

schedule plan under their demanded cost and time.

BDHEFT evaluates the normalized cost and time of the

schedule plan with other algorithms. Hence, algorithms to

satisfy both budget and deadline constraints while

proposing a higher quality of services (faster time and

cheaper cost) with different preferences are still needed.

To this end, we present Budget Deadline Delicate Cloud

(BDDC) and Budget Deadline Cloud (BDC) algorithms for

IaaS cloud. They are constrained by both budget and

deadline and propose a higher QoS to decrease the

schedule plan’s time and cost to provide a higher utilization

rate. BDDC and BDC present novel deadline and budget

distribution methods and propose a trade-off factor using

these distribution methods to provide suitable schedule

plans to address the mentioned challenges.

BDDC aims to achieve a higher success rate while

acquiring an economical (cheaper) schedule plan, and BDC

aims to provide a higher success rate while providing a

faster time (makespan) for the schedule plan. To demon-

strate our contributions, we have evaluated the presented

algorithms with four evaluation metrics (success rate, time

ratio, cost ratio, and utilization rate) under different con-

straints from strict to loose with state-of-the-art algorithms

to schedule different scientific workflows.

Recently, the public cloud added a new service as a

function as a service (FaaS) for serverless computing. In

FaaS, the user uploads its tasks on the cloud and defines its

memory requirements. The analysis in [20] illustrates that

computation-intensive tasks are more suitable to execute in

FaaS than data-intensive tasks. Our proposed algorithms

are also applicable for workflow scheduling in the FaaS

with modifications in resource definition where resources

are defined as function configurations. Each function con-

figuration presents a memory size and requires a monetary

cost. In FaaS, each task is assigned to a function

configuration instead of cloud instances. Contributions of

this paper are as follows:

– we proposed two novel algorithms called BDDC and

BDC for workflow scheduling under budget-deadline

constrained to meet-up with the preference of QoS

(Time vs Cost);

– we performed a comprehensive evaluation of our

presented algorithms to demonstrate the time and

cost-efficacy, success, and utilization rate of schedule

plan under different circumstances; and

– we implemented our proposed algorithms on a real

system to showcase their efficiency for real

deployments.

We organized this article as follows. Section 3 presents the

related works. Section 4 describes the problem description.

Section 5 articulates our proposed algorithms and methods

of budget and deadline distribution. Section 6 articulates

the time complexity of the proposed algorithms. Section 7

illustrates the BDDC and BDC algorithms’ results and

effectiveness with comparable recently published works.

Finally, Sect. 8 summarizes the paper and highlights our

future plans.

2 Applications with budget or deadline
constraints

Many large-scale scientific applications in various subjects

such as climate and medical modeling, simulations in

business continuity, and disaster recovery are deadline-

constrained applications [17]. Deadline-sensitive applica-

tions are categorized into hard and soft deadline-con-

strained applications. In applications with hard deadline

constrained (e.g., air traffic control applications and rail-

way signaling systems), achieving results before the

demanded time is crucial. In soft deadline constrained

applications, missing a deadline is not extremely essential,

however, it causes undesirable impacts on the system’s

performance; typical examples are weather prediction

workflow and health tracker applications.

Budget is one of the main concerns for clients of pay-

per-use services in the cloud [18]. Scientific institutes and

digital content makers like video encoding industries wish

to execute their workflow applications within the desired

time and budget. Parameter sweeping applications (e.g.,

financial applications) also generally use cloud services to

find optimal answers. Even in scientific computation, some

projects can be considered a parameter sweeping applica-

tion, for example, when searching for Extra-Terrestrial

Intelligence to detect intelligent life outside Earth by ana-

lyzing the radio frequency signals coming from space [5].

To this end, some cloud providers such as Amazon Web
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Services (AWS) and Google Cloud have already presented

preliminary (i.e., not necessarily optimal) tools and tuto-

rials to manage user budgets in the provided services [22].

3 Related works

Scheduling problems are investigated for two different

types of tasks: (1) independent and (2) dependent workflow

tasks. Workflow tasks are represented by a directed acyclic

graph (DAG). A task can be executed after their prece-

dence tasks finished their execution and the task’s input

data become available.

The main difference between Cloud and Grid systems is

the pricing model in which resources are leased based on

time intervals on the cloud. Hence, the cloud scheduling

problem is even more complicated. Therefore, in addition

to task selection and allocation on the cloud environment’s

schedule plan, a resource provisioning phase is also nee-

ded. Many papers consider scheduling problems based on

the Grid system; meanwhile, a limited number of works

consider it with the cloud pricing model.

Scheduling problems are solved using three types of

algorithms: meta-heuristic, heuristic, and hybrid. In work-

flow scheduling, well-known meta-heuristics such as Par-

tial Swarm Optimization and Genetic Algorithm are used

frequently [12, 13]. However, the difficulty of adapting the

execution phase changes and higher time complexity to

provide an appropriate schedule plan make meta-heuristics

less effective in real environments. Thus, the use of

heuristic algorithms is more common [6].

Most of the workflow scheduling methods are investi-

gated by single objective scheduling algorithms

[4, 12, 29, 30, 33]. However, since cloud computing has

become popular, providing a better QoS among cloud

providers became a priority. Therefore, recent works con-

sider QoS as a multi-objective schedule problem. Objec-

tives such as cost [7], time, energy, and security [1] are

among the most considered QoS objectives. Among them,

cost and time for public clouds are deemed more important

for most industries and researches [32].

Some researchers considered budget-constrained work-

flows like [7, 18] and some considered deadline-con-

strained workflows [11]. In the deadline-constrained

algorithms, the objective is to reduce cost as much as

possible to meet the desired deadline. Thus, deadline dis-

tribution heuristics such as Deadline Bottom level (DBL)

[29] algorithm are proposed for achieving a faster time

under a given budget in budget-constrained workflows

[6, 8, 25, 27].

