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Abstract
Travelling Salesman Problem (TSP) is an Np-Hard problem, for which various solutions have been offered so far. Using

the Harris Hawk Optimization (HHO) algorithm, this paper presented a new method that uses random-key encoding to

generate a tour. This method helps maintain the main capabilities of the HHO algorithm, on the one hand, and to take

advantage of the capabilities of active mechanisms in the continuous-valued problem space on the other hand. For the

exploration phase, the DE/best/2 mutation mechanism employed in the exploitation phase, besides the main strategies in

the HHO algorithm, was used. Ten neighborhood search operators are used, four of which are introduced. These operators

were intelligently selected using the MCF. The Lin-Kernighan local search mechanism was utilized to improve the

proposed algorithm’s performance, and the Metropolis acceptance strategy was employed to escape the local optima trap.

Besides, 80 datasets were evaluated in TSPLIB to demonstrate the performance and efficiency of the proposed algorithm.

The results showed the excellent performance of the proposed algorithm.

Keywords Harris hawks optimization algorithm � Travelling salesman problem � Optimization � Neighbourhood search

operator

1 Introduction

The TSP is one of the NP-hard problems that many

research types have been done on this issue. However,

none of the research has been able to find a particular

solution to this problem. This problem is discrete from the

hybrid optimization problem, and the goal is to find the

shortest Hamiltonian path. So, look for a route that first

visits all the cities at most once and secondly returns to the

city where the route started from that city and also this

route is also the shortest possible route. Although this

problem has a simple mathematical model and is very easy

to understand, it is challenging to solve it. Due to the

enlargement of the issue and the increase of cities, com-

putational complexity increases and requires more

resources and computational time. Since it is one of the

NP-hard problems, it is not solvable, and all the presented

solutions are relative, and a new solution can be presented

that is more efficient than the previous solutions.

Nowadays, extensive and diverse research has been

done by researchers to solve various problems [1–5]. Also,

Various methods have been proposed to solve the TSP

problem, which are accurate methods suitable for small and

medium optimization problems. Because in solving large-

scale problems, the computational time is very long in

general, some of the exact methods are: branch and bound

[6], branch and cut [7], branch and price [8], cutting planes

[9], and Lagrangian dual [10]. Moreover, the need to find

reasonable (not necessarily optimal) solutions to these

problems have led to various approximation algorithms,

such as metaheuristics. These methods have advantages

such as simplicity and flexibility and generally produce

quality solutions in a reasonable amount of time by creat-

ing shortcuts. However, in some models based on meta-

heuristic algorithms, they either have a high computational

time, or do not produce an acceptable optimal answer, or

are inefficient in the face of large-scale problems [11–15].
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Different neighborhood search operators can be used to

improve the performance of metaheuristic algorithms in

metaheuristic algorithms. However, each of these operators

has unique features that can have the necessary efficiency

in different optimization operations stages. For this reason,

hyper-heuristic modes of the Modified Choice Function can

be used to select neighborhood search operators intelli-

gently [16–18].

For the first time in [19], the term hyper-heuristic has

been introduced, divided into two categories: selection

hyper-heuristic and generation hyper-heuristic. Moreover,

these two categories of selective and productive hyper-

heuristics can be divided into two categories based on the

nature of heuristics: perturbative and constructive, which is

constructive hyper-heuristics [20] create a solution from

the ground up gradually [21]. Moreover, in perturbative

hyper-heuristics by performing disturbance mechanisms

repeatedly in the solution improves the solution. Mecha-

nisms that are generated or selected by hyper-heuristics are

called low-level heuristics (LLHs). Selective-based hyper-

heuristics have two general levels, low-level and high-

level. The lower level includes evaluation function(s) and

problem representation, and a set of LLHs.

Moreover, the high-level task of managing the LLH

selection is used to generate a new solution and accept the

new solution. The mechanism for selecting an LLH from a

set of LLHs during the optimization process, in which this

selected LLH performs better than other LLHs in this set, is

called LLH selection, and several LLH selection methods

include choice function [22–24], set of reinforcement

learning variants [25, 26], backtracking search algorithm

[27], harmony search [28], and Tabu search [29]. More-

over, how to decide to accept a new solution produced by

LLH is called move acceptance. Some of the move

acceptance methods are Late Acceptance [30], Simulated

Annealing [31], Only Improvement [32].

In hyper-heuristics, there are two primary components

called diversification and intensification. Due to the dif-

ferent capabilities of each LLH in different stages of the

search process, these two components are essential hyper-

heuristic elements. It is an intensification component to

focus as much as possible on LLHs that perform better than

other LLHs. On the other hand, it is a component of

diversification to select LLHs that are rarely selected.

Therefore, it is essential to strike a balance between

diversification and intensification [27]. Furthermore, if an

LLH performs well in one iteration step, it should not be

used in subsequent steps alone to improve the solution, and

if an LLH performs poorly in one iteration step, make this

LLH not used permanently.

On the other hand, local search algorithms have been

used in many studies to solve hybrid problems. Using two

methods [29], Multi-start Local Search (MSLS) and

Iterated Local Search (ILS) [30], the performance of local

search algorithms is increasingly increasing. If these dif-

ferent mechanisms are combined, they can significantly

increase metaheuristic algorithms’ performance.

This paper presents a new method using the HHO

algorithm [33]. This algorithm was developed to inspire the

life, hunting practices, and mathematical modeling of

Harris hawks’ behaviors in the natural environment. This

algorithm has been used in many studies despite being new,

including Design and manufacturing problems, multi-level

image thresholding problems [34], power flow problems

[35], feature selection [11, 36–38], Satellite Image Seg-

mentation [39], design of microchannel heat sinks [40], etc.

The proposed algorithm employs random-key encoding

to generate a tour to maintain the core capabilities of the

HHO algorithm, on the one hand, and utilizes the capa-

bilities of active mechanisms in the continuous-valued

problem space, on the other. Random-key encoding trans-

fers solutions from continuous to discrete space. It moti-

vated us to discretize the main mechanisms of the HHO

algorithm operating in continuous space to solve the TSP, a

discrete problem.

In this paper, to improve this algorithm’s performance,

two DE/best/2 mutation mechanisms have been used to

increase the HHO algorithm’s efficiency in the exploration

phase. On the other hand, to improve the proposed algo-

rithm’s performance to solve the TSP, ten neighborhood

search operators were used, four of which have been pre-

sented for the first time. Furthermore, the modified choice

function (MCF) was utilized to increase efficiency and

select neighborhood search operators. The proposed algo-

rithm’s capability and performance were then significantly

increased using the Lin-Kernighan (LK) local search

mechanism. Finally, the Metropolis acceptance strategy

was employed to escape the local optima trap. The pro-

posed algorithm’s performance in solving problems with

different dimensions was evaluated using the datasets

available in TSPLIB [41], including small, medium, and

large 100-85900 cities. The most important innovations

and contributions of this paper are as follows:

• This paper presents the HHO algorithm for the first time

to solve the TSP.

• The random-key encoding scheme is employed to adapt

and solve the TSP using the HHO algorithm.

• A DE/best/2 mutation operator mechanism is utilized to

improve the HHO algorithm’s performance in the

exploration phase.

• Ten neighborhood search operators are used for

improving the proposed algorithm’s performance, four

of which are presented for the first time in this paper.
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• Modified choice function (MCF) is utilized to select

neighborhood search operators at different optimization

operations stages intelligently.

• Lin-Kernighan (LK) local search is employed to

increase the efficiency of the proposed algorithm.

• The Metropolis acceptance strategy is utilized to escape

the local optima trap.

• The proposed algorithm’s performance in solving TSP,

which consists of 80 instances, has been tested using

three criteria (i.e., the average tour length, average

percent deviation, and average computation time). It is

then compared with the previous seven models, indi-

cating the acceptable performance of the proposed

algorithm.

• The proposed algorithm is also compared and evaluated

with other models using the Wilcoxon signed-rank test.

The rest of this paper is structured as follows. Section 2

examines related works, Section 3 addresses the basic

concepts, Section 4 presents the proposed algorithm, and

Section 5 compares and evaluates the proposed algorithm

with the other methods presented. Finally, Section 6 con-

cludes the paper.

2 Related works

Various researchers have proposed various methods and

algorithms over the years to solve the TSP. However, a

definite method or algorithm cannot be proposed for TSP

because it is an NP-hard problem. Therefore, researchers

have always attempted to try some methods more effi-

ciently than previous ones [42, 43].

In [44], a master-slave-based method is used to solve the

TSP, with several colonies cooperating periodically in a

distributed computing environment (DCE). This algorithm

is hybrid with 3-Opt to improve performance. Each colony

runs this algorithm separately and shares the results with

other colonies. This method is evaluated with 21 instances.

These methods either have a high computation time or do

not provide an acceptable optimal solution, or are ineffi-

cient in dealing with large-scale problems.

In [45], a hybrid simulated annealing algorithm based on

a Symbiotic Organism Search (SOS) is proposed to solve

TSP. The purpose of this work is to evaluate the conver-

gence behavior and scalability of this hybrid algorithm to

solve TSPs with small- and large-scale traveling. In terms

of average execution time, experiments on the solution

convergence and percentage deviations were evaluated.

The results of the experiments showed an improvement in

results.

In [46], a discrete algorithm, i.e., a comprehensive

learning Particle Swarm Optimization (PSO) algorithm

with the Metropolis acceptance criterion, is proposed to

solve the TSP. This algorithm employs two strategies,

namely lazy velocity and eager evaluation, to improve

performance. Additionally, the Metropolis acceptance cri-

terion is utilized to avoid premature convergence. To solve

this problem, hyper-heuristic methods, e.g., Modified

Choice Function (MCF), can be employed. In [17], it is

done automatically and intelligently by selecting neigh-

borhood search heuristic by employed and onlooker bees.

In [47], the wolf colony search algorithm, which

exploits siege strategy, is employed to solve the TSP to

achieve several goals, including improving the mining

ability, reducing the besiege range, and accelerating con-

vergence time. The proposed algorithm showed better

performance in terms of higher solving accuracy and faster

convergence speed. Moreover, travel behavior and calling

behavior strategies have been exploited to enhance wolf

interaction and improve global optimization accuracy.

Additionally, the Lin-Kernighan local search is inte-

grated with this algorithm. This algorithm is evaluated with

64 instances of TSP in TSPLIB. Hyper-heuristic is an

automated methodology for selecting or generating a set of

heuristics [21]. Moreover, travel behavior and calling

behavior strategies have been exploited to enhance wolf

interaction and improve global optimization accuracy.

Also, in [48], the discrete pigeon-inspired optimization

(PIO) (DPIO) algorithm is presented. The Metropolis

acceptance criterion is utilized for discretization. A map

operator and a new compass operator with comprehensive

learning capability have been employed in this algorithm to

increase the DPIO’s exploration ability. A new landmark

operator has also been utilized to increase the exploitation

of this algorithm. Thirty-three large-scale instances of

TSPLIB with 1000-85900 cities have been tested to eval-

uate the DPIO algorithm’s performance. In [49], a com-

bined wolf pack search and local search solution is

presented to solve the TSP to balance exploration and

exploitation and not get stuck in a local optimum. The

results of experiments on TSPLIB indicate that the results

obtained by this algorithm are better and closer compared

to other algorithms. This algorithm could compare theo-

retical optimal values with higher robustness compared to

the obtained values.

Moreover, In [50], a new algorithm called the Anglerfish

algorithm is proposed to solve TSP. The search operation is

performed randomly based on the initial population using

the randomized incremental construction technique. It is

performed using random sampling and without compli-

cated procedural procedures. Also, in [51], a discrete

algorithm, i.e., discrete SOS (DSOS), is enhanced using

excellence coefficients self-escape to solve the TSP, called

ECSDSOS. The self-escape strategy is utilized to avoid

getting stuck in the local optimum. The excellence
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coefficients are used to choose shorter edges (routes) for

generating better local paths. Instances in TSPLIB are used

to evaluate this algorithm. The results show an improve-

ment in the performance of the proposed algorithm relative

to the compared algorithms.

In [52], the discrete sine-cosine algorithm (SCA) is

presented using a local search to solve the TSP. The pro-

posed algorithm employs two different mathematical

models to update each generation’s solutions to balance

exploration and exploitation. It is also integrated with the

2-opt local search method to improve exploitation. This

algorithm exploits a heuristic crossover to increase explo-

ration ability. The experiments and evaluations indicate an

improvement in this algorithm’s performance from 41

different benchmarks in TSPLIB.

In [53], new versions of the ABC algorithm are intro-

duced to solve the TSP, including the combinatorial ver-

sion of the standard ABC, called combinatorial ABC

(CABC), and an improved version of the CABC algorithm

called the quick CABC (qCABC). The efficiency of these

two versions of the ABC algorithm was evaluated using 15

TSP benchmarks. The results of evaluating these two

algorithms’ performance were then compared with eight

different variables (GA variants).

In [54], a hybrid model is proposed using a genetic

algorithm (GA) and remove-sharp and local-opt with ant

colony optimization (ACO) to accelerate convergence and

implement positive feedback to optimize the search space

and create an efficient solution to solve complex problems.

TSP was tested to evaluate the optimality accuracy and

performance of the combinatorial model, indicating satis-

factory performance. The results also showed better per-

formance of the proposed algorithm relative to the

compared models. This model can also solve various

problems, such as network routing, scheduling, vehicle

routing, etc. Also, in [55], an algorithm based on ACO and

the partheno-genetic algorithm is proposed to solve the

TSP. The primary purpose is to divide the variables into

two parts. It uses the partheno-genetic algorithm to com-

prehensively search for the best value of the first section

variables and then the ACO to precisely determine the best

value of the second section variables. The comparative

experiment results showed that the combinatorial algorithm

effectively solved large-scale TSP and better performance

than existing algorithms.

In [56], a new discrete differential evolution algorithm is

used to solve TSP. The authors suggest a combination of

the following: (1) an improved mapping mechanism for

mapping continuous variables to discrete variables and vice

versa, (2) a k-means clustering restoration method to

increase the number of solutions in the initial population,

and (3) a set of strategies mutation to increase the

exploitation capability of the algorithm. Finally, two well-

known local searches are presented to improve the local

capability of the proposed algorithm. The experimental

results showed a significant advantage of the proposed

algorithm over many comparative methods in terms of the

mean of known errors from known solutions; it achieves

very competitive results with less computational time

compared to other algorithms.

In [57], the ACO algorithm for solving TSP using a self-

adaptive method to improve convergence and diversifica-

tion called DEACO is proposed. It has been evaluated

using the samples in TSPLIB, and the results of this work

indicate the excellent performance of this model. And, In

[58], a new discrete version of the Tree-Seed Algorithm

(TSA) for solving TSP is presented. Three operators, swap,

shift, and symmetry, have been used to provide the discrete

version. This model has been evaluated and compared with

several other discrete optimization algorithms, which

indicate this model’s acceptable performance.

In [59], the Genetic Algorithm is used to solve the multi-

objective TSP problem. Numerous samples from TSPLIB

with a different number of cities have been used for eval-

uation, and the results show the acceptable performance of

this model. In [60], an improved PSO algorithm is used to

solve the TSP, named MPSO. In this model, local search

algorithms are also used to improve performance. Also, a

new method has been used to move the particle towards the

best particle for preventing premature convergence. The

results obtained from this model have been compared with

several other meta-heuristic algorithms, and the results

obtained from this comparison have shown that it achieves

better results than other optimization algorithms in most

samples.

In [61], the authors present a discrete version of the

shuffled frog-leaping algorithm based on heuristic infor-

mation. In this model, a new operator called nearest

neighbor information is designed. Also, four improved

search strategies have been used to improve the perfor-

mance of this model. Opposite roulette selection, on the

other hand, is used to maintain population diversification.

A large number of samples in TSPLIB have been used for

evaluation. The results obtained from this work indicate the

excellent performance of this model.

In [62], a new discrete version of the Crow Search

Algorithm(CSA) for solving TSP is presented. Three dis-

crete CSA are also proposed to improve performance. The

algorithms presented in this paper are based on modular

arithmetic, basic operators and dissimilar solutions tech-

niques. One hundred eleven instances and several opti-

mization algorithms have been used To evaluate and

compare this model’s performance, and the results have

shown that it has a good performance in solving TSP. And,

In [63], a discrete version of the Farmland Fertility Algo-

rithm(FFA) is presented. In this research, three
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Table 1 Comparison of optimization algorithms used to solve TSP

Name Year Authors Algorıthm Dısadvantage Advantages

PACO-

3Opt [44]

2016 Şaban Gülcü et al. ACO Poor results in samples with

large dimensions and high

execution time

Introducing a new model of ACO algorithm based

on the master-slave paradigm

SOS-SA

[45]

2017 Ezugwu et al. SSO and

Simulated

Annealing

Poor performance on large

samples

Provide a hybrid version to solve the TSP

D-CLPSO

[46]

2018 Zhong et al. PSO algorithm Evaluation is with a small

amount of data

Acceptable execution time

ABC-MCF

[17]

2019 Choong et al. Artificial bee

colony

(ABC)

algorithm

Located in optimal local

locations

Introduce new neighborhood search operators and

intelligently use neighborhood search operators

during optimization operations

DPIO [48] 2019 Zhong et al. PIO Low and limited evaluations

and poor results in large

samples

Provide a discrete version of the DPIO algorithm

and use the Metropolis acceptance criterion

mechanism

WPS-LS

[49]

2019 Dong et al. Wolf Pack

Search

Low ratings with small

samples

Provide a hybrid version and use the local search

engine

AA [50] 2019 Pook et al. Anglerfish

algorithm

Low ratings with small

samples

Introducing a new algorithm to solve the TSP

ECSDSOS

[51]

2019 Wang et al. SOS Low ratings with small

samples

Using mechanisms of excellence coefficients and

self-escape strategy

DSCA [52] 2019 Tawhid et al. sine-cosine

algorithm

Poor performance in dealing

with large samples

Introduce a new discrete version of the SCA

algorithm and use the local search mechanism

qCABC

[53]

2019 Karaboga et al. ABC

algorithm

As the dimensions increase,

so does the samples of

performance.