One of the primary works that address workflow

scheduling in distributed systems is the heterogeneous

earliest finish time (HEFT) algorithm presented by Xie

et al. [26]. The main idea of HEFT is partially used to

present new algorithms in [6, 18, 27, 31]. HEFT is a two-

phase algorithm. In the first phase, it prioritizes tasks to

determine critical paths based on computation and com-

munication time. In the second phase, tasks are selected

based on their rank. Each of them is allocated to the CPU

with the lowest execution time among all CPUs.

In budget-constrained algorithms, Ghafouri et al. [18]

proposed an algorithm for workflow scheduling to reduce

schedule time (makespan) as much as possible with the

demanded cost. They try to schedule critical paths first and

then schedule noncritical paths using the back-tracking

technique. Arabnejad et al. [7] presented a few budget

distribution strategies over workflow tasks and schedule

them under the given budget while reducing the makespan.

First, tasks are distributed over different levels using the

DBL algorithm. Then, they evaluate different budget dis-

tribution strategies like the number of tasks on each level,

the number of tasks through the graph’s exit task, and a

method called All-in. All-in considers the whole budget for

the first level, and after consuming the budget in each level

drops the rest of it to the following levels, which are not

currently scheduled. They have concluded that the All-in

technique had the fastest results among their presented

strategies. Thus, All-in is utilized for the budget distribu-

tion phase in their other work [9].

Chakravarthi et al. [14] proposed a budget-constrained

workflow scheduling algorithm for IaaS clouds. Their

algorithm was based on normalization methods to provide

a reasonable makespan under the user demanded budget.

They utilized scientific workflows to evaluate the perfor-

mance of their proposed algorithms.

In deadline-constrained algorithms, Zheng et al. [30]

proposed three novel heuristic algorithms to reduce

scheduling cost as they satisfy the deadline for distributed

systems. They were trying to reduce the cost of scheduling

in multicore resources by allocating tasks to the cores with

lower frequency while making sure that the task’s deadline

is not exceeded. Their algorithm builds a schedule plan

based on the HEFT [26] algorithm in the first phase.

Consequently, they changed the task’s core to lower fre-

quencies to save monetary cost until the makespan reaches

the edge of its deadline. Abrishami et al. [2] presented two

deadline-constrained scheduling algorithms. Their

scheduling model is based on the cloud IaaS model in

which instances of different resource types are provisioned

before task execution. Their algorithms find critical paths

recursively from bottom to top of the workflow, and then

schedule the path with the cheapest resource instance that

can meet the deadline.

Another deadline-constrained algorithm was presented

by Yuan et al. [29]. They named it DBL; it divides tasks

into some levels based on their distance to the exit task so
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that tasks of a level do not have precedent constraints.

Then, DBL distributes tasks on the levels based on their

time intervals. The DBL algorithm has a low complexity

solution to divide the tasks of a workflow into the different

levels in which tasks of a level have not precedence con-

straints within each other [29].

In [3] a workflow scheduling deadline-constrained

algorithm for big-data applications on the cloud is pre-

sented. Their method investigates resources to find an

execution host for workflow tasks with minimum monetary

cost while still satisfying a deadline. They utilized Mon-

tage and randomly generated workflows to evaluate the

performance of their work.

In budget-deadline constrained algorithms, Arabnejad

et al. [8] proposed a budget-deadline aware scheduling

(BDAS) heuristic for workflow scheduling under budget-

deadline constrained. First, they used DBL [29] algorithm

to level the tasks. Then, they set a sub-deadline for each

level considering a task’s number multiplied by the maxi-

mum value of the earliest completion time (ECT) among

all tasks of the same level. Finally, a trade-off factor sim-

ilar to [6] is utilized to balance time and cost. Their

deadline distribution method leads to setting an unbalanced

sub-deadline on the level where ECT of level tasks and the

number of tasks have diversity, especially on the neighbor

levels. For example, there could be a level that contains ten

tasks. One of them requires 15-minute execution and 9 of

them need less than 1-minute of execution time. Their

deadline distribution algorithm distributes the demanded

deadline based on a formula that comes from the maximum

execution time of the level’s tasks multiplied by the task

number. Consequently, it leads to inappropriate restriction

of the heuristic to meet its objectives.

BDHEFT algorithm is a cost and time efficient algo-

rithm which is proposed by Verma et al. [27]. Their

algorithm is an extension to the HEFT algorithm [26] that

considers both cost and time as two objectives in a pay-per-

use cloud environment. It calculates a spare budget and a

spare deadline for the workflow and a spare budget and

deadline for each task in each resource provisioning step.

Then, a trade-off value (with the task’s earliest finish time

and earliest execution cost) is calculated to find the best

possible resource. They evaluated BDHEFT using scien-

tific workflows by two performance metrics: normalized

schedule cost and normalized schedule length. Former

indicates the workflow cost proportion to the cheapest cost,

and the latter denotes the proportion of makespan to the

fastest possible execution time. The BDHEFT algorithm is

extended to adapt the cloud pricing model by an algorithm

presented for the grid environment [31]. BDHEFT, how-

ever, does not consider budget and deadline constraints.

Therefore, users can not define constraints and customize

the importance of budget or deadline.

Arabnejad et al. [6] presented DBCS, a budget-deadline

constrained algorithm for heterogeneous systems. DBCS

used the HEFT approach in the task selection phase. Then,

in the resource selection, they proposed a trade-off factor to

find the task’s proper resource. For each task, the candidate

resources are selected from the resources that cost less than

the cheapest resource and spare budget aggregation. The

spare budget defines the difference between the remaining

budget and the cheapest possible cost of unscheduled tasks.

They used task sub-deadline in the trade-off factor, which

is calculated based on the tasks’ aggregation time that

constitutes a critical path from the task to the exit node.

The DBCS algorithm does not consider the pay-per-use

cloud cost model.

A low-time complexity algorithm named BDSD is

proposed by Sun et al. [25]. They calculated a sub-deadline

for each task based on the critical path from the task to the

exit task. Then, they defined a factor, which is the pro-

portion of the remaining budget to the number of

unscheduled tasks, to limit the number of resources in the

resource allocation phase. In the resource allocation step,

resources are limited to those whose monetary cost is less

than the proportion of the remaining budget to the number

of unscheduled tasks. Therefore, when there is a high

disparity in a workflow tasks’ runtime, it could lead to an

unbalanced schedule plan (exceeding deadlines or budget).