Introducing a new version of the ABC algorithm for

solving hybrid problems

Nested

Hybrid

ACS [54]

2019 Sahana genetic

algorithm

and ant

colony

Evaluations are only for

small samples

Provide a hybrid version and use multiple

mechanisms

AC-PGA

[55]

2020 Jiang et al. genetic

algorithm

and ant

colony

High complexity Provide a hybrid model to solve the MTSP problem

NDDE [56] 2020 Ali et al. differential

evolution

(DE)

algorithm

Complex implementation

and waste execution time

Introduce a new version of the DE algorithm and

use the local search mechanism

DEACO

[57]

2020 Ebadinezhad ACO Performs poorly in dealing

with large issues.

Provide a self-adaptive version of the ACO

algorithm to solve the TSP

DTSA [58] 2020 Cinar et al. Tree-Seed

algorithm

It only works well in solving

small samples

Introducing a new discrete version of the TSA

algorithm to solve the TSP

MOGA

[59]

2020 George et al. Genetic

Algorithm

No comparison has been

made with other methods

Solve TSP problem in multiple objectives

MPS [60] 2021 Yousefikhoshbakht PSO The performance of the

algorithm in solving large-

scale samples is poor

Provide an improved version and use the local

search algorithm

DSFL [61] 2021 Huang et al. shuffled frog-

leaping

algorithm

Hard implementation Provide a discrete version of the SFL algorithm as

well as the use of multiple mechanisms

DCSA [62] 2021 Al-Gaphari et al. Crow search

Algorithm

In some samples, it has

shown poor results

Present a new discrete version of the CSA

algorithm and evaluate on a large number of

standard examples

DFFA [63] 2021 Abdollahzadeh

et al.

Farmland

Fertility

Algorithm

(FFA)

It has a lot of execution time

in solving large samples.

Provide a new discrete version of FFA and use the

local search mechanism and metropolis

acceptance criterion

Cluster Computing (2022) 25:1981–2005 1985
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neighborhood search operators and a crossover operator are

used. Also, to improve the performance of this model, the

2-OPT local search technique has been used. The roulette

wheel technique has also been used to select local search

operators. Examples from TSPLIB and several other opti-

mization algorithms have been used to evaluate this model.

The results show that this model performs well in other

models.

Continuing previous research on the TSP solution, this

paper offers a different approach to solving this problem by

improving the HHO algorithm using various mechanisms

that help balance the phases of exploration and exploita-

tion, prevent premature convergence, and escape the local

optima trap. It will be explained in detail in the section on

the proposed algorithm (Table 1).

3 Fundamental research

3.1 Harris hawk optimization algorithm

The description of the HHO algorithm requires the symbols

that are briefly described in Table 2. A brief description of

this algorithm is given below.

The HHO algorithm uses two different strategies for

search operations in the exploration phase. Each of these

strategies is selected based on q; If q C 0.5, the first

strategy is used to search near one of the other hawks

randomly, but if q\0.5, the second strategy is used for the

search operation, expressed in Eq. (1).

X tþ1ð Þ¼ XrandðtÞ�r1jXrandðtÞ�2r2
XðtÞjq�0:5

ðXrabbitðtÞ�XmðtÞÞ�r3ðLBþr4ðUB�LBÞÞq\0:5

�

ð1Þ

where XmðtÞ is calculated based on Eq. (2).

XmðtÞ ¼
1

N

XN
i¼1

XiðtÞ ð2Þ

A different mechanism is used to move from the

exploration phase to the exploitation phase. In optimization

operations, the exploration operation is performed first,

followed by the exploitation phase by increasing the iter-

ations, finding the optimal solution, and promising solu-

tions. Equation (3) is used for mathematical modeling.

E ¼ 2E0ð1 � t

T
Þ ð3Þ

If jEj � 1, the algorithm enters the exploration phase, but

if jEj\1, it enters the exploitation phase. The value of E

has a decreasing trend during the increase of iterations. The

HHO algorithm uses four different strategies to perform

optimization operations in the exploitation phase. If E C

0.5, two strategies, besiege and soft besiege with progres-

sive rapid dives, are used. Conversely, if E \ 0.5, two

strategies, besiege and hard besiege with progressive rapid

dives, are used. Each of these strategies will be explained

below.

3.2 Soft besiege

If r� 0:5andjEj � 0:5, the HHO algorithm utilizes a soft

besiege strategy for optimization operations. In this case,

hawks cannot easily hunt rabbits because they have much

energy to escape, described in Eqs. (4) and (5).

Xðt þ 1Þ ¼ DXðtÞ � E JXrabbitj ðtÞ � XðtÞj ð4Þ
DXðtÞ ¼ XrabbitðtÞ � XðtÞ ð5Þ

In Eq. (4), DX, obtained using Eq. (5), represents the

distance of the selected hawk to the rabbit, and E is

obtained using Eq. (8). J is also the escape energy of the

rabbit, which is obtained using the Eq. J ¼ 2ð1 � r5Þ.

3.3 Hard besiege

If r� 0:5andjEj\0:5, the HHO algorithm uses a hard

besiege strategy for optimization operations. In this case,

hawks can hunt rabbits with rapid attacks because they no

Table 2 Explanations of

symbols used in the

mathematical model of HHO.

Description Symbol

location of ith hawk, Position vector of hawks (search agents) Xi ,X

Average position of hawks XmðtÞ
Position of a random hawk XrandðtÞ
Position of rabbit (best agent) Xrabbit(t)

Swarm size, iteration counter, the maximum number of iterations N, t,T

Escaping energy, the initial state of energy E, E0

Dimension, upper and lower bounds of variables D, LB,UB

Random numbers inside (0,1) r1, r2, r3, r4, r5,q
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longer have enough energy to escape. The mathematical

model of this motion is expressed using Eq. (6).

Xðt þ 1Þ ¼ XrabbitðtÞ � E DXj ðtÞj ð6Þ

If jEj � 0:5butr\0:5, the soft besiege strategy with

progressive rapid dives is used. In that case, the rabbit has

enough energy to escape, and there is still a soft besiege.

This procedure is relatively more innovative than the pre-

vious procedure.

Y ¼ XrabbitðtÞ � E JXrabbitðtÞ�j XðtÞj ð7Þ

This strategy uses a Lévy flight to improve performance.

Also, the two states of Eq. (12) are compared with the

current solution. The Lévy flight has not been used as a

result of Y but has been used in Z, given in Eq. (8).

Z ¼ Y þ S� LFðDÞ ð8Þ

In Eq. (8), S is a random number in the dimensions of

the problem in the interval [0,1], and LFðDÞ is the flight of

Lévy in the dimensions of the problem, expressed in

Eq. (9).

LFðxÞ ¼ 0:01 � u� r

jvj
1
b

; r ¼
Cð1 þ bÞ � sin

pb
2

� �

C
1 þ b

2

� �
� b� 2

b�1
2ð Þ

0
BB@

1
CCA

1
b

ð9Þ

In Eq. (9), u and v are two random numbers between 0

and 1, and b is a fixed and default number, i.e., 1.5.

Xðt þ 1Þ ¼ YifFðYÞ\FðXðtÞÞ
ZifFðZÞ\FðXðtÞÞ

�
ð10Þ

According to Eq. (10), the result of Eq. (7) is better than

the current solution and, consequently, replaces it;

otherwise, the solution obtained from Eq. (8) is compared

with the current solution. Suppose jEj\0:5andr\0:5, the

hard besiege strategy with progressive rapid dives is used

for optimization operations. In this case, the rabbit does not

have enough energy to escape and is besieged hard before

the surprise pounce to catch the rabbit. Equations (12) and

(13) apply based on Eq. (11).

Xðt þ 1Þ ¼ YifFðYÞ\FðXðtÞÞ
ZifFðZÞ\FðXðtÞÞ

�
ð11Þ

In Eq. (11), Y and Z are obtained using Eqs. (12) and

(13).

Y ¼ XrabbitðtÞ � E JXrabbitðtÞj �XmðtÞj ð12Þ
Z ¼ Y þ S� LFðDÞ ð13Þ

In this strategy, the solution obtained from Eq. (12)

replaces the current solution if it is more efficient than

others; otherwise; The solution obtained from Eq. (13) will

replace it if it is more efficient than the current solution.

Algorithm 1 presents the pseudo-code of the HHO

algorithm.

Fig. 1 Random-key encoding scheme
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3.4 Random-key encoding scheme

A random-key encoding scheme [64] is an approach to

transforming a position and turn it into a combinatorial

position in a continuous space. It utilizes a real-number

vector by assigning each of the numbers to a certain

weight. The weights are then employed to create a com-

bination in the form of a solution. The uniformly drawn

random real numbers from the range [0, 1) constitute a

vector illustrated in Fig. 1. A combinatorial vector com-

prises integers ordered according to actual numbers’

weights in the first vector, as shown in Fig. 1.

3.4.1 Mutation mechanism

In the exploration phase, the DE/best/2 mutation operator

[65], used in many studies, has been used as the primary

strategy to increase global search operations performance

in the HHO algorithm. The details of this mutation operator

are shown in Eq. (14).