Meanwhile, scientific workflows like Cybershake, Ligo,

and Epigenomic have different tasks with very heavy

runtime variance.

In this paper, a cloud cost model is considered suit-

able for a public cloud with dynamic instance provisioning

to schedule workflow applications. They can be utilized for

private, hybrid, and public clouds with a little customiza-

tion. Additionally, Two novel algorithms are proposed with

user preference in monetary cost at BDDC algorithm and

time preference in BDC algorithm for simultaneous budget

and deadline constraints.

For the evaluation of our algorithms, we will compare

them with the state-of-the-art algorithms, namely BDHEFT

[27], DBCS [6], and BDSD [25]. Four evaluation metrics

are selected to demonstrate the time and cost-efficacy of all

algorithms.

4 Problem description

4.1 Application model

Distributed computations are represented by a DAG

workflow model. A DAG defines workflow as G ¼ ðT ;EÞ
where T ¼ ft0; t1; . . .; tng is set of task collection and E

represent tasks’ relationship and order. E ¼ feði;jÞjðti; tj 2
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TÞg indicates a set of directed acyclic edges indicating the

precedence order and data transfer of tasks. eði;jÞ indicates

that task ti is a parent of task tj, that is, the output data of ti
will be used as input data to tj. Tasks could have multiple

parents or precedent multiple tasks. ti can not be executed

unless all of its parent tasks are finished, and their data are

available.

4.2 System model

IaaS service model of the cloud is adopted in this article.

There are specific resource types with different memory,

CPU, storage, and network bandwidth; all can be leased as

an instance for demanded time intervals. Time interval (TI)

is mostly based on one hour. This paper uses the resource

model of Amazon Elastic Compute Cloud (Amazon EC2).

It offers services where instances are provisioned with a

specific type of resource with a pay-per-use price model,

which is based on an hourly time interval. Let R ¼
fr1; r2; . . .; rmg be the different resource types offered by

cloud providers. Each resource has a different price for a

time interval. An instance is provisioned with a resource

type, which is denoted by insi;k where i indicates the

instance index and k indicates the resource type index. All

instances and storage spaces are assumed to be on an

identical region and bandwidth. Hence, the price of data

transferring is zero.

4.3 Problem definition

Because the task execution time is already known, we used

the task runtime estimation technique from [16, 21, 24].

Efficient scheduling algorithms require high precision in

predicting the execution time of tasks. Two most recent

papers are proposed to alleviate this problem [21, 24]. In

[24], Suh et al. proposed a clustering-based scheme in

runtime estimation for scientific simulations. In [21], Kim

et al. proposed a runtime estimation scheme for high-per-

formance computing using machine learning with 73%

accuracy in runtime estimation for real simulation data.

In this paper, we used real scientific workflow tasks,

which are common for evaluating workflow scheduling

algorithms [6, 8, 18, 25, 27, 30]. We accumulated scientific

workflows that are generated by tracing real scientific

applications data [19]. Workflow execution finish time is

called makespan, which is defined by the exit task finish

time (FT) in Eq. (1).

makespan ¼ FTðtexitÞ ð1Þ

Transfer time from ti to tj defined in Eq. (2). Transfer time

between ti and tj is negligible when they are on an identical

instance. BW indicates the network bandwidth. datati;tj
�
�

�
� is

the amount of data that need to be transferred between ti
and tj, and insj denotes the instance j.

TFi;j ¼
datati;tj
�
�

�
�

BW
; insi 6¼ insj

0; insi ¼ insj:

8

<

:
ð2Þ

Equation (3) defines the completion time of a task, where

wmin
ti

indicates the fastest time for computation of the task

among the resources. predðtiÞ determines the sets of

immediate predecessors of the task ti.

cpTimeðtiÞ ¼ wmin
ti

þ max
tp2predðtiÞ

TFp;i

� �

ð3Þ

The Earliest Start Time (EST) of a task is calculated based

on the fastest resource type, which is represented in Eq. (4).

ESTti ¼
max

tp2predðtiÞ
ESTtp þ cpTimeðtpÞ

� �

; otherwise

0; ti ¼ tentry:

(

ð4Þ

If the time interval is one hour, even using 1 min of the

instance will cost the whole hour. Equation (5) defines the

billing cycle (BC) of an instance, which is the end of the

instance time interval. TI indicates the time interval (i.e.,

one hour).

BCinsj ¼
FTðinsjÞ

TI

� �

ð5Þ

FTðinsjÞ indicates the finish time of insj. TC
insj
ti denotes the

Task Cost (TC) for executing ti on insj, which is defined in

Eq. (6) and FT
insj
ti indicates ti’s finish time on instance insj.

priceinsj denotes the price of insj for a time interval.

TC
insj
ti ¼

FT
insj
ti

TI

& ’

� priceinsj ; otherwise

0;
FT

insj
ti

TI

& ’

�BCinsj :

8

>>>>><

>>>>>:

ð6Þ

Let assume DD and DB as the user demanded deadline and

budget, respectively, for a workflow application. The pur-

pose is to discover a schedule plan that the finish time of its

exit task is less than DD and the monitory cost of the

schedule plan is less than DB for a given workflow. The

main scheduling problem is formulated in Eq. (7). Equa-

tion 7b ensures that every task ti is scheduled on an

instance. Equation 7c indicates that the finish time of the

exit task (makespan) must be less or equal to a demanded

deadline. Equation 7d ensures that executing tasks’ total

monetary cost is less than the demanded budget.
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hji ¼
1; tischeduled on insj
0; otherwise

�

ðProblemÞhji 2 f0; 1g ð7aÞ
Xn

i¼1

hji ¼ 1; j ¼ 1. . .m ð7bÞ

FTðtexitÞ\ ¼ DD ð7cÞ
Xn

i¼1

Xm

j¼1

hji:TC
insj
ti \ ¼ DC ð7dÞ

5 Proposed algorithms

In this section, two budget-deadline constrained algo-

rithms, namely BDDC and BDC, are proposed aiming to

find a solution for the problem described in the previous

section. BDDC is a heuristic algorithm that distributes the

budget and deadlines for each level considering the entire

task’s completion time to acquire economic costs for each

level. Meanwhile, BDC distributes deadlines to each level,

and the budget is considered as the remaining cost at each

scheduling cycle. Therefore, BDC does not utilize the

BudgetDistribution algorithm and uses remainingBudget as

the sub-budget for each task. However, the rest of the steps

of BDC are similar to those of the BDDC algorithm.

5.1 BDDC algorithm

The presented BDDC algorithm contains five main stages:

(1) the workflow task leveling, (2) the DeadlineDistribution

algorithm, (3) the BudgetDistribution algorithm, (4) the

task selection, and (5) instance provisioning.

5.2 Task leveling

In this stage, the tasks are divided into different levels

based on the DBL algorithm. Tasks of a level must not

have precedent constraints within each other.

In this paper, we use the DBL task leveling method

whereby the Bottom Depth (BD) of each task determines

its level-id. Henceforth, we add two dummy tasks as an

entry task and an exit task to each DAG; execution time

and cost for both tasks are zero. The BD of a task is

determined by the maximum number of tasks from it to the

exit task as calculated by Eq. (8).

BDti ¼
max

ts2succðtiÞ
BDts þ 1f g; otherwise

0; ti ¼ texit:

(

ð8Þ

where succðtiÞ determines the sets of immediate successors

of the task ti. Figure 1 depicts a workflow DAG and a set of

tasks with their BD levels (leveli).

5.3 Distribution of deadline

After dividing the tasks into different levels, a novel dis-

tribution of deadline method is applied. First, we calculate

a rweight in Eq. (9) that is the accumulation of total tasks

estimated completion time.

rweight ¼
Xn

i¼1

cpTimeðtiÞ ð9Þ

Afterward, the level’s weight ðLWkÞ is calculated for each

level with the unscheduled tasks of that level; that is

defined in Eq. (10). levelk indicates the set of tasks that are

divided into the levelk; UnSch indicates the set of tasks that

have not been scheduled yet.

Fig. 1 DAG of workflow with their bottom depth (level id)
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LWk ¼
XjlevelTasksj

ti2levelTasks & UnSche

cpTimeðtiÞ ð10Þ

Then sub-deadline (SDL) is calculated for each level and is

defined in Eq. (11).

SDLk ¼ SDLk�1 þ LWk �
DD

rweight

� 	

ð11Þ

In this way, every task completion time is a contributor to

calculate SDL of its level. It plays a notable role in

acquiring a balanced time-cost heuristic schedule in the

instance provisioning stage.

5.4 Distribution of budget

The BDDC algorithm distributes budget on each level

based on Eq. (12), where SBLk represents the sub-budget of

levelk. remainingBudget is the difference between the

current Demanded Budget (DB) and the consumed budget.

Algorithm 1 illustrates the distribution of demanded budget

over the workflow tasks.

SBLk ¼ SBLk�1 þ LWk �
remainingBudget

rweight

� 	

ð12Þ

Algorithm 1: BudgetDistribution
1 Calculate σweight from Eq. (9);
2 σBudget ← remainingBudget

σweight
;

3 foreach levelk : levelsSet do
4 LWk ← 0 ;
5 foreach Tasks ∈ (levelk and UnSch) do
6 Calculate LWk from EQ.(10)
7 end
8 SBLk ← LWk ∗ σBudget;
9 end

5.5 Task distribution

In this stage, tasks are selected to send to the instance

provisioning algorithm one-by-one, starting from the entry

task’s children. We considered EST of ready tasks as a

priority. Ready tasks are the tasks that all of their parent

tasks are currently scheduled. Algorithm 2 illustrates the

task distribution phase where each task is sent to the

instance provisioning algorithm to be scheduled. In line 1,

children of entry Task (a dummy task) are added to Q,

which indicates the list of ready tasks. Then, the tasks of

Q are sorted by their EST in the ascending order to be sent

for the instance provisioning algorithm.

5.6 Instance provisioning

In this step, instances are provisioned from the resource

types, and tasks are allocated to them. Two expressions are

presented to establish a trade-off value between time and

cost. Time quality (TQ) is defined in Eq. (13) to determine

a trade-off value for the execution time of the task on an

instance. Cost Quality (CQ) defined in Eq. (14) represents a

trade-off value for the cost of running the task on an

instance. Both TQ and CQ return a negative value when the

time exceeds the sub-deadline and cost exceeds a task’s

sub-budget. SDLk denotes the sub-deadline and SBLk
denotes the sub-budget of the level whereby ti belongs to it.

TQti;insj ¼
SDLk � FT

insj
ti � FTmin

ti

SDLk
; ti 2 levelk ð13Þ

The min superscript of FT denotes the minimum finish time

of a task among all instances. In TaskCost, it represents the

minimum cost for executing a task among all instances.

CQti;insj ¼
SBLk � TC

insj
ti � TCmin

ti
Þ

SBLk
; ti 2 levelk ð14Þ

Afterward, Qualityti;insj is defined by Eq. (15); it is calcu-

lated using CQ and TQ. x is a weight parameter to control

the impact of the time to cost of the schedule plan. Algo-

rithm 3 illustrates the instance provisioning stage. First, a

task’s Quality is examined among the already provisioned

instances, and then it seeks the resource types (line: 2–15).

Suppose the maximum Quality comes from one of the

already existed instances. In that case, the task will be

allocated to that instance. Otherwise, if it comes from one

of the other resource types, a new instance of that resource

type will be provisioned. The task is then scheduled to the

newly provisioned instance. If the max value of Quality is

less than 0, it means that the appropriate instance is not

found with the calculated sub-deadline or sub-budget.