Xnew ¼ Xrabbit tð Þ þ F Xr1 tð Þ � Xr2 tð Þð Þ þ Xr3 tð Þ � Xr4 tð Þð Þ
ð14Þ

In Eq. (14), F is the scaling factor, and r1, r2, r3, and r4

are different integers selected from the range [1, N]. N

represents the size of the total population. Equation (14) is

used in the exploration phase. Mutation operators are used

in many models and algorithms to improve optimization

performance and global search capability [66–68] that

motivated us to use this operator in the proposed algorithm.

3.5 Neighborhood operators

The proposed algorithm uses ten neighborhood search

operators [17, 69–75] to improve HHO performance. They

are used to achieve optimal solutions. These operators are

divided into two groups: point-to-point (pointwise) and

sequence operators. In point operators, only one city is

selected for change, while in sequence operators, a

sequence of cities is selected for change. Point-to-point

operators include random swap and random insertion.

These ten operators are integrated with the proposed

Fig. 2 Function of Neighbourhood operators
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algorithm as 10 LLHs (Fig.2), consisting of four primary

operations: reverse, insert, swap, and shuffle. RRS specif-

ically performs a reversing of subsequence operation. RI

and RIS perform an insert operation. RS and RSS do a

swap operation, and SS does a shuffle operation. Of the ten

LLHs, three LLHs, RRSS, RIDC, and RSDC, are made up

of a combination of two operators.

Random swap (RS): The operator selects two cities at

random on a tour and permutation. It then exchanges the

location of the two selected cities. Among the advan-

tages of using this operator are keeping more cities

adjacent to each other and creating disturbances and

minor changes.

Random insertion (RI): This operator selects two cities at

random. It then inserts city i in position j. In other words,

the insert operator selects a city on tour at random. It

then removes that city from the tour, and this action is

repeated in the position of another point.

Random Reversing of Subsequence (RRS): The second

integrated operator in the HHO algorithm is reversing the

subsequence operator. The operator selects a sequence of

cities on a random tour. It then reverses the order of

cities i to j. In other words, the operator selects two

points in the city at random. It then reverses the order of

the cities located between the two selected cities.

Random Swap of Sub-Sequences (RSS): The operator

selects two sequences with the same number of cities in a

tour and permutation. It then exchanges the position and

location of two sequences of selected cities with each

other.

Random Insertion of Sub-Sequence (RIS): This operator

inserts a sequence of randomly selected cities into the

position of a randomly selected city.

Random Reversing Swap of Sub-Sequences (RRSS):

This operator selects two cities’ sequences with the same

number at random. It then reverses the cities’ order in

both sequences and finally replaces the two sequences’

positions.

Random Double Cycle (RDC): The operator selects a

sequence of cities in pairs (at least 4) in the tour at

random. It then replaces the position of the cities in pairs.

Random Nested Cycles (RNC): The operator selects a

sequence of cities in pairs (at least 4) in the tour at

random. It then replaces the position of the city c1 with

the city cn, the last city in the selected sequence. It then

enters the sequence once and replaces the second city

and the last second city in the selected sequence. This

process continues until two inland cities are selected in

sequence.

Random Swap Double Cycle (RSDC): The operator

selects two cities’ sequences with the same number in

pairs (at least 4) in the tour at random. It then replaces

the position of the cities in both sequences in pairs, and

finally, replaces the position of the two sequences with

each other.

Random Insertion Double Cycle (RIDC): The operator

selects a sequence of cities in pairs (at least 4) in the tour

at random. It then replaces the position of the cities in

pairs, and finally, inserts the position of a sequence of

cities into the position of a randomly selected city.

3.6 Modified choice function

Modified choice function heuristic selection variates the

choice function, emphasizing intensification over-diversi-

fication within the heuristic search process. In [22], a

choice-based hyper-heuristic with a score-based approach

is presented. The scoring model of each LLH is measured

based on the previous performance of that LLH. The score

of each LLH consists of three different criteria: f 1, f 2, and

f 3. In this model, the first measurement criterion, f 1, cal-

culates the recent performance of each LLH (Eq. (15)):

f 1 hj
� �

¼
X

n
an�1 In hj

� �
Tn hj

� � ð15Þ

Where, hj is the same as LLH j, InðhjÞ is the difference

between the current solution and the new solution with nth

function of hj, TnðhjÞ is the time spent by nth function of hj
to suggest a new solution, a is a Parameter between 0 and

1, prioritizing recent performance. The second criterion, f 2

Indicates the dependence between a consecutive pair of

LLHs (Eq. (16)):

f 2 hk; hj
� �

¼
X

n
bn�1 In hk; hj

� �
Tn hk; hj

� � ð16Þ

where In hk; hj
� �

is the value of the difference between

the current solution and the new solution using nth con-

secutive functions of hk and hj (i.e., hj runs right after hk).

Tn hk; hj
� �

is the time spent by nth consecutive functions of

functions of hk and hj to suggest a new solution, and b is a

parameter between 0 and 1, prioritizing recent perfor-

mance. Criteria f 1 and f 2 are among the intensification

components of the selection function, which increase the

chances of selecting high-performance LLHs. The third

criterion, f 3, records the time elapsed since the last exe-

cution of a particular LLH (Eq. (17)):

f 3 hj
� �

¼ s hj
� �

ð17Þ

where s hj
� �

is the elapsed time since the last execution

of hj (in seconds). Note that f 3, as a diversification com-

ponent, plays a role in the selection function, prioritizing

those LLHs that have not been used for a long time. The

score for each LLH is calculated using the sum of the
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weights of all three criteria, f 1, f 2, and f 3, as shown in

Eq. (18).

F hj
� �

¼ af 1 hj
� �

þ bf 2 hk; hj
� �

þ df 3 hj
� �

ð18Þ

Where a, b, and d are parameters that indicate the

weights of the criteria f 1, f 2, and f 3 constant values in the

initial model. In [76], to increase the improved hyper-

heuristic version’s efficiency and performance presented in

[22], where the parameters can be controlled dynamically

during execution. If an LLH improves the solution, the a
and b parameters’ values increase relative to the degree to

which the new solution improves compared to the previous

solution. At the same time, there is no improvement in the

solution if the LLH is selected. The a and b parameters’

values decrease due to the difference in costs between the

new solution and the previous solution. Despite the

improvements, this version also had some limitations,

reviewed in [23]. These restrictions were then lifted. One

of these limitations was the reward and penalty mechanism

applied by the previous solution, and the new solution

commensurate with the resulting improvement. Given the

high potential for significant improvement by an insuffi-

cient heuristic due to low resolution in the early stages of

optimization, it may be advantageous. Also, progress in

improving solutions is reduced in the later stages of opti-

mization due to convergence to optimal solutions. It leads

to a significant reduction in rewards earned. However, the

improvements made in the later stages of optimization are

much more critical than those obtained in the early stages.

Therefore, this mechanism of reward and penalty is not the

correct mechanism. In addition to the above limitations, if

no improvement is achieved in the solutions after some

iterations, the LLH selection mechanism is done randomly

because the a and b parameters decrease due to the reward

and penalty mechanism used. Criterion f 3 is a diversifica-

tion component, which can dominate other criteria. The

limitations expressed in [76], an improved version of the

selection function, these limitations have been removed in

[23], the modified selection function, and this version of

the selection function has been provided to manage the

parameters better. In this paper, the a and b parameters’

selection function is combined into a single parameter,

called l. Finally, the score of each LLH is calculated using

Eq. (19).

Ft hj
� �

¼ lt½f 1 hj
� �

þ f 2 hk; hj
� �

� þ df 3 hj
� �

ð19Þ

If an LLH improves the solution, the intensification

component is prioritized, and the parameter l is set to a

maximum static value close to 1. At the same time, the

parameter d decreases to a minimum static value close to 0.

Conversely, if the LLH does not improve The solution, the

parameter l is fined linearly and bounded below 0.01. This

mechanism causes the parameter d to grow at a uniform

and low rate to prevent the rapid loss of intensification

components. The parameters l and d are calculated using

Eqs. (20) and (21). Equation (20) states the difference

between the previous solution’s cost and its cost.

lt hj
� �

¼ 0:99; d[ 0

max 0:01; lt�1 hj

� �
� 0:01

� �
; d� 0

�
ð20Þ

dt hj
� �

¼ 1 � lt hj
� �

ð21Þ

The proposed algorithm uses a modified choice function

to automatically select the best LLHs during optimization

to increase the proposed algorithm’s performance using

this mechanism.

3.7 Local-search-based strategies (lin–kernighan
local search)

Local search has been used to solve many hybrid opti-

mization problems because it increases the ability to solve

such problems. Researchers have proposed different types

of local searches, such as opt-2 [77], 3opt [78], and local

search [79]. Local search can find local optimum solutions;

Therefore, the local search ability is limited to intensifi-

cation. Using the search is restarted from a specific area of

the search space after exploitation for increasing the

probability of finding the global optimum. This local search

utilizes the retrieval mechanism called multi-start local

search (MSLS) [80]. MSLS only allows us to search for

different initial solutions and finally obtains a set of local

optimum solutions. A global optimum solution or a solu-

tion close to the global optimum can be found in the set of

local optimum solutions. MSLS has been used to solve

many different combinatorial problems, including dynamic

TSP [81], generalized quadratic multiple KP [82], and

periodic VRP [83].