Hence, it recalculated sub-deadline and sub-budget for just

one more time with the unscheduled tasks using the

methods presented in Sects. 5.3 and 5.4, respectively.

Afterward, it goes to Line 2 to continue the instance

Algorithm 2: TaskDistribution
1 Q ← G.entryTask.Childeren;
2 while Q is not empty do
3 task ← minEST (Q) ;
4 InstanceProvisioning(task);
5 foreach childi : task.Childeren do
6 if all parents of childi are scheduled then
7 Q ← Q ∪ {childi}
8 end
9 end

10 Q ← Q − {task}
11 end
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provisioning algorithm (line: 16–20). For the BDC algo-

rithm, only the DeadlineDistribution algorithm is called. If

the max value of Quality belongs to a resource type; first,

an instance of the resource type will be provisioned (line:

21–24). Second, the task will be allocated to the instance

with the maximum Quality value.

Qualityti;insj ¼ x � TQti;insj þ ð1� xÞ � CQti;insj ð15Þ

Algorithm 4 illustrates the BDDC algorithm. At first, the

user demanded deadline and budget are inserted, then the

task leveling algorithm runs, and levels are created.

Afterward, the Distributing deadline and budget algorithms

are executed. Consequently, task distribution sends each

task based on its priority to the instance provisioning

algorithm. Conclusively, the algorithm returns the schedule

plan. Regarding Algorithm 4, the BDC algorithm does not

have the BudgetDistribution algorithm; and the sub-dead-

line (SBL) of each task is derived from the remaining

budget.

Algorithm 3: InstanceProvisioning(task)
1 max ← −∞; mres ← null; repeat ← 0 ;
2 foreach insj : instanceSet do
3 calculate Qualitytask,insj

from Eq.(15) ;
4 if max < Qualitytask,insj

then
5 max ← Qualitytask,insj

;
6 mres ← insj ;
7 end
8 end
9 foreach resk : resourceSet do

10 calculate Qualitytask,resk
;

11 if max < Qualitytask,resk
then

12 max ← Qualitytask,resk
;

13 mres ← resk;
14 end
15 end
16 if max < 0 and repeat < 1 then
17 DeadlineDistribution() ;
18 BudgetDistribution() ;
19 repeat ← 1 ;
20 go to line 2 ;
21 end
22 if mres ∈ resourcesSet then
23 create new instance from mres ;
24 instanceSet ← instanceSet ∪ {mres} ;
25 end
26 allocate task to the instance that mres refers to ;
27 set task as a scheduled task;

Algorithm 4: BDDC algorithm
1 DD and DC are initiated by the user ;
2 G ← Workflow DAG ;
3 levels← Task leveling(G) ;
4 DeadlineDistribution(levels) ;
5 BudgetDistribution(levels) ;
6 TaskDistribution(G) ;
7 return the schedule plan;

6 Time complexity analysis

To compute the time complexity of our algorithms, we

consider a DAG G ¼ ðT ;EÞ where T indicates the tasks

and E indicates the dependency among them. If we con-

sider tasks number as n, then the maximum dependency of

tasks is calculated by
ðnðn�1ÞÞ

2
. Processing tasks EST, FT,

and TF require a time complexity of Oðn2Þ which are

essential for decision making for planning tasks [6, 25, 27].

The workflow partitioning stage needs a time complexity

of OðT þ EÞ, equal to Oðn2Þ in the worst-case scenario.

Afterward, the DeadlineDistribution algorithm encom-

passes (1) calculating rweight, (2) leveling weights, and

(3) setting sub-deadlines for each level; each stage has O(n)

time complexity. Ultimately, the DeadlineDistribution

algorithm needs time complexity equal to O(3n), likewise

the BudgetDistribution algorithm. Additionally, the Dead-

lineDistribution and BudgetDistribution algorithms can be

calculated at once; therefore, the time complexity of them

is O(n). The instance provisioning stage needs time com-

plexity equal to O(n.m) where m indicates the instances

number (at most n). Moreover, if the resource provisioning

stages need a redistribution of deadlines and budget, the

time complexity increases to Oð2ðn:mÞ þ nÞ. To summa-

rize, the overall time complexity of both presented algo-

rithms is Oðn2Þ þ OðnÞ þ Oð2ðn:mÞ þ nÞ; as a result, both

of the algorithms have time complexity with the order of

Oðn2Þ; this is known as acceptable for scheduling workflow

tasks on heterogeneous resources [6, 25, 27]. Moreover, in

our experiments, the redistribution of budget and deadline

in the instance provisioning stage only happened for 1% of

n tasks.

7 Evaluation

This section presents the performance of our BDDC and

BDC algorithms against other algorithms, namely BDSD

[25], DBCS [27], and BDHEFT [6]. The experiments

contain two sections: (1) empirical analysis and (2) simu-

lation. Due to the accessibility of limited resources, a small
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number of workflow tasks are evaluated in a real cloud

environment. However, simulation experiments are inclu-

ded to generate a comprehensive analysis of larger work-

flows. We have simulated a single data center of Amazon

EC2 with six resource types detailed in Table 1. The

resource-type configuration is based on the recent on-de-

mand services provided by US-East (Ohio) Amazon EC2.

AWS provides a traditional Import/Export mechanism

from its high-speed internal network to facilitate low-speed

transferring data to become online for data-intensive

workloads. Thus, it is a feasible service to execute a large

volume of data-like scientific workflows [23]. AWS is used

in profiling scientific workflows in [19]. It is worth noting

that Amazon EC2 services are used as a case study, and the

provided algorithms are not dedicated to any particular

cloud provider service.

Scientific workflows are real applications that are

commonly used in the compared methods [6, 25, 27] and

other state-of-the-art workflow scheduling algorithms

[12, 13]. They are characterized and profiled in [19] as

synthetic workflows to improve the evaluation of

scheduling algorithms [27]. We have chosen five different

workflows commonly used in various researches that

contain Input/output (I/O) intensive and computation-in-

tensive applications with different shapes of the graph.