Also, diversification can be used in local search to

increase local search performance. In this case, the solu-

tions are improved by repeated perturbation of the solu-

tions and local search. One method that takes advantage of

this mechanism is iterated local search (ILS) [84], in which

a recurring initial solution is diversified. At this stage,

different solutions are created by perturbation of the solu-

tions. The diversification phase is followed by the inten-

sification phase, in which local search begins based on the

solutions generated in the diversification phase.

In [85, 86], Chained Lin-Kernighan (CLK) heuristic

used the ILS mechanism to solve TSP. In CLK, a double-

bridge motion is followed to exchange the four arcs in the

solution with the other four arcs. This operation is per-

formed repeatedly on the solution. ILS-based strategies

have been used to solve many different problems, including

bin-packing problems [87], scheduling problems [88–90],

variants of VRP [91, 92].
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Many metaheuristic algorithms have shown good global

search performance. The integration of a metaheuristic and

local search algorithm strikes a balance between diversifi-

cation and intensification. Due to the importance of this

issue and the increasing performance of the combination of

metaheuristic and local search algorithms, shown in many

studies [17, 44, 52, 93], the proposed algorithm (MCF-

HHO) is integrated with local LK search. Local search is

performed after each time changes are made to the solu-

tions using continuous mechanisms or neighborhood

operators before the acceptance condition is applied.

Because the proposed algorithm uses local search, it is very

similar to the ILS and MSLS models. In the initialization

phase of the proposed algorithm, a population of solutions

is created, creating a different starting point for the local

search process. During the proposed algorithm implemen-

tation, a series of repeated changes are applied to each

section’s solutions using an LLH, and the solution is dis-

rupted. LK Local Search follows this. In other words, each

solution is subject to the ILS procedure. In light of the

above, the proposed algorithm is very similar to the ILS

and MSLS models.

3.7.1 Metropolis acceptance strategy

In solving discrete problems such as TSP, the greedy

acceptance strategy quickly causes early convergence. To

solve this problem, the DHHO model uses the metropolis

acceptance criterion to determine whether a new solution

will be accepted if it is worse than the current solution.

Suppose A is the current tour at cost f ðAÞ and B is the

newly produced tour at cost f Bð Þ. If f Bð Þ\f ðAÞ, i.e., the

newly generated tour is better than the current tour, the

generated tour will replace the current tour as a new

solution. Conversely, if f Bð Þ[f ðAÞ, the newly generated

network, is worse than the current network, the metropolis

acceptance criterion uses a probability mechanism to

determine whether the newly generated solution is accep-

ted. The probability of accepting the solution is calculated

using Eq. (21).

p ¼ 1; iff Bð Þ� f ðAÞ
e�ðf Bð Þ�f Að ÞÞ=totherwise

�
; t ¼ b� t ð22Þ

In Eq. (21), t[ 0 is a temperature parameter. A

parameter control strategy must be used to set the initial

value of t and adjust the value of this parameter during the

search to use the metropolis acceptance criterion in the

HHO algorithm. The HHO algorithm is simplified using Eq

(15) at the end of each iteration. b is a parameter between 0

and 1, indicating the downward trend of the parameter

t. An increase in and approaching this number to 1 reduces

the downtrend, and vice versa; if this number approaches 0,

the downtrend will increase.

4 Proposed algorithm

This section describes in detail how to integrate the

mechanisms described in the previous sections. Equa-

tion (22) replaces Eq. (1). In Eq. (22), the mutation

mechanism is DE/best/2, used as a powerful operator with

high capability in the exploration phase. If Ej j � 1, the

proposed algorithm enters the exploration phase and uses

Eq. (22). After each Eq. (22) generates the solution, the

Lin-Kernighan local search mechanism is executed on the

newly generated solution. Finally, the final solution pro-

duced replaces the current solution using the metropolis

acceptance criterion.

Xnew ¼ XrandðtÞ � r1jXrandðtÞ � 2r2XðtÞjq� 0:5
Xrabbit tð Þ þ F Xr1 tð Þ � Xr2 tð Þð Þ þ Xr3 tð Þ � Xr4 tð Þð Þq\0:5

�

ð23Þ

Conversely, if jEj\1, the proposed algorithm enters the

exploitation phase. In the exploitation phase, two different

approaches are used: the first approach relates to the main

mechanisms of the HHO algorithm and the second

approach to improving the tour using neighborhood search

operators. At the beginning of the exploitation phase,

randðÞ generates a random number between 0 and 1. If

XCq (0\q\1)), the first approach is activated; Otherwise,

the second approach is used. If the HHO algorithm uses the

first approach and r� 0:5andjEj � 0:5, a soft besiege

strategy is used to improve the solution.

Conversely, if r� 0:5andjEj\0:5, a hard besiege strat-

egy is used to improve the tour. Following the soft besiege

and hard besiege strategies, the Lin-Kernighan local search

mechanism is applied to improve the new tour. Eventually,

it will be replaced as the current solution using the

metropolis acceptance criterion. However, at the beginning

of the exploitation phase, if randðÞ\q, the HHO algorithm

uses the second approach to improve the tour. In this step, a

neighborhood search operator is selected using the modi-

fied choice function to improve the tour. Then, the Lin-

Kernighan local search mechanism is applied to and

improves the newly generated tour. Finally, the newly

produced tour is selected as the current solution using the

metropolis acceptance criterion. Algorithm 2 shows the

pseudo-code of the proposed algorithm. Figure 3 shows the

flowchart of the proposed algorithm.
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According to Algorithm 2, the computational complex-

ity of the HHO algorithm is OðN � ðT þ TD þ 1ÞÞ, where

N is the number of search factors, T represents the maxi-

mum number of iterations, and D represents the dimensions

of the problem. In the proposed algorithm, like the HHO

algorithm, only one update operation of the mechanisms in

the exploration and operation phases is performed on the

search agents. Moreover, local Search and MAC operations

are performed on each search agent after each update

operation. On the other hand, the proposed algorithm uses

MCF and LLH mechanisms only in the operation phase if it

is rand C q. Therefore, the proposed algorithm performs

three update processes and local Search and MAC only

once in each iteration on each search factor, which com-

plicates the computation.

4.1 Experimental settings

The proposed algorithm has been tested using a computer

with the following specifications: Intel Core i7-7700k 4.50

GHz processor and 16 GB of RAM. It is then implemented

using the Matlab programming language. A total of 75

instances of the existing datasets in TSPLIB [41]with

dimensions of 100-85900 cities have been used. The

number in the name of each instance indicates the number

of cities in that instance; for example, the number of

Kroa100 instance cities is equal to 100. Each TSP instance

has been examined a total of 30 times using the proposed

algorithm. The best net obtained at each run is placed in the

set X ¼ c1; c2; . . .; c30f g. The computational time to get

the best tour is also placed in another set, i.e.,

T ¼ ft1; t2; . . .; t30g. Here, X is a set of best tours, and T is

a set of computational time to get the best tours. Eventu-

ally, these two sets are averaged. For this purpose, lT

Moreover, Average are used to display the averages of the

T and X sets, respectively. Finally, PDavð%Þ represents the

mean percentage of deviation using Eq. (24).

PDavð%Þ ¼ Average � BKS

BKS
� 100 ð24Þ

Here, BKS indicates the known optimal tour length. Two

criteria, namely the percentage of deviation from the

known optimum and the computation time, have been used

to obtain the best tour (measured in seconds) to evaluate

the proposed algorithm’s performance. Table 3 shows the

parameter setting of the HHO algorithm.

4.2 Experimental results

To evaluate the effect of LLHs performance, if LLHs are

integrated with MCF in this section, the three modes of the

proposed algorithm, namely, a random selection of LLHs

and integration of four main LLHs, i.e., RIS, SS, RSS, and

RRS with MCF, and integration of all LLHs with MCF are
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Fig. 3 Flowchart of proposed algorithm
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compared. This comparison has also been performed to

evaluate MCF’s performance if integrated with the Harris

Hawk Optimization Algorithm. A stop condition of 1000

iterations is provided for all three modes HHO (MCF),

HHO(5-LLH), and HHO (Random). To evaluate the per-

formance of these three algorithms, the mean tour length,

average percentage of deviation (PDavð%Þ), and mean

computation time was obtained to achieve the best solution

(lT ) (Table 4).

According to the results in Table 3, HHO-MCF has

shown the best performance in finding the best tour. HHO-

MCF obtained an average of 0.092 (PDavð%Þ) based on 80

standard TSP instances. The HHO (5-LLH) and HHO

(Random) models averaged 0.323 and 0.278, respectively,

indicating their more unsatisfactory performance than the

HHO-MCF model. On the other hand, with 30 execution

times, the HHO-MCF model has solved 34 out of a total of

80 instances of the known optimum. Moreover, the HHO-

MCF model has been shown to perform better in most

instances; however, the HHO (5-LLH) and HHO (Random)

models performed better in some instances.

The Wilcoxon signed-rank test [94] with a 95% confi-

dence interval was used to make a statistical comparison

between three models, namely HHO (MCF), HHO (5-

LLH), and HHO (Random) in terms of performance. In the

Wilcoxon signed-rank test, the difference in PDavð%Þ
values in the two algorithms are used to compare and rank.