The Montage workflow is an engine to create mosaics

for astronomical images for NASA space; it is an I/O-

intensive workflow. A Ligo workflow is used to detect

gravitational waves. It is known to be a computation-in-

tensive workflow. A Sipht workflow is from Harward

university’s bioinformatics project for automation of

search in untranslated sRNA in the database of National

Center. It is a computation-intensive workflow. Epige-

nomics is a computation-intensive workflow to automate

different operations in genome sequence processing. The

Cybershake is a data-intensive workflow to analyze earth-

quake risks [19].

The network bandwidth (BW) is fixed to 20 MBps, like

[6, 25, 27]. Our presented algorithms are evaluated with

common real-world scientific DAGs, such as Montage,

Epigenomics, Sipht, Cybershake, and Ligo (Inspiral) under

various constraints. Various constraints of deadline and

budget (from strict to loose) are selected for an extensive

evaluation of our work. We have considered an hourly time

interval according to the Amazon EC2 time interval. To

calculate various constraints in our experiment, we defined

two variables as minTimecp in Eq. (16) and maxTimecp in

Eq. (17). cp indicates the list of tasks in the critical path of

the workflow.

minTimecp ¼
X

ti2cp
cpTimeðtiÞð Þ ð16Þ

maxTimecp ¼wmax
ti

þ max
tp2predðtiÞ

TFp;i

� �

ð17Þ

Demanded Budget constraint (DB) is defined by Eq. (18) as

it is used in [6, 25], and the Demanded Deadline constraint

(DD) is defined by Eq. (19) as it is used in [6]. The range of

fb and fd is selected by [0, 1] as in [6, 25]. maxCost and

minCost are the maximum and minimum likely costs for

running the workflow DAG; they are acquired by summing

the highest and lowest execution cost of each task among

all the instances, respectively. The budget constraints range

and deadline constraint range in the experimental results

are calculated by Eq. (18) and Eq. (19). In Figs. 5, 6, 7, 8

and 9, when a deadline is fixed (i.e., 0.1), the budget

constraints are variable (i.e., [0.1, 0.6]), and when a budget

is fixed, deadline constraints are variable.

DB ¼ minCost þ fb � ðmaxCost � minCostÞ ð18Þ

DD ¼ minTimecp þ fd � ðmaxTimecp � minTimecpÞ ð19Þ

The first row of Table 2 displays the final central system

that is used in our experiments (Sect. 7.2). We have used

five common real scientific workflows under various types

of constraints to evaluate algorithms in which a sample

structure of them is depicted in Fig. 4 [19]. We use four

performance evaluation metrics (success rate, time ratio,

cost ratio, and utilization rate) to evaluate our algorithms’

performance.

The SuccessRate is the probability of acquiring a

schedule plan satisfying the demanded budget and deadline

constraints. Several papers use normalized cost and nor-

malized time to demonstrate time and cost efficiency [27].

However, we have utilized time ratio and cost ratio to

evaluate the efficacy of time and cost of the algorithms;

Table 1 Resource types of Amazon EC2 cloud

Resource type Memory (GB) ECU Cost/hour

m5.large 8 10 $0.096

m5.xlarge 16 16 $0.192

m5.2xlarge 32 37 $0.384

m5.4xlarge 70 64 $0.768

m5.8xlarge 128 128 $1.536

m5.12xlarge 192 168 $2.304

Table 2 Configuration of desktop systems used in the empirical

experiments

Cpu type Freq Cores Memory (GB) OS Cost

Intel Core i7-3630 2.4 4 8 Win10 1

Intel Core i3-2040 2.0 2 4 Win10 0.5
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this is based on the suggestion provided in [9]. The Suc-

cessRate, which is a common metric to evaluate the per-

formance of budget-constrained or deadline-constrained

algorithms, is defined in Eq. (20) [6, 9, 25].

SuccessRate ¼ jSuccessful Experimentsj � 100
jExperimentsj ð20Þ

The cost ratio is defined in Eq. (21); it is the proportion of

acquired ScheduleCost and demanded budget (DB). Time

ratio [9] is acquired by the proportion of makespan to the

demanded deadline (DD) and is defined in Eq. (22).

CostRatio ¼ ScheduleCost

DB
ð21Þ

TimeRatio ¼makespan

DD
ð22Þ

Results for different deadline constraints acquired with

constant fb and variable fd with the range of [0.1, 0.6] and

the increment of 0.1, respectively. Results for various

budget constraints acquired with constant fd. Hence,

experimental results for time ratio, cost ratio, success rate,

and mean Utilization Rate (UR) for each workflow are

acquired with 36 runs with different constraints.

Last but not least, the mean UR is a metric to demon-

strate the performance utilization of the resources and their

idle time. UR is significant to provide an economic

schedule plan. EXinsj defined in Eq. (23) is the sum of

execution time (runtime) of all tasks that are executed in

insj. The UR of an instance is defined in Eq. (24).

EXinsj ¼
X

ti2insj:tasks
w
insj
ti ð23Þ

URinsj ¼
EXinsj

FTðinsjÞ � STðinsjÞ
ð24Þ

7.1 Empirical performance analysis

Cloud providers such as Amazon EC2 and Microsoft Azure

do not allow end-users to manipulate scheduling policies.

Therefore, researchers [7, 9, 25, 28] use simulation tools

such as Cloudsim to evaluation their scheduling algo-

rithms. Furthermore, most platforms in the market do not

have user-based scheduling policies. Aneka is a PaaS

platform that, unlike others is developed to present various

programming models and infrastructures for cloud com-

puting. Therefore, we used Aneka to confirm the results of

our scheduling algorithm for the real cloud environment.