Instances with equal values are not used in the two algo-

rithms. After discarding equal instances, N indicates the

number of use instances and Rþ indicates the set of

instance scores. On the other hand, R� represents the total

score of instances in which the proposed algorithm has

shown worse performance than the compared algorithm. In

the Wilcoxon signed-rank test, the value of W is compared

to a critical value, WCri;N . W�WCri;N indicates a signifi-

cant difference between the two algorithms in terms of

performance. In contrast, W[WCri;N means that there is

no significant difference between the two algorithms in

terms of performance. Table 5 presents the Wilcoxon

signed-rank test results to compare three models, HHO

(MCF), HHO(5-LLH), and HHO (Random), indicating the

remarkable performance of the HHO (MCF) model.

4.3 Competitiveness HHO-MCF

To further evaluate the performance of the proposed

algorithm with other optimization algorithms, which are

proposed to solve the TSP problem, which are DFFA [63],

DSCA [52], HDABC [95], and MCF-ABC [17] has been

tested and compared. These algorithms selected and

implemented in this comparison are selected based on

similar methods for optimization operations and based on

these algorithms’ new and powerful. This comparison is

based on Average, PDav, and lTðsÞ criteria are done. On

the other hand, for better evaluation, the Wilcoxon statis-

tical test [96] with a 5% degree of significance has been

performed to detect significant differences according to the

results obtained from the proposed algorithm compared to

other optimization methods. All experiments were per-

formed using ten populations with a maximum of 1000

replications. All results were stored based on an average of

30 independent executions and compared based on these

results. Comparison of algorithm settings DFFA [63],

DSCA [52], HDABC [95], and MCF-ABC [17] are pro-

vided in the main work that has been performed. Also, the

parameter settings of the comparing optimization algo-

rithms are given in Table 6.

Tables 7, 8, 9 show the results obtained from testing and

evaluating the proposed algorithm and other comparative

optimization algorithms using samples of small, medium

and large dimensions.

According to Table 7, the results obtained from the

proposed algorithm’s performance and other comparable

algorithms are shown using small-sized samples. The

results show that the proposed algorithm and MCF-ABC

have achieved the known optimal value in all samples and

have good performance in solving small-scale problems.

DFFA algorithms have also shown that it has achieved the

known optimal value in many samples in the face of small-

scale problems. However, the HDABC and DSCA algo-

rithms have achieved the known optimal value in almost

half of the problems. According to the lTðsÞ criterion,

Maybe the proposed algorithm has the best performance

and achieved quality solutions in less time than other

optimization algorithms. Table 8 shows the results of

testing the proposed algorithm and other comparable

optimization algorithms using medium-sized samples.

Table 8 shows the results obtained from testing the

proposed algorithm and other comparable optimization

algorithms using medium-sized samples. The results show

that the proposed algorithm has a much better performance

than other optimization algorithms and can obtain quality

solutions compared to other optimization algorithms. Also,

the proposed algorithm has been able to achieve the known

optimal value in most samples. On the other hand, the

Table 3 HHO algorithm

parameter settings
Parameter Value

POP 10

Max iteration 1000

t 30

b 0.99

F 0.5
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Table 4 Performance evaluation of HHO (MCF), HHO(5-LLH), and HHO (Random) based on 75 TSP standard instances

No. Instance BKS HHO (MCF) HHO (5-LLH) HHO (Random)

Average PDavð%Þ lT ðsÞ Average PDavð%Þ lT ðsÞ Average PDavð%Þ lT ðsÞ

1 kroA100 21282 21282.0 0.000 0.6 21282.0 0.000 0.4 21282.0 0.000 0.8

2 kroB100 22141 22141.0 0.000 0.3 22141.0 0.000 0.4 22141.0 0.000 0.5

3 kroC100 20749 20749.0 0.000 0.1 20749.0 0.000 0.5 20749.0 0.000 0.3

4 eil101 629 629.0 0.000 0.7 629.0 0.000 0.8 629.0 0.000 0.3

5 lin105 14379 14379.0 0.000 0.2 14379.0 0.000 0.6 14379.0 0.000 0.4

6 pr107 44303 44303.0 0.000 0.3 44303.0 0.000 0.7 44303.0 0.000 0.6

7 gr120 6942 6942.0 0.000 0.9 6942.0 0.000 0.6 6942.0 0.000 0.8

8 pr124 59030 59030.0 0.000 0.5 59030.0 0.000 0.7 59030.0 0.000 0.4

9 bier127 118282 118282.0 0.000 0.3 118282.0 0.000 0.8 118282.0 0.000 0.7

10 ch130 6110 6110.0 0.000 0.2 6110.0 0.000 0.5 6110.0 0.000 0.4

11 pr136 96772 96772.0 0.000 0.8 96772.0 0.000 0.7 96772.0 0.000 0.9

12 gr137 69853 69853.0 0.000 1.1 69853.0 0.000 1.2 69853.0 0.000 1.2

13 pr144 58537 58537.0 0.000 5.1 58537.0 0.000 6.4 58537.0 0.000 6.9

14 ch150 6528 6528.0 0.000 0.2 6528.0 0.000 0.7 6528.0 0.000 0.5

15 kroA150 26524 26524.0 0.000 0.4 26524.0 0.000 0.5 26524.0 0.000 0.3

16 kroB150 26130 26130.0 0.000 0.8 26130.0 0.000 0.6 26130.0 0.000 0.9

17 pr152 73682 73682.0 0.000 8.2 73682.0 0.000 7.8 73682.0 0.000 8.0

18 u159 42080 42080.0 0.000 0.5 42080.0 0.000 0.6 42080.0 0.000 0.4

19 si175 21407 21407.0 0.000 0.9 21407.0 0.000 0.9 21407.0 0.000 0.7

20 brg180 1950 1950.0 0.000 0.4 1950.0 0.000 0.6 1950.0 0.000 0.4

21 rat195 2323 2323.0 0.000 0.8 2323.0 0.000 0.4 2323.0 0.000 1.1

22 d198 15780 15780.0 0.000 11.8 15780.0 0.000 11.6 15780.0 0.000 11.5

23 kroA200 29368 29368.0 0.000 3.1 29368.0 0.000 3.2 29368.0 0.000 3.1

24 kroB200 29437 29437.0 0.000 0.5 29437.0 0.000 0.8 29437.0 0.000 0.8

25 gr202 40160 40160.0 0.000 1.5 40160.0 0.000 3.2 40160.0 0.000 2.7

26 tsp225 3916 3916.0 0.000 0.6 3916.0 0.000 0.8 3916.0 0.000 0.7

27 ts225 126643 126643.0 0.000 0.8 126643.0 0.000 0.9 126643.0 0.000 0.4

28 pr226 80369 80369.0 0.000 7.7 80369.0 0.000 9.3 80369.0 0.000 8.6

29 gr229 134602 134602.0 0.000 1.7 134602.0 0.000 2.4 134602.0 0.000 3.2

30 gil262 2378 2378.0 0.000 0.8 2378.0 0.000 0.9 2378.0 0.000 1.1

31 pr264 49135 49135.0 0.000 0.6 49135.0 0.000 1.2 49135.0 0.000 1.2

32 a280 2579 2579.0 0.000 0.7 2579.0 0.000 0.6 2579.0 0.000 0.8

33 pr299 48191 48191.0 0.000 1.3 48191.0 0.000 1.2 48191.0 0.000 1.2

34 lin318 42029 42029.0 0.000 3.2 42029.0 0.000 8.2 42029.0 0.000 5.3

35 rd400 15281 15281.0 0.000 6.8 15281.0 0.000 5.9 15281.0 0.000 6.1

36 fl417 11861 11861.0 0.000 12.4 11861.0 0.000 14.5 11861.0 0.000 13.8

37 gr431 171414 171414.0 0.000 23.6 171414.0 0.000 33.3 171414.0 0.000 27.9

38 pr439 107217 107217.0 0.000 6.2 107217.0 0.000 7.4 107217.0 0.000 5.9

39 pcb442 50778 50778.0 0.000 3.6 50778.0 0.000 3.8 50778.0 0.000 4.1

40 d493 35002 35002.0 0.000 51.2 35003.5 0.004 59.6 35003.7 0.005 49.7

41 att532 27686 27686.9 0.003 43.5 27688.2 0.008 47.2 27687.5 0.005 39.4

42 ali535 202339 202339.0 0.000 18.7 202341.9 0.001 21.6 202347.6 0.004 20.9

43 si535 48450 48493.1 0.089 72.3 48484.8 0.072 89.1 48512.3 0.129 91.2

44 pa561 2763 2763.0 0.000 15.4 2763.3 0.011 17.2 2763.7 0.025 20.3

45 u574 36905 36905.8 0.002 6.5 36906.1 0.003 9.1 36906.5 0.004 8.7

46 rat575 6773 6774.2 0.018 13.8 6775.4 0.035 12.4 6774.7 0.025 14.5

47 p654 34643 34643.6 0.002 51.2 34644.5 0.004 49.3 34645.1 0.006 52.8
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MCF-ABC algorithm is ranked second in performance and

has achieved the known optimal value in some samples.