7.1.1 Aneka platform

In this paper, Aneka platform version 5.0 [5] and Microsoft

Visual Studio 2019 are utilized to configure six desktop

systems. The configuration of each system is displayed in

Table 2. Figure 2 illustrates the layered architecture of the

experimental configuration. The lowest layer indicates the

infrastructure which contains desktop computers in our

experiments. The middle layer is where the Aneka platform

runs. The top layer displays our application which is an

interface to handle the execution of a given workflow

application. We have used ’.Net framework 4.5’ to interact

with Aneka libraries to send and monitor the execution of

workflow tasks in the containers of the configured Aneka

platform. Aneka supports task models to run specific

commands besides automatically transferring I/O files of

the tasks. However, Aneka does not support the workflow

task model. Therefore, a workflow coordinator is devel-

oped to parse an XML DAG file and submit ready tasks to

the Aneka task scheduler. Budget and deadlines are defined

as QoS parameters for Aneka. Our workflow coordinator,

after parsing XML, creates a list of tasks. Afterward, Task

leveling, the DeadlineDistribution, and BudgetDistribution

algorithms are invoked. Finally, the task distribution

algorithm sends tasks for the task scheduler algorithm to

the Aneka PaaS. These steps are developed in our work-

flow coordinator and are shown in Fig. 2. The proposed

instance provisioning algorithm is developed as a custom

scheduler algorithm in the Aneka Platform that runs on the

master container. Aneka has two types of containers:

Master and Worker containers. The Master container is

responsible for scheduling tasks and monitoring their

Fig. 2 Layered architecture of empirical experiment setup

Fig. 3 Average success rates in empirical experiments
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execution. Worker containers receive tasks from the master

container and run them.

7.1.2 Empirical execution results

Figure 3 displays the results of empirical experiments with

described scenarios in Sect. 7. Due to the long execution

and large file transferring of scientific workflows and our

limited resources; we have used a small number of tasks,

that is, Montage with 100 tasks, Sipht with 30 tasks, Ligo

with 30 tasks, Cybershake with 30 tasks, and Epigenomics

with 24 tasks. Figure 4 displays DAGs of these five sci-

entific workflows.

7.2 Experimental results

Experimental results for time ratio and cost ratio are depicted

by box and whisker plot. Five summaries of statistics are

legible: min, max, median, and first and third quartile. The

values less or equal to 1.0 (\ ¼ 1) for time and cost ratio

imply that the constrained value of time or cost is satisfied.

Lower values indicate higher QoS of the acquired cost or

time. In our experiments, each workflow is tested with 100

task numbers. We observed that experiments by different

task numbers (i.e., 50, 100, and 1000) of scientificworkflows

have very similar comparison results [8].

7.2.1 Montage Workflow

Figure 5 depicts the experimental results of the Montage

workflow. Figure 5a shows that BDDC acquires the lowest

cost ratio among all algorithms by satisfying the deadline

constraint.

Figure 5b and d illustrate that BDC and BDDC have

equal success rates and outperformed other algorithms in

the various deadline and budget constraints.

Due to the page limitation, we have not depicted cost

ratios under budget constraints and time ratios under

deadline constraints. However, they can be almost implied

from the combination of success rate, time ratio, and cost

ratio. As can be seen, DBCS acquires the lowest cost ratio

in the strict deadlines; it however could not earn the same

performance in the loose deadline constraints. DBCS

algorithm provides cheaper cost with the expensive of

slower times. Therefore, in Fig. 5c when the budget con-

straint is consistent with 0.1 and the deadline range is

variant between 0.1 to 0.6, DBCS provides almost the

satisfying time ratio. Its success rate is zero for the men-

tioned constraints because it exceeds its cost ratio in the

tight budget constraint of 0.1 (which is implied from

Fig. 5c and d). In other words, DBCS loses the balance of

time and cost; therefore, it acquires a valid time ratio when

the budget is consistent to 0.1 in Fig. 5c but not valid cost

ratios as we can imply from Fig. 5d; this led to zero success

rate.

To understand the experiment results in Fig. 5, we must

first analyze the Montage workflow characteristic. As

shown in Fig. 4, each row has one type of task. Addi-

tionally, the second row of the Montage owns the maxi-

mum number of tasks. Montage workflow is an I/O-

intensive workflow [19]. Maximum data communication

and computation of the workflow are in the first and second

row tasks. For example, in a Montage workflow with 100

Fig. 4 Scientific workflows
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tasks, 16 tasks belong to the first row, and 62 tasks belong

to the second row, consisting of the workflow’s biggest

computation and communication time. Data communica-

tion is high between the tasks of the first and the second

rows. A successful scheduling strategy would be provi-

sioning instances with the maximum number of first-row

tasks (reduce computation time using parallelism) and

schedule the second-row tasks to the instances that contain

their precedent tasks (reduce communication time). The

method presented in Sect. 5.5 would help to reach the

mentioned strategy. Meanwhile, Critical path based algo-

rithms need more instances considering the many tasks in

the second row of the Montage workflow.

7.2.2 Epigenomics workflow

Figure 6 contains the results of the Epigenomics workflow.

Figure 6a, b depict the achieved experimental results for

cost ratio and success rate under different deadlines. Fig-

ure 6a and b show that BDDC achieves the lowest cost

under strict deadlines by earning the highest success rate

among the other algorithms. BDC and BDHEFT achieve

the same success rate in various deadline constraints.

Meanwhile, Fig. 6a and c exhibit that BDC achieves a

lower cost ratio and time ratio than the BDHEFT algo-

rithm. Figure 6c shows the time ratio of algorithms over

different budget constraints. It exhibits that BDSD

accomplishes a higher success rate and lower time ratio

under very strict budget constraints (like 0.1 and 0.2);

however, Fig. 6d proves that it exceeds its demanded

budget constraint in the strict budget constraints. Indeed,

BDDC under the 0.3 budget constraint, gains the lowest

time ratio and highest success rate. An Epigenomics

workflow, which is a computation-intensive workflow [19],

is depicted in Fig. 4. The fifth row of the Epigenomics

workflow consists of MAP type tasks in which the work-

flow’s main runtime belongs to this type of task [19]. BDC

is not too conservative for budget; therefore, in the first

four rows of the Epigenomics workflow tasks, it consumes

enough budget that it can not continue without exceeding

its demanded budget for the strict budget constraints. Only

the resources with less monetary cost to the proportion of

the remaining budget to the number of remaining tasks

could be candidates for executing the task in the BDSD

algorithm. This method would be effective when runtimes

of the workflow tasks are too variant; therefore, it is not too

efficient in the Epigenomics workflow. BDDC is a con-

servative algorithm for both budget and deadline. There-

fore, it saves enough money to execute the first four rows

of the workflow tasks that the rest of the budget could

accommodate the provisioning costs for the fifth row.