According to the lT sð Þ criterion, the proposed algorithm in

solving medium-sized problems has been able to achieve

quality solutions in less time and perform much better than

other comparable algorithms in most samples Has shown

Table 4 (continued)

No. Instance BKS HHO (MCF) HHO (5-LLH) HHO (Random)

Average PDavð%Þ lT ðsÞ Average PDavð%Þ lT ðsÞ Average PDavð%Þ lT ðsÞ

48 d657 48912 48913.9 0.004 21.9 48917.7 0.012 30.5 48915.9 0.008 24.6

49 gr666 294358 294392.1 0.012 58.6 294390.3 0.011 75.7 294402.2 0.015 69.1

50 u724 41910 41913.4 0.008 32.9 41921.6 0.028 34.8 41917.8 0.019 33.4

51 rat783 8806 8806.0 0.000 9.4 8806.0 0.000 11.6 8806.0 0.000 10.2

52 dsj1000 18659688 18662009.8 0.012 117.3 18663849.2 0.022 119.1 18664175.4 0.024 103.9

53 pr1002 259045 259062.5 0.007 43.5 259262.1 0.084 51.4 259056.3 0.004 59.3

54 si1032 92650 92650.0 0.000 15.1 92653.1 0.003 13.2 92655.6 0.006 18.5

55 U1060 224094 224124.1 0.013 30.2 224138.4 0.020 34.5 224149.5 0.025 32.7

56 vm1084 239297 239315.6 0.008 63.7 239330.9 0.014 58.3 239342.8 0.019 68.6

57 pcb1173 56892 56901.3 0.016 25.4 56912.3 0.036 30.7 56909.1 0.030 36.8

58 d1291 50801 50829.6 0.056 45.9 51464.8 1.307 72.4 51404.7 1.188 110.2

59 rl1304 252,948 253108.2 0.063 26.7 253214.4 0.105 32.5 253301.5 0.140 25.1

60 rl1323 270,199 270328.1 0.048 37.4 270584.5 0.143 41.8 270412.8 0.079 45.5

61 d1655 62128 62213.5 0.138 64.8 62200.5 0.117 78.6 62287.4 0.257 107.3

62 vm1748 336,556 336857.3 0.090 70.1 337004.3 0.133 82.5 336824.9 0.080 87.3

63 u1817 57201 57326.2 0.219 63.3 57383.7 0.319 35.1 57362.3 0.282 94.4

64 rl1889 316536 317298.4 0.241 95.1 317501.6 0.305 106.5 317260.8 0.229 112.5

65 u2152 64253 64435.1 0.283 32.6 64467.2 0.333 57.2 64493.6 0.374 66.1

66 u2319 234,256 234827.6 0.244 43.2 234916.7 0.282 39.5 235026.4 0.329 40.5

67 pr2392 378032 378667.9 0.168 67.5 378868.4 0.221 84.3 378987.5 0.253 89.8

68 pcb3038 137694 137944.8 0.182 125.4 137911.9 0.158 127.8 138177.2 0.351 114.6

69 fl3795 28772 28829.7 0.201 321.7 31900.8 10.874 486.4 31379.1 9.061 591.7

70 fnl4461 182566 182968.2 0.220 62.8 183242.1 0.370 49.8 183177.9 0.335 68.2

71 rl5915 565530 567761.6 0.395 204.6 572012.3 1.146 217.5 571071.4 0.980 209.3

72 Rl5934 556045 557898.1 0.333 512.3 558973.5 0.527 583.2 559769.7 0.670 549.9

73 pla7397 23260728 23322408.5 0.265 506.1 23385448.6 0.536 497.2 23399754.3 0.598 467.4

74 rl11849 923288 927897.8 0.499 642.3 935837.4 1.359 728.6 936252.8 1.404 771.5

75 Usa13509 19982859 20103912.4 0.606 2057.4 20220179.9 1.188 1924.9 20088279.3 0.528 2317.9

76 Brd14051 469388 471976.2 0.551 1163.7 475239.8 1.247 1269.1 474804.2 1.154 1374.4

77 D15112 1573084 1581138.6 0.512 652.7 1587269.4 0.902 690.4 1585243.9 0.773 668.9

78 D18512 645244 648751.9 0.544 805.2 653861.7 1.336 719.8 648537.1 0.510 775.8

79 Pla33810 66050535 66438091.7 0.587 7976.6 66859473.2 1.225 4867.0 66789347.4 1.119 6208.4

80 pla85900 142382641 143400437.3 0.715 11996.7 144296843.5 1.344 10857.1 144127112.6 1.225 9366.7

Average: 0.092 354.7 0.323 306.9 0.278 314.3

Table 5 Wilcoxon signed-rank

test to compare three models:

HHO (MCF) and HHO(5-LLH)

and HHO (Random)

Comparisons HHO (MCF) vs.… N Rþ R� W WCri;N Significant difference

HHO (5-LLH) 40 769.5 50.5 50.5 264 Yes

HHO (Random) 40 746.5 73.5 73.5 264 Yes
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itself. Table 9 shows the results of experiments performed

using large samples.

According to the results of Table 9, which are the results

obtained from the proposed algorithm and other compara-

ble algorithms using large-sized samples, it is clear that the

proposed algorithm has performed significantly better in

the face of large-scale problems and has been able to In

almost all samples to obtain quality and better solutions

than the comparable algorithms. On the other hand, the

MCF-ABC algorithm has the second-best performance and

can obtain acceptable solutions. The third-best perfor-

mance in experiments performed on large-scale samples is

related to DFFA, which can obtain acceptable results in

some samples. According to the lT sð Þ criterion, the pro-

posed algorithm can still obtain quality solutions in less

time than other comparable optimization algorithms, and in

almost all samples, it takes less time to find solutions that

have spent quality. In this paper, to further investigate the

performance of the PDav criteria proposed algorithm, we

compared the proposed algorithm with D-CLPSO [46],

SOM [97], and DPIO [48] algorithms in large-scale com-

parative samples. The results are shown in Table 10.

According to the results shown in Table 10, the pro-

posed algorithm has a good and significant performance

compared to the compared algorithms and has achieved

much better results than the compared algorithms. The

proposed algorithm has excellent and acceptable perfor-

mance in the face of complex and significant issues. To

further evaluate the proposed algorithm, it is compared

with CLK [78], with the results shown in Table 11. The

CLK source code [85], available in the Concorde TSP

solver software, has been used to compare the proposed

algorithm with the CLK. Large-scale instances are used for

comparison. It is a single-solution-based model in which

the population is equal to 1. This model is allowed to

perform a maximum of 10,000 iterations. The default set-

tings in Concorde are maintained to run as follows: ini-

tialization method (i.e., Quick-Boruvka), choice of the kick

(i.e., 50-step random-walk kick) and the level of back-

tracking (i.e. (4, 3, 3, 2)-breadth).

Table 11 compares the proposed algorithm with the

CLK model. Both models use a similar LK local search

strategy. Examining this comparison results shows that the

proposed algorithm performs better in small-scale instan-

ces, and the CLK model performs better in large-scale

instances. The Wilcoxon signed-rank test with a confidence

interval of 95% was utilized for comparing the proposed

algorithm with other algorithms in terms of performance.

Table 12 compares the proposed algorithm with other

competing performance optimization algorithms using the

Wilcoxon signed-rank test with a confidence interval of

95%. The results indicate significantly better performance

of the proposed algorithm compared to the other six

models. In all comparisons

RþgreaterthanR�andWsmallerthanWCri;N except for the

CLK, that is WgreaterthanWCri;N.

5 Discussion of the results

In this subsection, the proposed algorithm’s performance is

discussed based on the tests and evaluations performed.

Table 4 shows the evaluation of MCF performance and the

impact of neighborhood search operators on its

Table 6 Parameter settings of

optimization algorithms for

comparison and evaluation of

the proposed algorithm

Algorithm Parameter Value

HDABC length of threshold list 300

Limit 100

DSCA Rl1 random numbers between 0 and 1

Rl2 random numbers between 0 and 1

DFFA K-Value 3

Pop 10

T 8

Alpha 0.99

Swap Prob. 0.2

Inverse Prob. 0.5

Insertion Prob. 0.3

MCF-ABC limit 200

MCF-HHO t 30

b 0.99

F 0.5
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Table 9 Comparison of the proposed algorithm with other models in high dimensions’ instance

Instance Proposed Algorithm MCF-ABC [17] DFFA [63]