Hence, it outperforms other algorithms in the Epigenomics

workflow. DBCS algorithm tends to be a conservative

budget algorithm; therefore, it saves budget in the first four

rows of the Epigenomics algorithm (the part with the

lowest runtime). However, it can not found a balance

between time ratio and cost ratio, but it has a better per-

formance than the rest of the algorithms.

7.2.3 Sipht workflow

The results of the Sipht workflow are depicted in Fig. 7.

Cost ratios and success rates under various deadline con-

straints are displayed in Fig. 7a and b. Figure 7a shows that

the BDDC algorithm outperforms other algorithms by

achieving a lower cost ratio in different deadline con-

straints. Figure 7b illustrates that BDDC, BDC, and

BDHEFT success rates in strict deadlines (i.e., 0.1 and 0.2)

are almost equivalent. Nevertheless, Fig. 7d shows that

BDDC and BDSD in the strict budget constraint 0.1 have

the highest success rate, and BDC and BDHEFT have the

highest success rate for deadline constraint 0.2. Figure 7c

shows that BDHEFT provides the fastest schedule plan.

BDDC in the most strict budget constraint (0.1) accom-

panied by the BDSD algorithm, outperform other algo-

rithms. Though, BDDC performance surpasses the BDSD

algorithm in the other constraints for the Sipht workflow.

7.2.4 Cybershake workflow

Figure 8 displays the experimental results of the utilizing

success rate in the various deadline and budget constraints.

Figure 8a exhibits that BDDC and BDC outperform other

algorithms in strict deadlines. Besides, BDDC in the most

strict deadline (0.1) outperforms the BDC algorithm;

however, for the strict deadline of 0.2, it is the other way

around. Figure 8a and b show that BDHEFT earns a lower

success rate in the various deadline and budget constraints.

BDHEFT cost exceeds its demanded budget, meaning that

it sacrifices cost for achieving a faster schedule plan.

7.2.5 Ligo workflow

Figure 9 depicts the Ligo workflow’s experimental results

through the success rate in the various deadline and budget

constraints. Figure 9a proves that the BDC algorithm out-

performs all algorithms in strict deadlines. Besides, only

BDC and BDSD can acquire a 100% success rate in the

loose deadline constraint of 0.6. Figure 9b exhibits that

BDC in strict budget constraints outperforms other algo-

rithms by acquiring a higher success rate. Additionally,

BDDC is the second algorithm to obtain better overall

performance for earning higher success rates.
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7.2.6 Utilization rate

One of the key parameters for scheduling is the utilization

rate of resources. A higher utilization rate usually implies

better performance and thus typically leads to lower costs

in the long run. Figure 10 shows the mean utilization rate

of algorithms for different scientific workflows. It illus-

trates that the BDDC algorithm provides a more utilized

schedule plan, as compared with other algorithms, for most

workflows; and thus it deems to less economic costs. Fig-

ure 10 shows that BDC earns a lower mean utilization rate

in some workflows, and the experimental results prove that

BDC prefers to earn a faster schedule time than the eco-

nomic cost. However, BDC was able to provide upstanding

success rates. BDDC outperforms other algorithms in the

utilization rate in Epigenomics, Sipht, and Ligo workflows.

Moreover, DBCS is the second algorithm that achieves a

higher utilization rate for Sipht and Cybershake workflows.

7.3 Analysis of x (weight) impact on the success
rate

Based on the user priority for deadline and budget, the

value of x is utilized in Eq. (15). When x is close to 1, it

indicates that the deadline is more important than the

budget. Figure 11 demonstrates the success rates of meet-

ing the user constraints with different values initiated for x
by Eq. (15). The results indicate that the increasing impact

of cost to time leads to higher success.

8 Conclusion

In this paper, we proposed two algorithms addressing the

issues of budget-deadline constrained workflow scheduling

for cloud IaaS. The presented algorithms are evaluated

under various constraints to compare their cost and time

efficacy, success rate, and utilization rate. The results are

verified through empirical experiments. The experiments

indicate that the BDDC algorithm obtains economic costs
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while earning a higher success rate. The BDC algorithm

acquires a higher success rate while earning the fastest

schedule plan. Both BDDC and BDC outperform other

algorithms in strict constraints for various evaluation

metrics. Furthermore, the overhead of instance provision-

ing is more sensible in the real cloud environment. Our

0.1 0.2 0.3 0.4 0.5 0.6
Deadline Range

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)
BDDC BDC BDSD BDHEFT DBCS

0.1 0.2 0.3 0.4 0.5 0.6
Budget Range

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

BDDC BDC BDSD BDHEFT DBCS

(a) Success rate under different deadline constraints

(b) Success rate under different budget constraints

Fig. 9 Ligo workflow

OGILSCIMONEGIPEEKAHSREBYCTHPISEGATNOM
Workflows

0

20

40

60

80

100

M
ea

n 
U

til
iz

at
io

n 
R

at
e 

(%
)

BDDC BDC BDSD BDHEFT DBCS

Fig. 10 Utilization rate for different workflows

Cluster Computing (2021) 24:3449–3467 3465

123



experimental results also exhibit that the BDDC algorithm

outperforms other algorithms in the mean utilization rate,

and this in turn could result in more economic schedules.

BDDC and BDC are suitable for budget-deadline con-

strained environments. In general, BDDC and BDC out-

perform other algorithms by providing a higher success

rate and a higher QoS and utilization rate. For future work,

we intend to investigate BDDC and BDC algorithms’

performance in the dynamic scheduling plan with multiple

types of workloads.
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