Average PDav lTðsÞ Average PDav lTðsÞ Average PDav lTðsÞ

vm1084 239315.6 0.008 63.7 239325.4 0.012 75.1 239876.1 0.242 110.2

pcb1173 56901.3 0.016 15.4 56899.7 0.014 19.3 57061.5 0.298 21.5

d1291 50829.6 0.056 32.9 50838.1 0.073 39.2 51057.2 0.504 51.7

rl1304 253108.2 0.063 26.7 253327.8 0.150 41.7 254095.3 0.454 55.3

rl1323 270328.1 0.048 37.4 270528.2 0.122 51.2 271089.5 0.330 49.6

d1655 62213.5 0.138 64.8 62229.8 0.164 86.9 62397.9 0.434 79.2

vm1748 336857.3 0.090 70.1 336976.2 0.125 87.3 338012.9 0.433 91.5

u1817 57326.2 0.219 60.3 57340.5 0.244 59.5 57424.7 0.391 67.3

rl1889 317298.4 0.241 95.1 317367.3 0.262 124.3 317578.4 0.329 101.5

u2152 64435.1 0.283 18.6 64432.6 0.280 25.1 64439. 5 0.290 39.4

u2319 234827.6 0.244 43.2 235018.4 0.325 47.5 235097.8 0.359 61.2

pr2392 378667.9 0.168 67.5 378689.4 0.174 78.7 380255.3 0.588 96.6

pcb3038 137944.8 0.182 97.4 138005.9 0.227 110.2 138416.8 0.525 137.9

fl3795 28829.7 0.201 321.7 28821.2 0.171 385.6 28984.6 0.739 405.7

fnl4461 182968.2 0.220 59.8 182994.5 0.235 49.2 183497.1 0.510 78.6

rl5915 567761.6 0.395 204.6 567801.8 0.402 229.8 569938.4 0.780 287.3

rl5934 557898.1 0.333 512.3 558027.7 0.357 601.5 561798.2 1.035 725.4

pla7397 23322408.5 0.265 437.1 23324982.3 0.276 489.1 23511293.5 1.077 547.2

rl11849 927897.8 0.499 642.3 927984.2 0.509 712.6 932412.2 0.988 627.8

Usa13509 20103912.4 0.606 2057.4 20107564.5 0.624 2174.2 20258426.3 1.379 2351.7

Brd14051 471976.2 0.551 973.7 472054.1 0.568 1065.3 473071.6 0.785 1195.3

D15112 1581138.6 0.512 652.7 1582954.7 0.627 729.4 1591532.8 1.173 637.8

D18512 648751.9 0.544 805.2 649165.5 0.608 1154.8 651789.7 1.014 1376.2

Pla33810 66438091.7 0.587 7976.6 66443178.4 0.594 8034.2 67042973.9 1.503 8647.7

pla85900 143400437.3 0.715 11996.7 143498824.2 0.784 12985.7 144810748.5 1.705 13164.5

HDABC [95] DSCA [52]

Average PDav lTðsÞ Average PDav lTðsÞ

239756.2 0.192 54.8 241328.2 0.849 95.4

57271.8 0.668 15.2 57154.6 0.462 31.8

51412.5 1.204 59.9 51209.8 0.805 68.4

254107.4 0.458 31.2 254964.3 0.797 43.7

271162.7 0.357 52.4 272039.5 0.681 61.5

63016.9 1.431 97.6 62894.5 1.234 59.1

339197.6 0.785 83.4 340158.7 1.070 98.6

57891.3 1.207 71.3 57834.5 1.107 85.6

319854.7 1.048 142.6 320109.3 1.129 127.3

64984.9 1.139 33.4 64459.7 0.322 47.9

234911.6 0.280 72.5 236734.8 1.058 50.7

381625.4 0.951 69.5 381714.6 0.974 136.2

139214.5 1.104 126.7 139722.4 1.473 155.1

29062.3 1.009 422.9 29149.5 1.312 474.5

184987.8 1.327 56.3 187443.9 2.672 61.9

571735.2 1.097 247.1 571987.6 1.142 310.2

565418.6 1.686 771.9 563245.2 1.295 698.7

23524872.9 1.136 516.4 23564264.8 1.305 505.3

937897.4 1.582 682.7 938056.3 1.600 658.4
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improvement. According to these evaluations, the proposed

algorithm using MCF and all ten neighborhood search

operators has obtained higher quality tours than other

compared models. This evaluation also shows that MCF

has a significant impact on obtaining quality solutions.

Because the intelligent choice of neighborhood search

operators during optimization operations can be significant,

on the other hand, it turns out that the use of MCF also

leads to quality tours in a shorter period.

Table 7 shows the results obtained from the proposed

algorithm’s performance with DSCA, HDABC, DFFA and

MCF-ABC algorithms in small samples. The proposed

algorithm in all small dimensions has been able to achieve

the known optimal value. However, the compared algo-

rithms also performed well in small samples. Nevertheless,

the proposed algorithm in terms of time has achieved

quality tours in less time. However, the results of evalua-

tions of medium-sized samples are shown in Table 8. The

proposed algorithm has a much better performance than the

compared algorithms compared to the medium-sized

models, and in most of the samples, it has been able to

obtain higher quality tours than the compared algorithms in

a shorter period. Finally, Table 9 shows the results obtained

from the proposed algorithm and the comparable algo-

rithms in solving large-sized samples. According to the

evaluations made with large samples, it has been

Table 9 (continued)

HDABC [95] DSCA [52]

Average PDav lTðsÞ Average PDav lTðsÞ

20312749.7 1.651 1978.6 20344117.4 1.808 2572.6

477587.5 1.747 1299.5 476195.1 1.450 1078.5

1596105.3 1.463 819.3 1595410.9 1.419 615.2

653412.2 1.266 1267.3 654027.5 1.361 1542.1

67351482.6 1.970 8469.8 67478362.2 2.162 8894.9

145279432.4 2.035 1352.4 147289104.7 3.446 13746.7

Table 10 Comparison of the

proposed algorithm with DPIO,

SOM, and D-CLPSO based on

PDav criteria

Instance Proposed algorithm DPIO [48] SOM [97] D-CLPSO [46]

U1060 0.013 0.374 5.12 -

vm1084 0.008 0.327 5.86 -

pcb1173 0.016 0.392 7.50 0.737

d1291 0.056 0.668 9.66 0.645

d1655 0.138 0.369 9.60 0.819

u1817 0.219 0.561 9.68 -

rl1889 0.241 0.688 9.54 0.716

u2152 0.283 0.838 10.43 -

pr2392 0.168 0.612 7.04 1.042

pcb3038 0.182 0.624 7.88 0.998

fl3795 0.201 1.52 16.13 -

fnl4461 0.220 0.961 5.62 1.222

rl5915 0.395 1.005 12.94 -

rl5934 0.333 1.041 13.02 1.205

pla7397 0.265 1.441 10.19 1.427

rl11849 0.499 1.062 11.49 -

Usa13509 0.606 1.168 7.62 1.466

Brd14051 0.551 1.051 6.18 1.328

D15112 0.512 0.984 5.95 –

D18512 0.544 1.049 6 1.362

Pla33810 0.587 1.726 13.23 2.10

pla85900 0.715 1.378 10.94 1.64
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determined that the proposed algorithm has much better

performance and efficiency than the compared algorithms

because it has been able to make quality tours for a shorter

time than the compared algorithms.

On the other hand, in the comparison made in Table 10,

the proposed algorithm has shown that it has a significantly

good performance compared to DPIO, SOM and D-CLPSO

algorithms and has much more capability and efficiency

results obtained. It has been significantly better than the

proposed algorithm. Compared to CLK, the proposed

algorithm has shown complete superiority in small and

medium-sized samples, but in partially large CLK samples,

it has achieved slightly better results.

In general, the good results obtained from the proposed

algorithm indicate the selection of excellent and comple-

mentary mechanisms. Because each of these mechanisms

has increased the ability and balance of intensification and

diversification components, as well as Multi-start Local

Search (MSLS) [80] and Iterated Local Search (ILS) [84]

systems have been created.

6 Conclusion and future works

The HHO algorithm is a new metaheuristic algorithm used

to solve specific problems. This paper utilizes random-key

encoding of the continuous optimization problem space to

solve the TSP, a discrete permutation problem. The pri-

mary purpose of using random-key encoding is to maintain

robust HHO strategies. Furthermore, a mutation operator,

DE/best/2, was employed in the exploration phase to

increase the proposed algorithm’s performance in the

exploitation phase. Ten neighborhood search operators

have been utilized in the exploitation phase, four of which

were presented to solve the TSP. A hyper-heuristic mech-

anism based on an MCF was used to select each neigh-

borhood search operator. The MCF allows intelligent and

automatic selection of neighborhood search operators

during optimization.

On the other hand, a local search strategy called Lin-

Kernighan (LK) was employed to improve the proposed

algorithm’s performance. Finally, the Metropolis accep-

tance strategy was utilized to escape the local optima trap.

This paper presents and evaluates three models, namely

HHO (MCF), HHO (5-LLH), and HHO (Random). The

proposed algorithm was tested with 80 instances using two

criteria: the computation time to obtain the best tour and

the average deviation, compared with the seven previously

presented models. The results indicated an acceptable per-

formance of the proposed algorithm. The algorithm pre-

sented in this paper can be used to solve other problems. It

is a good solution for use in other issues. In the future, the

proposed algorithm can be used to solve combinatorialTa
bl
e
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optimization problems such as vehicle routing and

scheduling and mixed-integer programming problems.

Different types of TSP instances can also be evaluated,

including asymmetric, spherical, and generalized TSP.
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44. Gülcü, S., et al.: A parallel cooperative hybrid method based on

ant colony optimization and 3-Opt algorithm for solving traveling

salesman problem. Soft. Comput. 22(5), 1669–1685 (2018)

45. Ezugwu, A.E.-S., A.O. Adewumi, and M.E. FrÃ�ncu, Simulated
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